1
|
Wen J, Li A, Wang Z, Guo X, Zhang G, Litzow MR, Liu Q. Hepatotoxicity induced by arsenic trioxide: clinical features, mechanisms, preventive and potential therapeutic strategies. Front Pharmacol 2025; 16:1536388. [PMID: 40051569 PMCID: PMC11882591 DOI: 10.3389/fphar.2025.1536388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Arsenic trioxide (ATO) has shown substantial efficacy in the treatment of patients with acute promyelocytic leukemia, and the utilization of ATO as a potential treatment for other tumors is currently being investigated; thus, its clinical application is becoming more widespread. However, the toxicity of ATO has prevented many patients from receiving this highly beneficial treatment. The clinical features, mechanisms, and preventive measures for ATO hepatotoxicity, as well as potential curative strategies, are discussed in this review. This review not only discusses existing drugs for the treatment of hepatotoxicity but also focuses on potential future therapeutic agents, providing forward-looking guidance for the clinical use of small molecule extracts, trace elements, antidiabetic drugs, and vitamins.
Collapse
Affiliation(s)
- Jun Wen
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Aiwen Li
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziliang Wang
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Guo
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Gaoling Zhang
- Center of Hematology, Peking University People’s Hospital Qingdao, Qingdao, China
| | - Mark R. Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Qiuju Liu
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Kegyes D, Thiagarajan PS, Ghiaur G. MRD in Acute Leukemias: Lessons Learned from Acute Promyelocytic Leukemia. Cancers (Basel) 2024; 16:3208. [PMID: 39335179 PMCID: PMC11430625 DOI: 10.3390/cancers16183208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Advances in molecular biology, polymerase chain reaction (PCR), and next-generation sequencing (NGS) have transformed the concept of minimal residual disease (MRD) from a philosophical idea into a measurable reality. Current Treatment Paradigms and Lessons Learned from APL: Acute promyelocytic leukemia (APL) leads the way in this transformation, initially using PCR to detect MRD in patients in remission, and more recently, aiming to eliminate it entirely with modern treatment strategies. Along the way, we have gained valuable insights that, when applied to other forms of acute leukemia, hold the potential to significantly improve the outcomes of these challenging diseases. Does the BM Microenvironment Play a Role in MRD?: In this review, we explore the current use of MRD in the management of acute leukemia and delve into the biological processes that contribute to MRD persistence, including its overlap with leukemia stem cells and the role of the bone marrow microenvironment.
Collapse
Affiliation(s)
- David Kegyes
- MedFuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- The Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Gabriel Ghiaur
- The Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Komorowicz I, Hanć A. Can arsenic do anything good? Arsenic nanodrugs in the fight against cancer - last decade review. Talanta 2024; 276:126240. [PMID: 38754186 DOI: 10.1016/j.talanta.2024.126240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Arsenic has been an element of great interest among scientists for many years as it is a widespread metalloid in our ecosystem. Arsenic is mostly recognized with negative connotations due to its toxicity. Surely, most of us know that a long time ago, arsenic trioxide was used in medicine to treat, mainly, skin diseases. However, not everyone knows about its very wide and promising use in the treatment of cancer. Initially, in the seventies, it was used to treat leukemia, but new technological possibilities and the development of nanotechnology have made it possible to use arsenic trioxide for the treatment of solid tumours. The most toxic arsenic compound - arsenic trioxide - as the basis of anticancer drugs in which they function as a component of nanoparticles is used in the fight against various types of cancer. This review aims to present the current solutions in various cancer treatment using arsenic compounds with different binding motifs and methods of preparation to create targeted nanoparticles, nanodiamonds, nanohybrids, nanodrugs, or nanovehicles.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland
| |
Collapse
|
4
|
Liu F, Deng Y, Wang A, Yang T, Ke H, Tang Y, Wu H, Chen H. Harness arsenic in medicine: current status of arsenicals and recent advances in drug delivery. Expert Opin Drug Deliv 2024; 21:867-880. [PMID: 38913024 DOI: 10.1080/17425247.2024.2372363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Arsenicals have a special place in the history of human health, acting both as poison and medicine. Having been used to treat a variety of diseases in the past, the success of arsenic trioxide (ATO) in treating acute promyelocytic leukemia (APL) in the last century marked its use as a drug in modern medicine. To expand their role against cancer, there have been clinical uses of arsenicals worldwide and progress in the development of drug delivery for various malignancies, especially solid tumors. AREAS COVERED In this review, conducted on Google Scholar [1977-2024], we start with various forms of arsenicals, highlighting the well-known ATO. The mechanism of action of arsenicals in cancer therapy is then overviewed. A summary of the research progress in developing new delivery approaches (e.g. polymers, inorganic frameworks, and biomacromolecules) in recent years is provided, addressing the challenges and opportunities in treating various malignant tumors. EXPERT OPINION Reducing toxicity and enhancing therapeutic efficacy are guidelines for designing and developing new arsenicals and drug delivery systems. They have shown potential in the fight against cancer and emerging pathogens. New technologies and strategies can help us harness the potency of arsenicals and make better products.
Collapse
Affiliation(s)
- Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Anru Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yongan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Yan M, Wang H, Wei R, Li W. Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date. Arch Pharm Res 2024; 47:249-271. [PMID: 38147202 DOI: 10.1007/s12272-023-01481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Arsenical medicine has obtained its status in traditional Chinese medicine for more than 2,000 years. In the 1970s, arsenic trioxide was identified to have high efficacy and potency for the treatment of acute promyelocytic leukemia, which promoted many studies on the therapeutic effects of arsenic trioxide. Currently, arsenic trioxide is widely used to treat acute promyelocytic leukemia and various solid tumors through various mechanisms of action in clinical practice; however, it is accompanied by a series of adverse reactions, especially cardiac toxicity. This review presents a comprehensive overview of arsenic trioxide from preclinical and clinical efficacy, potential mechanisms of action, toxicities, and rescue strategies for toxicities to provide guidance or assistance for the clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Hao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Pharmacy Department, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenwen Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Ananta, Benerjee S, Tchounwou PB, Kumar S. Mechanistic update of Trisenox in blood cancer. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100166. [PMID: 38074774 PMCID: PMC10701371 DOI: 10.1016/j.crphar.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024] Open
Abstract
Acute promyelocytic leukemia (APL)/blood cancer is M3 type of acute myeloid leukemia (AML) formed inside bone marrow through chromosomal translocation mutation usually between chromosome 15 & 17. It accounts around 10% cases of AML worldwide. Trisenox (TX/ATO) is used in chemotherapy for treatment of all age group of APL patients with highest efficacy and survival rate for longer period. High concentration of TX inhibits growth of APL cells by diverse mechanism however, it cures only PML-RARα fusion gene/oncogene containing APL patients. TX resistant APL patients (different oncogenic make up) have been reported from worldwide. This review summarizes updated mechanism of TX action via PML nuclear bodies formation, proteasomal degradation, autophagy, p53 activation, telomerase activity, heteromerization of pRb & E2F, and regulation of signaling mechanism in APL cells. We have also provided important information of combination therapy of TX with other molecules mechanism of action in acute leukemia cells. It provides updated information of TX action for researcher which may help finding new target for further research in APL pathophysiology or new TX resistant APL patients drug designing.
Collapse
Affiliation(s)
- Ananta
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Swati Benerjee
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD 21251, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
7
|
Chen G, She W, Yu C, Rouzi T, Li X, Ma L, Zhang N, Jiang H, Liu X, Wu J, Wang Q, Shen H, Zhou F. A novel organic arsenic derivative MZ2 remodels metabolism and triggers mtROS-mediated apoptosis in acute myeloid leukemia. J Cancer Res Clin Oncol 2023; 149:4225-4242. [PMID: 36056952 DOI: 10.1007/s00432-022-04333-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Acute myeloid leukemia (AML) is one of the most common neoplasms in adults, and it is difficult to achieve satisfactory results with conventional drugs. Here, we synthesized a novel organic arsenic derivative MZ2 and evaluated its ability to remodel energy metabolism to achieve anti-leukemia. METHODS MZ2 was characterized by the average 1-min full mass spectra analysis. Biological methods such as Western blot, qPCR, flow cytometry and confocal microscopy were used to assess the mode and mechanism of MZ2-induced death. The in vivo efficacy of MZ2 was assessed by constructing a patient-derived xenograft (PDX) AML model. RESULTS Unlike the precursor organic arsenical Z2, MZ2 can effectively reduce the level of aerobic glycolysis. Our in-depth found that MZ2 inhibited the expression of PDK2 in a dose-dependent manner and did not affect the expression of LDHA, another key enzyme of the glycolytic pathway. MZ2 reconstituted energy metabolism to induce the generation of mitochondrial ROS (mtROS) and then triggerd intrinsic apoptosis pathway. We also assessed whether MZ2 generates autophagy and results showed that MZ2 can induce autophagy of AML cells, which may be associated with the precursor organic arsenic drug. In vivo, MZ2 effectively attenuated leukemia progression in mice, and immunohistochemical results suggested its PDK2 inhibitory effect. CONCLUSION In summary, the novel organic arsine derivative MZ2 exhibited excellent anti-tumor effects in acute myeloid leukemia, which may provide a potential strategy for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Wenyan She
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Tuerxunayi Rouzi
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Nan Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Hongqiang Jiang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
8
|
Chen G, She W, Yu C, Rouzi T, Li X, Ma L, Zhang N, Jiang H, Liu X, Wu J, Wang Q, Shen H, Zhou F. A novel organic arsenic derivative MZ2 remodels metabolism and triggers mtROS-mediated apoptosis in acute myeloid leukemia. J Cancer Res Clin Oncol 2023; 149:4225-4242. [DOI: 21.doi: 10.1007/s00432-022-04333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 05/14/2025]
|
9
|
Ahmadi-Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S, Mansouri K. Autophagy: A challengeable paradox in cancer treatment. Cancer Med 2023. [PMID: 36760166 DOI: 10.1002/cam4.5577] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Autophagy is an intracellular degradation pathway conserved in all eukaryotes from yeast to humans. This process plays a quality-control role by destroying harmful cellular components under normal conditions, maintaining cell survival, and establishing cellular adaptation under stressful conditions. Hence, there are various studies indicating dysfunctional autophagy as a factor involved in the development and progression of various human diseases, including cancer. In addition, the importance of autophagy in the development of cancer has been highlighted by paradoxical roles, as a cytoprotective and cytotoxic mechanism. Despite extensive research in the field of cancer, there are many questions and challenges about the roles and effects suggested for autophagy in cancer treatment. The aim of this study was to provide an overview of the paradoxical roles of autophagy in different tumors and related cancer treatment options. METHODS In this study, to find articles, a search was made in PubMed and Google scholar databases with the keywords Autophagy, Autophagy in Cancer Management, and Drug Design. RESULTS According to the investigation, some studies suggest that several advanced cancers are dependent on autophagy for cell survival, so when cancer cells are exposed to therapy, autophagy is induced and suppresses the anti-cancer effects of therapeutic agents and also results in cell resistance. However, enhanced autophagy from using anti-cancer drugs causes autophagy-mediated cell death in several cancers. Because autophagy also plays roles in both tumor suppression and promotion further research is needed to determine the precise mechanism of this process in cancer treatment. CONCLUSION We concluded in this article, autophagy manipulation may either promote or hinder the growth and development of cancer according to the origin of the cancer cells, the type of cancer, and the behavior of the cancer cells exposed to treatment. Thus, before starting treatment it is necessary to determine the basal levels of autophagy in various cancers.
Collapse
Affiliation(s)
- Farnaz Ahmadi-Dehlaghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biology, Payame Noor University, Tehran, Iran
| | - Parisa Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elahe Valipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother 2022; 151:113135. [PMID: 35598369 DOI: 10.1016/j.biopha.2022.113135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
Arsenic (As), a metalloid chemical element, is classified as heavy metal. Previous studies proposed that As induces vascular toxicity by inducing autophagy, apoptosis, and oxidative stress. It has been shown that melatonin (Mel) can decrease oxidative stress and apoptosis, and modulate autophagy in different pathological situations. Hence, this study aimed to investigate the Mel effect on As-induced vascular toxicity through apoptosis and autophagy regulation. Forty male rats were treated with As (15 mg/kg; oral gavage) and Mel (10 and 20 mg/kg, intraperitoneally; i.p.) for 28 days. The systolic blood pressure (SBP) changes, oxidative stress markers, the aorta histopathological injuries, contractile and relaxant responses, the level of apoptosis (Bnip3 and caspase-3) and autophagy (Sirt1, Beclin-1 and LC3 II/I ratio) proteins were determined in rats aorta. The As exposure significantly increased SBP and enhanced MDA level while reduced GSH content. The exposure to As caused substantial histological damage in aorta tissue and changed vasoconstriction and vasorelaxation responses to KCl, PE, and Ach in isolated rat aorta. The levels of HO-1 and Nrf-2, apoptosis markers, Sirt1, and autophagy proteins also enhanced in As group. Interestingly, Mel could reduce changes in oxidative stress, blood pressure, apoptosis, and autophagy induced by As. On the other hand, Mel led to more increased the levels of Nrf-2 and HO-1 proteins compared with the As group. In conclusion, our findings showed that Mel could have a protective effect against As-induced vascular toxicity by inhibiting apoptosis and the Sirt1/autophagy pathway.
Collapse
|
11
|
Weina T, Ying L, Yiwen W, Huan-Huan Q. What we have learnt from Drosophila model organism: the coordination between insulin signaling pathway and tumor cells. Heliyon 2022; 8:e09957. [PMID: 35874083 PMCID: PMC9304707 DOI: 10.1016/j.heliyon.2022.e09957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer development is related to a variety of signaling pathways which mediate various cellular processes including growth, survival, division and competition of cells, as well as cell-cell interaction. The insulin signaling pathway interacts with different pathways and plays a core role in the regulations of all these processes. In this study, we reviewed recent studies on the relationship between the insulin signaling pathway and tumors using the Drosophila melanogaster model. We found that on one hand, the insulin pathway is normally hyperactive in tumor cells, which promotes tumor growth, and on the other hand, tumor cells can suppress the growth of healthy tissues via inhibition of their insulin pathway. Moreover, systematic disruption in glucose homeostasis also facilitates cancer development by different mechanisms. The studies on how the insulin network regulates the behaviors of cancer cells may help to discover new therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Tang Weina
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Li Ying
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Wang Yiwen
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Qiao Huan-Huan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
12
|
Agrawal Y, Nadkarni K, Gupta NA, Manne RK, Santra MK. F-box protein FBXO41 plays vital role in arsenic trioxide-mediated autophagic death of cancer cells. Toxicol Appl Pharmacol 2022; 441:115973. [PMID: 35278439 DOI: 10.1016/j.taap.2022.115973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Arsenic trioxide (ATO), a potent anti-neoplastic drug, is known to prevent cancer cell growth through induction of autophagic cell death. However, importance of cellular factors in ATO-mediated autophagic cell death is poorly understood. In this study, using biochemical and immunofluorescence techniques, we show that F-box protein FBXO41 plays a critical role in anti-proliferative activity of ATO. Our study reveals the importance of FBXO41 in induction of autophagic death of cancer cells by ATO. Further, we show that the autophagic cell death induced by FBXO41 is distinct and independent of apoptosis and necrosis, showing that FBXO41 may play vital role in inducing autophagic death of apoptosis resistant cancer cells. Overall, our study elucidates the importance of FBXO41 in ATO induced autophagic cell death to prevent cancer progression, which could be explored to develop promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yashika Agrawal
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Kaustubh Nadkarni
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Neha A Gupta
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Rajesh Kumar Manne
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
13
|
Mirzaei A, Akbari MR, Tamehri Zadeh SS, Khatami F, Mashhadi R, Aghamir SMK. Novel combination therapy of prostate cancer cells with arsenic trioxide and flutamide: An in-vitro study. Tissue Cell 2021; 74:101684. [PMID: 34800879 DOI: 10.1016/j.tice.2021.101684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The study objective was to assess the therapeutic potential of Arsenic Trioxide (ATO) and Flutamide combination for metastatic prostate cancer (PCa) treatment. MATERIAL AND METHOD LNCaP and PC3 cell lines were treated with different concentrations of ATO and PCa conventional drug Flutamide alone and/or in combination to find effective doses and IC50 values. Percentages of apoptotic cells were evaluated by Annexin/PI staining and the proliferative inhibitory effect was assessed by Micro Culture Tetrazolium Test (MTT). Expression of SNAIL, KLK2, E-cadherin, and angiogenesis genes (VEGFA and VEGFC), and apoptosis genes (Bcl2, and P53) were examined by real-time PCR. RESULTS The combination of Flutamide and ATO significantly increased the percentage of apoptotic cells and inhibited PCa cells proliferation compared with each drug alone in LNCaP and PC3 cell lines. Generally, both cell lines treated with the combination of Flutamide and ATO showed a decrease in expression of KLK2, angiogenesis genes (VEGFA and VEGFC), and apoptosis gene (Bcl2), and an increase in expression of E-cadherin and P53 genes; however, contradictory findings were found regarding SNAIL expression in LNCaP and PC3 cells. CONCLUSION The combination therapy with ATO and flutamide has augmented the anti-tumor effect on LNCaP and PC3 cells, which probably originates from their potential to induce apoptosis and inhibit the proliferation of PCa cells simultaneously.
Collapse
Affiliation(s)
- Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Canada
| | | | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
14
|
Fu L, Han BK, Meng FF, Wang JW, Wang TY, Li HJ, Sun YY, Zou GN, Li XR, Li W, Bi YF, Ke Y, Liu HM. Jaridon 6, a new diterpene from Rabdosia rubescens (Hemsl.) Hara, can display anti-gastric cancer resistance by inhibiting SIRT1 and inducing autophagy. Phytother Res 2021; 35:5720-5733. [PMID: 34411362 DOI: 10.1002/ptr.7231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022]
Abstract
Tumor resistance is the main cause of treatment failure and is associated with many tumor factors. Jaridon 6, a new diterpene extracted from Rabdosia rubescens (Hemsl.) Hara, which has been previously extracted by our research team, has been tested having more obvious advantages in resistant tumor cells. However, its mechanism is unclear. In this study, we studied the effect and the specific mechanism of Jaridon 6 in resistant gastric cancer cells. Cytotoxicity test, colony test, western blotting, and nude test verified the anti-drug resistance ability of Jaridon 6 in the MGC803/PTX and MGC803/5-Fu cells. Jaridon 6 has shown obvious inhibitory effects in the sirtuin 1 (SIRT1) enzyme test. Transmission electron microscopy and immunofluorescence tests further proved the autophagic action of Jaridon 6. Jaridon 6 could inhibit the proliferation of the resistant gastric cancer cell in vivo and in vitro. Jaridon 6 inhibited SIRT1 enzyme and induced autophagy by inhibiting the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway. Thus, it may be considered for treating gastric cancer resistance by individual or combined administration, as an SIRT1 inhibitor and autophagy inducer.
Collapse
Affiliation(s)
- Ling Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Bing-Kai Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Fang-Feng Meng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Jun-Wei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Tian-Ye Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Hui-Ju Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Ying-Ying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Guo-Na Zou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Xiao-Rui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Yue-Feng Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
15
|
Zhang J, Mao W, Liu Y, Ding J, Wang J, Yu Z, Huang R, Yang S, Sun Y, Dong P. 3-MA Enhanced Chemosensitivity in Cisplatin Resistant Hypopharyngeal Squamous Carcinoma Cells via Inhibiting Beclin -1 Mediated Autophagy. Curr Pharm Des 2021; 27:996-1005. [PMID: 33349212 DOI: 10.2174/1381612826666201221150431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hypopharyngeal carcinoma is characterized by a high degree of malignancy. The most common pathological type is squamous cell carcinoma (HSCC). Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most widely used chemotherapeutic drugs nowadays and cisplatin resistance is a major problem in current treatment strategies. Clinical researchers have reported that high autophagy levels often caused insensitivity to chemotherapy, a common phenomenon that greatly reduces the therapeutic effect in cisplatin- resistant tumor cell lines. 3-methyladenine (3-MA), an inhibitor of PI3K, plays a vital role in forming and developing autophagosomes. Therefore, we speculate that the use of 3-MA may reduce cisplatin resistance in hypopharyngeal squamous cell carcinoma (HSCC). METHODS Part I: Cisplatin-resistant FaDu cell line (Human hypopharyngeal squamous cell carcinoma cells) was established and cultured. Cell counting kit-8 was used to detect drug resistance. An inverted microscope was used to observe the morphological changes at different concentrations, then the survival rate was calculated. After MDC staining, the autophagic vacuoles were observed by fluorescence microscopy. The expression of Beclin1 from each group was confirmed by RT-PCR and Western blot method. Part II: 3-MA was applied for cisplatin-resistant cells intervention, Beclin1 was knocked down by plasmid transfection. Cell cycle was detected using flow cytometry assay, apoptosis with necrosis was detected by staining with propidium iodide (PI). CCK-8 was used to observe the cell survival rate in each group. The expression of autophagy-related protein Beclin1, LC3I, LC3II, Atg-5 and P62 in each group was verified by Western blot analysis. RESULTS Cisplatin-resistant FaDu cell line can be stably constructed by cisplatin intervention. Compared with normal group, autophagy and its related protein Beclin1 expression were enhanced in cisplatin resistant FaDu cells. Autophagy inhibition group showed significant cell cycle changes, mainly manifested by G1 arrest, increased apoptosis rate and significantly decreased survival rate at 24h level. The number of autophagy vacuoles were significantly reduced in the 3-MA group. Furthermore, Western blot showed that expression of Beclin1, lc3-I, lc3-II, atg-5 protein decreased significantly after 3-MA intervention, while the expression of p62 upregulated, which also confirmed autophagy flow was blocked. CONCLUSION Our work confirmed that enhanced autophagy is an important cause of cisplatin resistance in FaDu cells. The use of 3-MA can significantly reduce autophagy level and arresting its cell cycle, promote apoptosis and reverse the cisplatin resistance condition, this effect is partly mediated by inhibition of Beclin-1 expression. Our data provide a theoretical basis for the application of 3-MA in overcoming cisplatin resistance in hypopharyngeal cancer.
Collapse
Affiliation(s)
- Jia Zhang
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Wei Mao
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Yuying Liu
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Jian Ding
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Jie Wang
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Ziwei Yu
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Ruofei Huang
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Sen Yang
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Ying Sun
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| | - Pin Dong
- Division of ENT & HN Surgery, Shanghai General Hospital of Nanjing Medical University, Key Laboratory of Head and Neck, Shanghai, 200080, China
| |
Collapse
|
16
|
Liang C, Qiao G, Liu Y, Tian L, Hui N, Li J, Ma Y, Li H, Zhao Q, Cao W, Liu H, Ren X. Overview of all-trans-retinoic acid (ATRA) and its analogues: Structures, activities, and mechanisms in acute promyelocytic leukaemia. Eur J Med Chem 2021; 220:113451. [PMID: 33895500 DOI: 10.1016/j.ejmech.2021.113451] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 02/04/2023]
Abstract
All-trans-retinoic acid (ATRA) is effective for preventing cancer and treating skin diseases and acute promyelocytic leukaemia (APL). These pharmacological effects of ATRA are mainly mediated by retinoid X receptors (RXRs) and retinoic acid receptors (RARs). This article provides a comprehensive overview of the clinical progress on and the molecular mechanisms of ATRA in the treatment of APL. ATRA can promote the transcriptional activation of differentiation-related genes and regulate autophagy by inhibiting mTOR, which results in anti-APL effects. In detail, the structures, pharmacological effects, and clinical studies of 68 types of ATRA analogues are described. These compounds have excellent antitumour therapeutic potential and could be used as lead compounds for further development and research.
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuling Ma
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qianqian Zhao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, Guangdong, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, Guangdong, China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
17
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
18
|
Renin angiotensin system genes are biomarkers for personalized treatment of acute myeloid leukemia with Doxorubicin as well as etoposide. PLoS One 2020; 15:e0242497. [PMID: 33237942 PMCID: PMC7688131 DOI: 10.1371/journal.pone.0242497] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the availability of various treatment protocols, response to therapy in patients with Acute Myeloid Leukemia (AML) remains largely unpredictable. Transcriptomic profiling studies have thus far revealed the presence of molecular subtypes of AML that are not accounted for by standard clinical parameters or by routinely used biomarkers. Such molecular subtypes of AML are predicted to vary in response to chemotherapy or targeted therapy. The Renin-Angiotensin System (RAS) is an important group of proteins that play a critical role in regulating blood pressure, vascular resistance and fluid/electrolyte balance. RAS pathway genes are also known to be present locally in tissues such as the bone marrow, where they play an important role in leukemic hematopoiesis. In this study, we asked if the RAS genes could be utilized to predict drug responses in patients with AML. We show that the combined in silico analysis of up to five RAS genes can reliably predict sensitivity to Doxorubicin as well as Etoposide in AML. The same genes could also predict sensitivity to Doxorubicin when tested in vitro. Additionally, gene set enrichment analysis revealed enrichment of TNF-alpha and type-I IFN response genes among sensitive, and TGF-beta and fibronectin related genes in resistant cancer cells. However, this does not seem to reflect an epithelial to mesenchymal transition per se. We also identified that RAS genes can stratify patients with AML into subtypes with distinct prognosis. Together, our results demonstrate that genes present in RAS are biomarkers for drug sensitivity and the prognostication of AML.
Collapse
|
19
|
Silva VR, Neves SP, Santos LDS, Dias RB, Bezerra DP. Challenges and Therapeutic Opportunities of Autophagy in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12113461. [PMID: 33233671 PMCID: PMC7699739 DOI: 10.3390/cancers12113461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a physiological process characterized by the degradation of the cell components through lysosomes due to stimuli/stress. In this study, we review the challenges and therapeutic opportunities that autophagy presents in the treatment of cancer. We discussed the results of several studies that evaluated autophagy as a therapeutic strategy in cancer, both through the modulation of therapeutic resistance and the death of cancer cells. Moreover, we discussed the role of autophagy in the biology of cancer stem cells and the inhibition of this process as a strategy to overcome resistance and progression of cancer stem cells. Abstract Autophagy is a physiological cellular process that is crucial for development and can occurs in response to nutrient deprivation or metabolic disorders. Interestingly, autophagy plays a dual role in cancer cells—while in some situations, it has a cytoprotective effect that causes chemotherapy resistance, in others, it has a cytotoxic effect in which some compounds induce autophagy-mediated cell death. In this review, we summarize strategies aimed at autophagy for the treatment of cancer, including studies of drugs that can modulate autophagy-mediated resistance, and/or drugs that cause autophagy-mediated cancer cell death. In addition, the role of autophagy in the biology of cancer stem cells has also been discussed.
Collapse
|
20
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
21
|
Liu XJ, Wang LN, Zhang ZH, Liang C, Li Y, Luo JS, Peng CJ, Zhang XL, Ke ZY, Huang LB, Tang YL, Luo XQ. Arsenic trioxide induces autophagic degradation of the FLT3-ITD mutated protein in FLT3-ITD acute myeloid leukemia cells. J Cancer 2020; 11:3476-3482. [PMID: 32284743 PMCID: PMC7150460 DOI: 10.7150/jca.29751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
The prognosis of acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutations is poor. Some studies, including our previous study, have indicated that arsenic trioxide (ATO) exhibited significant anti-carcinogenic activity in FLT3-ITD AML cells and explored the possibility of targeting the FLT3-ITD protein for degradation as a therapy. Autophagy is a critical mechanism of the anti-leukemic effects of ATO. In this study, we explored the therapeutic efficacy of ATO treatment in a mouse model bearing FLT3-ITD AML and found that ATO significantly reduced the leukemic burden in bone marrow and spleen. We also found that autophagy was responsible for, at least in part, the degradation of the FLT3-ITD protein by ATO. After ATO treatment, MV4-11 cells showed complete autophagic flux. The autophagy inhibitor bafilomycin A or down-regulation of the key autophagy genes Atg5 and Atg7 reversed the FLT3 degradation induced by ATO. We also found that p62/SQSTM1 delivered FLT3-ITD proteins to the lysosome, where they were subsequently degraded. These results indicate that ATO can induce autophagic degradation of the FLT3-ITD mutated protein in FLT3-ITD AML.
Collapse
Affiliation(s)
- Xiao-Jian Liu
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Na Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zu-Han Zhang
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Cong Liang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Li
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Si Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chun-Jin Peng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Zhang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Yong Ke
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Bin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue-Qun Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
22
|
Mohammadi Kian M, Haghi A, Salami M, Chahardouli B, Rostami SH, Malekzadeh K, Kamranzadeh Foumani H, Mohammadi S, Nikbakht M. Arsenic Trioxide and Thalidomide Combination Induces Autophagy Along with Apoptosis in Acute Myeloid Cell Lines. CELL JOURNAL 2019; 22:193-202. [PMID: 31721534 PMCID: PMC6874786 DOI: 10.22074/cellj.2020.6469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/20/2019] [Indexed: 11/04/2022]
Abstract
Objective Autophagy and apoptosis play key roles in cancer survival and pathogenesis and are governed by specific genes which have a dual role in both cell death and survival. Arsenic trioxide (ATO) and thalidomide (THAL) are used for treatment of many types of hematologic malignancies. ATO prevents the proliferation of cells and induces apoptosis in some cancer cells. Moreover, THAL has immunomodulatory and antiangiogenic effects in malignant cells. The aim of present study was to examine the effects of ATO and THAL on U937 and KG-1 cells, and evaluation of mRNA expression level of VEGFs genes, PI3K genes and some of autophagy genes. Materials and Methods In this in vitro experimental study, U937 and KG-1 cells were treated by ATO (0.4-5 μM) and THAL (5-100 μM) for 24, 48 and 72 hours. Cell viability was measured by MTT assay. The apoptosis rate and cell cycle arrest were evaluated by flow cytometry (Annexin/PI) and cell cycle flow cytometry analysis, respectively. The effect of ATO/THAL on mRNAs expression was evaluated by real-time polymerase chain reaction (PCR). Results ATO/THAL combination enhanced cell apoptosis in a dose-dependent manner. Also, ATO/THAL induced SubG1/ G1 phase arrest. mRNA expression levels of VEGFC (contrary to other VEGFs isoform), PI3K, AKT, mTOR, MEK1, PTEN, IL6, LC3 and P62 genes were upregulated in acute myeloid leukemia (AML) cells following treatment with ATO/THAL. Conclusion Combined treatment with ATO and THAL can inhibit proliferation and invasion of AML cells by down-regulating ULK1 and BECLIN1 and up-regulating PTEN and IL6, and this effect was more marked than the effects of ATO and THAL alone.
Collapse
Affiliation(s)
- Mahnaz Mohammadi Kian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atousa Haghi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Young Researchers and Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahdieh Salami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Chahardouli
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - S Hahrbanoo Rostami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kianoosh Malekzadeh
- Molecular Medicine Research Center (MMRC), Hormozgan University of Medical Science (HUMS), Bandar Abbass, Iran
| | - Hosein Kamranzadeh Foumani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.Electronic Address:.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Linder B, Kögel D. Autophagy in Cancer Cell Death. BIOLOGY 2019; 8:biology8040082. [PMID: 31671879 PMCID: PMC6956186 DOI: 10.3390/biology8040082] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Autophagy has important functions in maintaining energy metabolism under conditions of starvation and to alleviate stress by removal of damaged and potentially harmful cellular components. Therefore, autophagy represents a pro-survival stress response in the majority of cases. However, the role of autophagy in cell survival and cell death decisions is highly dependent on its extent, duration, and on the respective cellular context. An alternative pro-death function of autophagy has been consistently observed in different settings, in particular, in developmental cell death of lower organisms and in drug-induced cancer cell death. This cell death is referred to as autophagic cell death (ACD) or autophagy-dependent cell death (ADCD), a type of cellular demise that may act as a backup cell death program in apoptosis-deficient tumors. This pro-death function of autophagy may be exerted either via non-selective bulk autophagy or excessive (lethal) removal of mitochondria via selective mitophagy, opening new avenues for the therapeutic exploitation of autophagy/mitophagy in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60528 Frankfurt am Main, Germany.
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60528 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Moosavi MA, Djavaheri-Mergny M. Autophagy: New Insights into Mechanisms of Action and Resistance of Treatment in Acute Promyelocytic leukemia. Int J Mol Sci 2019; 20:E3559. [PMID: 31330838 PMCID: PMC6678259 DOI: 10.3390/ijms20143559] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy is one of the main cellular catabolic pathways controlling a variety of physiological processes, including those involved in self-renewal, differentiation and death. While acute promyelocytic leukemia (APL) cells manifest low levels of expression of autophagy genes associated with reduced autophagy activity, the introduction of all-trans retinoid acid (ATRA)-a differentiating agent currently used in clinical settings-restores autophagy in these cells. ATRA-induced autophagy is involved in granulocytes differentiation through a mechanism that involves among others the degradation of the PML-RARα oncoprotein. Arsenic trioxide (ATO) is another anti-cancer agent that promotes autophagy-dependent clearance of promyelocytic leukemia retinoic acid receptor alpha gene (PML-RARα) in APL cells. Hence, enhancing autophagy may have therapeutic benefits in maturation-resistant APL cells. However, the role of autophagy in response to APL therapy is not so simple, because some autophagy proteins have been shown to play a pro-survival role upon ATRA and ATO treatment, and both agents can activate ETosis, a type of cell death mediated by the release of neutrophil extracellular traps (ETs). This review highlights recent findings on the impact of autophagy on the mechanisms of action of ATRA and ATO in APL cells. We also discuss the potential role of autophagy in the development of resistance to treatment, and of differentiation syndrome in APL.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Mojgan Djavaheri-Mergny
- Equipe labellisée par la Ligue contre le cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris 75006, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France.
| |
Collapse
|
25
|
Mansour MA, Ibrahim WM, Shalaan ES, Salama AF. Combination of arsenic trioxide and cisplatin synergistically inhibits both hexokinase activity and viability of Ehrlich ascites carcinoma cells. J Biochem Mol Toxicol 2019; 33:e22350. [DOI: 10.1002/jbt.22350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Mohammed A. Mansour
- Biochemistry Division, Department of Chemistry, Faculty of ScienceTanta University Tanta Egypt
- Institute of Cancer SciencesUniversity of Glasgow Glasgow UK
- CRUK Beatson InstituteUniversity of Glasgow Glasgow UK
| | - Wafaa M. Ibrahim
- Medical Biochemistry Department, Faculty of MedicineTanta University Tanta Egypt
| | - Eman S. Shalaan
- Biochemistry Division, Department of Chemistry, Faculty of ScienceTanta University Tanta Egypt
| | - Afrah F. Salama
- Biochemistry Division, Department of Chemistry, Faculty of ScienceTanta University Tanta Egypt
| |
Collapse
|
26
|
El Eit R, Itani AR, Nassar F, Rasbieh N, Jabbour M, Santina A, Zaatari G, Mahon FX, Bazarbachi A, Nasr R. Antitumor efficacy of arsenic/interferon in preclinical models of chronic myeloid leukemia resistant to tyrosine kinase inhibitors. Cancer 2019; 125:2818-2828. [PMID: 31034603 DOI: 10.1002/cncr.32130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are the standard treatment for chronic myeloid leukemia (CML). Despite their clinical success, TKIs are faced with challenges such as treatment resistance, which may be driven by kinase domain mutations, and frequent disease relapse upon the cessation of treatment. The combination of arsenic trioxide (ATO) and interferon-α (IFN) was previously demonstrated to inhibit proliferation and induce apoptosis in CML cell lines, prolong the survival of primary wild-type CML mice, and dramatically decrease the activity of leukemia-initiating cells (LICs). METHODS The ATO/IFN combination was tested in vitro on imatinib (IMN)-resistant K562-R and Ar230-R cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays were used to evaluate proliferation and apoptosis, respectively. The acridine orange assay was used to assess autophagy, and quantitative reverse transcription-polymerase chain reaction was used to assess the involvement of the hedgehog (Hh) pathway. In vivo, a retroviral transduction/transplantation T315I BCR-ABL CML mouse model was used to assay the effect of the treatment on survival, tumor burden (histopathology and blood counts), and LIC activity (secondary transplantation). RESULTS In vitro, ATO/IFN synergized to inhibit proliferation and induce apoptosis of IMN-resistant cells with variant modes of resistance. Furthermore, the preclinical effects of ATO/IFN were associated with induction of autophagy along with inhibition of the Hh pathway. Most remarkably, ATO/IFN significantly prolonged the survival of primary T315I-CML mice and displayed a dramatic impairment of disease engraftment in secondary mice, which reflected decreased LIC activity. CONCLUSIONS Collectively, the ATO/IFN strategy has been demonstrated to have the potential to lead to durable remissions in TKI-resistant CML preclinical models and to overcome various TKI-specific mechanisms of resistance.
Collapse
Affiliation(s)
- Rabab El Eit
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Abdul Rahman Itani
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Farah Nassar
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Nagham Rasbieh
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Mark Jabbour
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmad Santina
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Ghazi Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - François-Xavier Mahon
- French National Institute of Health and Medical Research Unit 876, Laboratory of Hematology and Department of Blood Diseases, University Hospital Center of Bordeaux, Bordeaux Segalen University, Bordeaux, France
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon.,Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
27
|
Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 2019; 134:116-137. [PMID: 30981885 DOI: 10.1016/j.ejps.2019.04.011] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
Autophagy is an evolutionarily conserved catabolic mechanism, by which eukaryotic cells recycle or degrades internal constituents through membrane-trafficking pathway. Thus, autophagy provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Recent findings revealed a close relationship between autophagy and malignant transformation. However, due to the complex dual role of autophagy in tumor survival or cell death, efforts to develop efficient treatment strategies targeting the autophagy/cancer relation have largely been unsuccessful. Here we review the two-faced role of autophagy in cancer as a tumor suppressor or as a pro-oncogenic mechanism. In this sense, we also review the shared regulatory pathways that play a role in autophagy and malignant transformation. Finally, anti-cancer therapeutic agents used as either inhibitors or inducers of autophagy have been discussed.
Collapse
|
28
|
Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells 2019; 8:cells8020103. [PMID: 30704144 PMCID: PMC6406467 DOI: 10.3390/cells8020103] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Haematopoiesis is a tightly orchestrated process where a pool of hematopoietic stem and progenitor cells (HSPCs) with high self-renewal potential can give rise to both lymphoid and myeloid lineages. The HSPCs pool is reduced with ageing resulting in few HSPC clones maintaining haematopoiesis thereby reducing blood cell diversity, a phenomenon called clonal haematopoiesis. Clonal expansion of HSPCs carrying specific genetic mutations leads to increased risk for haematological malignancies. Therefore, it comes as no surprise that hematopoietic tumours develop in higher frequency in elderly people. Unfortunately, elderly patients with leukaemia or lymphoma still have an unsatisfactory prognosis compared to younger ones highlighting the need to develop more efficient therapies for this group of patients. Growing evidence indicates that macroautophagy (hereafter referred to as autophagy) is essential for health and longevity. This review is focusing on the role of autophagy in normal haematopoiesis as well as in leukaemia and lymphoma development. Attenuated autophagy may support early hematopoietic neoplasia whereas activation of autophagy in later stages of tumour development and in response to a variety of therapies rather triggers a pro-tumoral response. Novel insights into the role of autophagy in haematopoiesis will be discussed in light of designing new autophagy modulating therapies in hematopoietic cancers.
Collapse
|
29
|
Lin KL, Lin KJ, Wang PW, Chuang JH, Lin HY, Chen SD, Chuang YC, Huang ST, Tiao MM, Chen JB, Huang PH, Liou CW, Lin TK. Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radic Res 2019; 52:1371-1386. [DOI: 10.1080/10715762.2018.1489128] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kai-Lieh Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kai-Jung Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Wen Wang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jiin-Haur Chuang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shang-Der Chen
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Chung Chuang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Sheng-Teng Huang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jin-Bor Chen
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Pei-Hsuan Huang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Wei Liou
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Tsu-Kung Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
30
|
Xu J, Zheng J, Fu X, Wu W, Tao L, Li D, Lin D. Inhibition of N822K T>A mutation-induced constitutive c-KIT activation in AML cells triggers apoptotic and autophagic pathways leading to death. Int J Med Sci 2019; 16:757-765. [PMID: 31217744 PMCID: PMC6566732 DOI: 10.7150/ijms.33532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Background: The D816V mutation of c-KIT can constitutively activate tyrosine kinase, thereby promote core binding factor acute myeloid leukemia (CBF-AML) cell proliferation and inhibit apoptosis. Previous studies have indicated similar proliferation and apoptosis between N822K and D816V mutations.The current study aims to determine the occurrence and potential functions of N822K mutation-induced c-KIT activation in AML cells, and explore possible mechanisms of poor prognosis of CBF-AML. Methods: c-KIT N822K mutation status in AML cells was determined by exon 17 sequencing. The level of c-KIT expression was detected by flow cytometry (FCM) and colony formation was assessed after hu-SCF stimulation. After exposure to sunitinib (a kind of tyrosine kinase inhibitor, TKI), cell proliferation inhibition was tested by MTT, cell cycle and apoptosis were measured by FCM, autophagy was assessed by fluorescence microscopy and immunoblotting. Results: Kasumi-1 cell line was detected to bear c-KIT N822K (T>A) mutation. After hu-SCF stimulation, CD117 expression was decreased and the colony formation efficiency was not altered in Kasumi-1 cells. After sunitinib inhibited the c-KIT activity, the colony formation efficiency was reduced, and the half-maximal inhibitory concentration (IC50) of sunitinib was low (0.44±0.17μM) at 48 hours. Moreover, cells were arrested in G0/G1 phase, corresponding to an increase of apoptosis ratio. Acidic vesicular organelles (AVO) were observed along with an altered expression of autophagy-related proteins in Kasumi-1 cells. Conclusions: Our data indicated that inhibition of N822K T>A mutation-induced constitutive c-KIT activation in AML cells triggered apoptotic and autophagic pathways leading to death, and c-KIT N822K mutation may have clinical application as a CBF-AML treatment target.
Collapse
Affiliation(s)
- Jianping Xu
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350001 China
| | - Jinyuan Zheng
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350001 China
| | - Xiaomeng Fu
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350001 China
| | - Wei Wu
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350001 China
| | - Linfen Tao
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350001 China
| | - Dan Li
- Department of Clinical Laboratory, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014 China
| | - Donghong Lin
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350001 China
| |
Collapse
|
31
|
Spinello I, Saulle E, Quaranta MT, Pasquini L, Pelosi E, Castelli G, Ottone T, Voso MT, Testa U, Labbaye C. The small-molecule compound AC-73 targeting CD147 inhibits leukemic cell proliferation, induces autophagy and increases the chemotherapeutic sensitivity of acute myeloid leukemia cells. Haematologica 2018; 104:973-985. [PMID: 30467201 PMCID: PMC6518905 DOI: 10.3324/haematol.2018.199661] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022] Open
Abstract
CD147 is a transmembrane glycoprotein with multiple functions in human healthy tissues and diseases, in particular in cancer. Overexpression of CD147 correlates with biological functions that promote tumor progression and confers resistance to chemotherapeutic drugs. In contrast to solid tumors, the role of CD147 has not been extensively studied in leukemia. Understanding whether CD147 represents a new hematologic target and whether its inhibitor AC-73 may be used in leukemia therapy may reveal an alternative treatment strategy in patients with acute myeloid leukemia (AML). We analyzed CD147 expression and function in hematopoietic progenitor cells from normal cord blood, in several leukemic cell lines and in primary leukemic blasts obtained from patients with AML. We investigated the effects of AC-73, used alone or in combination with arabinosylcytosine (Ara-C) and arsenic trioxide (ATO), on leukemic cell proliferation. We demonstrated that CD147 overexpression promotes leukemic cell proliferation. We showed that AC-73 exhibits a potent growth inhibitory activity in leukemic cells, by inhibiting the ERK/STAT3 activation pathway and activating autophagy. We demonstrated that AC-73 exerts an anti-proliferative effect additive to chemotherapy by enhancing leukemic cell sensitivity to Ara-C-induced cytotoxicity or to ATO-induced autophagy. We also reported CD147 expression in the fraction of leukemic blasts expressing CD371, a marker of leukemic stem cells. Altogether, our study indicates CD147 as a novel potential target in the treatment of AML and AC-73 as an anti-proliferative drug and an inducer of autophagy in leukemic cells to use in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Isabella Spinello
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome
| | - Ernestina Saulle
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome
| | - Maria Teresa Quaranta
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome
| | | | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Ugo Testa
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità
| | - Catherine Labbaye
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome
| |
Collapse
|
32
|
|
33
|
Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J. Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3K/Akt/mTOR signaling pathway: involvement of blood-brain barrier's tight junction proteins. Arch Toxicol 2018; 92:3255-3275. [PMID: 30225639 DOI: 10.1007/s00204-018-2304-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
For the past decade, there has been an increased concern about the health risks from arsenic (As) exposure, because of its neurotoxic effects on the developing brain. The exact mechanism underlying As-induced neurotoxicity during sensitive periods of brain development remains unclear, especially the role of blood-brain barrier's (BBB) tight junction (TJ) proteins during As-induced neurotoxicity. Here, we highlight the involvement of TJ proteins in As-induced autophagy in cerebral cortex and hippocampus during developmental periods [postnatal day (PND) 21, 28, 35 and 42]. Here, the administration of arsenic trioxide (As2O3) at doses of 0.15 mg or 1.5 mg or 15 mg As2O3/L in drinking water from gestational to lactational and continued to the pups till PND42 resulted in a significant decrease in the mRNA expression levels of TJ proteins (Occludin, Claudin, ZO-1 and ZO-2) and Occludin protein expression level. In addition, As exposure significantly decreased PI3K, Akt, mTOR, and p62 with a concomitant increase in Beclin1, LC3I, LC3II, Atg5 and Atg12. Moreover, As exposure also significantly downregulated the protein expression levels of mTOR with a concomitant upregulation of Beclin 1, LC3 and Atg12 in all the developmental age points. However, no significant alterations were observed in low and medium dose-exposed groups of PND42. Histopathological analysis in As-exposed mice revealed decreased number of pyramidal neurons in hippocampus; and neurons with degenerating axons, shrinkage of cells, remarkable vacuolar degeneration in cytoplasm, karyolysis and pyknosis in cerebral cortex. Ultrastructural analysis by transmission electron microscopy revealed the occurrence of autophagosomes and vacuolated axons in the cerebral cortex and hippocampus of the mice exposed to high dose As at PND21 and 42. The severities of changes were found to more persist in the cerebral cortex than in the hippocampus of As-exposed mice. Finally, we conclude that the leaky BBB in cerebral cortex and hippocampus may facilitate the transfer of As and induces autophagy by inhibiting PI3K/Akt/mTOR signaling pathway in an age-dependent manner, i.e., among the four different developmental age points, PND21 animals were found to be more vulnerable to the As-induced neurotoxicity than the other three age points.
Collapse
Affiliation(s)
- Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chiranjeevi Tikka
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mohammad Mehdi Ommati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.,Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
34
|
Chen YJ, Huang CH, Shi YJ, Lee YC, Wang LJ, Chang LS. The suppressive effect of arsenic trioxide on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 expression induces apoptosis in human leukemia cells. Toxicol Appl Pharmacol 2018; 358:43-55. [PMID: 30213730 DOI: 10.1016/j.taap.2018.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 01/11/2023]
Abstract
Arsenic trioxide (ATO) has been reported to inhibit the activity of Ten-eleven translocation methylcytosine dioxygenase (TET). TET modulates FOXP3 expression, while dysregulation of FOXP3 expression promotes the malignant progression of leukemia cells. We examined the role of TET-FOXP3 axis in the cytotoxic effects of ATO on the human acute myeloid leukemia cell line, U937. ATO-induced apoptosis in U937 cells was characterized by activation of caspase-3/-9, mitochondrial depolarization, and MCL1 downregulation. In addition, ATO-treated U937 cells showed ROS-mediated inhibition of TET2 transcription, leading to downregulation of FOXP3 expression and in turn, suppression of FOXP3-mediated activation of Lyn and Akt. Overexpression of FOXP3 or Lyn minimized the suppressive effect of ATO on Akt activation and MCL1 expression. Promoter luciferase activity and chromatin immunoprecipitation assays revealed the crucial role of Akt-mediated CREB phosphorylation in MCL1 transcription. Further, ATO-induced Akt inactivation promoted GSK3β-mediated degradation of MCL1. Transfection of constitutively active Akt expression abrogated ATO-induced MCL1 downregulation. MCL1 overexpression lessened the ATO-induced depolarization of mitochondrial membrane and increased the viability of ATO-treated cells. Thus, our data suggest that ATO induces mitochondria-mediated apoptosis in U937 cells through its suppressive effect on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 transcription and protein stabilization. Our findings also indicate that the same pathway underlies ATO-induced death in human leukemia HL-60 cells.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
35
|
Zeinvand-Lorestani M, Kalantari H, Khodayar MJ, Teimoori A, Saki N, Ahangarpour A, Rahim F, Alboghobeish S. Autophagy upregulation as a possible mechanism of arsenic induced diabetes. Sci Rep 2018; 8:11960. [PMID: 30097599 PMCID: PMC6086829 DOI: 10.1038/s41598-018-30439-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023] Open
Abstract
The key features of type 2 diabetes mellitus (T2DM) caused by high fat diet (HFD) in combination with arsenic (As) exposure (pronounced glucose intolerance despite a significant decrease in insulin resistance) are different from those expected for T2DM. Autophagy has been considered as a possible link between insulin resistance and obesity. Therefore in this study, we utilized autophagy gene expression profiling via real-time RT-PCR array analysis in livers of NMRI mice exposed to an environmentally relevant and minimally cytotoxic concentration of arsenite (50 ppm) in drinking water while being fed with a HFD for 20 weeks. Out of 84 genes associated with autophagy under study, 21 genes were related to autophagy machinery components of which 13 genes were downregulated when HDF diet was applied. In this study, for the first time, it was shown that the exposure to arsenic in the livers of mice chronically fed with HFD along with increased oxidative stress resulted in the restoration of autophagy [upregulation of genes involved in the early phase of phagophore formation, phagophore expansion and autophagosome-lysosome linkage stages]. Considering the role of arsenic in the induction of autophagy; it can be argued that reduced insulin resistance in HFD - As induced diabetes may be mediated by autophagy upregulation.
Collapse
Affiliation(s)
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Loos JA, Nicolao MC, Cumino AC. Metformin promotes autophagy in Echinococcus granulosus larval stage. Mol Biochem Parasitol 2018; 224:61-70. [PMID: 30017657 DOI: 10.1016/j.molbiopara.2018.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Cystic echinococcosis is a neglected parasitic disease caused by the larval stage of Echinococcus granulosus for which an effective treatment is not yet available. Since autophagy constitutes a homeostatic mechanism during stress, either inhibition or activation of its activity might be detrimental for survival of the parasite. Amongst the critical molecules that regulate autophagy, TOR, AMPK and sirtuins are the best characterized ones. Previously, we have identified the autophagic machinery, the occurrence of TORC1-controlled events, and the correlation between autophagy and the activation of the unfolded protein response in E. granulosus larval stage. In addition, we have demonstrated that the parasite is susceptible to metformin (Met), a drug that indirectly activates Eg-AMPK and induces energy stress. In this work, we demonstrate that Met induces autophagy in the E. granulosus larval stage. Electron microscopy analysis revealed the presence of autophagic structures in Met-treated protoscoleces. In accordance with these findings, the autophagic marker Eg-Atg8 as well as the transcriptional expression of Eg-atg6, Eg-atg8, Eg-atg12 and Eg-atg16 genes were significantly up-regulated in Met-treated parasites. The induction of the autophagic process was concomitant with Eg-foxO over-expression and its nuclear localization, which could be correlated with the transcriptional regulation of this pathway. On the other hand, the expression of Eg-AKT and Eg-Sirts suggests a possible participation of these conserved proteins in the regulation of Eg-FoxO. Therefore, through pharmacological activation of the AMPK-FoxO signaling pathway, Met could play a role in the death of the parasite contributing to the demonstrated anti-echinococcal effects of this drug. The understanding of the regulatory mechanisms of this pathway in E. granulosus represents a solid basis for choosing appropriate targets for new chemotherapeutic agents.
Collapse
Affiliation(s)
- Julia A Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina.
| |
Collapse
|
37
|
Autophagy in cancer: a complex relationship. Biochem J 2018; 475:1939-1954. [DOI: 10.1042/bcj20170847] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
Abstract
Macroautophagy is the process by which cells package and degrade cytosolic components, and recycle the breakdown products for future use. Since its initial description by Christian de Duve in the 1960s, significant progress has been made in understanding the mechanisms that underlie this vital cellular process and its specificity. Furthermore, macroautophagy is linked to pathologic conditions such as cancer and is being studied as a therapeutic target. In this review, we will explore the connections between autophagy and cancer, which are tumor- and context-dependent and include the tumor microenvironment. We will highlight the importance of tumor compartment-specific autophagy in both cancer aggressiveness and treatment.
Collapse
|
38
|
Pooladanda V, Bandi S, Mondi SR, Gottumukkala KM, Godugu C. Nimbolide epigenetically regulates autophagy and apoptosis in breast cancer. Toxicol In Vitro 2018; 51:114-128. [PMID: 29778718 DOI: 10.1016/j.tiv.2018.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
Autophagy is a critical regulator of cellular homeostasis and its dysregulation often results in various disease manifestations, including cancer. Nimbolide, an active chemical constituent of neem (Azadirachta indica) exhibits potent anticancer effects. Although, nimbolide mediated apoptosis activation in breast cancer cells is well known. Nevertheless, its role in autophagy induction mechanism and epigenetic alteration is not explored previously. Our current study intended to bridge the gaps in the existing research by exploring the potential of nimbolide in inducing autophagy, which could counter regulate the transformations in breast cancer. In our studies, nimbolide significantly inhibited the cell proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 1.97 ± 0.24 and 5.04 ± 0.25 μM, respectively. Nimbolide markedly arrested the cell cycle progression and cell survival with loss of mitochondrial membrane potential by reducing Bcl-2 concomitantly inducing Bax and caspases protein expression with modulation of HDAC-2 and H3K27Ac expression. Consequently, characteristic autophagolysosome accumulation was observed by acridine orange, monodansylcadaverine (MDC) and Lysotracker Red staining. Moreover, nimbolide induced autophagy signaling by increasing Beclin 1 and LC3B along with decreased p62 and mTOR protein expression. Thus, our findings imply that nimbolide induces autophagy mediated apoptotic cell death in breast cancer with epigenetic modifications.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Soumya Bandi
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Sandhya Rani Mondi
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Krishna Mohan Gottumukkala
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
39
|
Liu S, Lu W, Li S, Li S, Liu J, Xing Y, Zhang S, Zhou JZ, Xing H, Xu Y, Rao Q, Deng C, Wang M, Wang J. Identification of JL1037 as a novel, specific, reversible lysine-specific demethylase 1 inhibitor that induce apoptosis and autophagy of AML cells. Oncotarget 2018; 8:31901-31914. [PMID: 28404874 PMCID: PMC5458257 DOI: 10.18632/oncotarget.16650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) has been recognized as a potential therapeutic target for acute myeloid leukemia (AML). Herein, we identified a novel LSD1 inhibitor, JL1037, via Computer Aided Drug Design technology. JL1037 is a potent, selective and reversible LSD1 inhibitor with IC50s of 0.1 μM and >1.5 μM for LSD1 and monoamine oxidases A/B (MAO-A/B), respectively. Treatment of THP-1 and Kasumi-1 cell lines with JL1037 resulted in dose dependent accumulation of H3K4me1 and H3K4me2, the major substrates of LSD1, as well as inhibition of cell proliferation, blockade of cell cycle and induction of apoptosis. Further investigations demonstrated that JL1037 could upregulate cell cycle-related proteins P21, P57, pro-apoptotic protein Bax and downregulate anti-apoptosis proteins Bcl-2 and Bcl-XL. JL1037 appeared to activate autophage response in AML cell lines as well as primary cells from AML patients by increasing LC3-II expression and the formation of autophagosomes and autolysosomes in cytoplasm. Co-treatment with autophagy inhibitor chloroquine (CQ) enhanced JL1037-induced cell apoptosis. Moreover, daily intravenous administration of JL1037 tended to reduce tumor burden and prolong the survival of t(8;21) leukemia mice. In conclusion, JL1037 exhibited potent anti-leukemia effect and could be a potential therapeutic agent for AML treatment.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Wenting Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shouyun Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Saisai Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yuanyuan Xing
- Fujian Jinler Pharmaceuticals, Jiangle County, Fujian 353300, China
| | - Shuzu Zhang
- Fujian Jinler Pharmaceuticals, Jiangle County, Fujian 353300, China
| | | | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chengjun Deng
- Fujian Jinler Pharmaceuticals, Jiangle County, Fujian 353300, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
40
|
Wang H, Wang F, Wu S, Liu Z, Li T, Mao L, Zhang J, Li C, Liu C, Yang Y. Traditional herbal medicine-derived sulforaphene promotes mitophagic cell death in lymphoma cells through CRM1-mediated p62/SQSTM1 accumulation and AMPK activation. Chem Biol Interact 2018; 281:11-23. [PMID: 29247643 DOI: 10.1016/j.cbi.2017.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Sulforaphene (LFS-01) is the major chemical constituent of Raphanus sativus, a medicinal herb used for over a thousand years in traditional Chinese medicine. Here we identified that LFS-01 can selectively eradicate lymphoma cells while sparing normal lymphocytes by triggering concomitant mitophagy and apoptosis. We demonstrated that LFS-01 can retain Nrf2 in the nucleus by covalently modulating CRM1 and consequently upregulate p62/SQSTM1, an essential structural component of the autophagosomes during mitophagic process. We found that LFS-01 treatment also stimulated AMPK and thereby inhibited the mTOR pathway. On the contrary, we revealed that AMPK inhibition can severely impair the LFS-01-mediated mitophagy. Transcriptomic studies confirmed that 15 autophagy-associated genes such as p62/SQSTM1, VCP and BCL2 were differentially expressed after LFS-01 treatment. Furthermore, protein interactome network analysis revealed that the events of apoptosis and the assembly of autophagy vacuole were significant upon LFS-01 exposure. Lastly, we found that LFS-01 exhibited strong efficacy in xenograft mouse model yet with the lack of apparent toxicity to animals. We concluded that LFS-01 triggered mitophagic cell death via CRM1-mediated p62 overexpression and AMPK activation. Our findings provide new insights into the mechanism of action for LFS-01 and highlight its potential applications in treating major human diseases.
Collapse
Affiliation(s)
- Haina Wang
- Center for Molecular Medicine (CMM), School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China
| | - Fuqiang Wang
- College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Sijin Wu
- Center for Molecular Medicine (CMM), School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China
| | - Zhiheng Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Tingting Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Mao
- DrivingForce Therapeutics, Venture Harbor, Dalian 116085, China
| | - Jie Zhang
- College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing 100871, China.
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yongliang Yang
- Center for Molecular Medicine (CMM), School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|
41
|
Li L, You LS, Mao LP, Jin SH, Chen XH, Qian WB. Combing oncolytic adenovirus expressing Beclin-1 with chemotherapy agent doxorubicin synergistically enhances cytotoxicity in human CML cells in vitro. Acta Pharmacol Sin 2018; 39:251-260. [PMID: 28905936 DOI: 10.1038/aps.2017.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
Abstract
Cancer virotherapy provides a new strategy to treat cancer that can directly kill cancer cells by oncolysis. Insertion of therapeutic genes into the genome of a modified adenovirus, thereby creating a so-called gene-virotherapy that shares the advantages of gene therapy and virotherapy. In this study we investigated whether a strategy that combines the oncolytic effects of an adenoviral vector with the simultaneous expression of the autophagy gene Beclin-1 offered a therapeutic advantage for chronic myeloid leukemia (CML) cells with resistance to chemotherapy and evaluated the synergistic effects of SG511-BECN and doxorubicin (Dox) in human CML cells in vitro. Oncolytic virus SG511-BECN was constructed through introducing the Beclin-1 gene into the oncolytic adenoviral backbone. SG511-BECN displayed significantly improved antileukemia activity on multidrug-resistant CML cell line K562/A02, which was mediated via induction of autophagic cell death. Furthermore, Dox could synergize with SG511-BECN to kill the CML cells by improving the infectious efficiency of the oncolytic adenovirus without causing significant damage to normal human mononuclear cells. The results demonstrate that targeting the autophagic cell death pathway and combination of a chemotherapy agent with oncolytic adenovirus may be a novel strategy for the treatment of leukemia with chemotherapy resistance.
Collapse
|
42
|
Arsenic trioxide promoting ETosis in acute promyelocytic leukemia through mTOR-regulated autophagy. Cell Death Dis 2018; 9:75. [PMID: 29362482 PMCID: PMC5833714 DOI: 10.1038/s41419-017-0018-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Despite the high efficacy and safety of arsenic trioxide (ATO) in treating acute promyelocytic leukemia (APL) and eradicating APL leukemia-initiating cells (LICs), the mechanism underlying its selective cytotoxicity remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, through autophagy. However, the role of ETosis in ATO-induced APL LIC eradication remains unclear. For this study, we evaluated the effects of ATO on ETosis and the contributions of drug-induced ETosis to APL LIC eradication. In NB4 cells, ATO primarily increased ETosis at moderate concentrations (0.5–0.75 μM) and stimulated apoptosis at higher doses (1.0–2.0 μM). Furthermore, ATO induced ETosis through mammalian target of rapamycin (mTOR)-dependent autophagy, which was partially regulated by reactive oxygen species. Additionally, rapamycin-enhanced ATO-induced ETosis in NB4 cells and APL cells from newly diagnosed and relapsed patients. In contrast, rapamycin had no effect on apoptosis in these cells. We also noted that PML/RARA oncoprotein was effectively cleared with this combination. Intriguingly, activation of autophagy with rapamycin-enhanced APL LIC eradication clearance by ATO in vitro and in a xenograft APL model, while inhibition of autophagy spared clonogenic cells. Our current results show that ATO exerts antileukemic effects at least partially through ETosis and targets LICs primarily through ETosis. Addition of drugs that target the ETotic pathway could be a promising therapeutic strategy to further eradicate LICs and reduce relapse.
Collapse
|
43
|
The E3 ubiquitin ligase WWP1 sustains the growth of acute myeloid leukaemia. Leukemia 2017; 32:911-919. [PMID: 29209041 PMCID: PMC5886071 DOI: 10.1038/leu.2017.342] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/23/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
The E3 ubiquitin ligase (E3) WWP1 is an oncogenic factor implicated in the maintenance of different types of epithelial cancers. The role of WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) in haematological neoplasms remains unknown. Acute myeloid leukaemia (AML) is characterized by the expansion of malignant myeloid cells blocked at different stages of differentiation. Here we report that the expression of WWP1 is significantly augmented in a large cohort of primary AML patients and in AML cell lines, compared with haematopoietic cells from healthy donors. We show that WWP1 inactivation severely impairs the growth of primary AML blasts and cell lines in vitro. In vivo, we observed a reduced leukaemogenic potential of WWP1-depleted AML cells upon transplantation into immunocompromised mice. Mechanistically, WWP1 inactivation induces the accumulation of its protein substrate p27Kip1, which ultimately contributes to G0/G1 cell cycle arrest of AML blasts. In addition, WWP1 depletion triggers the autophagy signalling and reduces survival of leukaemic cells. Collectively, our findings provide molecular insights into the anti-cancer potential of WWP1 inhibition, suggesting that this E3 is a promising biomarker and druggable target in AML.
Collapse
|
44
|
Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells. Int J Biochem Cell Biol 2017; 93:32-40. [DOI: 10.1016/j.biocel.2017.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
|
45
|
Liu T, Zhang Z, Yu C, Zeng C, Xu X, Wu G, Huang Z, Li W. Tetrandrine antagonizes acute megakaryoblastic leukaemia growth by forcing autophagy-mediated differentiation. Br J Pharmacol 2017; 174:4308-4328. [PMID: 28901537 DOI: 10.1111/bph.14031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The poor prognosis of acute megakaryoblastic leukaemia (AMKL) means there is a need to develop novel therapeutic methods to treat this condition. It was recently shown that inducing megakaryoblasts to undergo terminal differentiation is effective as a treatment for AMKL. This encouraged us to identify a compound that induces megakaryocyte differentiation, which could then act as a potent anti-leukaemia agent. EXPERIMENTAL APPROACH The effects of tetrandrine on the expression of CD41 and cell morphology were investigated in AMKL cells. We used CRISPR/Cas9 knockout system to knock out ATG7 and verify the role of autophagy in tetrandrine-induced megakaryocyte differentiation. shNotch1 and CA-Akt were transfected into K562 cells to examine the downstream pathways of ROS signalling and the mechanistic basis of the tetrandrine-induced megakaryocyte differentiation. The anti-leukaemia effects of tetrandrine were analysed both in vitro and in vivo. KEY RESULTS A low dose of tetrandrine induced cell cycle arrest and megakaryocyte differentiation in AMKL cells via activation of autophagy. Molecularly, we demonstrated that this effect is mediated by activation of Notch1 and Akt and subsequent accumulation of ROS. In contrast, in normal mouse fetal liver cells, although tetrandrine induced autophagy, it did not affect cell proliferation or promote megakaryocyte differentiation, suggesting a specific effect of tetrandrine in malignant megakaryoblasts. Finally, tetrandrine also showed in vivo efficacy in an AMKL xenograft mouse model. CONCLUSIONS AND IMPLICATIONS Modulating autophagy-mediated differentiation may be a novel strategy for treating AMKL, and tetrandrine has the potential to be developed as a differentiation-inducing agent for AMKL chemotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenxing Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunjie Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoqing Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guixian Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zan Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Dembitz V, Lalic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside-induced autophagy flux during differentiation of monocytic leukemia cells. Cell Death Discov 2017; 3:17066. [PMID: 28975042 PMCID: PMC5624282 DOI: 10.1038/cddiscovery.2017.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/29/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Pharmacological modulators of AMP-dependent kinase (AMPK) have been suggested in treatment of cancer. The biguanide metformin and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) have been reported to inhibit proliferation of solid tumors and hematological malignancies, but their role in differentiation is less explored. Our previous study demonstrated that AICAR alone induced AMPK-independent expression of differentiation markers in monocytic U937 leukemia cells, and no such effects were observed in response to metformin. The aim of this study was to determine the mechanism of AICAR-mediated effects and to test for the possible role of autophagy in differentiation of leukemia cells. The results showed that AICAR-mediated effects on the expression of differentiation markers were not mimicked by A769662, a more specific direct AMPK activator. Long-term incubation of U937 cells with AICAR and other differentiation agents, all-trans-retinoic acid (ATRA) and phorbol 12-myristate 13-acetate, increased the expression of the autophagy marker LC3B-II, and these effects were not observed in response to metformin. Western blot and immunofluorescence analyses of U937 cells treated with bafilomycin A1 or transfected with mRFP-GFP-LC3 proved that the increase in the expression of LC3B-II was due to an increase in autophagy flux, and not to a decrease in lysosomal degradation. 3-Methyladenine inhibited the expression of differentiation markers in response to all inducers, but had stimulatory effects on autophagy flux at dose that effectively inhibited the production of phosphatidylinositol 3-phosphate. The small inhibitory RNA-mediated down-modulation of Beclin 1 and hVPS34 had no effects on AICAR and ATRA-mediated increase in the expression of differentiation markers. These results show that AICAR and other differentiation agents induce autophagy flux in U937 cells and that the effects of AICAR and ATRA on the expression of differentiation markers do not depend on the normal levels of key proteins of the classical or canonical autophagy pathway.
Collapse
Affiliation(s)
- Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| | - Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| |
Collapse
|
47
|
Yuan R, Hou Y, Sun W, Yu J, Liu X, Niu Y, Lu JJ, Chen X. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann N Y Acad Sci 2017; 1401:19-27. [DOI: 10.1111/nyas.13387] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Renyikun Yuan
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Yanan Niu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| |
Collapse
|
48
|
You L, Jin S, Zhu L, Qian W. Autophagy, autophagy-associated adaptive immune responses and its role in hematologic malignancies. Oncotarget 2017; 8:12374-12388. [PMID: 27902471 PMCID: PMC5355352 DOI: 10.18632/oncotarget.13583] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that leads to the degradation of cytoplasmatic components such as aggregated/misfolded proteins and organelles through the lysosomal machinery. Recent studies suggest that autophagy plays such a role in the context of the anti-tumor immune response, make it an attractive target for cancer immunotherapy. Defective autophagy in hematopoietic stem cells may contribute to the development of hematologic malignancies, including leukemia, myelodysplastic syndrome, and lymphoproliferative disorder. In blood cancer cells, autophagy can either result in chemoresistance or induce autophagic cell death that may act as immunogenic. Based on the successful experimental findings in vitro and in vivo, clinical trials of autophagy inhibitor such as hydroxychloroquine in combination with chemotherapy in patients with blood cancers are currently underway. However, autophagy inactivation might impair autophagy-triggered anticancer immunity, whereas induction of autophagy might become an effective immunotherapy. These aspects are discussed in this review together with a brief introduction to the autophagic molecular machinery and its roles in hematologic malignancies.
Collapse
Affiliation(s)
- Liangshun You
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Shenhe Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| |
Collapse
|
49
|
Combination of Arsenic trioxide and Everolimus (Rad001) synergistically induces both autophagy and apoptosis in prostate cancer cells. Oncotarget 2017; 8:11206-11218. [PMID: 28061438 PMCID: PMC5355258 DOI: 10.18632/oncotarget.14493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
The inhibitor of PI3K-AKT-mTOR pathway, such as Rad001, has not shown therapeutic efficacy as a single agent in prostate cancer. Arsenic trioxide induces the autophagic pathway in prostate cancer cells. We identified Arsenic trioxide can synergize with Rad001 to induce cytotoxicity of prostate cancer cells. Moreover, we identified synergistic induction of autophagy and apoptosis as the underlying mechanism. This enhanced autophagic cell death is accompanied by increased Beclin1 mRNA stability as well as upregulation of ATG5-ATG12 conjugate, Beclin1, and LC3-2. Rad001 and ATO also can synergistically inhibit tumors in prostate cancer xenograft animal model. These results identify and validate a novel mechanism to enhance and expand the existing targeted therapeutic agent to treat prostate cancer.
Collapse
|
50
|
Nagappan A, Lee WS, Yun JW, Lu JN, Chang SH, Jeong JH, Kim GS, Jung JM, Hong SC. Tetraarsenic hexoxide induces G2/M arrest, apoptosis, and autophagy via PI3K/Akt suppression and p38 MAPK activation in SW620 human colon cancer cells. PLoS One 2017; 12:e0174591. [PMID: 28355296 PMCID: PMC5371332 DOI: 10.1371/journal.pone.0174591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/11/2017] [Indexed: 01/11/2023] Open
Abstract
Tetraarsenic hexoxide (As4O6) has been used in Korean folk medicines for the treatment of cancer, however its anti-cancer mechanisms remain obscured. Here, this study investigated the anti-cancer effect of As4O6 on SW620 human colon cancer cells. As4O6 has showed a dose-dependent inhibition of SW620 cells proliferation. As4O6 significantly increased the sub-G1 and G2/M phase population, and Annexin V-positive cells in a dose-dependent manner. G2/M arrest was concomitant with augment of p21 and reduction in cyclin B1, cell division cycle 2 (cdc 2) expressions. Nuclear condensation, cleaved nuclei and poly (adenosine diphosphate‑ribose) polymerase (PARP) activation were also observed in As4O6-treated SW620 cells. As4O6 induced depolarization of mitochondrial membrane potential (MMP, ΔΨm) but not reactive oxygen species (ROS) generation. Further, As4O6 increased death receptor 5 (DR5), not DR4 and suppressed the B‑cell lymphoma‑2 (Bcl-2) and X-linked inhibitor of apoptosis protein (XIAP) family proteins. As4O6 increased the formation of AVOs (lysosomes and autophagolysosomes) and promoted the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3)-I to LC3-II in a dose- and time- dependent manner. Interestingly, a specific phosphoinositide 3-kinase (PI3K)/Akt inhibitor (LY294002) augmented the As4O6 induced cell death; whereas p38 mitogen-activated protein kinases (p38 MAPK) inhibitor (SB203580) abrogated the cell death. Thus, the present study provides the first evidence that As4O6 induced G2/M arrest, apoptosis and autophagic cell death through PI3K/Akt and p38 MAPK pathways alteration in SW620 cells.
Collapse
Affiliation(s)
- Arulkumar Nagappan
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, 90 Chilam-dong Jinju, Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, 90 Chilam-dong Jinju, Korea
- * E-mail: ,
| | - Jeong Won Yun
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, 90 Chilam-dong Jinju, Korea
| | - Jing Nan Lu
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, 90 Chilam-dong Jinju, Korea
| | - Seong-Hwan Chang
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Jae-Hoon Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju, Korea
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, 90 Chilam-dong Jinju, Korea
| | - Soon Chan Hong
- Department of Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, 90 Chilam-dong Jinju, Korea
| |
Collapse
|