1
|
Li G, Li H, Wang P, Zhang X, Kuang W, Huang L, Zhang Y, Xiao W, Du Q, Tang H, Wang J. Chemo-proteomics reveals dihydrocaffeic acid exhibits anti-inflammation effects via Transaldolase 1 mediated PERK-NF-κB pathway. Cell Commun Signal 2025; 23:65. [PMID: 39910568 PMCID: PMC11800534 DOI: 10.1186/s12964-024-01958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Acute pneumonia is a kind of widespread inflammatory pathological process. Dihydrocaffeic acid (DA), metabolite of chlorogenic acid, possesses potent pharmacologic activity for the therapy of a wide range of disorders and various biological properties, such as anti-inflammation. Nevertheless, the specific protein targets and potential molecular mechanisms of DA in acute pneumonia are still poorly understood. PURPOSE To investigate the anti-inflammation effects of DA and its target and its specific mechanisms. METHODS Here, we conducted lipopolysaccharides (LPS)-induced acute pneumonia model mice. Besides, the activity-based protein profiling (ABPP) was performed to explore the potential targets of DA. Furthermore, cellular thermal shift assay (CETSA) and pulldown-western blot assays were used to validate the conclusion. RESULTS In this study, we indicated that DA alleviated acute pneumonia in mice and displayed excellent anti-inflammatory efficacy in vivo and in vitro. Besides, we discovered DA binds directly to transaldolase 1(TALDO1) and influenced its enzymatic activity, and identified the specific cysteine sites Cys250. Also we demonstrated that DA reveals anti-inflammation effect through TALDO1 mediated PERK-IκBα-NF-κB pathway in RAW 264.7 cells. CONCLUSION This study provide support for the potential advancement of DA for use as a therapeutic agent for the treatment of acute pneumonia and inflammation-associated diseases.
Collapse
Affiliation(s)
- Guanjun Li
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Huiying Li
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523129, China
| | - Peili Wang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
- National Clinical Research Center for Chinese Medicine Cardiology, Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Wenhua Kuang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Ling Huang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P.R. China
| | - Wei Xiao
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Qingfeng Du
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
- School of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Huan Tang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P.R. China.
| | - Jigang Wang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523129, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P.R. China.
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- School of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, P.R. China.
| |
Collapse
|
2
|
Ye J, Yin J. Type 2 diabetes: a sacrifice program handling energy surplus. LIFE METABOLISM 2024; 3:loae033. [PMID: 39873003 PMCID: PMC11748514 DOI: 10.1093/lifemeta/loae033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with obesity, while interactions between the two diseases remain to be fully elucidated. To this point, we offer this perspective to introduce a set of new insights into the interpretation of T2DM spanning the etiology, pathogenesis, and treatment approaches. These include a definition of T2DM as an energy surplus-induced diabetes characterized by the gradual decline of β cell insulin secretion function, which ultimately aims to prevent the onset of severe obesity through mechanisms of weight loss. The body employs three adaptive strategies in response to energy surplus: the first one is adipose tissue expansion to store the energy for weight gain under normal weight conditions; the second one is insulin resistance to slow down adipose tissue expansion and weight gain under overweight conditions; and the third one is the onset of T2DM following β cell failure to reverse the weight gain in obese conditions. The primary signaling molecules driving the compensatory responses are adenosine derivatives, such as adenosine triphosphate (ATP), acetyl coenzyme A (acetyl-CoA), and reduced nicotinamide adenine dinucleotide (NADH). These molecules exert their effects through allosteric, post-translational, and transcriptional regulation of metabolic pathways. The insights suggest that insulin resistance and T2DM are protective mechanisms in the defense against excessive adiposity to avert severe obesity. The perspective provides a unified framework explaining the interactions between the two diseases and opens new avenues in the study of T2DM.
Collapse
Affiliation(s)
- Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Key Laboratory of Obesity Research, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| |
Collapse
|
3
|
Wang M, Chao M, Han H, Zhao T, Yan W, Yang G, Pang W, Cai R. Hinokiflavone resists HFD-induced obesity by promoting apoptosis in an IGF2BP2-mediated Bim m 6A modification dependent manner. J Biol Chem 2024; 300:107721. [PMID: 39214307 PMCID: PMC11465056 DOI: 10.1016/j.jbc.2024.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity has emerged as a major health risk on a global scale. Hinokiflavone (HF), a natural small molecule, extracted from plants like cypress, exhibits diverse chemical structures and low synthesis costs. Using high-fat diet-induced obese mice models, we found that HF suppresses obesity by inducing apoptosis in adipose tissue. Adipocyte apoptosis helps maintain tissue health by removing aging, damaged, or excess cells in adipose tissue, which is crucial in preventing obesity and metabolic diseases. We found that HF can specifically bind to insulin-like growth factor 2 mRNA binding protein 2 to promote the stability of N6-methyladenosine-modified Bim, inducing mitochondrial outer membrane permeabilization. Mitochondrial outer membrane permeabilization leads to Caspase9/3-mediated adipocyte mitochondrial apoptosis, alleviating obesity induced by a high-fat diet. The proapoptotic effect of HF offers a controlled means for weight loss. This study reveals the potential of small molecule HF in developing new therapeutic approaches in drug development and biomedical research.
Collapse
Affiliation(s)
- Mingyu Wang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingkun Chao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haozhe Han
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenyong Yan
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Rui Cai
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
5
|
Yuan M, Liu X, Wang M, Li Z, Li H, Leng L, Wang S. A Functional Variant Alters the Binding of Bone morphogenetic protein 2 to the Transcription Factor NF-κB to Regulate Bone morphogenetic protein 2 Gene Expression and Chicken Abdominal Fat Deposition. Animals (Basel) 2023; 13:3401. [PMID: 37958155 PMCID: PMC10650395 DOI: 10.3390/ani13213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we employed a dual-luciferase reporter assay and electrophoretic mobility shift analysis (EMSA) in vitro to explore whether a 12-base pair (bp) insertion/deletion (InDel) variant (namely g.14798187_14798188insTCCCTGCCCCCT) within intron 2 of the chicken BMP2 gene, which was significantly associated with chicken abdominal fat weight and abdominal fat percentage, is a functional marker and its potential regulatory mechanism. The reporter analysis demonstrated that the luciferase activity of the deletion allele was extremely significantly higher than that of the insertion allele (p < 0.01). A bioinformatics analysis revealed that compared to the deletion allele, the insertion allele created a transcription factor binding site of nuclear factor-kappa B (NF-κB), which exhibited an inhibitory effect on fat deposition. A dual-luciferase reporter assay demonstrated that the inhibitory effect of NF-κB on the deletion allele was stronger than that on the insertion allele. EMSA indicated that the binding affinity of NF-κB for the insertion allele was stronger than that for the deletion allele. In conclusion, the 12-bp InDel chicken BMP2 gene variant is a functional variant affecting fat deposition in chickens, which may partially regulate BMP2 gene expression by affecting the binding of transcription factor NF-κB to the BMP2 gene.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xin Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengdie Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ziwei Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Bao Y, Oh JH, Kang CW, Ku CR, Cho YH, Lee EJ. Olfactory marker protein regulates adipogenesis via the cAMP-IκBα pathway. Mol Cell Endocrinol 2023; 575:111992. [PMID: 37328092 DOI: 10.1016/j.mce.2023.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Olfactory marker protein (OMP) regulates olfactory transduction and is also expressed in adipose tissue. Since it serves as a regulatory buffer for cyclic AMP (cAMP) levels, we hypothesized that it plays a role in modulating adipocyte differentiation. To determine the role of OMP in adipogenesis, we examined the differences in body weight, adipose tissue mass, and adipogenic or thermogenic gene expression between high-fat diet-fed control and Omp-knockout (KO) mice. cAMP production, adipogenic gene expression, and cAMP response element binding protein (CREB) phosphorylation were measured during the differentiation of 3T3-L1 preadipocytes and mouse embryonic fibroblasts (MEFs). RNA sequencing was performed to determine the gene expression patterns responsible for the reduction in adipogenesis when Omp was deleted. Body weight, adipose tissue mass, and adipocyte size decreased in Omp-KO mice. Furthermore, cAMP production and CREB phosphorylation reduced during adipogenesis induced in Omp-/- MEFs, and the Nuclear factor kappa B was activated due to significantly reduced expression of its inhibitor. Collectively, our results suggest that loss of OMP function inhibits adipogenesis by affecting adipocyte differentiation.
Collapse
Affiliation(s)
- Yaru Bao
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Hun Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chan Woo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheol Ryong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoon Hee Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Eun Jig Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Sarmiento-Ortega VE, Moroni-González D, Diaz A, García-González MÁ, Brambila E, Treviño S. Hepatic Insulin Resistance Model in the Male Wistar Rat Using Exogenous Insulin Glargine Administration. Metabolites 2023; 13:572. [PMID: 37110230 PMCID: PMC10144445 DOI: 10.3390/metabo13040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic diseases are a worldwide health problem. Insulin resistance (IR) is their distinctive hallmark. For their study, animal models that provide reliable information are necessary, permitting the analysis of the cluster of abnormalities that conform to it, its progression, and time-dependent molecular modifications. We aimed to develop an IR model by exogenous insulin administration. The effective dose of insulin glargine to generate hyperinsulinemia but without hypoglycemia was established. Then, two groups (control and insulin) of male Wistar rats of 100 g weight were formed. The selected dose (4 U/kg) was administered for 15, 30, 45, and 60 days. Zoometry, a glucose tolerance test, insulin response, IR, and the serum lipid profile were assessed. We evaluated insulin signaling, glycogenesis and lipogenesis, redox balance, and inflammation in the liver. Results showed an impairment of glucose tolerance, dyslipidemia, hyperinsulinemia, and peripheral and time-dependent selective IR. At the hepatic level, insulin signaling was impaired, resulting in reduced hepatic glycogen levels and triglyceride accumulation, an increase in the ROS level with MAPK-ERK1/2 response, and mild pro-oxidative microenvironmental sustained by MT, GSH, and GR activity. Hepatic IR coincides with additions in MAPK-p38, NF-κB, and zoometric changes. In conclusion, daily insulin glargine administration generated a progressive IR model. At the hepatic level, the IR was combined with oxidative conditions but without inflammation.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Miguel Ángel García-González
- Laboratory of Clinical Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ10, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| |
Collapse
|
8
|
Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity: "Know my methods, WAT(son)". Cell Death Differ 2023; 30:279-292. [PMID: 36175539 PMCID: PMC9520110 DOI: 10.1038/s41418-022-01062-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is a state of low-grade chronic inflammation that causes multiple metabolic diseases. During obesity, signalling via cytokines of the TNF family mediate cell death and inflammation within the adipose tissue, eventually resulting in lipid spill-over, glucotoxicity and insulin resistance. These events ultimately lead to ectopic lipid deposition, glucose intolerance and other metabolic complications with life-threatening consequences. Here we review the literature on how inflammatory responses affect metabolic processes such as energy homeostasis and insulin signalling. This review mainly focuses on the role of cell death in the adipose tissue as a key player in metabolic inflammation.
Collapse
Affiliation(s)
- Ximena Hildebrandt
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mohamed Ibrahim
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nieves Peltzer
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
9
|
Huang Y, Chen H, Liu Q, Hu J, Hu D, Huang Z, Xu Z, Wan R. Obesity difference on association blood malondialdehyde level and diastolic hypertension in the elderly population: a cross-sectional analysis. Eur J Med Res 2023; 28:44. [PMID: 36694211 PMCID: PMC9872357 DOI: 10.1186/s40001-022-00983-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/31/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Although increased production of malondialdehyde (MDA), an end product of lipid oxidation caused by reactive oxygen species (ROS), has been found be elevated in hypertensive population, whether MDA contributed to a changed risk of hypertension is uncertain. We aimed to investigate whether elevated blood levels of MDA contribute to increased risk of hypertension and obesity has a modified effect on the association in an older Chinese population. METHODS Data were obtained from 2011 to 2012 of the Chinese Longitudinal Healthy Longevity Survey (CLHLS), a national cohort of older adults in China. Associations between blood MDA level and systolic and diastolic blood pressure (BP) and risk of hypertension were performed by multivariable linear regression and logistic regression analysis. RESULTS The results of smooth curve revealed a gradual upward trend on association of blood MDA level with diastolic BP (P < 0.001), but not with systolic BP (P > 0.05). Logistic regression analysis suggested that elevated blood MDA levels were associated with increased risk of diastolic hypertension (OR = 1.079, 95% CI 1.039-1.122, P < 0.001) rather than systolic hypertension (OR = 0.978, 95% CI 0.943-1.015, P = 0.247) after adjustments of related confounding factors were made. Furthermore, we found the significant modification effect of obesity on the association between MDA level and risk of diastolic hypertension evaluated by body mass index (BMI, interaction P = 0.015) and by waist circumference (interaction P = 0.016). CONCLUSION Our results firstly identified that increased blood MDA levels were associated with elevated risk of diastolic hypertension, rather than systolic hypertension in the non-obese old population.
Collapse
Affiliation(s)
- Ying Huang
- grid.412455.30000 0004 1756 5980Rehabilitation department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Hong Chen
- grid.412455.30000 0004 1756 5980Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Qifan Liu
- grid.412455.30000 0004 1756 5980Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Jinzhu Hu
- grid.412455.30000 0004 1756 5980Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Dongxi Hu
- grid.412455.30000 0004 1756 5980Rehabilitation department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Zixi Huang
- grid.412455.30000 0004 1756 5980Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Zhenyan Xu
- grid.412455.30000 0004 1756 5980Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Rong Wan
- grid.412455.30000 0004 1756 5980Jiangxi Key Laboratory of Molecular Medicine, No. 1 Minde Road, Donghu, Nanchang, 330006 Jiangxi China
| |
Collapse
|
10
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
11
|
Afifi SM, Ammar NM, Kamel R, Esatbeyoglu T, Hassan HA. β-Sitosterol Glucoside-Loaded Nanosystem Ameliorates Insulin Resistance and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2022; 11:1023. [PMID: 35624887 PMCID: PMC9137832 DOI: 10.3390/antiox11051023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022] Open
Abstract
β-Sitosterol glucoside (SG), isolated from Senecio petasitis (Family Asteraceae), was loaded in self-nanoemulsifying drug delivery systems (SEDDS) in a trial to enhance its solubility and biological effect. Various co-surfactants were tested to prepare a successful SEDDS. The selected SG-loaded SEDDS had a droplet size of 134 ± 15.2 nm with a homogenous distribution (polydispersity index 0.296 ± 0.02). It also demonstrated a significant augmentation of SG in vitro release by 4-fold compared to the free drug suspension. The in vivo insulin sensitivity and antidiabetic effect of the prepared SG-loaded SEDDS were further assessed in streptozotocin-induced hyperglycemic rats. The hypoglycemic effect of SG-loaded nanosystem was evidenced by decreased serum glucose and insulin by 63.22% and 53.11%, respectively. Homeostasis model assessment-insulin resistance (HOMA-IR) index demonstrated a significant reduction by 5.4-fold in the diabetic group treated by SG-loaded nanosystem and exhibited reduced glucagon level by 40.85%. In addition, treatment with SG-loaded nanosystem significantly decreased serum MDA (malondialdehyde) and increased catalase levels by 38.31% and 64.45%, respectively. Histopathological investigations also supported the protective effect of SG-loaded nanosystem on the pancreas. The promising ability of SG-loaded nanosystem to ameliorate insulin resistance, protect against oxidative stress, and restore pancreatic β-cell secretory function warrants its inclusion in further studies during diabetes progression.
Collapse
Affiliation(s)
- Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Naglaa M. Ammar
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt;
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Heba A. Hassan
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| |
Collapse
|
12
|
Hou W, Zhang H, Jiang M, Wu Y, Li T, Cong L, Duan J. Gu-Ben-Zhi-Ke-Zhong-Yao Alleviated PM2.5-Induced Lung Injury via HMGB1/NF- κB Axis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8450673. [PMID: 35399858 PMCID: PMC8986406 DOI: 10.1155/2022/8450673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
Background Inhalation of particles with a diameter of less than 2.5 μm (PM2.5) among air pollutants may cause lung damage. Gu-Ben-Zhi-Ke-Zhong-Yao (GBZK) is a traditional Chinese medicine prescription that has a beneficial effect on the treatment of chronic obstructive pulmonary disease (COPD). However, the effect of GBZK on PM2.5-induced lung injury remains to be elucidated. Methods We constructed a mice lung injury model through PM2.5 stimulation and simultaneously performed GBZK gavage treatment. After 4 weeks, the lung tissues of the mice were collected for pathological staining to analyze the degree of damage. The activities of myeloperoxidase (MPO), malondialdehyde (MDA), and oxidative stress-related factors (superoxide dismutase, SOD; glutathione peroxidase, GSH-Px) were detected by commercial kit in lung tissue. Furthermore, the number of neutrophils and related inflammatory factors (interleukin-1, IL-1β; tumor necrosis factor α, TNF-α; interleukin-6, IL-6) in bronchoalveolar lavage fluid (BALF) and serum were collected and tested to evaluate the effect of GBZK on inflammation. Masson staining was used to detect the level of lung fibrosis in mice. The activation of HMGB1 (high-mobility group protein 1) and NFκBp65 (nucleus factor kappa B) in lung tissue was evaluated by immunohistochemistry and western blot. Results The result revealed that PM2.5 induces lung damage, and GBZK gavage treatment could reduce the degree of injury in a concentration-dependent manner in mice. After GBZK treatment, the MPO activity, MDA content, and oxidative stress level in the lung tissues of mice decreased. And after GBZK treatment, the expression levels of inflammatory cytokines in BALF and blood were decreased. GBZK treatment also improved pulmonary fibrosis in mice. In addition, we also found that GBZK prevented the up-regulation of the HMGB1/NF-κB axis in the lungs of mice. Conclusion These results indicated that GBZK might protect mice from PM2.5-induced lung injury by inhibiting the HMGB1/NFκB pathway, thus repressing inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenxiao Hou
- Graduate School of Beijing University of Traditional Chinese Medicine, Beijing 100029, China
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
| | - Hongchun Zhang
- Department of Health Care, China Japan Friendship Hospital, Beijing 100029, China
- National Respiratory Center, Beijing 100029, China
| | - Meng Jiang
- Yunnan University of Traditional Chinese Medicine, Kunming 650011, China
| | - Yina Wu
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
| | - Tao Li
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
| | - Luhong Cong
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
- Department of Emergency, China Japan Friendship Hospital, Beijing 100029, China
| | - Jun Duan
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
- Department of Emergency, China Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
13
|
Peng S, Zhang X, Yu L, Xu Y, Zhou Y, Qian S, Cao X, Ye X, Yang J, Jia W, Ye J. NF- κB regulates brown adipocyte function through suppression of ANT2. Acta Pharm Sin B 2022; 12:1186-1197. [PMID: 35530146 PMCID: PMC9069396 DOI: 10.1016/j.apsb.2021.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022] Open
Abstract
The transcription factor nuclear factor of kappa-light-chain-enhancer of activated B cells (NF-κB) is expressed in brown adipocytes, but its role remains largely unknown in the cells. This issue was addressed in current study by examining NF-κB in brown adipocytes in vitro and in vivo. NF-κB activity was increased by differentiation of brown adipocytes through elevation of p65 (RelA) expression. The transcriptional activity of NF-κB was induced by the cold stimulation with an elevation in S276 phosphorylation of p65 protein. Inactivation of NF-κB in brown adipocytes made the knockout mice [uncoupling protein 1 (Ucp1)–CreER–p65f/f, U-p65-KO] intolerant to the cold environment. The brown adipocytes exhibited an increase in apoptosis, a decrease in cristae density and uncoupling activity in the interscapular brown adipose tissue (iBAT) of p65-KO mice. The alterations became severer after cold exposure of the KO mice. The brown adipocytes of mice with NF-κB activation (p65 overexpression, p65-OE) exhibited a set of opposite alterations with a reduction in apoptosis, an increase in cristae density and uncoupling activity. In mechanism, NF-κB inhibited expression of the adenine nucleotide translocase 2 (ANT2) in the control of apoptosis. Data suggest that NF-κB activity is increased in brown adipocytes by differentiation and cold stimulation to protect the cells from apoptosis through down-regulation of ANT2 expression.
Collapse
Affiliation(s)
- Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaoying Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lili Yu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yanhong Xu
- Neurology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Zhou
- National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shengnan Qian
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xinyu Cao
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaotong Ye
- National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jiajun Yang
- Neurology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China.,Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
| |
Collapse
|
14
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
15
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
16
|
B Tóth B, Barta Z, Barta ÁB, Fésüs L. Regulatory modules of human thermogenic adipocytes: functional genomics of large cohort and Meta-analysis derived marker-genes. BMC Genomics 2021; 22:886. [PMID: 34895148 PMCID: PMC8665548 DOI: 10.1186/s12864-021-08126-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background Recently, ProFAT and BATLAS studies identified brown and white adipocytes marker genes based on analysis of large databases. They offered scores to determine the thermogenic status of adipocytes using the gene-expression data of these markers. In this work, we investigated the functional context of these genes. Results Gene Set Enrichment Analyses (KEGG, Reactome) of the BATLAS and ProFAT marker-genes identified pathways deterministic in the formation of brown and white adipocytes. The collection of the annotated proteins of the defined pathways resulted in expanded white and brown characteristic protein-sets, which theoretically contain all functional proteins that could be involved in the formation of adipocytes. Based on our previously obtained RNA-seq data, we visualized the expression profile of these proteins coding genes and found patterns consistent with the two adipocyte phenotypes. The trajectory of the regulatory processes could be outlined by the transcriptional profile of progenitor and differentiated adipocytes, highlighting the importance of suppression processes in browning. Protein interaction network-based functional genomics by STRING, Cytoscape and R-Igraph platforms revealed that different biological processes shape the brown and white adipocytes and highlighted key regulatory elements and modules including GAPDH-CS, DECR1, SOD2, IL6, HRAS, MTOR, INS-AKT, ERBB2 and 4-NFKB, and SLIT-ROBO-MAPK. To assess the potential role of a particular protein in shaping adipocytes, we assigned interaction network location-based scores (betweenness centrality, number of bridges) to them and created a freely accessible platform, the AdipoNET (https//adiponet.com), to conveniently use these data. The Eukaryote Promoter Database predicted the response elements in the UCP1 promoter for the identified, potentially important transcription factors (HIF1A, MYC, REL, PPARG, TP53, AR, RUNX, and FoxO1). Conclusion Our integrative approach-based results allowed us to investigate potential regulatory elements of thermogenesis in adipose tissue. The analyses revealed that some unique biological processes form the brown and white adipocyte phenotypes, which presumes the existence of the transitional states. The data also suggests that the two phenotypes are not mutually exclusive, and differentiation of thermogenic adipocyte requires induction of browning as well as repressions of whitening. The recognition of these simultaneous actions and the identified regulatory modules can open new direction in obesity research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08126-8.
Collapse
Affiliation(s)
- Beáta B Tóth
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, Debrecen, H-4032, Hungary.
| | - Zoltán Barta
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Ákos Barnabás Barta
- Vienna University of Economics and Business (WU), Welthandelspl. 1, 1020, Wien, Austria
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, Debrecen, H-4032, Hungary.
| |
Collapse
|
17
|
Yan S, Kumari M, Xiao H, Jacobs C, Kochumon S, Jedrychowski M, Chouchani E, Ahmad R, Rosen ED. IRF3 reduces adipose thermogenesis via ISG15-mediated reprogramming of glycolysis. J Clin Invest 2021; 131:144888. [PMID: 33571167 DOI: 10.1172/jci144888] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Adipose thermogenesis is repressed in obesity, reducing the homeostatic capacity to compensate for chronic overnutrition. Inflammation inhibits adipose thermogenesis, but little is known about how this occurs. Here we showed that the innate immune transcription factor IRF3 is a strong repressor of thermogenic gene expression and oxygen consumption in adipocytes. IRF3 achieved this by driving expression of the ubiquitin-like modifier ISG15, which became covalently attached to glycolytic enzymes, thus reducing their function and decreasing lactate production. Lactate repletion was able to restore thermogenic gene expression, even when the IRF3/ISG15 axis was activated. Mice lacking ISG15 phenocopied mice lacking IRF3 in adipocytes, as both had elevated energy expenditure and were resistant to diet-induced obesity. These studies provide a deep mechanistic understanding of how the chronic inflammatory milieu of adipose tissue in obesity prevents thermogenic compensation for overnutrition.
Collapse
Affiliation(s)
- Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Manju Kumari
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Shihab Kochumon
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edward Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021; 10:cells10081906. [PMID: 34440675 PMCID: PMC8394846 DOI: 10.3390/cells10081906] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF-κB can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of either protein involved in the NF-κB signaling pathway that have provided relevant information about the intricate processes or molecular mechanisms that control ageing. We have reviewed the relationship of NF-κB and premature ageing; the development of cancer associated with ageing and the implication of NF-κB activation in the development of age-related diseases, some of which greatly increase the risk of developing cancer.
Collapse
|
19
|
Villarreal-Calderon JR, Cuellar-Tamez R, Castillo EC, Luna-Ceron E, García-Rivas G, Elizondo-Montemayor L. Metabolic shift precedes the resolution of inflammation in a cohort of patients undergoing bariatric and metabolic surgery. Sci Rep 2021; 11:12127. [PMID: 34108550 PMCID: PMC8190106 DOI: 10.1038/s41598-021-91393-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bariatric and metabolic surgery has shown to promote weight loss and reduce systemic inflammation. However, the sequence and timing of events regarding metabolic improvement and inflammation resolution has been rarely explored. Furthermore, data on inflammatory markers of Th17 and Th1 cell responses after bariatric surgery is scarce. We conducted a prospective study in subjects with obesity that underwent bariatric and metabolic surgery, with follow-ups at 3 and 6 months. Anthropometric and metabolic markers such as insulin levels, HOMA-IR, and lipid parameters declined significantly 3 months after surgery; while hs-CRP, TNF-α, IL-1β, IL-6, and IL-8 serum concentrations decreased 6 months after the procedure. Concentrations of Th1 signature and driver cytokines, particularly IFN-γ, IL-12, and IL-18, and of Th17 driver IL-23 also decreased significantly after 6 months. Significant positive correlations between triglyceride levels and hs-CRP, IL-1β, and IFN-γ concentrations, and between Apo B and IFN-γ levels were observed 6 months after bariatric and metabolic surgery. In addition, BMI was associated with hs-CRP and TNF-α concentrations. Fat mass correlated with hs-CRP, TNF-α, and IL-12. Analysis of the temporality of metabolic and inflammatory events suggests that improvement in the metabolic status occurs before resolution of systemic inflammation and may be a requisite for the later event.
Collapse
Affiliation(s)
- Jose Romeo Villarreal-Calderon
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710, Monterrey, Mexico.,Tecnologico de Monterrey, Centro de Investigación en Obesidad y Nutrición Clínica, 64710, Monterrey, Mexico.,Tecnologico de Monterrey. Cardiovascular Medicine and Metabolomics Research Group, Hospital Zambrano Hellion, TecSalud, 66278, San Pedro Garza García, Mexico
| | - Ricardo Cuellar-Tamez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710, Monterrey, Mexico.,Tecnologico de Monterrey. Cardiovascular Medicine and Metabolomics Research Group, Hospital Zambrano Hellion, TecSalud, 66278, San Pedro Garza García, Mexico
| | - Elena C Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710, Monterrey, Mexico.,Tecnologico de Monterrey. Cardiovascular Medicine and Metabolomics Research Group, Hospital Zambrano Hellion, TecSalud, 66278, San Pedro Garza García, Mexico
| | - Eder Luna-Ceron
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710, Monterrey, Mexico.,Tecnologico de Monterrey. Cardiovascular Medicine and Metabolomics Research Group, Hospital Zambrano Hellion, TecSalud, 66278, San Pedro Garza García, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710, Monterrey, Mexico. .,Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278, San Pedro Garza García, Mexico. .,Tecnologico de Monterrey. Cardiovascular Medicine and Metabolomics Research Group, Hospital Zambrano Hellion, TecSalud, 66278, San Pedro Garza García, Mexico.
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710, Monterrey, Mexico. .,Tecnologico de Monterrey, Centro de Investigación en Obesidad y Nutrición Clínica, 64710, Monterrey, Mexico. .,Tecnologico de Monterrey. Cardiovascular Medicine and Metabolomics Research Group, Hospital Zambrano Hellion, TecSalud, 66278, San Pedro Garza García, Mexico.
| |
Collapse
|
20
|
Ying L, Zhang M, Ma X, Si Y, Li X, Su J, Yin J, Bao Y. Macrophage LAMTOR1 Deficiency Prevents Dietary Obesity and Insulin Resistance Through Inflammation-Induced Energy Expenditure. Front Cell Dev Biol 2021; 9:672032. [PMID: 34095141 PMCID: PMC8173123 DOI: 10.3389/fcell.2021.672032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Here, we studied the metabolic function of LAMTOR1 from macrophages using LAMTOR1 macrophage-specific knockout (MKO) mice. LAMTOR1 MKO mice showed resistance to high-fat diet (HFD)-induced obesity, lipid steatosis, and glucose metabolic disorders, with elevated levels of pro-inflammatory cytokines. The energy expenditure, oxygen consumption, and CO2 production increased significantly in HFD-fed MKO vs. wild-type (WT) mice. HE and immunohistochemistry staining showed a remarkable CD68+ Kupffer cell accumulation in the liver. Additionally, flow cytometry revealed that the proportion of macrophages and monocytes increased significantly in the liver of MKO mice. Of note, these macrophages were probably derived from the bone marrow since the proportion of CD11b+ cells as well as the proliferative activity was also increased in the context of femoral bone marrow cells. In addition, the Kupffer cells of both WT and KO mice were double-positive for the M1 (CD86) and M2 (CD206) markers. However, the expression of both M1 and M2 macrophage-related genes was increased in the liver of HFD-fed KO mice. Murine primary hepatocytes and Kupffer cells were further isolated and incubated with oleic acid for 24 h. The glucose output of primary hepatocytes from MKO mice was not affected. However, decreased lipid tolerance was observed in LAMTOR1-deficient Kupffer cells. Overall, our results suggest that LAMTOR1 deficiency in macrophages prevents obesity and metabolic disorders via the accumulation of Kupffer cells in the liver and the consequent hyper-inflammation and increased energy expenditure. Therefore, our results provide a new perspective for macrophage-derived LAMTOR1 in the context of systemic metabolism.
Collapse
Affiliation(s)
- Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yiming Si
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Xiaoya Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Jiaorong Su
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Eighth People's Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
21
|
The Model of PPARγ-Downregulated Signaling in Psoriasis. PPAR Res 2020; 2020:6529057. [PMID: 33133175 PMCID: PMC7568796 DOI: 10.1155/2020/6529057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Interactions of genes in intersecting signaling pathways, as well as environmental influences, are required for the development of psoriasis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor and transcription factor which inhibits the expression of many proinflammatory genes. We tested the hypothesis that low levels of PPARγ expression promote the development of psoriatic lesions. We combined experimental results and network functional analysis to reconstruct the model of PPARγ-downregulated signaling in psoriasis. We hypothesize that the expression of IL17, STAT3, FOXP3, and RORC and FOSL1 genes in psoriatic skin is correlated with the level of PPARγ expression, and they belong to the same signaling pathway that regulates the development of psoriasis lesion.
Collapse
|
22
|
Roh HC, Kumari M, Taleb S, Tenen D, Jacobs C, Lyubetskaya A, Tsai LTY, Rosen ED. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Mol Metab 2020; 42:101086. [PMID: 32992037 PMCID: PMC7559520 DOI: 10.1016/j.molmet.2020.101086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Obesity due to overnutrition causes adipose tissue dysfunction, which is a critical pathological step on the road to type 2 diabetes (T2D) and other metabolic disorders. In this study, we conducted an unbiased investigation into the fundamental molecular mechanisms by which adipocytes transition to an unhealthy state during obesity. Methods We used nuclear tagging and translating ribosome affinity purification (NuTRAP) reporter mice crossed with Adipoq-Cre mice to determine adipocyte-specific 1) transcriptional profiles (RNA-seq), 2) promoter and enhancer activity (H3K27ac ChIP-seq), 3) and PPARγ cistrome (ChIP-seq) profiles in mice fed chow or a high-fat diet (HFD) for 10 weeks. We also assessed the impact of the PPARγ agonist rosiglitazone (Rosi) on gene expression and cellular state of adipocytes from the HFD-fed mice. We integrated these data to determine the transcription factors underlying adipocyte responses to HFD and conducted functional studies using shRNA-mediated loss-of-function approaches in 3T3-L1 adipocytes. Results Adipocytes from the HFD-fed mice exhibited reduced expression of adipocyte markers and metabolic genes and enhanced expression of myofibroblast marker genes involved in cytoskeletal organization, accompanied by the formation of actin filament structures within the cell. PPARγ binding was globally reduced in adipocytes after HFD feeding, and Rosi restored the molecular and cellular phenotypes of adipocytes associated with HFD feeding. We identified the TGFβ1 effector protein SMAD to be enriched at HFD-induced promoters and enhancers and associated with myofibroblast signature genes. TGFβ1 treatment of mature 3T3-L1 adipocytes induced gene expression and cellular changes similar to those seen after HFD in vivo, and knockdown of Smad3 blunted the effects of TGFβ1. Conclusions Our data demonstrate that adipocytes fail to maintain cellular identity after HFD feeding, acquiring characteristics of a myofibroblast-like cell type through reduced PPARγ activity and elevated TGFβ-SMAD signaling. This cellular identity crisis may be a fundamental mechanism that drives functional decline of adipose tissues during obesity. Adipocytes after HFD intake exhibit defects in cellular identity maintenance. Adipocytes develop actin filament networks in obesity. Altered PPARγ activity mediates defective adipocyte identity phenotypes. TGFβ-SMAD pathways promote HFD-induced aberrant phenotype of adipocytes.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Manju Kumari
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Solaema Taleb
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danielle Tenen
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Linus T-Y Tsai
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
23
|
Ding N, Zhang X, Zhang XD, Jing J, Liu SS, Mu YP, Peng LL, Yan YJ, Xiao GM, Bi XY, Chen H, Li FH, Yao B, Zhao AZ. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 2020; 69:1608-1619. [PMID: 31900292 PMCID: PMC7456731 DOI: 10.1136/gutjnl-2019-319127] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE High-fat diet (HFD)-induced metabolic disorders can lead to impaired sperm production. We aim to investigate if HFD-induced gut microbiota dysbiosis can functionally influence spermatogenesis and sperm motility. DESIGN Faecal microbes derived from the HFD-fed or normal diet (ND)-fed male mice were transplanted to the mice maintained on ND. The gut microbes, sperm count and motility were analysed. Human faecal/semen/blood samples were collected to assess microbiota, sperm quality and endotoxin. RESULTS Transplantation of the HFD gut microbes into the ND-maintained (HFD-FMT) mice resulted in a significant decrease in spermatogenesis and sperm motility, whereas similar transplantation with the microbes from the ND-fed mice failed to do so. Analysis of the microbiota showed a profound increase in genus Bacteroides and Prevotella, both of which likely contributed to the metabolic endotoxaemia in the HFD-FMT mice. Interestingly, the gut microbes from clinical subjects revealed a strong negative correlation between the abundance of Bacteroides-Prevotella and sperm motility, and a positive correlation between blood endotoxin and Bacteroides abundance. Transplantation with HFD microbes also led to intestinal infiltration of T cells and macrophages as well as a significant increase of pro-inflammatory cytokines in the epididymis, suggesting that epididymal inflammation have likely contributed to the impairment of sperm motility. RNA-sequencing revealed significant reduction in the expression of those genes involved in gamete meiosis and testicular mitochondrial functions in the HFD-FMT mice. CONCLUSION We revealed an intimate linkage between HFD-induced microbiota dysbiosis and defect in spermatogenesis with elevated endotoxin, dysregulation of testicular gene expression and localised epididymal inflammation as the potential causes. TRIAL REGISTRATION NUMBER NCT03634644.
Collapse
Affiliation(s)
- Ning Ding
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | | | - Xue Di Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jun Jing
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing, Jiangsu, China,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shan Shan Liu
- Department of Laboratory, Women and Children 's Hospital of Qingdao, Qingdao, Shandong, China
| | - Yun Ping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Li Li Peng
- The School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yun Jing Yan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Geng Miao Xiao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Xin Yun Bi
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Hao Chen
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Fang Hong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Bing Yao
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing, Jiangsu, China .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Zarate MA, Nguyen LM, De Dios RK, Zheng L, Wright CJ. Maturation of the Acute Hepatic TLR4/NF-κB Mediated Innate Immune Response Is p65 Dependent in Mice. Front Immunol 2020; 11:1892. [PMID: 32973783 PMCID: PMC7472845 DOI: 10.3389/fimmu.2020.01892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
25
|
Qin X, Xu Y, Peng S, Qian S, Zhang X, Shen S, Yang J, Ye J. Sodium butyrate opens mitochondrial permeability transition pore (MPTP) to induce a proton leak in induction of cell apoptosis. Biochem Biophys Res Commun 2020; 527:611-617. [PMID: 32423794 DOI: 10.1016/j.bbrc.2020.04.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
Abstract
Induction of apoptosis is a strategy in the treatment of glioma, a malignant tumor with the highest prevalence in the brain. Sodium butyrate (NaB) induces apoptosis in glioma cells at pharmacological dosages (>2.5 mM), but the mechanism remains largely unknown beyond the mitochondrial potential drop. In this study, NaB was found to open the mitochondrial permeability transient pore (MPTP) to induce a proton leak in the mechanism of apoptosis. The MPTP opening led to collapse of mitochondrial potential and suppression of ATP production in the NaB-treated cells. Proton leak was increased in the mitochondria under the coupling and uncoupling conditions from the MPTP opening. The proton leak was associated with an elevation in the protein abundance of adenine nucleotide translocator 2 (ANT2) and was blocked by an ANT-specific inhibitor of bongkrekic acid (BA). These data suggest that the proton leak is induced by NaB for the mitochondrial potential drop in the induction of apoptosis. The mechanism may be related to activation of ANT2 in the MPTP complex.
Collapse
Affiliation(s)
- Xiaojiao Qin
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Department of Neurology, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Yanhong Xu
- Department of Neurology, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China; Central Laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China; Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Shiqiao Peng
- Central Laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China; Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Shengnan Qian
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Central Laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Xiaoying Zhang
- Central Laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Shuang Shen
- Central Laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China.
| | - Jianping Ye
- Central Laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China; Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
26
|
Guo Y, Zhang X, Zhao Z, Lu H, Ke B, Ye X, Wu B, Ye J. NF- κ B/HDAC1/SREBP1c pathway mediates the inflammation signal in progression of hepatic steatosis. Acta Pharm Sin B 2020; 10:825-836. [PMID: 32528830 PMCID: PMC7276689 DOI: 10.1016/j.apsb.2020.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is activated in hepatocytes in the pathogenesis of hepatic steatosis. However, the action mechanism of NF-κB remains to be established in the hepatic steatosis. In this study, the P50 subunit of NF-κB was found to promote the hepatic steatosis through regulation of histone deacetylase 1 (HDAC1) in hepatocytes. The activity was supported by the phenotypes of P50 knockout (P50-KO) mice and P65 knockout (P65-KO) mice. Hepatic steatosis was reduced in the P50-KO mice, but not in the P65-KO mice. The reduction was a result of inhibition of HDAC1 activity in the P50-KO cells. Knockdown of Hdac1 gene led to suppression of hepatocyte steatosis in HepG2 cells. A decrease in sterol-regulatory element binding protein 1c (SREBP1c) protein was observed in the liver of P50-KO mice and in cell with Hdac1 knockdown. The decrease was associated with an increase in succinylation of SREBP1c protein. The study suggests that P50 stabilizes HDAC1 to support the SREBP1c activity in hepatic steatosis in the pathophysiological condition. Interruption of this novel pathway in the P50-KO, but not the P65-KO mice, may account for the difference in hepatic phenotypes in the two lines of transgenic mice.
Collapse
Affiliation(s)
- Yunwei Guo
- Department of Gastroenterology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Xiaoying Zhang
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Zhiyun Zhao
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Hongyun Lu
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bilun Ke
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Xin Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bin Wu
- Department of Gastroenterology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
- Corresponding author.
| |
Collapse
|
27
|
Fei YX, Zhao B, Yin QY, Qiu YY, Ren GH, Wang BW, Wang YF, Fang WR, Li YM. Ma Xing Shi Gan Decoction Attenuates PM2.5 Induced Lung Injury via Inhibiting HMGB1/TLR4/NFκB Signal Pathway in Rat. Front Pharmacol 2019; 10:1361. [PMID: 31798456 PMCID: PMC6868102 DOI: 10.3389/fphar.2019.01361] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Ma Xing Shi Gan Decoction (MXD), a classical traditional Chinese medicine prescription, is widely used for the treatment of upper respiratory tract infection. However, the effect of MXD against particulate matters with diameter of less than 2.5 μm (PM2.5) induced lung injury remains to be elucidated. In this study, rats were stimulated with PM2.5 to induce lung injury. MXD was given orally once daily for five days. Lung tissues were harvested to assess pathological changes and edema. Myeloperoxidase (MPO) activity and malonaldehyde (MDA) content in lung were determined to evaluate the degree of injury. To assess the barrier disruption, the bronchoalveolar lavage fluid (BALF) was collected to determine the total protein content and count the number of neutrophils and macrophages. For evaluating the activation of macrophage in lung tissue, CD68 was detected using immunohistochemistry (IHC). The levels of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) in BALF and serum were measured. In vitro, a PM2.5-activated RAW 264.7 macrophages inflammatory model was introduced. To evaluate the protective effect of MXD-medicated serum, the cell viability and the release of inflammatory factors were measured. The effects of MXD on the High mobility group box-1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NFκB) pathway in lung tissue and RAW 264.7 cells were assessed by Western blot. For further confirming the protective effect of MXD was mediated by inhibiting the HMGB1/TLR4/NFκB pathway, RAW 264.7 cells were incubated with MXD-medicated serum alone or MXD-medicated serum plus recombinant HMGB1 (rHMGB1). MXD significantly ameliorated the lung injury in rats, as evidenced by decreases in the pathological score, lung edema, MPO activity, MDA content, CD68 positive macrophages number, disruption of alveolar capillary barrier and the levels of inflammatory factors. In vitro, MXD-medicated serum increased cell viability and inhibited the release of inflammatory cytokines. Furthermore, MXD treatment was found to inhibit HMGB1/TLR4/NFκB signal pathway both in vivo and in vitro. Moreover, the protection of MXD could be reversed by rHMGB1 in RAW 264.7. Taken together, these results suggest MXD protects rats from PM2.5 induced acute lung injury, possibly through the modulation of HMGB1/TLR4/NFκB pathway and inflammatory responses.
Collapse
Affiliation(s)
- Yu-xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi-yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan-ying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-hui Ren
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo-wen Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ye-fang Wang
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, China
| | - Wei-rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Cheng B, Zhang H, Liu C, Chen X, Chen Y, Sun Y, Leng L, Li Y, Luan P, Li H. Functional Intronic Variant in the Retinoblastoma 1 Gene Underlies Broiler Chicken Adiposity by Altering Nuclear Factor-kB and SRY-Related HMG Box Protein 2 Binding Sites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9727-9737. [PMID: 31398034 DOI: 10.1021/acs.jafc.9b01719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study aimed to search for chicken abdominal fat deposition-related polymorphisms within RB1 and to provide functional evidence for significantly associated genetic variants. Association analyses showed that 11 single nucleotide polymorphisms (SNPs) in intron 17 of RB1, were significantly associated with both abdominal fat weight (P < 0.05) and abdominal fat percentage (P < 0.05). Functional analysis revealed that the A allele of g.32828A>G repressed the transcriptional efficiency of RB1 in vitro, through binding nuclear factor-kappa B (NF-KB) and SRY-related HMG box protein 2 (SOX2). Furthermore, RB1 mRNA expression levels in the abdominal fat tissue of individuals with the A/A genotype of g.32828A>G were lower than those of individuals with the G/G genotype. Collectively, we propose that the intronic SNP g.32828A>G of RB1 is an obesity-associated variant that directly affects binding with NF-KB and SOX2, leading to changes in RB1 expression which in turn may influence chicken abdominal fat deposition.
Collapse
Affiliation(s)
- Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Xi Chen
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yaofeng Chen
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yuhang Sun
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| |
Collapse
|
29
|
Reshidan NH, Abd Muid S, Mamikutty N. The effects of Pandanus amaryllifolius (Roxb.) leaf water extracts on fructose-induced metabolic syndrome rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:232. [PMID: 31462242 PMCID: PMC6714300 DOI: 10.1186/s12906-019-2627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metabolic syndrome is a non-communicable disease inclusive of risk factors such as central obesity, hypertension, hyperglycaemia and dyslipidaemia. In this present study, we investigated the ability of Pandanus amaryllifolius (PA) leaf water extract to reverse the cluster of diseases in an established rat model induced by fructose in drinking water. METHODS Thirty healthy adult male Wistar rats (150-180 g) were randomly divided into three groups which included control (C; n = 6), PA extract (PAE; n = 6) and Metabolic Syndrome (MetS; n = 18). Food and fluid were given ad libitum for 8 weeks. These groups differed in fluid intake whereby rats received tap water, 10% of PA leaf water extracts and 20% of fructose in drinking water in group C, PAE and MetS, respectively. After 8 weeks, the MetS group was further subdivided into three subgroups namely MetS1 (n = 6), MetS2 (n = 6) and MetS3 (n = 6). The C, PAE and MetS1 were sacrificed. MetS1 group was sacrificed as the control for metabolic syndrome. MetS2 and MetS3 groups were treated with only tap water and 10% of PA leaf water extract respectively for another 8 weeks. The parameters for physiological and metabolic changes such as obesity, hypertension, hyperglycaemia, dyslipidaemia, and inflammatory biomarkers (NFκβ p65, TNFα, leptin and adiponectin) were measured. RESULTS The intake of 20% of fructose in drinking water induced full blown of metabolic syndrome symptoms, including obesity, hypertension, dyslipidaemia and hyperglycaemia in male Wistar rats. Subsequently, treatment with PA leaf water extract improved obesity parameters including BMI, abdominal adipose tissue deposition and adipocytes size, systolic and diastolic blood pressures, fasting plasma glucose, triglycerides, high density lipoprotein with neutral effects on inflammatory biomarkers. CONCLUSIONS Administration of PA in metabolic syndrome rat model attenuates most of the metabolic syndrome symptoms as well as improves obesity. Therefore, PA which is rich in total flavonoids and total phenolic acids can be suggested as a useful dietary supplement to improve metabolic syndrome components induces by fructose.
Collapse
Affiliation(s)
- Nur Hidayah Reshidan
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
| | - Suhaila Abd Muid
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
| | - Norshalizah Mamikutty
- Sulaiman Al Rajhi College, Faculty of Medicine, Kingdom of Saudi Arabia, Bukayriyah, 51941 Saudi Arabia
| |
Collapse
|
30
|
Lu W, Park SH, Meng Z, Wang F, Zhou C. Deficiency of Adipocyte IKKβ Affects Atherosclerotic Plaque Vulnerability in Obese LDLR Deficient Mice. J Am Heart Assoc 2019; 8:e012009. [PMID: 31203708 PMCID: PMC6645619 DOI: 10.1161/jaha.119.012009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Obesity‐associated chronic inflammation has been known to contribute to atherosclerosis development, but the underlying mechanisms remain elusive. Recent studies have revealed novel functions of IKKβ (inhibitor of NF‐κB [nuclear factor κB] kinase β), a key coordinator of inflammation through activation of NF‐κB, in atherosclerosis and adipose tissue development. However, it is not clear whether IKKβ signaling in adipocytes can also affect atherogenesis. This study aims to investigate the impact of adipocyte IKKβ expression on atherosclerosis development in lean and obese LDLR (low‐density lipoprotein receptor)–deficient (LDLR−/−) mice. Methods and Results To define the role of adipocyte IKKβ in atherogenesis, we generated adipocyte‐specific IKKβ‐deficient LDLR−/− (IKKβΔAdLDLR−/−) mice. Targeted deletion of IKKβ in adipocytes did not affect adiposity and atherosclerosis in lean LDLR−/− mice when fed a low‐fat diet. In response to high‐fat feeding, however, IKKβΔAdLDLR−/− mice had defective adipose remodeling and increased adipose tissue and systemic inflammation. Deficiency of adipocyte IKKβ did not affect atherosclerotic lesion sizes but resulted in enhanced lesional inflammation and increased plaque vulnerability in obese IKKβΔAdLDLR−/− mice. Conclusions These data demonstrate that adipocyte IKKβ signaling affects the evolution of atherosclerosis plaque vulnerability in obese LDLR−/− mice. This study suggests that the functions of IKKβ signaling in atherogenesis are complex, and IKKβ in different cell types or tissues may have different effects on atherosclerosis development.
Collapse
Affiliation(s)
- Weiwei Lu
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY
| | - Se-Hyung Park
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY
| | - Zhaojie Meng
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY
| | - Fang Wang
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY
| | - Changcheng Zhou
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY.,2 Saha Cardiovascular Research Center University of Kentucky Lexington KY
| |
Collapse
|
31
|
Watts MR, Hegedus OC, Eades SC, Belknap JK, Burns TA. Association of sustained supraphysiologic hyperinsulinemia and inflammatory signaling within the digital lamellae in light-breed horses. J Vet Intern Med 2019; 33:1483-1492. [PMID: 30912229 PMCID: PMC6524466 DOI: 10.1111/jvim.15480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Hyperinsulinemia is associated with equine laminitis, and digital lamellar inflammation in equine metabolic syndrome‐associated laminitis (EMSAL) is modest when compared with sepsis‐associated laminitis. Objectives To characterize digital lamellar inflammation in horses in a euglycemic‐hyperinsulinemic clamp (EHC) model of laminitis. Animals Sixteen healthy adult Standardbred horses. Methods Prospective experimental study. Horses underwent EHC or saline infusion (CON) for 48 hours or until the onset of Obel grade 1 laminitis. Horses were euthanized, and digital lamellar tissue was collected and analyzed via polymerase chain reaction (pro‐inflammatory cytokine and chemokine genes—CXCL1, CXCL6, CXCL8, IL‐6, MCP‐1, MCP‐2, IL‐1β, IL11, cyclooxygenases 1 and 2, tumor necrosis factor alpha [TNF‐α], E‐selectin, and ICAM‐1), immunoblotting (phosphorylated and total signal transducer and activator of transcription 1 [STAT1], STAT3, and p38MAPK), and immunohistochemistry (markers of leukocyte infiltration: CD163, MAC387). Results Lamellar mRNA concentrations of IL‐1β, IL‐6, IL‐11, COX‐2, and E‐selectin were increased; the concentration of COX‐1 was decreased; and concentrations of CXCL1, CXCL6, MCP‐1, MCP‐2, IL‐8, TNF‐α and ICAM‐1 were not significantly different in the EHC group compared to the CON group (P ≤ .003). Lamellar concentrations of phosphorylated STAT proteins (P‐STAT1 [S727], P‐STAT1 [Y701], P‐STAT3 [S727], and P‐STAT3 [Y705]) were increased in the EHC group compared to the CON group, with phosphorylated STAT3 localizing to nuclei of lamellar basal epithelial cells. There was no change in the lamellar concentration of P‐p38 MAPK (T180/Y182), but the concentration of total p38 MAPK was decreased in the EHC samples. There was no evidence of notable lamellar leukocyte emigration. Conclusions and Clinical Importance These results establish a role for lamellar inflammatory signaling under conditions associated with EMSAL.
Collapse
Affiliation(s)
- Mauria R Watts
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Olivia C Hegedus
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Susan C Eades
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | - James K Belknap
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Teresa A Burns
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| |
Collapse
|
32
|
Caracciolo V, Young J, Gonzales D, Ni Y, Flowers SJ, Summer R, Waldman SA, Kim JK, Jung DY, Noh HL, Kim T, Blackshear PJ, O'Connell D, Bauer RC, Kallen CB. Myeloid-specific deletion of Zfp36 protects against insulin resistance and fatty liver in diet-induced obese mice. Am J Physiol Endocrinol Metab 2018; 315:E676-E693. [PMID: 29509432 PMCID: PMC6230714 DOI: 10.1152/ajpendo.00224.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity is associated with adipose tissue inflammation that contributes to insulin resistance. Zinc finger protein 36 (Zfp36) is an mRNA-binding protein that reduces inflammation by binding to cytokine transcripts and promoting their degradation. We hypothesized that myeloid-specific deficiency of Zfp36 would lead to increased adipose tissue inflammation and reduced insulin sensitivity in diet-induced obese mice. As expected, wild-type (Control) mice became obese and diabetic on a high-fat diet, and obese mice with myeloid-specific loss of Zfp36 [knockout (KO)] demonstrated increased adipose tissue and liver cytokine mRNA expression compared with Control mice. Unexpectedly, in glucose tolerance testing and hyperinsulinemic-euglycemic clamp studies, myeloid Zfp36 KO mice demonstrated improved insulin sensitivity compared with Control mice. Obese KO and Control mice had similar macrophage infiltration of the adipose depots and similar peripheral cytokine levels, but lean and obese KO mice demonstrated increased Kupffer cell (KC; the hepatic macrophage)-expressed Mac2 compared with lean Control mice. Insulin resistance in obese Control mice was associated with enhanced Zfp36 expression in KCs. Compared with Control mice, KO mice demonstrated increased hepatic mRNA expression of a multitude of classical (M1) inflammatory cytokines/chemokines, and this M1-inflammatory hepatic milieu was associated with enhanced nuclear localization of IKKβ and the p65 subunit of NF-κB. Our data confirm the important role of innate immune cells in regulating hepatic insulin sensitivity and lipid metabolism, challenge-prevailing models in which M1 inflammatory responses predict insulin resistance, and indicate that myeloid-expressed Zfp36 modulates the response to insulin in mice.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Jeanette Young
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Donna Gonzales
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Yingchun Ni
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Stephen J Flowers
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Ross Summer
- Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Taekyoon Kim
- Program in Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Danielle O'Connell
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Robert C Bauer
- Department of Medicine, Columbia University , New York, New York
| | - Caleb B Kallen
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Lin L, Lee JH, Wang R, Wang R, Sheikh-Hamad D, Zang QS, Sun Y. aP2-Cre Mediated Ablation of GHS-R Attenuates Adiposity and Improves Insulin Sensitivity during Aging. Int J Mol Sci 2018; 19:3002. [PMID: 30275401 PMCID: PMC6213105 DOI: 10.3390/ijms19103002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/08/2023] Open
Abstract
Ghrelin via its receptor, the growth hormone secretagogue receptor (GHS-R), increases food intake and adiposity. The tissue-specific functions of GHS-R in peripheral tissues are mostly unknown. We previously reported that while GHS-R expression is very low in white and brown fat of young mice, expression increases during aging. To investigate whether GHS-R has cell-autonomous effects in adipose tissues, we generated aP2-Cre-mediated GHS-R knockdown mice (aP2-Cre/Ghsrf/f). We studied young (5⁻6 months) and old (15⁻17 months) aP2-Cre/Ghsrf/f mice and their age-matched controls. Interestingly, young aP2-Cre/Ghsrf/f mice had normal body weight but reduced fat; old mice showed pronounced reductions of both body weight and body fat. Calorimetry analysis revealed that aP2-Cre/Ghsrf/f mice had normal food intake and locomotor activity at both young and old age; but intriguingly, while energy expenditure was normal at young age, it was significantly increased at old age. Both young and old aP2-Cre/Ghsrf/f mice exhibited improved insulin sensitivity and glucose tolerance. Importantly, old aP2-Cre/Ghsrf/f mice maintained higher core body temperature at 4 °C, and showed higher expression of the thermogenic uncoupling protein 1 (UCP1) gene. The ex vivo studies further demonstrated that GHS-R deficient white adipocytes from old mice exhibit increased glucose uptake and lipolysis, promoting lipid mobilization. Despite the fact that the in vivo phenotypes of aP2-Cre/Ghsrf/f mice may not be exclusively determined by GHS-R knockdown in adipose tissues, our data support that GHS-R has cell-autonomous effects in adipocytes. The anabolic effect of GHS-R in adipocytes is more pronounced in aging, which likely contributes to age-associated obesity and insulin resistance.
Collapse
Affiliation(s)
- Ligen Lin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jong Han Lee
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Ruitao Wang
- Institute of Critical Care Medicine, Heilongjiang Academy of Medical Science, Heilongjiang 150081, China.
| | - Ru Wang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - David Sheikh-Hamad
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qun S Zang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yuxiang Sun
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
34
|
Zhang W, Xu J, Li J, Guo T, Jiang D, Feng X, Ma X, He L, Wu W, Yin M, Ge L, Wang Z, Ho MS, Zhao Y, Fei Z, Zhang L. The TEA domain family transcription factor TEAD4 represses murine adipogenesis by recruiting the cofactors VGLL4 and CtBP2 into a transcriptional complex. J Biol Chem 2018; 293:17119-17134. [PMID: 30209132 DOI: 10.1074/jbc.ra118.003608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
The Hippo signaling pathway is known to play an important role in multiple physiological processes, including adipogenesis. However, whether the downstream components of the Hippo pathway are involved in adipogenesis remains unknown. Here we demonstrate that the TEA domain family (TEAD) transcription factors are essential for adipogenesis in murine 3T3-L1 preadipocytes. Knockdown of TEAD1-4 stimulated adipogenesis and increased the expression of adipocyte markers in these cells. Interestingly, we found that the TEAD4 knockdown-mediated adipogenesis proceeded in a Yes-associated protein (YAP)/TAZ (Wwtr1)-independent manner and that adipogenesis suppression in WT cells involved formation of a ternary complex comprising TEAD4 and the transcriptional cofactors C-terminal binding protein 2 (CtBP2) and vestigial-like family member 4 (VGLL4). VGLL4 acted as an adaptor protein that enhanced the interaction between TEAD4 and CtBP2, and this TEAD4-VGLL4-CtBP2 ternary complex dynamically existed at the early stage of adipogenesis. Finally, we verified that TEAD4 directly targets the promoters of major adipogenesis transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adiponectin, C1Q, and collagen domain-containing (Adipoq) during adipogenesis. These findings reveal critical insights into the role of the TEAD4-VGLL4-CtBP2 transcriptional repressor complex in suppression of adipogenesis in murine preadipocytes.
Collapse
Affiliation(s)
- Wenxiang Zhang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Jinjin Xu
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Jinhui Li
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Tong Guo
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Dan Jiang
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xue Feng
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Xueyan Ma
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Lingli He
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Mengxin Yin
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Ling Ge
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Zuoyun Wang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Margaret S Ho
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and.,the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaoliang Fei
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and .,the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
35
|
Kou Y, Liu Q, Liu W, Sun H, Liang M, Kong F, Zhang B, Wei Y, Liu Z, Wang Y. LIGHT/TNFSF14 signaling attenuates beige fat biogenesis. FASEB J 2018; 33:1595-1604. [DOI: 10.1096/fj.201800792r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yanbo Kou
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
| | - Qingya Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Wenli Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Hongxiang Sun
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Ming Liang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
36
|
Suppression of NF-κB activation by PDLIM2 restrains hepatic lipogenesis and inflammation in high fat diet induced mice. Biochem Biophys Res Commun 2018; 503:564-571. [PMID: 29852170 DOI: 10.1016/j.bbrc.2018.05.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, dyslipidemia and a systemic pro-inflammatory response, a leading cause of cirrhosis and hepatocellular carcinoma. Here, we showed that PDZ-LIM domain-containing protein 2 (PDLIM2) was an effective suppressor of steatohepatitis. After 16 weeks on a high fat diet (HFD), obesity, insulin resistance, hepatic dyslipidemia and inflammation were markedly aggravated in PDLIM2-knockout (KO) mice. PDLIM2 deletion resulted in lipid accumulation in liver tissue samples of HFD-induced mice, as evidenced by the significant increase of hepatic TG and TC through reducing the expression of lipogenesis- and transcriptional regulators of lipid metabolism-related genes and enhancing fatty acid oxidation-associated molecules. In addition, PDLIM2-ablation promoted the expression of pro-inflammatory cytokines by activating nuclear factor kappa-B (NF-κB) signaling pathway, as supported by the remarkable increase of phosphorylated IKKβ, IκBα and NF-κB expressions in liver of HFD-fed mice. Of note, the in vitro study demonstrated that PDLIM2 ablation-enhanced inflammatory response and disorder of lipid metabolism were abrogated by suppressing NF-κB activity. Collectively, the findings could lead to the development of potential therapeutic strategy to prevent NAFLD and associated metabolic disorders by targeting PDLIM2.
Collapse
|
37
|
Yuan F, Zhang L, Cao Y, Gao W, Zhao C, Fang Y, Zahedi K, Soleimani M, Lu X, Fang Z, Yang Q. Spermidine/spermine N1-acetyltransferase-mediated polyamine catabolism regulates beige adipocyte biogenesis. Metabolism 2018; 85:298-304. [PMID: 29715464 PMCID: PMC7269456 DOI: 10.1016/j.metabol.2018.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Cold and β3-adrenergic receptor (AR) agonists activate beige adipocyte biogenesis in white adipose tissue (WAT). The two stimuli also induce expression of inflammatory cytokines in WAT. The low-grade inflammation may further promote WAT browning. However, the mechanisms to reconcile these two biological processes remain to be elucidated. In this study, we aim to investigate the roles of the rate-limiting polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SAT1) in regulating beige adipocyte biogenesis and inflammation. METHODS Adipose-specific SAT1 knockout mice (SAT1-aKO) were generated by crossing adiponectin-cre to SAT1-lox/lox mice. Metabolic phenotype was investigated. Primary pre-adipocytes were isolated from inguinal WAT (iWAT) and differentiated to adipocytes for studying beige adipocyte biogenesis. RESULT The expression and enzymatic activity of SAT1 were up-regulated in iWAT upon cold and β3-AR stimulation. SAT1-aKO mice developed late-onset obesity on a high-fat diet with impaired cold-induced beige adipocyte biogenesis and energy expenditure. RNA-seq analysis of iWAT from cold-challenged SAT1-aKO mice revealed that, in addition to beige adipocyte biogenesis signatures, the immune response markers were highly enriched among reduced genes. In cultured adipocytes, SAT1 overexpression or pharmacological activation with N1, N11-diethylnorspermine (DENSpm) elevated oxygen consumption and increased the expression of beige adipocyte marker UCP1 and PGC-1α. DENSpm treatment of adipocytes also increased the expression of inflammatory genes. SAT1 activation enhanced hydrogen peroxide production in adipocytes. Antioxidant N-acetylcysteine abrogated the elevated UCP1 expression and reversed some inflammatory genes induced by SAT1 activation. CONCLUSIONS SAT1 activation plays a key role in cold and β3-AR agonist-induced beige adipocyte biogenesis and low-grade inflammation.
Collapse
Affiliation(s)
- Fang Yuan
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Lin Zhang
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; College of Animal Science, South China Agricultural University, Guangzhou 512642, China
| | - Yang Cao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wei Gao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Can Zhao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Fang
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, USA
| | - Manoocher Soleimani
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, USA
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Zhuyuan Fang
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Phillips C, Fahimi A. Immune and Neuroprotective Effects of Physical Activity on the Brain in Depression. Front Neurosci 2018; 12:498. [PMID: 30093853 PMCID: PMC6070639 DOI: 10.3389/fnins.2018.00498] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Physical activity-a lifestyle factor that is associated with immune function, neuroprotection, and energy metabolism-modulates the cellular and molecular processes in the brain that are vital for emotional and cognitive health, collective mechanisms that can go awry in depression. Physical activity optimizes the stress response, neurotransmitter level and function (e.g., serotonergic, noradrenergic, dopaminergic, and glutamatergic), myokine production (e.g., interleukin-6), transcription factor levels and correlates [e.g., peroxisome proliferator-activated receptor C coactivator-1α [PGC-1α], mitochondrial density, nitric oxide pathway activity, Ca2+ signaling, reactive oxygen specie production, and AMP-activated protein kinase [AMPK] activity], kynurenine metabolites, glucose regulation, astrocytic health, and growth factors (e.g., brain-derived neurotrophic factor). Dysregulation of these interrelated processes can effectuate depression, a chronic mental illness that affects millions of individuals worldwide. Although the biogenic amine model has provided some clinical utility in understanding chronic depression, a need remains to better understand the interrelated mechanisms that contribute to immune dysfunction and the means by which various therapeutics mitigate them. Fortunately, convergent evidence suggests that physical activity improves emotional and cognitive function in persons with depression, particularly in those with comorbid inflammation. Accordingly, the aims of this review are to (1) underscore the link between inflammatory correlates and depression, (2) explicate immuno-neuroendocrine foundations, (3) elucidate evidence of neurotransmitter and cytokine crosstalk in depressive pathobiology, (4) determine the immunomodulatory effects of physical activity in depression, (5) examine protocols used to effectuate the positive effects of physical activity in depression, and (6) highlight implications for clinicians and scientists. It is our contention that a deeper understanding of the mechanisms by which inflammation contributes to the pathobiology of depression will translate to novel and more effective treatments, particularly by identifying relevant patient populations that can benefit from immune-based therapies within the context of personalized medicine.
Collapse
Affiliation(s)
- Cristy Phillips
- Physical Therapy, Arkansas State University, Jonesboro, AR, United States
- Physical Therapy, University of Tennessee Health Science Center, Memphis, TN, United States
| | | |
Collapse
|
39
|
Karkeni E, Bonnet L, Marcotorchino J, Tourniaire F, Astier J, Ye J, Landrier JF. Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D. Epigenetics 2018; 13:156-162. [PMID: 28055298 DOI: 10.1080/15592294.2016.1276681] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation of adipose tissue is believed to be a contributing factor to many chronic diseases associated with obesity. Vitamin D (VD) is now known to limit this metabolic inflammation by decreasing inflammatory marker expression and leukocyte infiltration in adipose tissue. In this study, we investigated the impact of VD on microRNA (miR) expression in inflammatory conditions in human and mouse adipocytes, using high-throughput methodology (miRNA PCR arrays). Firstly, we identified three miRs (miR-146a, miR-150, and miR-155) positively regulated by TNFα in human adipocytes. Interestingly, the expression of these miRs was strongly prevented by 1,25(OH)2D preincubation. These results were partly confirmed in 3T3-L1 adipocytes (for miR-146a and miR-150). The ability of VD to control the expression of these miRs was confirmed in diet-induced obese mice: the levels of the three miRs were increased following high fat (HF) diet in epididymal white adipose tissue and reduced in HF diet fed mice supplemented with VD. The involvement of NF-κB signaling in the induction of these miRs was confirmed in vitro and in vivo using aP2-p65 transgenic mice. Finally, the ability of VD to deactivate NF-κB signaling, via p65 and IκB phosphorylation inhibition in murine adipocyte, was observed and could constitute a driving molecular mechanism. This study demonstrated for the first time that VD modulates the expression of miRs in adipocytes in vitro and in adipose tissue in vivo through its impact on NF-κB signaling pathway, which could represent a new mechanism of regulation of inflammation by VD.
Collapse
Affiliation(s)
- Esma Karkeni
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Lauriane Bonnet
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Julie Marcotorchino
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Franck Tourniaire
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Julien Astier
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Jianping Ye
- b Pennington Biomedical Research Center , Louisiana State University System , Baton Rouge , Louisiana 70808 , USA
| | | |
Collapse
|
40
|
1,25-Dihydroxyvitamin D3 protects obese rats from metabolic syndrome via promoting regulatory T cell-mediated resolution of inflammation. Acta Pharm Sin B 2018; 8:178-187. [PMID: 29719778 PMCID: PMC5925395 DOI: 10.1016/j.apsb.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/06/2017] [Accepted: 12/15/2018] [Indexed: 12/20/2022] Open
Abstract
Vitamin D3 has been found to produce therapeutic effects on obesity-associated insulin resistance and dyslipidemia through its potent anti-inflammatory activity, but the precise immunomodulatory mechanism remains poorly understood. In the present study we found that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active form of vitamin D3, significantly attenuated monosodium glutamate (MSG)-induced obesity and insulin resistance as indicated by body weight reduction, oral glucose tolerance improvement, and a glucose infusion rate increase as detected with hyperinsulinemic-euglycemic clamp. Moreover, 1,25(OH)2D3 not only restored pancreatic islet functions but also improved lipid metabolism in insulin-targeted tissues. The protective effects of 1,25(OH)2D3 on glycolipid metabolism were attributed to its ability to inhibit an obesity-activated inflammatory response in insulin secretory and targeted tissues, as indicated by reduced infiltration of macrophages in pancreas islets and adipose tissue while enhancing the expression of Tgf-β1 in liver tissue, which was accompanied by increased infiltration of Treg cells in immune organs such as spleen and lymph node as well as in insulin-targeted tissues such as liver, adipose, and muscle. Together, our findings suggest that 1,25(OH)2D3 serves as a beneficial immunomodulator for the prevention and treatment of obesity or metabolic syndrome through its anti-inflammatory effects.
Collapse
|
41
|
Rajbhandari P, Thomas BJ, Feng AC, Hong C, Wang J, Vergnes L, Sallam T, Wang B, Sandhu J, Seldin MM, Lusis AJ, Fong LG, Katz M, Lee R, Young SG, Reue K, Smale ST, Tontonoz P. IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell 2018; 172:218-233.e17. [PMID: 29249357 PMCID: PMC5766418 DOI: 10.1016/j.cell.2017.11.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/12/2017] [Accepted: 11/09/2017] [Indexed: 01/01/2023]
Abstract
Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPβ recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.
Collapse
Affiliation(s)
- Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon J Thomas
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiexin Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamer Sallam
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bo Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus M Seldin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Loren G Fong
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Richard Lee
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen T Smale
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Kumari M, Heeren J, Scheja L. Regulation of immunometabolism in adipose tissue. Semin Immunopathol 2017; 40:189-202. [PMID: 29209828 DOI: 10.1007/s00281-017-0668-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
|
43
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Insulin Resistance, Obesity and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:277-304. [PMID: 28585204 DOI: 10.1007/978-3-319-48382-5_12] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipotoxicity , originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. Lipotoxicity has roles in insulin resistance and pancreatic beta cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling, have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
|
45
|
Ono-Moore KD, Zhao L, Huang S, Kim J, Rutkowsky JM, Snodgrass RG, Schneider DA, Quon MJ, Graham JL, Havel PJ, Hwang DH. Transgenic mice with ectopic expression of constitutively active TLR4 in adipose tissues do not show impaired insulin sensitivity. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:526-540. [PMID: 28776958 PMCID: PMC5691308 DOI: 10.1002/iid3.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Chronic low-grade inflammation is associated with obesity and diabetes. However, what causes and mediates chronic inflammation in metabolic disorders is not well understood. Toll-like receptor 4 (TLR4) mediates both infection-induced and sterile inflammation by recognizing pathogen-associated molecular patterns and endogenous molecules, respectively. Saturated fatty acids can activate TLR4, and TLR4-deficient mice were protected from high fat diet (HFD)-induced obesity and insulin resistance, suggesting that TLR4-mediated inflammation may cause metabolic dysfunction, such as obesity and insulin resistance. METHODS We generated two transgenic (TG) mouse lines expressing a constitutively active TLR4 in adipose tissue and determined whether these TG mice would show increased insulin resistance. RESULTS TG mice fed a high fat or a normal chow diet did not exhibit increased insulin resistance compared to their wild-type controls despite increased localized inflammation in white adipose tissue. Furthermore, females of one TG line fed a normal chow diet had improved insulin sensitivity with reduction in both adiposity and body weight when compared with wild-type littermates. There were significant differences between female and male mice in metabolic biomarkers and mRNA expression in proinflammatory genes and negative regulators of TLR4 signaling, regardless of genotype and diet. CONCLUSIONS Together, these results suggest that constitutively active TLR4-induced inflammation in white adipose tissue is not sufficient to induce systemic insulin resistance, and that high fat diet-induced insulin resistance may require other signals in addition to TLR4-mediated inflammation.
Collapse
Affiliation(s)
- Kikumi D Ono-Moore
- Department of Nutrition, University of California, Davis, California.,Western Human Nutrition Research Center, Agricultural Research Service, USDA-ARS, Davis, California
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee
| | - Shurong Huang
- Western Human Nutrition Research Center, Agricultural Research Service, USDA-ARS, Davis, California
| | - Jeonga Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Jennifer M Rutkowsky
- Department of Cardiovascular Medicine, University of California, Davis, California
| | - Ryan G Snodgrass
- Department of Nutrition, University of California, Davis, California.,Western Human Nutrition Research Center, Agricultural Research Service, USDA-ARS, Davis, California
| | - Dina A Schneider
- Western Human Nutrition Research Center, Agricultural Research Service, USDA-ARS, Davis, California
| | - Michael J Quon
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland, School of Medicine, Baltimore, Maryland
| | - James L Graham
- Department of Nutrition, University of California, Davis, California
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, California
| | - Daniel H Hwang
- Department of Nutrition, University of California, Davis, California.,Western Human Nutrition Research Center, Agricultural Research Service, USDA-ARS, Davis, California
| |
Collapse
|
46
|
Shen W, McIntosh MK. Nutrient Regulation: Conjugated Linoleic Acid's Inflammatory and Browning Properties in Adipose Tissue. Annu Rev Nutr 2017; 36:183-210. [PMID: 27431366 DOI: 10.1146/annurev-nutr-071715-050924] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity is the most widespread nutritional disease in the United States. Developing effective and safe strategies to manage excess body weight is therefore of paramount importance. One potential strategy to reduce obesity is to consume conjugated linoleic acid (CLA) supplements containing isomers cis-9, trans-11 and trans-10, cis-12, or trans-10, cis-12 alone. Proposed antiobesity mechanisms of CLA include regulation of (a) adipogenesis, (b) lipid metabolism, (c) inflammation, (d) adipocyte apoptosis, (e) browning or beiging of adipose tissue, and (f) energy metabolism. However, causality of CLA-mediated responses to body fat loss, particularly the linkage between inflammation, thermogenesis, and energy metabolism, is unclear. This review examines whether CLA's antiobesity properties are due to inflammatory signaling and considers CLA's linkage with lipogenesis, lipolysis, thermogenesis, and browning of white and brown adipose tissue. We propose a series of questions and studies to interrogate the role of the sympathetic nervous system in mediating CLA's antiobesity properties.
Collapse
Affiliation(s)
- Wan Shen
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402; ,
| | - Michael K McIntosh
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402; ,
| |
Collapse
|
47
|
Abstract
Interactions between macrophages and adipocytes influence both metabolism and inflammation. Obesity-induced changes to macrophages and adipocytes lead to chronic inflammation and insulin resistance. This paper reviews the various functions of macrophages in lean and obese adipose tissue and how obesity alters adipose tissue macrophage phenotypes. Metabolic disease and insulin resistance shift the balance between numerous pro- and anti-inflammatory regulators of macrophages and create a feed-forward loop of increasing inflammatory macrophage activation and worsening adipocyte dysfunction. This ultimately leads to adipose tissue fibrosis and diabetes. The molecular mechanisms underlying these processes have therapeutic implications for obesity, metabolic syndrome, and diabetes.
Collapse
Affiliation(s)
- Dylan Thomas
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center, 88 East Newton Street, H-3600, Boston, MA 02118.
| | - Caroline Apovian
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center, 88 East Newton Street, Robinson 4400, Boston, MA 02118.
| |
Collapse
|
48
|
Hu B, Li Y, Gao L, Guo Y, Zhang Y, Chai X, Xu M, Yan J, Lu P, Ren S, Zeng S, Liu Y, Xie W, Huang M. Hepatic Induction of Fatty Acid Binding Protein 4 Plays a Pathogenic Role in Sepsis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1059-1067. [PMID: 28279656 PMCID: PMC5417005 DOI: 10.1016/j.ajpath.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/04/2016] [Accepted: 01/05/2017] [Indexed: 01/15/2023]
Abstract
Sepsis is defined as the host's deleterious systemic inflammatory response to microbial infections. Herein, we report an essential role of the fatty acid binding protein 4 (FABP4; alias adipocyte protein 2 or aP2), a lipid-binding chaperone, in sepsis response. Bioinformatic analysis of the Gene Expression Omnibus data sets showed the level of FABP4 was higher in the nonsurvival sepsis patients' whole blood compared to the survival cohorts. The expression of Fabp4 was induced in a liver-specific manner in cecal ligation and puncture (CLP) and lipopolysaccharide treatment models of sepsis. The induction of Fabp4 may have played a pathogenic role, because ectopic expression of Fabp4 in the liver sensitized mice to CLP-induced inflammatory response and worsened the animal's survival. In contrast, pharmacological inhibition of Fabp4 markedly alleviated the CLP responsive inflammation and tissue damage and improved survival. We conclude that FABP4 is an important mediator of the sepsis response. Early intervention by pharmacological inhibition of FABP4 may help to manage sepsis in the clinic.
Collapse
Affiliation(s)
- Bingfang Hu
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China; Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yujin Li
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China
| | - Li Gao
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Yan Guo
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojuan Chai
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meishu Xu
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jiong Yan
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peipei Lu
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Su Zeng
- Department of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yulan Liu
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Wen Xie
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Min Huang
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
49
|
Aqel SI, Hampton JM, Bruss M, Jones KT, Valiente GR, Wu LC, Young MC, Willis WL, Ardoin S, Agarwal S, Bolon B, Powell N, Sheridan J, Schlesinger N, Jarjour WN, Young NA. Daily Moderate Exercise Is Beneficial and Social Stress Is Detrimental to Disease Pathology in Murine Lupus Nephritis. Front Physiol 2017; 8:236. [PMID: 28491039 PMCID: PMC5405126 DOI: 10.3389/fphys.2017.00236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Daily moderate exercise (DME) and stress management are underemphasized in the care of patients with lupus nephritis (LN) due to a poor comprehensive understanding of their potential roles in controlling the inflammatory response. To investigate these effects on murine LN, disease progression was monitored with either DME or social disruption stress (SDR) induction in NZM2410/J mice, which spontaneously develop severe, early-onset LN. SDR of previously established social hierarchies was performed daily for 6 days and DME consisted of treadmill walking (8.5 m/min for 45 min/day). SDR significantly enhanced kidney disease when compared to age-matched, randomly selected control counterparts, as measured by histopathological analysis of H&E staining and immunohistochemistry for complement component 3 (C3) and IgG complex deposition. Conversely, while 88% of non-exercised mice displayed significant renal damage by 43 weeks of age, this was reduced to 45% with exercise. DME also reduced histopathology in kidney tissue and significantly decreased deposits of C3 and IgG complexes. Further examination of renal infiltrates revealed a macrophage-mediated inflammatory response that was significantly induced with SDR and suppressed with DME, which also correlated with expression of inflammatory mediators. Specifically, SDR induced IL-6, TNF-α, IL-1β, and MCP-1, while DME suppressed IL-6, TNF-α, IL-10, CXCL1, and anti-dsDNA autoantibodies. These data demonstrate that psychological stressors and DME have significant, but opposing effects on the chronic inflammation associated with LN; thus identifying and characterizing stress reduction and a daily regimen of physical activity as potential adjunct therapies to complement pharmacological intervention in the management of autoimmune disorders, including LN.
Collapse
Affiliation(s)
- Saba I Aqel
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Jeffrey M Hampton
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Michael Bruss
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Kendra T Jones
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Giancarlo R Valiente
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Lai-Chu Wu
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | | | - William L Willis
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Stacy Ardoin
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Sudha Agarwal
- Ohio State University Wexner Medical CenterColumbus, OH, USA.,The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Brad Bolon
- Ohio State University Wexner Medical CenterColumbus, OH, USA.,Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared ResourceColumbus, OH, USA
| | - Nicole Powell
- Ohio State University Wexner Medical CenterColumbus, OH, USA.,Institute for Behavioral Medicine Research, Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - John Sheridan
- Ohio State University Wexner Medical CenterColumbus, OH, USA.,Institute for Behavioral Medicine Research, Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical SchoolNew Brunswick, NJ, USA
| | - Wael N Jarjour
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Nicholas A Young
- Department of Internal Medicine Division of Rheumatology and Immunology, Ohio State University Wexner Medical CenterColumbus, OH, USA.,Ohio State University Wexner Medical CenterColumbus, OH, USA
| |
Collapse
|
50
|
Inflammation and the Metabolic Syndrome: The Tissue-Specific Functions of NF-κB. Trends Cell Biol 2017; 27:417-429. [PMID: 28237661 DOI: 10.1016/j.tcb.2017.01.006] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
Obesity is becoming a major health concern in Western society, and medical conditions associated with obesity are grouped in the metabolic syndrome. Overnutrition activates several proinflammatory signaling pathways, leading to a condition of chronic low-grade inflammation in several metabolic tissues affecting their proper function. Nuclear factor kappa B (NF-κB) signaling is a crucial pathway in this process and has been studied extensively in the context of obesity and the metabolic syndrome. Here we give an overview of the molecular mechanisms behind the inflammatory function of NF-κB in response to overnutrition and the effect this has on several metabolic tissues.
Collapse
|