1
|
Kitajima S, Maruyama Y, Ishiwatari Y, Kuroda M, Meyerhof W, Behrens M. Involvement of GPR91 in the perception of the umami-like shellfish taste of succinate. Food Chem 2025; 477:143549. [PMID: 40043606 DOI: 10.1016/j.foodchem.2025.143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Succinate is a key component of the characteristic umami-like taste of shellfish, which is similar to the umami taste elicited by glutamate, but is slightly more persistent and astringent. The taste receptors involved in the perception of succinate currently remain unknown. Therefore, we herein attempted to identify the taste receptors for succinate. We investigated whether cells heterologously expressing receptors associated with umami taste or succinate were activated by succinate and selected GPR91 as a candidate receptor. To verify the contribution of GPR91 to taste perception, the relationship between GPR91 activation and sensory activity was assessed using receptor assays and sensory evaluations. Our results suggest that the taste of succinate depends on the activation of GPR91. We propose that GPR91 functions as a gustatory receptor involved in the perception of the umami-like shellfish taste of succinate.
Collapse
Affiliation(s)
- Seiji Kitajima
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan; German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany.
| | - Yutaka Maruyama
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Yutaka Ishiwatari
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Motonaka Kuroda
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany
| | - Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
2
|
Yang J, Zhang Y, Chen P, Zeng X, Bai W, Zhang Y, Sun B. Enhancing beef flavor profiles via Maillard reaction of γ-Glutamylated beef protein hydrolysates and xylose. Food Chem 2025; 476:143313. [PMID: 39977990 DOI: 10.1016/j.foodchem.2025.143313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Beef protein hydrolysates (BH) and their γ-glutamylated products (γ-BH and γ-GBH, 0 and 7 % L-Gln extra-addition) were prepared, followed by xylose-induced Maillard reaction. Maillard reaction products (MRPs) of γ-glutamylated products (γ-BH-MRP and γ-GBH-MRP) showed a higher degree of Maillard reaction and improved sensory characteristics (p < 0.05). Specifically, UV absorbances and fluorescence intensity of MRPs significantly increased (p < 0.05), and there were significant increases in kokumi, umami, saltiness, roast, and meaty flavors, and a reduction in bitterness (p < 0.05) after γ-glutamylation. In γ-BH-MRP and γ-GBH-MRP, the relative content of most flavor compounds increased significantly (p < 0.05), especially pyrazines and furans, and 8 and 10 new flavor compounds were also detected. 7 and 25 new γ-glutamyl peptides were identified, with their contents ranging 2.26-8.38 μM and 1.93-71.90 μM, respectively. These data illustrate that γ-glutamylation can promote the formation of MRPs, thereby improving the flavor characteristics of beef flavorings.
Collapse
Affiliation(s)
- Juan Yang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuqiang Zhang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Peiwen Chen
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
3
|
Huang P, Wang Z, Zhao X, Cui C. Green synthesis of N-succinyl-L-tyrosine: Decoding its taste-enhancing effects and mechanisms via sensory evaluation and molecular simulation. Food Res Int 2025; 202:115755. [PMID: 39967071 DOI: 10.1016/j.foodres.2025.115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/01/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Amid escalating global public health concerns linked to dietary habits, the reduction of salt, monosodium glutamate, and sugar is increasingly recognized as a prevailing trend. This study explored the green synthesis of a novel taste enhancer, N-succinyl-L-tyrosine (N-Suc-Tyr), alongside its mechanisms of taste enhancement. N-Suc-Tyr was synthesized through an enzymatic process utilizing food-grade enzymes within an aqueous environment. Sensory evaluations revealed that the addition of N-Suc-Tyr at a concentration of 2 mg/L markedly enhanced the intensities and durations of umami, saltiness, sweetness, and kokumi tastes. Sigmoid curve analysis further confirmed the synergistic effects of N-Suc-Tyr on enhancing these taste sensations. Through molecular docking and dynamic simulations, it was demonstrated that N-Suc-Tyr bound tightly and stably to various taste receptors, thus enhancing the sensations of umami, sweetness, saltiness, and kokumi. These results provided a comprehensive understanding of the potential and mechanisms through which enzymatically synthesized N-Suc-Tyr could enhance tastes, thereby contributing to the advancement of the high-grade condiment industry.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Yamaguchi H, Kitajima S, Suzuki H, Suzuki S, Nishikawa K, Kamegawa A, Fujiyoshi Y, Takahashi K, Tagami U, Maruyama Y, Kuroda M, Sugiki M. Cryo-EM structure of the calcium-sensing receptor complexed with the kokumi substance γ-glutamyl-valyl-glycine. Sci Rep 2025; 15:3894. [PMID: 39890873 PMCID: PMC11785791 DOI: 10.1038/s41598-025-87999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Taste is a key element for food palatability and is strongly influenced by the five basic tastes and other taste sensations, such as fatty orosensation, and koku perception, which indicates taste complexity, mouthfulness and lastingness. This study focuses on the taste modifier γ-glutamyl-valyl-glycine (γ-EVG), a potent kokumi substance that enhances taste and koku perception by modulating the calcium-sensing receptor (CaSR). We used cryo-electron microscopy to determine the structure of the CaSR/γ-EVG complex at a resolution of 3.55 Å. Structural analysis revealed important interactions between γ-EVG and the CaSR, involving key residues, such as Pro39, Phe42, Arg66, Ser147, and Glu297. Mutagenesis experiments demonstrated the importance of these residues in peptide binding. Each γ-EVG residue contributed to its binding to the orthosteric ligand binding site of the CaSR. These findings elucidate the molecular basis of kokumi peptide recognition by the CaSR and contribute to a better understanding of positive allosteric modulators of the CaSR. In addition, this research provides valuable insights into the functionality of class C G-protein-coupled receptors in taste perception, potentially informing the development of new taste modifiers and advancing the field of food science.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan.
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8501, Japan.
| | - Seiji Kitajima
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan.
| | - Hiroshi Suzuki
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8501, Japan
| | - Shota Suzuki
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8501, Japan
| | - Kouki Nishikawa
- CeSPIA Inc., 2-1-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
- Joint Research Course for Advanced Biomolecular Characterization, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Akiko Kamegawa
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8501, Japan
- CeSPIA Inc., 2-1-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
- Joint Research Course for Advanced Biomolecular Characterization, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yoshinori Fujiyoshi
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8501, Japan
- CeSPIA Inc., 2-1-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
- Joint Research Course for Advanced Biomolecular Characterization, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazutoshi Takahashi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan
| | - Uno Tagami
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan
| | - Yutaka Maruyama
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan
| | - Motonaka Kuroda
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan
| | - Masayuki Sugiki
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan
| |
Collapse
|
5
|
He K, Peng X, Li Y, Zhao M, Feng Y. Revealing metabolite profiles in soy sauce and exploring their correlation with umami taste using UPLC-Orbitrap-MS/MS and GC-Tof-MS derivatization. Food Chem 2025; 463:141303. [PMID: 39426240 DOI: 10.1016/j.foodchem.2024.141303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Soy sauce has a rich base of non-volatile substances, but existing studies are insufficient. This study analyzed the metabolites of 19 Chinese commercial soy sauces by UPLC-Orbitrap-MS/MS and GC-Tof-MS derivatization, and detected 674 and 230 kinds of substances, respectively, that could be grouped into 12 different classes of compounds, such as peptides, amino acid derivatives, organic acids, sugars, sugar alcohols, amino acids and so on. For the first time, 215 dipeptides and 91 amino acid derivatives in soy sauce were analyzed in detail and systematically from the perspective of composition and amino acid structure. The flavor profile of soy sauce was obtained by electronic tongue analysis, and orthogonal projections to latent structures (OPLS), random forest (RF), correlation were used to screen potential compounds associated with umami. The intersection of the three methods yielded 9 substances, including 4 reported umami-taste compounds, i.e., Glu, Fru-Glu, Inosine 5'prime-monophosphate (IMP) and Arg-Ser, as well as 5 others that may potentially contribute to umami or be associated with umami-taste producing microorganisms, including His-Asn and Homoserine lactone. This study will advance the understanding of soy sauce metabolites, and provide an in-depth reference for dipeptides and amino acid derivatives in soy sauce.
Collapse
Affiliation(s)
- Kaili He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Xing Peng
- Metanotitia Inc., Shenzhen 518063, China
| | - Yan Li
- Metanotitia Inc., Shenzhen 518063, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
6
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
7
|
Huang P, Yang B, Zhao X, Wang L, Cui C. Enzymatic synthesis of N-succinyl-L-phenylalanine and exploration of its potential as a novel taste enhancer. Food Chem 2024; 460:140747. [PMID: 39121766 DOI: 10.1016/j.foodchem.2024.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
N-succinyl-L-phenylalanine (SP) has been identified as a taste-active contributor in an array of foods. Despite its recognized importance, the understanding of its synthesis and taste enhancement properties remains rudimentary. The study examined the enzymatic synthesis of SP with 45.58 ± 1.95% yield. This was achieved under optimized conditions: 0.3 mol/L L-phenylalanine, 0.9 mol/L succinic acid, 30,000 U/L of the AY 50C, pH 4 and 55 °C for 24 h. Sensory evaluation and electronic tongue revealed that the incorporation of a mere 1 mg/L SP substantially increased the kokumi, umami, and saltiness intensities, indicating the potential of SP as a potent taste enhancer. Moreover, time-intensity (TI) results demonstrated a significant increase of umami duration in samples containing 1 mg/L of SP (210.0 ± 0 s), a significant extension compared to the control group (150.0 ± 0 s). Notably, the intensity of umami and saltiness in the SP sample were consistently higher than that of control group. The sigmoid curve analysis further confirmed that SP exhibited a synergistic effect on umami and saltiness perceptions. Moreover, the study also illuminated interaction of SP with T1R1, T1R3, TMC4, TRPV1, and CaSR receptors, resulting in significant enhancement in umami, saltiness, and kokumi.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Lu Wang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Huang YP, Masarweh C, Paviani B, Mills DA, Barile D. Exploring bioactive compounds in chickpea and bean aquafaba: Insights from glycomics and peptidomics analyses. Food Chem 2024; 460:140635. [PMID: 39111140 DOI: 10.1016/j.foodchem.2024.140635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
The objective of this study was to identify bioactive oligosaccharides and peptides in the cooking water of chickpeas and common beans, known as aquafaba. The oligosaccharides stachyose, raffinose and verbascose were quantified by high-performance anion-exchange chromatography; 78 and 67 additional oligosaccharides were identified in chickpea and common bean aquafaba, respectively, by LC-MS/MS. Chickpea aquafaba uniquely harbored ciceritol and other methyl-inositol-containing oligosaccharides. In prebiotic growth assays, chickpea aquafaba oligosaccharides were differentially utilized, promoting growth of Limosilactobacillus reuteri DSM 20016 and Bifidobacterium longum subsp. infantis ATCC 15697, but not Lacticaseibacillus rhamnosus GG. Dimethyl labeling, along with LC-MS/MS, effectively differentiated α- and γ-glutamyl peptides, revealing the presence of several γ-glutamyl peptides known to possess kokumi and anti-inflammatory activities, including γ-Glu-Phe and γ-Glu-Tyr in chickpeas aquafaba and γ-Glu-S-methyl-Cys and γ-Glu-Leu in beans aquafaba. This work uncovered unique bioactive peptides and oligosaccharides in aquafaba, helping promote its valorization, food system sustainability, and future health-promoting claims.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Chad Masarweh
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
9
|
Huang P, Wang Z, Ma Y, Zhao X, Cui C. Based on green synthesis, multisensory evaluations and molecular simulation approaches: Exploring the taste-enhancing characteristics and mechanisms of N-succinyl-L-leucine. Food Res Int 2024; 197:115160. [PMID: 39593372 DOI: 10.1016/j.foodres.2024.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
N-Succinyl amino acids (N-Suc-AAs) are increasingly recognized for their potential as taste-active compounds. However, research into the green synthesis, taste-enhancing properties, and mechanisms of N-succinyl-L-leucine (N-Suc-Leu) remains limited. This study employed an enzymatic synthesis method, catalyzed by protamex and pancreatin, to produce N-Suc-Leu, with its structure confirmed. Multiple sensory techniques demonstrated that N-Suc-Leu markedly enhanced the umami, saltiness, and kokumi intensity, and prolonged the duration of umami by 25%. Sigmoid curve analysis further revealed the synergistic enhancement of N-Suc-Leu on the perceptions of umami and saltiness. Molecular docking and dynamics simulations revealed that N-Suc-Leu could bind with T1R1, T1R3, TMC4, and CaSR, enhancing the sensations of saltiness, umami, and kokumi, and bound closely to these receptors without altering their overall conformation. These findings offered a systematic explanation of the potential and mechanism of enzymatically synthesized N-Suc-Leu in enhancing taste and provided novel insights into potential strategies for the development and innovation of taste enhancers and food flavors.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yinuo Ma
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Perenzoni D, Dellafiora L, Perugino F, Vrhovsek U, Piombino P, Pittari E, Guzzon R, Moio L, Galaverna G, Mattivi F. Exploring Putative Kokumi Oligopeptides in Classic Sparkling Wines with a UHPLC-ESI-MS/MS Targeted Protocol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26189-26208. [PMID: 39540612 DOI: 10.1021/acs.jafc.4c08213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Some oligopeptides can impart kokumi flavor to foods and beverages, a topic still not addressed in wine. A targeted ultra-high performance liquid-chromatography-mass spectrometry (UHPLC-MS/MS) metabolomics method capable of quantifying both amino acids and oligopeptides in wines was therefore developed and validated, confirming the presence of 50 oligopeptides in wine, most of which had been previously unexplored. In silico screening of the affinity of these oligopeptides to interact with CaSR, the protein necessary to activate kokumi sensations, highlighted 8 dipeptides and 3 tripeptides as putative kokumi compounds. These compounds were ubiquitous in a representative set of Trentodoc classic method sparkling wines, with an average concentration of kokumi oligopeptides of 19.8 mg/L, ranging between 9.1 and 33.3 mg/L. Half of the sparkling wine samples also contained glutamic acid at concentrations equal to or greater than the threshold for the umami taste in wine, namely, 48 mg/L. Sensory tests on the dipeptide Gly-Val confirmed the ability of this novel kokumi compound to significantly modify the perception of complex real wine matrices but not of the simple model one. Preliminary laboratory-scale fermentation tests showed that the oligopeptide profile in wines is linked to the starting grape matrix and that the patterns change by fermenting barley or apple juice with the same yeast.
Collapse
Affiliation(s)
- Daniele Perenzoni
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Florinda Perugino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Paola Piombino
- Department of Agricultural Science, Division of Vine and Wine Sciences, University of Naples Federico II, 83100 Avellino, Italy
| | - Elisabetta Pittari
- Department of Agricultural Science, Division of Vine and Wine Sciences, University of Naples Federico II, 83100 Avellino, Italy
| | - Raffaele Guzzon
- Technology Transfer Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Luigi Moio
- Department of Agricultural Science, Division of Vine and Wine Sciences, University of Naples Federico II, 83100 Avellino, Italy
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fulvio Mattivi
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| |
Collapse
|
11
|
Rhyu MR, Ozdener MH, Lyall V. Differential Effect of TRPV1 Modulators on Neural and Behavioral Responses to Taste Stimuli. Nutrients 2024; 16:3858. [PMID: 39599644 PMCID: PMC11597080 DOI: 10.3390/nu16223858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
In our diet, we ingest a variety of compounds that are TRPV1 modulators. It is important to understand if these compounds alter neural and behavioral responses to taste stimuli representing all taste qualities. Here, we will summarize the effects of capsaicin, resiniferatoxin, cetylpyridinium chloride, ethanol, nicotine, N-geranyl cyclopropylcarboxamide, Kokumi taste peptides, pH, and temperature on neural and behavioral responses to taste stimuli in rodent models and on human taste perception. The above TRPV1 agonists produced characteristic biphasic effects on chorda tympani taste nerve responses to NaCl in the presence of amiloride, an epithelial Na+ channel blocker, at low concentrations enhancing and at high concentrations inhibiting the response. Biphasic responses were also observed with KCl, NH4Cl, and CaCl2. In the presence of multiple stimuli, the effect is additive. These responses are blocked by TRPV1 antagonists and are not observed in TRPV1 knockout mice. Some TRPV1 modulators also increase neural responses to glutamate but at concentrations much above the concentrations that enhance salt responses. These modulators also alter human salt and glutamate taste perceptions at different concentration ranges. Glutamate responses are TRPV1-independent. Sweet and bitter responses are TRPV1-independent but the off-taste of sweeteners is TRPV1-dependent. Aversive responses to acids and ethanol are absent in animals in which both the taste system and the TRPV1-trigeminal system are eliminated. Thus, TRPV1 modulators differentially alter responses to taste stimuli.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | | | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
12
|
Alhassen S, Hogenkamp D, Nguyen HA, Al Masri S, Abbott GW, Civelli O, Alachkar A. Ophthalmate is a new regulator of motor functions via CaSR: implications for movement disorders. Brain 2024; 147:3379-3394. [PMID: 38537648 PMCID: PMC11449132 DOI: 10.1093/brain/awae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 10/05/2024] Open
Abstract
Dopamine's role as the principal neurotransmitter in motor functions has long been accepted. We broaden this conventional perspective by demonstrating the involvement of non-dopaminergic mechanisms. In mouse models of Parkinson's disease, we observed that L-DOPA elicited a substantial motor response even when its conversion to dopamine was blocked by inhibiting the enzyme aromatic amino acid decarboxylase (AADC). Remarkably, the motor activity response to L-DOPA in the presence of an AADC inhibitor (NSD1015) showed a delayed onset, yet greater intensity and longer duration, peaking at 7 h, compared to when L-DOPA was administered alone. This suggests an alternative pathway or mechanism, independent of dopamine signalling, mediating the motor functions. We sought to determine the metabolites associated with the pronounced hyperactivity observed, using comprehensive metabolomics analysis. Our results revealed that the peak in motor activity induced by NSD1015/L-DOPA in Parkinson's disease mice is associated with a surge (20-fold) in brain levels of the tripeptide ophthalmic acid (also known as ophthalmate in its anionic form). Interestingly, we found that administering ophthalmate directly to the brain rescued motor deficits in Parkinson's disease mice in a dose-dependent manner. We investigated the molecular mechanisms underlying ophthalmate's action and discovered, through radioligand binding and cAMP-luminescence assays, that ophthalmate binds to and activates the calcium-sensing receptor (CaSR). Additionally, our findings demonstrated that a CaSR antagonist inhibits the motor-enhancing effects of ophthalmate, further solidifying the evidence that ophthalmate modulates motor functions through the activation of the CaSR. The discovery of ophthalmate as a novel regulator of motor function presents significant potential to transform our understanding of brain mechanisms of movement control and the therapeutic management of related disorders.
Collapse
Affiliation(s)
- Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Derk Hogenkamp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Hung Anh Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Saeed Al Masri
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA
- UC Irvine Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Xie J, Gänzle MG. Selection of adjunct cultures for the ripening of plant cheese analogues. Food Microbiol 2024; 122:104555. [PMID: 38839234 DOI: 10.1016/j.fm.2024.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
Fermentation contributes to the taste and odor of plant cheeses. The selection of functional cultures for the fermentation of plant cheeses, however, is in its infancy. This study aimed to select lactic acid bacteria for ripening of soy and lupin cheese analogues. Bacillus velezensis and B. amyloliquefaciens were used for germination of seeds to produce proteolytic enzymes; Lactococcus lactis and Lactiplantibacillus plantarum served as primary acidifying cultures. Levilactobacillus hammesii, Furfurilactobacillus milii, or Lentilactobacillus buchneri were assessed as adjunct cultures for the ripening of plant cheese. Growth of bacilli was inhibited at low pH. Both Lc. lactis and Lp. plantarum were inactived during plant cheese ripening. Cell counts of Lv. hammesii remained stable over 45 d of ripening while Ff. milii and Lt. buchneri grew slowly. Sequencing of full length 16S rRNA genes confirmed that the inocula the plant cheeses accounted for more than 98% of the bacterial communities. HPLC analysis revealed that Lt. buchneri metabolized lactate to acetate and 1,2-propanediol during ripening. Bacilli enhanced proteolysis as measured by quantification of free amino nitrogen, and the release of glutamate. LC-MS/MS analysis quantified kokumi-active dipeptides. The concentrations of γ-Glu-Leu, γ-Glu-Ile, and γ-Glu-Ala, γ-Glu-Cys in unripened cheeses were increased by seed germination but γ-Glu-Phe was degraded. Lt. buchneri but not Lv. hammesii or Ff. milii accumulated γ-Glu-Val, γ-Glu-Ile or γ-Glu-Leu during ripening, indicating strain-specific differences. In conclusion, a consortium of bacilli, acidification cultures and adjunct cultures accumulates taste- and kokumi-active compounds during ripening of plant cheeses.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Li J, Zhong F, Spence C, Xia Y. Synergistic effect of combining umami substances enhances perceived saltiness. Food Res Int 2024; 189:114516. [PMID: 38876587 DOI: 10.1016/j.foodres.2024.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Umami substances have the potential to enhance the perception of saltiness and thus reduce sodium intake. Two sensory evaluation experiments were conducted, involving participants tasting salt solutions, and solutions with added umami substances at equal sodium concentrations. Umami substances included sodium glutamate (MSG), disodium inosinate (IMP), and the combination of them which has a synergistic effect and is a closer match to commonly-consumed foods. In Experiment 1, using the two-alternative forced-choice (2-AFC) method by 330 consumers, paired comparisons were conducted at three different sodium concentrations. The combination of MSG and IMP enhanced the perception of saltiness (p < .001 in the difference test), whereas presenting either umami substance in isolation failed to do so (p > .05 in the similarity test). Significant order effects occurred in paired comparisons. In Experiment 2, a two-sip time-intensity (TI) analysis with trained panellists verified these results and found that tasting MSG and IMP either simultaneously or successively enhanced saltiness perception at equal sodium concentrations. These findings indicate that the synergistic effect of umami substances may be the cause of saltiness enhancement, and represents a potential strategy for sodium reduction while satisfying the consumer demand for saltiness perception. Considering the application in food processing and in food pairing, umami substances can potentially be used to help to reduce salt intake in food consumption.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China
| | - Charles Spence
- Crossmodal Research Laboratory, University of Oxford, Oxford, UK
| | - Yixun Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314015, China.
| |
Collapse
|
15
|
Matarage Don NJ, Padmavathi R, Khasro TD, Zaman MRU, Ji HF, Ram JL, Ahn YH. Glutathione-Based Photoaffinity Probe Identifies Caffeine as a Positive Allosteric Modulator of the Calcium-Sensing Receptor. ACS Chem Biol 2024; 19:1661-1670. [PMID: 38975966 PMCID: PMC11267565 DOI: 10.1021/acschembio.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
The calcium-sensing receptor (CaSR), abundantly expressed in the parathyroid gland and kidney, plays a central role in calcium homeostasis. In addition, CaSR exerts multimodal roles, including inflammation, muscle contraction, and bone remodeling, in other organs and tissues. The diverse functions of CaSR are mediated by many endogenous and exogenous ligands, including calcium, amino acids, glutathione, cinacalcet, and etelcalcetide, that have distinct binding sites in CaSR. However, strategies to evaluate ligand interactions with CaSR remain limited. Here, we developed a glutathione-based photoaffinity probe, DAZ-G, that analyzes ligand binding to CaSR. We showed that DAZ-G binds to the amino acid binding site in CaSR and acts as a positive allosteric modulator of CaSR. Oxidized and reduced glutathione and phenylalanine effectively compete with DAZ-G conjugation to CaSR, while calcium, cinacalcet, and etelcalcetide have cooperative effects. An unexpected finding was that caffeine effectively competes with DAZ-G's conjugation to CaSR and acts as a positive allosteric modulator of CaSR. The effective concentration of caffeine for CaSR activation (<10 μM) is easily attainable in plasma by ordinary caffeine consumption. Our report demonstrates the utility of a new chemical probe for CaSR and discovers a new protein target of caffeine, suggesting that caffeine consumption can modulate the diverse functions of CaSR.
Collapse
Affiliation(s)
| | - Rayavarapu Padmavathi
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Talan D. Khasro
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Md. Rumman U. Zaman
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hai-Feng Ji
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey L. Ram
- Department
of Physiology, Wayne State University, Detroit, Michigan 48201, United States
| | - Young-Hoon Ahn
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
17
|
Sood S, Methven L, Cheng Q. Role of taste receptors in salty taste perception of minerals and amino acids and developments in salt reduction strategies: A review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38907620 DOI: 10.1080/10408398.2024.2365962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Salt (sodium chloride) plays a key role in maintaining the textural, microbiological, and sensorial aspects of the foods. However high dietary salt intake in the population has led to a series of health problems. Currently manufacturers are under pressure to reduce the sodium levels in foods without compromising the consumer experience. Because of the clean salty taste produced by sodium chloride, it has been challenging for the food industry to develop a suitable salt substitute. Studies have shown that different components within a food matrix can influence the perception of saltiness. This review aims to comprehend the potential synergistic effect of compounds such as minerals and amino acids on the perception of saltiness and covers the mechanism of perception where relevant to taste resulting from sodium ions and other metallic ions (such as K, Mg, Ca), as well as various amino acids and their derivatives. Finally, the review summarizes various salt reduction strategies explored by researchers, government organizations and food industry, including the potential use of plant-based extracts.
Collapse
Affiliation(s)
- Saumya Sood
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
18
|
He Y, Liu K, Yu X, Yang H, Han W. Building a Kokumi Database and Machine Learning-Based Prediction: A Systematic Computational Study on Kokumi Analysis. J Chem Inf Model 2024; 64:2670-2680. [PMID: 38232977 DOI: 10.1021/acs.jcim.3c01728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Kokumi is a subtle sensation characterized by a sense of fullness, continuity, and thickness. Traditional methods of taste discovery and analysis, including those of kokumi, have been labor-intensive and costly, thus necessitating the emergence of computational methods as critical strategies in molecular taste analysis and prediction. In this study, we undertook a comprehensive analysis, prediction, and screening of the kokumi compounds. We categorized 285 kokumi compounds from a previously unreleased kokumi database into five groups based on their molecular characteristics. Moreover, we predicted kokumi/non-kokumi and multi-flavor compositions using six structure-taste relationship models: MLP-E3FP, MLP-PLIF, MLP-RDKFP, SVM-RDKFP, RF-RDKFP, and WeaveGNN feature of Atoms and Bonds. These six predictors exhibited diverse performance levels across two different models. For kokumi/non-kokumi prediction, the WeaveGNN model showed an exceptional predictive AUC value (0.94), outperforming the other models (0.87, 0.90, 0.89, 0.92, and 0.78). For multi-flavor prediction, the MLP-E3FP model demonstrated a higher predictive AUC and MCC value (0.94 and 0.74) than the others (0.73 and 0.33; 0.92 and 0.70; 0.95 and 0.73; 0.94 and 0.64; and 0.88 and 0.69). This data highlights the model's proficiency in accurately predicting kokumi molecules. As a result, we sourced kokumi active compounds through a high-throughput screening of over 100 million molecules, further refined by toxicity and similarity screening. Lastly, we launched a web platform, KokumiPD (https://www.kokumipd.com/), offering a comprehensive kokumi database and online prediction services for users.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiangyu Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hengzheng Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
19
|
Xie J, Zhao Z, Gänzle MG. Contribution of γ-Glutamyl-Cysteine Ligases of Limosilactobacillus reuteri to the Formation of Kokumi-Active γ-Glutamyl Dipeptides in Sourdough Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5935-5943. [PMID: 38469860 DOI: 10.1021/acs.jafc.3c09707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Kokumi-active γ-glutamyl dipeptides accumulate during sourdough fermentation. γ-Glutamylcysteine ligases (Gcls) of Limosilactobacillus reuteri synthesize γ-glutamyl dipeptides during growth in sourdough. This study aimed to evaluate the contribution of Gcls from strains of L. reuteri in the formation of kokumi-active γ-glutamyl dipeptides in sourdough bread. Among 12 acceptor amino acids, the three Gcls of L. reuteri were the most active to Cys. With the acceptor amino acids Ile, Leu, and Phe, Gcl1 was more active than Gcl2 and Gcl3. Accordingly, Gcl1 contributed to the γ-Glu-Ile synthesis in sourdough fermentation. Proofing and baking strongly influenced the concentration of γ-glutamyl dipeptides in bread. The addition of 10% sourdough increased the content of γ-Glu-Leu and γ-Glu-Phe but not of other γ-glutamyl dipeptides in bread. In conclusion, the accumulation of kokumi γ-glutamyl dipeptides in sourdoughs was attributed to the combined activity of cereal enzymes, γ-glutamyl-cysteine ligases, and other microbial enzymes.
Collapse
Affiliation(s)
- Jin Xie
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Ziyi Zhao
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Michael G Gänzle
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
- College of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China
| |
Collapse
|
20
|
Feng T, Ma C, Chen S, Zhuang H, Song S, Sun M, Yao L, Wang H, Liu Q, Yu C. Exploring novel Kokumi peptides in Agaricus bisporus: selection, identification, and tasting mechanism investigation through sensory evaluation and computer simulation analysis. Food Funct 2024; 15:2879-2894. [PMID: 38318946 DOI: 10.1039/d3fo05406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Agaricus bisporus contains amino acids associated with thickness and full-mouthfeel, making it a potential candidate for salt substitutes and flavor enhancers in various food applications. Kokumi peptides were isolated from the enzymatic digest of Agaricus bisporus using ultrafiltration nanofiltration, gel chromatographic separation, and RP-HPLC, coupled with sensory evaluation. Subsequently, the peptides, EWVPVTK and EYPPLGR, were selected for solid-phase synthesis based on molecular docking. Sensory analysis, including thresholds, time intensity, and dose-configuration relationships, indicated that EWVPVTK and EYPPLGR exhibited odor thresholds of 0.6021 mmol L-1 and 2.332 mmol L-1 in an aqueous solution. Molecular docking scores correlated with low sensory thresholds, signifying strong taste sensitivities. EWVPVTK, in particular, demonstrated a higher sense of richness at lower concentrations compared to EYPPLGR. Molecular docking and dynamics simulations elucidated that the interactions between Kokumi peptides and the CaSR receptor primarily involved hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Both EWVPVTK and EYPPLGR exhibited stable binding to the CaSR receptor. Active binding sites were identified, with EWVPVTK interacting at Arg 66, Asp 216, Gln 245, and Asn 102, while EYPPLGR engaged with Ser 272, Gln 193, Glu 297, Ala-298, Tyr-2, and Agr-66 in hydrophilic interactions through hydrogen bonds. Notably, these two Kokumi peptides were found to be enriched in umami and sweet amino acids, underscoring their pivotal role in umami perception. This study not only identifies novel Kokumi peptides from Agaricus bisporus but also contributes theoretical foundations and insights for future studies in the realm of Kokumi peptides.
Collapse
Affiliation(s)
- Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Chenwei Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Sha Chen
- College of Life Science and Technology, Xinjiang University, 666 Shengli Road, Xinjiang Urumqi 830000, People's Republic of China.
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, 2080 Nanting Road, Shanghai, 201415, People's Republic of China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| |
Collapse
|
21
|
Lao H, Chang J, Zhuang H, Song S, Sun M, Yao L, Wang H, Liu Q, Xiong J, Li P, Yu C, Feng T. Novel kokumi peptides from yeast extract and their taste mechanism via an in silico study. Food Funct 2024; 15:2459-2473. [PMID: 38328886 DOI: 10.1039/d3fo04487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Yeast extract, a widely utilized natural substance in the food industry and biopharmaceutical field, holds significant potential for flavor enhancement. Kokumi peptides within yeast extracts were isolated through ultrafiltration and gel chromatography, followed by identification using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two peptides, IQGFK and EDFFVR, were identified and synthesized using solid-phase methods based on molecular docking outcomes. Sensory evaluations and electronic tongue analyses conducted with chicken broth solutions revealed taste thresholds of 0.12 mmol L-1 for IQGFK and 0.16 mmol L-1 for EDFFVR, respectively, and both peptides exhibited kokumi properties. Additionally, through molecular dynamics simulations, the binding mechanisms between these peptides and the calcium-sensing receptor (CaSR) were explored. The findings indicated stable binding of both peptides to the receptor. IQGFK primarily interacted through electrostatic interactions, with key binding sites including Asp275, Asn102, Pro274, Trp70, Tyr218, and Ser147. EDFFVR mainly engaged via van der Waals energy and polar solvation free energy, with key binding sites being Asp275, Ile416, Pro274, Arg66, Ala298, and Tyr218. This suggests that both peptides can activate the CaSR, thereby inducing kokumi activity. This study provides a theoretical foundation and reference for the screening and identification of kokumi peptides, successfully uncovering two novel kokumi peptides derived from yeast extract.
Collapse
Affiliation(s)
- Haofeng Lao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jincui Chang
- D.CO International Food Co., Ltd, Jiaozuo, 454850, People's Republic of China.
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, No. 2080, Nanting Road, Shanghai, 201415, People's Republic of China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jian Xiong
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Pei Li
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
22
|
Sinigaglia B, Escudero J, Biagini SA, Garcia-Calleja J, Moreno J, Dobon B, Acosta S, Mondal M, Walsh S, Aguileta G, Vallès M, Forrow S, Martin-Caballero J, Migliano AB, Bertranpetit J, Muñoz FJ, Bosch E. Exploring Adaptive Phenotypes for the Human Calcium-Sensing Receptor Polymorphism R990G. Mol Biol Evol 2024; 41:msae015. [PMID: 38285634 PMCID: PMC10859840 DOI: 10.1093/molbev/msae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Rainforest hunter-gatherers from Southeast Asia are characterized by specific morphological features including a particularly dark skin color (D), short stature (S), woolly hair (W), and the presence of steatopygia (S)-fat accumulation localized in the hips (DSWS phenotype). Based on previous evidence in the Andamanese population, we first characterized signatures of adaptive natural selection around the calcium-sensing receptor gene in Southeast Asian rainforest groups presenting the DSWS phenotype and identified the R990G substitution (rs1042636) as a putative adaptive variant for experimental follow-up. Although the calcium-sensing receptor has a critical role in calcium homeostasis by directly regulating the parathyroid hormone secretion, it is expressed in different tissues and has been described to be involved in many biological functions. Previous works have also characterized the R990G substitution as an activating polymorphism of the calcium-sensing receptor associated with hypocalcemia. Therefore, we generated a knock-in mouse for this substitution and investigated organismal phenotypes that could have become adaptive in rainforest hunter-gatherers from Southeast Asia. Interestingly, we found that mouse homozygous for the derived allele show not only lower serum calcium concentration but also greater body weight and fat accumulation, probably because of enhanced preadipocyte differentiation and lipolysis impairment resulting from the calcium-sensing receptor activation mediated by R990G. We speculate that such differential features in humans could have facilitated the survival of hunter-gatherer groups during periods of nutritional stress in the challenging conditions of the Southeast Asian tropical rainforests.
Collapse
Affiliation(s)
- Barbara Sinigaglia
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Jorge Escudero
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Simone A Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Jorge Garcia-Calleja
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Josep Moreno
- PCB-PRBB Animal Facility Alliance, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Begoña Dobon
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Sandra Acosta
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
- UB Institute of Neuroscience, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona 08007, Spain
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Gabriela Aguileta
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Mònica Vallès
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Stephen Forrow
- Mouse Mutant Core Facility, Institute for Research in Biomedicine (IRB), Barcelona 08028, Spain
| | - Juan Martin-Caballero
- PCB-PRBB Animal Facility Alliance, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Andrea Bamberg Migliano
- Human Evolutionary Ecology Group, Department of Evolutionary Anthropology, University of Zurich, Zurich 8057, Switzerland
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Francisco J Muñoz
- Laboratory of Molecular Physiology, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| |
Collapse
|
23
|
Yang J, Guo S, Zeng X, Bai W, Sun B, Zhang Y. Synthesis of taste active γ-glutamyl peptides with pea protein hydrolysate and their taste mechanism via in silico study. Food Chem 2024; 430:136988. [PMID: 37544154 DOI: 10.1016/j.foodchem.2023.136988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Pea (Pisum sativum L.) protein hydrolysate (PPH) has a bitter taste, which has limited its use in food industry. γ-Glutamylation is used to debitter PPH. Results showed that the bitterness of PPH was decreased significantly due to the formation of γ-glutamyl peptides, including 16 γ-[Glu](n=1/2)-amino acids (AAs) and 8 newly discovered γ-glutamyl tripeptides (γ-Glu-Asn-Phe, γ-Glu-Leu-Val, γ-Glu-Leu-Tyr, γ-Glu-Gly-Leu, γ-Glu-Gly-Phe, γ-Glu-Gly-Tyr, γ-Glu-Val-Val, and γ-Glu-Gln-Tyr). Their total production concentrations were 27.25 μmol/L and 77.76 μmol/L, respectively. The γ-Glu-AA-AAs presented an umami-enhancing, salty-enhancing, and kokumi taste when their concentration reached 1.67 ± 0.20 ∼ 2.07 ± 0.20, 1.65 ± 0.25 ∼ 2.29 ± 0.45 and 0.68 ± 0.19 ∼ 1.03 ± 0.22 mmol/L, respectively. The γ-Glu-AA-AAs exhibited a kokumi taste by entering the Venus flytrap (VFT) of the calcium-sensing receptor and interacting with Ser147, Ala168, and Ser170. γ-Glu-AA-AAs can enhance the umaminess of Monosodium Glutamate (MSG) as they can enter the binding pocket of the taste receptor type 1 subunit 3 (T1R3)-MSG complex.
Collapse
Affiliation(s)
- Juan Yang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Siqi Guo
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
24
|
Xue J, Liu P, Feng L, Zheng L, Gui A, Wang X, Wang S, Ye F, Teng J, Gao S, Zheng P. Insights into the effects of fixation methods on the sensory quality of straight-shaped green tea and dynamic changes of key taste metabolites by widely targeted metabolomic analysis. Food Chem X 2023; 20:100943. [PMID: 38144758 PMCID: PMC10740047 DOI: 10.1016/j.fochx.2023.100943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/26/2023] Open
Abstract
Fresh leaves of Echa 1 were fixed by roller, steam/hot air and light-wave, and the effects of the three fixation methods on the chemical characteristics of straight-shaped green teas (GTs) were studied by widely targeted metabolomic analysis. 1001 non-volatile substances was identified, from which 97 differential metabolites were selected by the criteria of variable importance in projection (VIP) > 1, p < 0.05, and |log2(fold change)| > 1. Correlation analysis indicated that 14 taste-active metabolites were the major contributors to the taste differences between differently processed GTs. High-temperature fixation induces protein oxidation or degradation, γ-glutamyl peptide transpeptidation, degradation of flavonoid glycosides and epimerization of cis-catechins, resulting in the accumulation of amino acids, peptides, flavonoids and trans-catechins, which have flavor characteristics such as umami, sweetness, kokumi, bitterness and astringency, thereby affecting the overall taste of GTs. These findings provided a scientific basis for the directional processing technology of high-quality green tea.
Collapse
Affiliation(s)
- Jinjin Xue
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Panpan Liu
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Lin Feng
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Lin Zheng
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Anhui Gui
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Xueping Wang
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Shengpeng Wang
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Fei Ye
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Jing Teng
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Shiwei Gao
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Pengcheng Zheng
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| |
Collapse
|
25
|
Zhang Y, Yao Y, Zhou T, Zhang F, Xia X, Yu J, Song S, Hayat K, Zhang X, Ho CT. Light-Colored Maillard Peptides: Formation from Reduced Fluorescent Precursors of Browning and Enhancement of Saltiness Perception. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20251-20259. [PMID: 38060299 DOI: 10.1021/acs.jafc.3c07476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The browning formation and taste enhancement of peptides derived from soybean, peanut, and corn were studied in the light-colored Maillard reaction compared with the deep-colored reaction. The fluorescent compounds, as the browning precursors, were accumulated during the early Maillard reaction of peptides and subsequently degraded into dark substances, which resulted in a higher browning degree of deep-colored Maillard peptides (MPs), especially for the MPs derived from corn peptide. However, the addition of l-cysteine in light-colored Maillard reaction reduced the formation of deoxyosones and short-chain reactive α-dicarbonyls, thereby weakening the generation of fluorescent compounds and inhibited the browning of MPs. Synchronously, the peptides were thermally degraded into small peptides and amino acids, which were consumed less during light-colored thermal reaction due to its shorter reaction time at high temperature compared with deep-colored ones, thus contributing to a stronger saltiness perception of light-colored MPs than deep-colored MPs. Besides, the Maillard reaction products derived from soybean and peanut peptides possessed an obvious "kokumi" taste, making them suitable for enhancing the soup flavors.
Collapse
Affiliation(s)
- Yanqun Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Yishun Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Tong Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Foxin Zhang
- Anhui Qiang Wang Flavouring Food Co., Ltd., Anhui Province Key Laboratory of Functional Compound Seasoning, No. 1 Shengli Road, Jieshou 236500, Anhui, P.R. China
| | - Xue Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
26
|
Gänzle MG, Qiao N, Bechtner J. The quest for the perfect loaf of sourdough bread continues: Novel developments for selection of sourdough starter cultures. Int J Food Microbiol 2023; 407:110421. [PMID: 37806010 DOI: 10.1016/j.ijfoodmicro.2023.110421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Sourdough fermentation, one of the oldest unit operations in food production, is currently experiencing a revival in bread production at the household, artisanal, and the industrial level. The expanding use of sourdough fermentation in bread production and the adaptation of fermentation to large scale industrial bread production also necessitate the development of novel starter cultures. Developments in the last years also have expanded the tools that are used to assess the metabolic potential of specific strains, species or genera of the Lactobacillaceae and have identified multiple ecological and metabolic traits as clade-specific. This review aims to provide an overview on the clade-specific metabolic potential of members of the Lactobacillaceae for use in sourdough baking, and the impact of these clade-specific traits on bread quality. Emphasis is placed on carbohydrate metabolism, including the conversion of sucrose and starch to soluble polysaccharides, conversion of amino acids, and the metabolism of organic acids. The current state of knowledge to compose multi-strain starter cultures (synthetic microbial communities) that are suitable for back-slopping will also be discussed. Taken together, the communication outlines the current tools for selection of microbes for use in sourdough baking.
Collapse
Affiliation(s)
- Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| | - Nanzhen Qiao
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Julia Bechtner
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| |
Collapse
|
27
|
Ikeda Y, Fujii J. The Emerging Roles of γ-Glutamyl Peptides Produced by γ-Glutamyltransferase and the Glutathione Synthesis System. Cells 2023; 12:2831. [PMID: 38132151 PMCID: PMC10741565 DOI: 10.3390/cells12242831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiquitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly maintained via regulated synthesis, which is catalyzed via the coordination of γ-glutamyl-cysteine synthetase (γ-GCS) and glutathione synthetase, as well as by reductive recycling by glutathione reductase. A prevailing short supply of L-cysteine (Cys) tends to limit glutathione synthesis, which leads to the production of various other γ-glutamyl peptides due to the unique enzymatic properties of γ-GCS. Extracellular degradation of glutathione by γ-glutamyltransferase (GGT) is a dominant source of Cys for some cells. GGT catalyzes the hydrolytic removal of the γ-glutamyl group of glutathione or transfers it to amino acids or to dipeptides outside cells. Such processes depend on an abundance of acceptor substrates. However, the physiological roles of extracellularly preserved γ-glutamyl peptides have long been unclear. The identification of γ-glutamyl peptides, such as glutathione, as allosteric modulators of calcium-sensing receptors (CaSRs) could provide insights into the significance of the preservation of γ-glutamyl peptides. It is conceivable that GGT could generate a new class of intercellular messaging molecules in response to extracellular microenvironments.
Collapse
Affiliation(s)
- Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City 990-9585, Japan
| |
Collapse
|
28
|
Rodríguez Valerón N, Mak T, Jahn LJ, Arboleya JC, Sörensen PM. Derivation of Kokumi γ-Glutamyl Peptides and Volatile Aroma Compounds from Fermented Cereal Processing By-Products for Reducing Bitterness of Plant-Based Ingredients. Foods 2023; 12:4297. [PMID: 38231764 DOI: 10.3390/foods12234297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Current food production methods and consumption behaviours are unsustainable and contribute to environmental harm. One example is food waste-around 38% of food produced is wasted each year. Here, we show that two common food waste products, wheat bran and brewer's spent grain, can successfully be upcycled via miso fermentation. During the fermentation process, kokumi γ-glutamyl peptides, known to increase mouthfulness, are produced; these include γ-ECG (oxidized), γ-EVG, γ-EV, γ-EE, γ-EF, and γ-EL. The profiles of kokumi peptides and volatile aroma compounds are correlated with koji substrate, pH, and enzymatic activity, offering straightforward parameters that can be manipulated to increase the abundance of kokumi peptides during the fermentation process. Correlation analysis demonstrates that some volatile aroma compounds, such as fatty acid ethyl esters, are correlated with kokumi peptide abundance and may be responsible for fatty, greasy, and buttery aromas. Consumer sensory analysis conveys that the bitter taste of vegetables, such as that in endives, can be dampened when miso extract containing kokumi peptides is added. This suggests that kokumi peptides, along with aroma volatile compounds, can enhance the overall flavour of plant-based products. This study opens new opportunities for cereal processing by-product upcycling via fermentation, ultimately having the potential to promote a plant-based diet.
Collapse
Affiliation(s)
- Nabila Rodríguez Valerón
- Basque Culinary Center, Facultad de Ciencias Gastronómicas, Mondragon Unibersitatea, 20009 Donostia-San Sebastián, Spain
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Tiffany Mak
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, 2800 Lyngby, Denmark
| | - Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, 2800 Lyngby, Denmark
| | - Juan Carlos Arboleya
- Basque Culinary Center, Facultad de Ciencias Gastronómicas, Mondragon Unibersitatea, 20009 Donostia-San Sebastián, Spain
- BCC Innovation, Centro Tecnológico en Gastronomía, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
| | - Pia M Sörensen
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Wang H, Meng L, Mi L. Effects of Leymus chinensis hay and alfalfa hay on growth performance, rumen microbiota, and untargeted metabolomics of meat in lambs. Front Vet Sci 2023; 10:1256903. [PMID: 38033638 PMCID: PMC10687458 DOI: 10.3389/fvets.2023.1256903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Objective The objective of this study was to compare the effects of Leymus chinensis hay and alfalfa hay as the roughage on the rumen bacterial and the meat metabolomics in lambs. Methods Fourteen male lambs were randomly assigned to two dietary treatments (one group was fed with concentrate and Leymus chinensis hay; another was fed with concentrate and alfalfa hay) with seven replicates per treatment. The feeding experiment lasted for 60 days. Lambs were slaughtered at the end of the feeding experiment. Growth performance, carcass performance, and weights of various viscera were determined. The longissimus dorsi and rumen contents were collected for untargeted metabolomics and 16S rDNA amplicon sequencing analysis, respectively. Results The lambs fed with alfalfa hay showed a significantly increased in average daily gain, carcass weight, dressing percentage, loin-eye area, and kidney weight. Feeding Leymus chinensis hay and alfalfa hay diets resulted in different meat metabolite deposition and rumen bacterial communities in the lambs. The relative abundance of phyla Fibrobacteres, Bacteroidetes, and Spirochaetes were greater in the Leymus Chinensis hay group, while, the relative abundance of Firmicutes, Proteobacteria, Fusobacteria, and Verrucomicrobia were greater in the alfalfa hay group. Based on untargeted metabolomics, the main altered metabolic pathways included alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, nitrogen metabolism, and tyrosine metabolism. Several bacteria genera including BF31, Alistipes, Faecalibacterium, Eggerthella, and Anaeroplasma were significantly correlated with growth performance and meat metabolites. Conclusion Alfalfa hay improved growth performance and carcass characteristics in lambs. Leymus chinensis hay and alfalfa hay caused different meat metabolite deposition by modifying the rumen bacterial community. These findings will be beneficial to future forage utilization for sheep growth, carcass performance, and meat quality improvement.
Collapse
Affiliation(s)
| | | | - Lan Mi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
30
|
Song C, Wang Z, Li H, Cao W, Chen Z, Zheng H, Gao J, Lin H, Zhu G. Recent advances in taste transduction mechanism, analysis methods and strategies employed to improve the taste of taste peptides. Crit Rev Food Sci Nutr 2023; 65:695-714. [PMID: 37966171 DOI: 10.1080/10408398.2023.2280246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Taste peptides are oligopeptides that enhance both aroma and taste of food, and they are classified into five categories based on their taste characteristics: salty, sour, umami, sweet, bitter, and kokumi peptide. Recently, taste peptides have attracted the attention of several fields of research in food science and commercial applications. However, research on taste receptors of taste peptides and their taste transduction mechanisms are not clearly understood and we present a comprehensive review about these topics here. This review covers the aspects of taste peptides perceived by their receptors in taste cells, the proposed transduction pathway, as well as structural features of taste peptides. Apart from traditional methods, molecular docking, peptidomic analysis, cell and animal models and taste bud biosensors can be used to explore the taste mechanism of taste peptides. Furthermore, synergistic effect, Maillard reaction, structural modifications and changing external environment are employed to improve the taste of taste peptides. Consequently, we discussed the current challenges and future trends in taste peptide research. Based on the summarized developments, taste peptides derived from food proteins potentially appear to be important taste substances. Their applications meet the principles of "safe, nutritious and sustainable" in food development.
Collapse
Affiliation(s)
- Chunyong Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhijun Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Hanqi Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Guoping Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
| |
Collapse
|
31
|
Gao X, Zhao X, Hu F, Fu J, Zhang Z, Liu Z, Wang B, He R, Ma H, Ho CT. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res Int 2023; 173:113407. [PMID: 37803742 DOI: 10.1016/j.foodres.2023.113407] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
As an indispensable soybean-fermented condiment, soy sauce is extensively utilized in catering, daily cooking and food industry in East Asia and Southeast Asia and is becoming popular in the whole world. In the past decade, researchers began to pay great importance to the scientific research of soy sauce, which remarkably promoted the advances on fermentation strains, quality, safety, function and other aspects of soy sauce. Of them, the screening and reconstruction of Aspergillus oryzae with high-yield of salt and acid-tolerant proteases, mechanism of soy sauce flavor formation, improvement of soy sauce quality through the combination of novel physical processing technique and microbial/enzyme, separation and identification of soy sauce functional components are attracting more attention of researchers, and related achievements have been reported continually. Meanwhile, we pointed out the drawbacks of the above research and the future research directions based on published literature and our knowledge. We believe that this review can provide an insightful reference for international related researchers to understand the advances on soy sauce research.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xue Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Hu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhan Liu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
32
|
Wu J, Ling Z, Feng Y, Cui C, Li L. Kokumi -Enhancing Mechanism of N-l-lactoyl-l-Met Elucidated by Sensory Experiments and Molecular Simulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14697-14705. [PMID: 37751388 DOI: 10.1021/acs.jafc.3c03054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Recent research indicates that N-lactoyl amino acid derivatives have the potential as kokumi substances, with their kokumi profile closely linked to that of amino acids. This study aimed to explore the unexplored effects resulting from the introduction of lactate groups into l-Methional (l-Met), a prevalent flavor compound found in foods, such as tomatoes, known for its ability to activate the monosodium glutamate response. N-l-Lac-l-Met was enzymatically synthesized using food grade, and its taste profile and underlying mechanisms were investigated. The structure of N-l-Lac-l-Met was determined by high-performance liquid chromatography (HPLC)-mass spectrometry (MS)/MS. Sensory evaluation revealed the presence of astringency, kokumi, and bitterness of N-l-Lac-l-Met. In a stimulated broth, N-l-Lac-l-Met exhibited enhanced umami and kokumi taste perception compared to l-Met while demonstrating good stability within pH 5 to 9. A molecular simulation and quantum mechanics analysis indicated that the formation of an amide bond played a crucial role in the kokumi-enhancing effect of N-l-Lac-l-Met, specifically by increasing its affinity with umami receptors T1R1-T1R3 and a kokumi receptor CaSR. These findings established the relationship between amide bond formation and the kokumi-enhancing effect of N-l-Lac-l-Met, presenting its potential application as the kokumi substance in the food industry.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhan Ling
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
33
|
Jia R, He Y, Liao G, Yang Z, Gu D, Pu Y, Huang M, Wang G. Identification of umami peptides from Wuding chicken by Nano-HPLC-MS/MS and insights into the umami taste mechanisms. Food Res Int 2023; 172:113208. [PMID: 37689849 DOI: 10.1016/j.foodres.2023.113208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Wuding chicken is popular with consumers in China because of its umami taste. This study aimed to identify novel umami peptides from Wuding chicken and explore the taste mechanism of umami peptides. The molecular masses and amino acid compositions of peptides in Wuding chicken were identified by nano-scale liquid chromatography-tandem mass spectrometry (Nano-HPLC-MS/MS). The taste characteristics of the peptides synthesized by the solid-phase method were evaluated by sensory evaluation combined with electronic tongue technology. The secondary structure of the peptides was further analyzed by circular dichroism (CD), and the relationship between the structure and taste of the peptides was elucidated by molecular docking. The results showed that eight potential umami peptides were identified, among which FVT (FT-3), LDF (LF-3), and DLAGRDLTDYLMKIL (DL-15) had distinct umami tastes, and FT-3 had the highest umami intensity, followed by LF-3 and DL-15. The relative contents of β-sheets in the three umami peptides were 55.20%, 57.30%, and 47.70%, respectively, which were the key components of Wuding chicken umami peptides. In addition to LF-3 embedded in the cavity-binding domain of the TIR1, both FT-3 and DL-15 were embedded in the venus flytrap domain (VFTD) of the T1R3 to bind the umami receptor T1R1/T1R3. The main binding forces between the umami peptides and the umami receptor T1R1/T1R3 relied on hydrogen bonds and hydrophobic interactions, and the key amino acid residues of the combination of umami peptides and the umami receptor T1R1/T1R3 were Glu292, Asn235, and Tyr262.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ying He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| | - Zijiang Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Dahai Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yuehong Pu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
34
|
Li H, Gao J, Zhao F, Liu X, Ma B. Bioactive Peptides from Edible Mushrooms-The Preparation, Mechanisms, Structure-Activity Relationships and Prospects. Foods 2023; 12:2935. [PMID: 37569204 PMCID: PMC10417677 DOI: 10.3390/foods12152935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Mushroom bioactive peptides (MBPs) are bioactive peptides extracted directly or indirectly from edible mushrooms. MBPs are known to have antioxidant, anti-aging, antibacterial, anti-inflammatory and anti-hypertensive properties, and facilitate memory and cognitive improvement, antitumour and anti-diabetes activities, and cholesterol reduction. MBPs exert antioxidant and anti-inflammatory effects by regulating the MAPK, Keap1-Nrf2-ARE, NF-κB and TNF pathways. In addition, MBPs exert antibacterial, anti-tumour and anti-inflammatory effects by stimulating the proliferation of macrophages. The bioactivities of MBPs are closely related to their molecular weights, charge, amino acid compositions and amino acid sequences. Compared with animal-derived peptides, MBPs are ideal raw materials for healthy and functional products with the advantages of their abundance of resources, safety, low price, and easy-to-achieve large-scale production of valuable nutrients for health maintenance and disease prevention. In this review, the preparation, bioactivities, mechanisms and structure-activity relationships of MBPs were described. The main challenges and prospects of their application in functional products were also discussed. This review aimed to provide a comprehensive perspective of MBPs.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Ji’an Gao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Fen Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Biao Ma
- Beijing Science Sun Pharmaceutical Co., Ltd., Beijing 100176, China;
| |
Collapse
|
35
|
Kitajima S, Maruyama Y, Kuroda M. Volatile Short-Chain Aliphatic Aldehydes Act as Taste Modulators through the Orally Expressed Calcium-Sensing Receptor CaSR. Molecules 2023; 28:4585. [PMID: 37375140 DOI: 10.3390/molecules28124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Aldehydes are natural volatile aroma compounds generated by the Maillard reaction of sugars and amino acids in food and affect the flavor of food. They have been reported to exert taste-modifying effects, such as increases in taste intensity at concentrations below the odor detection threshold. The present study examined the taste-enhancing effects of short-chain aliphatic aldehydes, such as isovaleraldehyde (IVAH) and 2-methylbutyraldehyde, thus attempting to identify the taste receptors involved. The results obtained revealed that IVAH enhanced the taste intensity of taste solutions even under the condition of olfactory deprivation by a noseclip. Furthermore, IVAH activated the calcium-sensing receptor CaSR in vitro. Receptor assays on aldehyde analogues showed that C3-C6 aliphatic aldehydes and methional, a C4 sulfur aldehyde, activated CaSR. These aldehydes functioned as a positive allosteric modulator for CaSR. The relationship between the activation of CaSR and taste-modifying effects was investigated by a sensory evaluation. Taste-modifying effects were found to be dependent on the activation state of CaSR. Collectively, these results suggest that short-chain aliphatic aldehydes function as taste modulators that modify sensations by activating orally expressed CaSR. We propose that volatile aroma aldehydes may also partially contribute to the taste-modifying effect via the same molecular mechanism as kokumi substances.
Collapse
Affiliation(s)
- Seiji Kitajima
- Institute of Food Research & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Kanagawa, Japan
| | - Yutaka Maruyama
- Institute of Food Research & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Kanagawa, Japan
| | - Motonaka Kuroda
- Institute of Food Research & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Kanagawa, Japan
| |
Collapse
|
36
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Liu D, Du L, Huang Q, Zhou M, Xiong G, Li C, Qiao Y, Wu W. Effects of ultrasound treatment on muscle structure, volatile compounds, and small molecule metabolites of salted Culter alburnus fish. ULTRASONICS SONOCHEMISTRY 2023; 97:106440. [PMID: 37230026 DOI: 10.1016/j.ultsonch.2023.106440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
This study investigated the effects of ultrasound treatment on the quality of salted Culter alburnus fish. The results showed that with the increasing ultrasound power, the structural degradation of muscle fibers was intensified, and the conformation of myofibrillar protein was significantly changed. The high-power ultrasound treatment group (300 W) had relatively higher thiobarbiturate reactive substance content (0.37 mg malondialdehyde eq/kg) and peroxidation value (0.63 mmol/kg). A total of 66 volatile compounds were identified with obvious differences among groups. The 200 W ultrasound group exhibited fewer fishy substances (Hexanal, 1-Pentene-3-ol, and 1-Octane-3-ol). Compared with control group, ultrasound groups (200, 300 W) contained more umami taste-related amino peptides such as γ-Glu-Met, γ-Glu-Ala, and Asn-pro. In the ultrasound treatment group, L-isoleucine and L-methionine, which may be used as flavor precursors, were significantly down-regulated, while carbohydrates and its metabolites were up-regulated. Amino acid, carbohydrate, and FA (fatty acyls) metabolism products in salted fish were enriched by ultrasound treatment, and those products might ultimately be related to the taste and flavor of salted fish.
Collapse
Affiliation(s)
- Dongyin Liu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liu Du
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Qi Huang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Mingzhu Zhou
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
38
|
Huang Z, Feng Y, Zeng J, Zhao M. Six categories of amino acid derivatives with potential taste contributions: a review of studies on soy sauce. Crit Rev Food Sci Nutr 2023; 64:7981-7992. [PMID: 37009850 DOI: 10.1080/10408398.2023.2194422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
During the fermentation of soy sauce, the metabolism of microorganisms and the Maillard reaction produce a wide variety of metabolites that contribute to the unique and rich flavor characteristics of soy sauce, such as amino acids, organic acids and peptides. Amino acid derivatives, a relatively new taste compounds, formed by the reaction of enzymes or non-enzymes from sugars, amino acids, and organic acids released through metabolism by microorganisms during soy sauce fermentation, have begun to gain more and more attention in recent years. This review focused on our existing knowledge of the sources, taste characteristics and synthesis methods of the 6 categories of amino acid derivatives, including Amadori compounds, γ-glutamyl peptides, pyroglutamyl amino acids, N-lactoyl amino acids, N-acetyl amino acids and N-succinyl amino acids. Sixty-four amino acid derivatives were detected in soy sauce, of which 47 were confirmed to have potential contribution to the taste of soy sauce, especially umami and kokumi, and some of them also have the effect of reducing bitterness. Furthermore, some amino acid derivatives, like γ-glutamyl peptides and N-lactoyl amino acids, were found to be synthesized enzymatically in vitro, which laid the foundation for further study on their formation pathways in the future.
Collapse
Affiliation(s)
- Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Jing Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| |
Collapse
|
39
|
Watson PE, Thomas DG, Bermingham EN, Schreurs NM, Parker ME. Drivers of Palatability for Cats and Dogs-What It Means for Pet Food Development. Animals (Basel) 2023; 13:ani13071134. [PMID: 37048390 PMCID: PMC10093350 DOI: 10.3390/ani13071134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The pet food industry is an important sector of the pet care market that is growing rapidly. Whilst the number of new and innovative products continues to rise, research and development to assess product performance follows traditional palatability methodology. Pet food palatability research focuses on the amount of food consumed through use of one-bowl and two-bowl testing, but little understanding is given to why differences are observed, particularly at a fundamental ingredient level. This review will highlight the key differences in feeding behaviour and nutritional requirements between dogs and cats. The dominant pet food formats currently available and the ingredients commonly included in pet foods are also described. The current methods used for assessing pet food palatability and their limitations are outlined. The opportunities to utilise modern analytical methods to identify complete foods that are more palatable and understand the nutritional factors responsible for driving intake are discussed.
Collapse
Affiliation(s)
- Pavinee E Watson
- School of Agriculture and Environment, Massey University, Palmerston North 4474, New Zealand
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Palmerston North 4474, New Zealand
| | - Emma N Bermingham
- Added Value Foods & Bio-Based Products, AgResearch Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Nicola M Schreurs
- School of Agriculture and Environment, Massey University, Palmerston North 4474, New Zealand
| | - Michael E Parker
- School of Food and Advanced Technology, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
40
|
Arai S, Suzuki H. Immobilization of E. coli expressing γ-glutamyltranspeptidase on its surface for γ-glutamyl compound production. AMB Express 2023; 13:27. [PMID: 36869971 PMCID: PMC9985530 DOI: 10.1186/s13568-023-01528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
An Escherichia coli strain expressing γ-glutamyltranspeptidase on its extracellular surface using the Met1 to Arg232 fragment of YiaT of E. coli as an anchor protein was immobilized with alginate for repeated use. Measurement of γ-glutamyltranspeptidase activity of the immobilized cells was performed repeatedly at pH 8.73 and 37 °C for 10 days using γ-glutamyl-p-nitroanilide in the presence of 100 mM CaCl2 and 3% NaCl with and without glycylglycine. Even after the 10th day, the enzyme activity did not decrease from the initial levels. The production of γ-glutamylglutamine from glutamine using the immobilized cells was performed repeatedly at pH 10.5 and 37 °C for 10 days in the presence of 250 mM glutamine, 100 mM CaCl2, and 3% NaCl. Sixty-four % of glutamine was converted to γ-glutamylglutamine in the first cycle. While repeating the production 10 times, the surface of the beads gradually became covered with white precipitate, and the conversion efficiency gradually decreased, but 72% of the initial value still remained even at the 10th measurement.
Collapse
Affiliation(s)
- Shintaro Arai
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Hideyuki Suzuki
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
41
|
Akiyama T, Curtis E, Carstens MI, Carstens E. Enhancement of allyl isothiocyanate-evoked responses of mouse trigeminal ganglion cells by the kokumi substance γ-glutamyl-valyl-glycine (γ-EVG) through activation of the calcium-sensing receptor (CaSR). Physiol Behav 2023; 260:114063. [PMID: 36563734 DOI: 10.1016/j.physbeh.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Some γ-glutamyl peptides including glutathione (γ-Glu-Cys-Gly) and γ-glutamyl-valyl-glycine (γ-Glu-Val-Gly= γ-EVG) are reported to increase the intensity of basic tastes, such as salty, sweet, and umami, although they have no taste themselves at tested concentrations. The mechanism of action of γ-glutamyl peptides is not clearly understood, but the calcium sensing receptor (CaSR) may be involved. Glutathione and γ-EVG enhance the pungency of some spices, and the present study investigated the effects of γ-EVG on the responses of trigeminal ganglion (TG) cells to thermosensitiveTRP channel agonists. Single-cell RT-PCR revealed that most CaSR-expressing cells co-expressed TRPV1 (sensitive to capsaicin) and TRPA1 (sensitive to allyl isothiocyanate= AITC). Intracellular Ca2+ imaging showed that pretreatment with γ-EVG excited 7% of trigeminal ganglion (TG) cells and increased the amplitude of their responses to AITC, but not to capsaicin or menthol. The enhancing effect of γ-EVG was prevented by a CaSR inhibitor. The results indicate that γ-EVG increases AITC pungency by activating a subset of trigeminal ganglion cells that co-express CaSR and TRPA1.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Dept. of Dermatology & Cutaneous Surgery, Univ. of Miami Miller School of Medicine, Miami FL United States of America
| | - Eric Curtis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America
| | - M Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America.
| |
Collapse
|
42
|
Bigiani A, Rhyu M. Effect of kokumi taste-active γ-glutamyl peptides on amiloride-sensitive epithelial Na+ channels in rat fungiform taste cells. Biochem Biophys Rep 2023; 33:101400. [DOI: 10.1016/j.bbrep.2022.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
|
43
|
Cao L, Hunt CJ, Lin S, Meyer AS, Li Q, Lametsch R. Elucidation of the Molecular Mechanism of Bovine Milk γ-Glutamyltransferase Catalyzed Formation of γ-Glutamyl-Valyl-Glycine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2455-2463. [PMID: 36706241 DOI: 10.1021/acs.jafc.2c08386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
γ-Glu-Val-Gly (γ-EVG) is a potent kokumi peptide that can be synthesized through the transpeptidase reaction catalyzed by γ-glutamyl transferase from bovine milk (BoGGT). To explore the molecular mechanism between BoGGT and l-glutamine, γ-glutamyl peptides were generated through the transpeptidase reaction catalyzed by BoGGT at various reaction conditions. Quantitation of γ-glutamyl peptides, structure prediction of BoGGT, molecular docking, and molecular dynamic simulations were performed. Membrane-free BoGGT had a higher transpeptidase activity with Val-Gly as an acceptor than membrane BoGGT. The suitable conditions for γ-EVG production using BoGGT were 100 mM Val-Gly, 20 mM Gln, 1.2 U/mL BoGGT, pH 8.5, and 37 °C, and 13.1 mM γ-EVG was produced. The hydrogen bonds are mainly formed between residues from the light subunit of BoGGT (Thr380, Thr398, Ser450, Ser451, Met452, and Gly473) and the l-glutamine donor. NaCl might inhibit the transpeptidase activity by destroying the hydrogen bonds between BoGGT and l-glutamine, thereby increasing the distance between the hydroxyl oxygen atom on Thr380 of BoGGT and the amide carbon atom on l-glutamine.
Collapse
Affiliation(s)
- Lichuang Cao
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Cameron J Hunt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shang Lin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Qian Li
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| |
Collapse
|
44
|
Chang J, Li X, Liang Y, Feng T, Sun M, Song S, Yao L, Wang H, Hou F. Novel umami peptide from Hypsizygus marmoreus hydrolysate and molecular docking to the taste receptor T1R1/T1R3. Food Chem 2023; 401:134163. [DOI: 10.1016/j.foodchem.2022.134163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
|
45
|
Santos-Hernández M, Vivanco-Maroto SM, Miralles B, Recio I. Food peptides as inducers of CCK and GLP-1 secretion and GPCRs involved in enteroendocrine cell signalling. Food Chem 2023; 402:134225. [DOI: 10.1016/j.foodchem.2022.134225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
|
46
|
Li Y, Bi J, Lin Z, Yang Z, Gao Y, Ping C, Chen Z. Mining of kokumi peptides in chicken broth with peptidomics. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
47
|
Wu J, Zhao J, Zhou Y, Cui C, Xu J, Li L, Feng Y. Discovery of N-l-Lactoyl-l-Trp as a Bitterness Masker via Structure-Based Virtual Screening and a Sensory Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2082-2093. [PMID: 36689686 DOI: 10.1021/acs.jafc.2c07807] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-Lactoyl-amino acid derivatives (N-Lac-AAs) are of increasing interest as potential taste-active compounds. The complexity and diversity of N-Lac-AAs pose a significant challenge to the effective discovery of taste-active N-Lac-AAs. Therefore, a structure-based virtual screening was used to identify taste-active N-Lac-AAs. Virtual screening results showed that N-lactoyl-hydrophobic amino acids had a higher affinity for taste receptors, specifically N-l-Lac-l-Trp. And then, N-l-Lac-l-Trp was synthesized in yields of 22.3% by enzymatic synthesis in the presence of l-lactate and l-Trp, and its chemical structure was confirmed by MS/MS and one-dimensional (1D) and two-dimensional (2D) NMR. Sensory evaluation revealed that N-l-Lac-l-Trp had a significant taste-masking effect on quinine, d-salicin, caffeine, and l-Trp, particularly l-Trp and caffeine. N-l-Lac-l-Trp had a better masking effect on the higher concentration of bitter compounds. It reduced the bitterness of caffeine (500 mg/L) and l-Trp (1000 mg/L) by approximately 20 and 26%, respectively. The result of the ligand-receptor interaction and a quantum mechanical analysis showed that N-l-Lac-l-Trp increased the binding affinity to the bitter receptor mainly through hydrogen bonding and lowering the electrostatic potential.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yubo Zhou
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yunzi Feng
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
48
|
Tang T, Wu N, Tang S, Xiao N, Jiang Y, Tu Y, Xu M. Industrial Application of Protein Hydrolysates in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1788-1801. [PMID: 36692023 DOI: 10.1021/acs.jafc.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein hydrolysates, which may be produced by the protein in the middle of the process or added as an ingredient, are part of the food formula. In food, protein hydrolysates are found in many forms, which can regulate the texture and functionality of food, including emulsifying properties, foaming properties, and gelation. Therefore, the relationship between the physicochemical and structural characteristics of protein hydrolysates and their functional characteristics is of significant importance. In recent years, researchers have conducted many studies on the role of protein hydrolysates in food processing. This Review explains the relationship between the structure and function of protein hydrolysates, and their interaction with the main ingredients of food, to provide reference for their development and further research.
Collapse
Affiliation(s)
- Tingting Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuaishuai Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nanhai Xiao
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
49
|
Yamamoto T, Inui-Yamamoto C. The flavor-enhancing action of glutamate and its mechanism involving the notion of kokumi. NPJ Sci Food 2023; 7:3. [PMID: 36707516 PMCID: PMC9883458 DOI: 10.1038/s41538-023-00178-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The sodium salt of glutamic acid, or monosodium glutamate (MSG), has two effects in foods: one is to induce a unique taste called umami, which is one of the five basic tastes, and the other is to make food palatable (i.e., flavor-enhancing or seasoning effects). However, the mechanism behind how MSG makes food more palatable remains poorly understood, although many food scientists seem to believe that the umami taste itself plays an important role. Here, we propose an alternative notion regarding this topic based on previous and recent studies. When added to complex food compositions, MSG facilitates the binding of existing kokumi substances to kokumi receptors. In turn, these bound kokumi substances enhance the intensity of umami, sweet, salty, and fatty tastes, resulting in increased palatability accompanied by kokumi flavor, such as thickness, mouthfulness, and continuity. The requisite for sufficient palatability and kokumi flavor is a good balance of umami and kokumi substances. This framework gives a scientifically useful background for providing newly developed foods, including cultured meat and plant-based meat substitutes, with good taste characteristics.
Collapse
Affiliation(s)
- Takashi Yamamoto
- grid.448779.10000 0004 1774 521XHealth Science Research Center, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara, 635-0832 Japan
| | - Chizuko Inui-Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
50
|
Suzuki H, Sasabu A. First Example of the Extracellular Surface Expression of Intrinsically Periplasmic Escherichia coli γ-Glutamyltranspeptidase, a Member of the N-Terminal Nucleophile Hydrolase Superfamily, and the Use of Cells as a Catalyst for γ-Glutamylvalylglycine Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1132-1138. [PMID: 36606639 DOI: 10.1021/acs.jafc.2c05572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although the purified Escherichia coli γ-glutamyltranspeptidase has much higher transpeptidation activity than hydrolysis activity, almost all γ-glutamyltranspeptidase activity is hydrolysis activity in vivo, that is when measured using the whole cells. By using the Met1 to Arg232 fragment of E. coli YiaT or the CapA of Bacillus subtilis subsp. Natto as an anchor protein, we succeeded in expressing E. coli γ-glutamyltranspeptidase on the extracellular surface of the cells, and these cells showed higher transpeptidation activity than hydrolysis activity in the presence of NaCl. Furthermore, E. coli cells overexpressing γ-glutamyltranspeptidase without an anchor from the T5 promoter maintained γ-glutamyltranspeptidase on the extracellular surface of the cells immediately after being harvested from the culture medium, but the enzyme was released from the extracellular surface of the cells subsequently in the absence of NaCl. Using these cells expressing γ-glutamyltranspeptidase on the extracellular surface, γ-Glu-Val-Gly, a kokumi compound, was successfully produced.
Collapse
Affiliation(s)
- Hideyuki Suzuki
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Asuka Sasabu
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|