1
|
Tamborrino T, Bonente D, Regoli M, Costa V, Barone V, Giacomello E, Collodel G, Fagni N, Nicoletti C, Bertelli E. Morphological Characterization of Intrafollicular Epithelial Bodies (IFEBs) in Rabbit Peyer's Patches. Int J Mol Sci 2025; 26:3207. [PMID: 40244033 PMCID: PMC11989947 DOI: 10.3390/ijms26073207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Follicle-associated epithelium (FAE) covering the lymphoid follicles of Peyer's patches (PPs) plays a central role in mucosal immunity. Here, we investigated FAE-derived intrafollicular epithelial bodies (IFEBs) that apparently detach from the FAE and sink deep into the lymphoid tissue of the PPs. Analysis of rabbit PP FAE was carried out by a variety of microscopy and immunohistochemistry techniques using a panel of specific antibodies to determine the nature of the IFEBs. IFEBs displayed the typical features of the FAE, with cytokeratin (CK)+ epithelial cells and CK+/vimentin+ M-cell-like cells. Serial sections of PP tissues showed that the IFEBs are formations frequently separated by the overlying FAE that maintains its integrity. Further, IFEBs showed the presence of junction-associated molecules like zonulin-1 and desmoplakins. Also, IFEBs apparently disaggregate within the lymphoid tissue, as demonstrated by basement membrane disappearance and the finding of isolated epithelial cells that acquire the features of non-polarized epithelial cells. Segments of the FAE in rabbit PPs can detach, forming IFEBs that migrate inside the lymphoid tissue. Although the biological relevance of the newly described IFEBs remains to be determined, we interpreted these data as showing the highly dynamic nature of the PP-associated FAE.
Collapse
Affiliation(s)
- Tiziana Tamborrino
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (T.T.); (D.B.); (V.C.); (V.B.); (G.C.)
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Denise Bonente
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (T.T.); (D.B.); (V.C.); (V.B.); (G.C.)
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Marì Regoli
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (T.T.); (D.B.); (V.C.); (V.B.); (G.C.)
| | - Valentina Costa
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (T.T.); (D.B.); (V.C.); (V.B.); (G.C.)
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (T.T.); (D.B.); (V.C.); (V.B.); (G.C.)
| | - Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada Fiume, 447, 34149 Trieste, Italy;
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (T.T.); (D.B.); (V.C.); (V.B.); (G.C.)
| | - Niccolò Fagni
- Otorinolaringoiatry, AOUS (Azienda Ospedaliero-Universitaria Senese), 53100 Siena, Italy;
| | - Claudio Nicoletti
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (T.T.); (D.B.); (V.C.); (V.B.); (G.C.)
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (T.T.); (D.B.); (V.C.); (V.B.); (G.C.)
| |
Collapse
|
2
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Mangeol P, Massey-Harroche D, Sebbagh M, Richard F, Le Bivic A, Lenne PF. The zonula adherens matura redefines the apical junction of intestinal epithelia. Proc Natl Acad Sci U S A 2024; 121:e2316722121. [PMID: 38377188 PMCID: PMC10907237 DOI: 10.1073/pnas.2316722121] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Cell-cell apical junctions of epithelia consist of multiprotein complexes that organize as belts regulating cell-cell adhesion, permeability, and mechanical tension: the tight junction (zonula occludens), the zonula adherens (ZA), and the macula adherens. The prevailing dogma is that at the ZA, E-cadherin and catenins are lined with F-actin bundles that support and transmit mechanical tension between cells. Using super-resolution microscopy on human intestinal biopsies and Caco-2 cells, we show that two distinct multiprotein belts are basal of the tight junctions as the intestinal epithelia mature. The most apical is populated with nectins/afadin and lined with F-actin; the second is populated with E-cad/catenins. We name this dual-belt architecture the zonula adherens matura. We find that the apical contraction apparatus and the dual-belt organization rely on afadin expression. Our study provides a revised description of epithelial cell-cell junctions and identifies a module regulating the mechanics of epithelia.
Collapse
Affiliation(s)
- Pierre Mangeol
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Dominique Massey-Harroche
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Michael Sebbagh
- Aix Marseille Université, INSERM, Dynamics and Nanoenvironment of Biological Membrane, DyNaMo, Turing Center for Living Systems, Marseille 13009, France
| | - Fabrice Richard
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - André Le Bivic
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Pierre-François Lenne
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Turing Center for Living Systems, Marseille13009, France
| |
Collapse
|
4
|
Xie P, Kancherla K, Chandramohan S, Braidy N, Chan EKW, Xu YH, Chan DKY. Involvement of single nucleotide polymorphisms of junction adhesion molecule with small vessel vascular dementia. Aging Med (Milton) 2023; 6:347-352. [PMID: 38239713 PMCID: PMC10792332 DOI: 10.1002/agm2.12278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Objectives It is now recognized that blood brain barrier (BBB) leakage occurs in cerebral small vascular disease (CSVD) and plays a significant role in the pathophysiology of vascular dementia. We hypothesized that genetic polymorphisms of junctional adhesion molecule-A (JAM-A) (which may result in compromised structure of tight junction proteins that form the BBB) in combination with cerebrovascular risk factors hypertension, lipid disorders, and type 2 diabetes may result in BBB leakage and increase the individual's risk of CSVD-related dementia. Methods In this case-control study, 97 controls with a mean Mini-Mental State Exam (MMSE) score of 29 and 38 CSVD-related vascular dementia participants (mean MMSE score of 19) were recruited. Bloods were collected for the analysis of two common single nucleotide polymorphisms (SNPs) of the JAM-A genotypes rs790056 and rs2481084 using real-time polymerase chain reaction (PCR) assay. Medical history of hypertension, hyperlipidemia, and diabetes was collected for all participants. Results Polymorphisms of genotype JAM-A SNP rs790056 showed statistically significant result when the subgroup with hyperlipidemia was analyzed (OR = 3.130, p = 0.042 for TC + CC genotypes with hyperlipidaemia vs controls). Similar result was found with diabetes (OR = 4.670, p = 0.031 for TC + CC genotypes vs controls). No significant result was found with hypertension. Borderline results of statistical significance were found for JAM-A SNP rs2481084 with hyperlipidemia (OR = 3.210, p = 0.054 for TC + CC genotypes vs controls) and with diabetes (OR = 3.620, p = 0.069 for TC + CC genotypes vs controls) but not for hypertension. The borderline results might have been due to lack of statistical power because of small sample size. Conclusions These results lend further support that cerebrovascular risk factors interact with genetic polymorphisms of BBB proteins to increase the risk of vascular dementia.
Collapse
Affiliation(s)
- Peter Xie
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kiran Kancherla
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Nady Braidy
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Ingham InstituteLiverpoolNew South WalesAustralia
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Ying Hua Xu
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Ingham InstituteLiverpoolNew South WalesAustralia
- Department of Aged Care and RehabilitationBankstown HospitalBankstownNew South WalesAustralia
| | - Daniel K. Y. Chan
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Ingham InstituteLiverpoolNew South WalesAustralia
- Department of Aged Care and RehabilitationBankstown HospitalBankstownNew South WalesAustralia
| |
Collapse
|
5
|
Iyengar R, Deardorff M, Schmidt R, Nagiel A. Retinal manifestations in autosomal recessive MPDZ maculopathy: report of two cases and literature review. Ophthalmic Genet 2023; 44:572-576. [PMID: 36594712 PMCID: PMC10315413 DOI: 10.1080/13816810.2022.2161580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND To present the retinal and systemic findings in two siblings with compound heterozygous MPDZ variants that were found to have different chorioretinal manifestations. Materials and Methods: Two sibling patients underwent comprehensive ophthalmic examination, including ophthalmoscopy, fundus photography, optical coherence tomography (OCT), and genetic testing by whole exome sequencing. RESULTS A 4-year-old male presented with intermittent exotropia and decreased vision in both eyes. Ophthalmologic examination was notable for macular colobomas and far temporal chorioretinal atrophy in both eyes. OCT of the macula in both eyes demonstrated a caldera with severe retinal and choroidal thinning. Fluorescein angiography of the central macula showed hypofluorescence with persistence of deep choroidal vessels. An ocular gene panel was nondiagnostic, but subsequent whole-exome sequencing noted compound heterozygous, likely pathogenic MPDZ variants (c.3100C>T p.(Arg1034*) from father and c.747 + 2T>G p.(?) from mother). His older brother, a 9-year-old male, had a history of macrocephaly but had not undergone further workup. On exam, he had a visual acuity of 20/25 in the right eye and 20/40 in the left eye and was found to have subtle changes in the foveal reflex of both eyes. OCT revealed thinning of the outer nuclear layer (ONL) temporal to the fovea bilaterally. Sanger sequencing revealed he was positive for the same two MPDZ variants. CONCLUSIONS MPDZ variants have been described in cases of congenital hydrocephalus with varying ophthalmologic manifestations. We present a case series describing retinal phenotypes associated with MPDZ variants in a single family through multimodal imaging.
Collapse
Affiliation(s)
- Rahul Iyengar
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, California
| | - Matthew Deardorff
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ryan Schmidt
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Aaron Nagiel
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
6
|
Pan C, Xu A, Ma X, Yao Y, Zhao Y, Wang C, Chen C. Research progress of Claudin-low breast cancer. Front Oncol 2023; 13:1226118. [PMID: 37904877 PMCID: PMC10613467 DOI: 10.3389/fonc.2023.1226118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Claudin-low breast cancer (CLBC) is a subgroup of breast cancer discovered at the molecular level in 2007. Claudin is one of the primary proteins that make up tight junctions, and it plays crucial roles in anti-inflammatory and antitumor responses as well as the maintenance of water and electrolyte balance. Decreased expression of claudin results in the disruption of tight junction structures and the activation of downstream signaling pathways, which can lead to tumor formation. The origin of Claudin-low breast cancer is still in dispute. Claudin-low breast cancer is characterized by low expression of Claudin3, 4, 7, E-cadherin, and HER2 and high expression of Vimentin, Snai 1/2, Twist 1/2, Zeb 1/2, and ALDH1, as well as stem cell characteristics. The clinical onset of claudin-low breast cancer is at menopause age, and its histological grade is higher. This subtype of breast cancer is more likely to spread to lymph nodes than other subtypes. Claudin-low breast cancer is frequently accompanied by increased invasiveness and a poor prognosis. According to a clinical retrospective analysis, claudin-low breast cancer can achieve low pathological complete remission. At present, although several therapeutic targets of claudin-low breast cancer have been identified, the effective treatment remains in basic research stages, and no animal studies or clinical trials have been designed. The origin, molecular biological characteristics, pathological characteristics, treatment, and prognosis of CLBC are extensively discussed in this article. This will contribute to a comprehensive understanding of CLBC and serve as the foundation for the individualization of breast cancer treatment.
Collapse
Affiliation(s)
- Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Anqi Xu
- Kunming Medical University, Kunming, Yunnan, China
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Ma
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Yanfei Yao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Youmei Zhao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Structure Composition and Intracellular Transport of Clathrin-Mediated Intestinal Transmembrane Tight Junction Protein. Inflammation 2023; 46:18-34. [PMID: 36050591 DOI: 10.1007/s10753-022-01724-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Tight junctions (TJs) are located in the apical region of the junctions between epithelial cells and are widely found in organs such as the brain, retina, intestinal epithelium, and endothelial system. As a mechanical barrier of the intestinal mucosa, TJs can not only maintain the integrity of intestinal epithelial cells but also maintain intestinal mucosal permeability by regulating the entry of ions and molecules into paracellular channels. Therefore, the formation disorder or integrity destruction of TJs can induce damage to the intestinal epithelial barrier, ultimately leading to the occurrence of various gastrointestinal diseases, such as inflammatory bowel disease (IBD), gastroesophageal reflux disease (GERD), and irritable bowel syndrome (IBS). However, a large number of studies have shown that TJs protein transport disorder from the endoplasmic reticulum to the apical membrane can lead to TJs formation disorder, in addition to disruption of TJs integrity caused by external pathological factors and reduction of TJs protein synthesis. In this review, we focus on the structural composition of TJs, the formation of clathrin-coated vesicles containing transmembrane TJs from the Golgi apparatus, and the transport process from the Golgi apparatus to the plasma membrane via microtubules and finally fusion with the plasma membrane. At present, the mechanism of the intracellular transport of TJ proteins remains unclear. More studies are needed in the future to focus on the sorting of TJs protein vesicles, regulation of transport processes, and recycling of TJ proteins, etc.
Collapse
|
8
|
Fermented Glutinous Rice Extract Mitigates DSS-Induced Ulcerative Colitis by Alleviating Intestinal Barrier Function and Improving Gut Microbiota and Inflammation. Antioxidants (Basel) 2023; 12:antiox12020336. [PMID: 36829894 PMCID: PMC9951866 DOI: 10.3390/antiox12020336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease caused by various factors, including intestinal inflammation and barrier dysfunction. Herein, we determined the effects of fermented glutinous rice (FGR) on the expression of tight junction proteins and levels of inflammation and apoptosis in the dextran sodium sulfate (DSS)-induced acute colitis model. FGR was orally administered once per day to C57BL/6J mice with colitis induced by 5% DSS in drinking water. FGR administration recovered DSS-induced body weight loss and irregularly short colon lengths. FGR inhibited the DSS-induced decrease in FITC-dextran (FD)-4 permeability and myeloperoxidase activity. Moreover, FGR treatment repaired the reduction of zonula occluden-1 (ZO-1) and occludin expression and the increase in claudin-2 expression in colonic tissue relative to that following DSS administration. FGR treatment significantly recovered expression of cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, in serum or respective mRNA expression in colonic tissue relative to that following DSS administration. FGR regulated levels of oxidative stress-related factors, such as malondialdehyde and glutathione, and the activity of catalase and superoxide dismutase in the colon tissue of the DSS-induced acute colitis mice model. Furthermore, FGR treatment inhibited apoptosis by reducing the activity of caspase-3 and the ratio of Bcl-2 associated X (Bax)/B-cell lymphoma 2 (Bcl-2). Collectively, FGR treatment protected the intestinal barrier from dysfunction and inhibited inflammation and apoptosis in DSS-induced colitis. Therefore, FGR may decrease the inflammatory response and be a candidate for treating and prevention inflammatory bowel disease by protecting the intestinal integrity.
Collapse
|
9
|
Novel Compound Heterozygous Variations in MPDZ Gene Caused Isolated Bilateral Macular Coloboma in a Chinese Family. Cells 2022; 11:cells11223602. [PMID: 36429029 PMCID: PMC9688216 DOI: 10.3390/cells11223602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Macular coloboma (MC) is a rare congenital retinochoroidal defect characterized by lesions of different sizes in the macular region. The pathological mechanism underlying congenital MC is unknown. Novel compound heterozygous variations, c.4301delA (p.Asp1434fs*3) and c.5255C>G (p.Ser1752Ter), in the multiple PDZ domain (MPDZ) proteins were identified via whole-exome analysis on the proband with isolated bilateral macular coloboma in a Chinese family. Segregation analysis revealed that each of the unaffected parents was heterozygous for one of the two variants. The results of the in silico and bioinformatics analysis were aligned with the experimental data. The knockdown of MPDZ in zebrafish caused a decrease in the ellipsoid zone, a destruction of the outer limiting membrane, and the subsequent RPE degeneration. Overall, the loss of MPDZ in zebrafish contributed to retinal development failure. These results indicate that MPDZ plays an essential role in the occurrence and maintenance of the macula, and the novel compound heterozygous variations were responsible for an autosomal recessive macular deficiency in this Chinese family.
Collapse
|
10
|
Castiglioni VG, Ramalho JJ, Kroll JR, Stucchi R, van Beuzekom H, Schmidt R, Altelaar M, Boxem M. Identification and characterization of Crumbs polarity complex proteins in Caenorhabditis elegans. J Biol Chem 2022; 298:101786. [PMID: 35247383 PMCID: PMC9006659 DOI: 10.1016/j.jbc.2022.101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - João J Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Stucchi
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands; Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hanna van Beuzekom
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Maarten Altelaar
- Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Lande NV, Barua P, Gayen D, Wardhan V, Jeevaraj T, Kumar S, Chakraborty S, Chakraborty N. Dehydration-responsive chickpea chloroplast protein, CaPDZ1, confers dehydration tolerance by improving photosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13613. [PMID: 35199362 DOI: 10.1111/ppl.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/27/2023]
Abstract
The screening of a dehydration-responsive chloroplast proteome of chickpea led us to identify and investigate the functional importance of an uncharacterized protein, designated CaPDZ1. In all, we identified 14 CaPDZs, and phylogenetic analysis revealed that these belong to photosynthetic eukaryotes. Sequence analyses of CaPDZs indicated that CaPDZ1 is a unique member, which harbours a TPR domain besides a PDZ domain. The global expression analysis showed that CaPDZs are intimately associated with various stresses such as dehydration and oxidative stress along with certain phytohormone responses. The CaPDZ1-overexpressing chickpea seedlings exhibited distinct phenotypic and molecular responses, particularly increased photosystem (PS) efficiency, ETR and qP that validated its participation in PSII complex assembly and/or repair. The investigation of CaPDZ1 interacting proteins through Y2H library screening and co-IP analysis revealed the interacting partners to be PSII associated CP43, CP47, D1, D2 and STN8. These findings supported the earlier hypothesis regarding the role of direct or indirect involvement of PDZ proteins in PS assembly or repair. Moreover, the GUS-promoter analysis demonstrated the preferential expression of CaPDZ1 specifically in photosynthetic tissues. We classified CaPDZ1 as a dehydration-responsive chloroplast intrinsic protein with multi-fold abundance under dehydration stress, which may participate synergistically with other chloroplast proteins in the maintenance of the photosystem.
Collapse
Affiliation(s)
- Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Vijay Wardhan
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Theboral Jeevaraj
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| |
Collapse
|
12
|
Bharadwaj T, Schrauwen I, Rehman S, Liaqat K, Acharya A, Giese APJ, Nouel-Saied LM, Nasir A, Everard JL, Pollock LM, Zhu S, Bamshad MJ, Nickerson DA, Ali RH, Ullah A, Wali A, Ali G, Santos-Cortez RLP, Ahmed ZM, McDermott BM, Ansar M, Riazuddin S, Ahmad W, Leal SM. ADAMTS1, MPDZ, MVD, and SEZ6: candidate genes for autosomal recessive nonsyndromic hearing impairment. Eur J Hum Genet 2022; 30:22-33. [PMID: 34135477 PMCID: PMC8738740 DOI: 10.1038/s41431-021-00913-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022] Open
Abstract
Hearing impairment (HI) is a common disorder of sensorineural function with a highly heterogeneous genetic background. Although substantial progress has been made in the understanding of the genetic etiology of hereditary HI, many genes implicated in HI remain undiscovered. Via exome and Sanger sequencing of DNA samples obtained from consanguineous Pakistani families that segregate profound prelingual sensorineural HI, we identified rare homozygous missense variants in four genes (ADAMTS1, MPDZ, MVD, and SEZ6) that are likely the underlying cause of HI. Linkage analysis provided statistical evidence that these variants are associated with autosomal recessive nonsyndromic HI. In silico analysis of the mutant proteins encoded by these genes predicted structural, conformational or interaction changes. RNAseq data analysis revealed expression of these genes in the sensory epithelium of the mouse inner ear during embryonic, postnatal, and adult stages. Immunohistochemistry of the mouse cochlear tissue, further confirmed the expression of ADAMTS1, SEZ6, and MPDZ in the neurosensory hair cells of the organ of Corti, while MVD expression was more prominent in the spiral ganglion cells. Overall, supported by in silico mutant protein analysis, animal models, linkage analysis, and spatiotemporal expression profiling in the mouse inner ear, we propose four new candidate genes for HI and expand our understanding of the etiology of HI.
Collapse
Affiliation(s)
- Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Sakina Rehman
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, MD, USA
| | - Khurram Liaqat
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Arnaud P J Giese
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, MD, USA
| | - Liz M Nouel-Saied
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Abdul Nasir
- Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jenna L Everard
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Lana M Pollock
- Case Western Reserve University, Department of Otolaryngology, Head and Neck Surgery, Cleveland, OH, USA
| | - Shaoyuan Zhu
- Case Western Reserve University, Department of Otolaryngology, Head and Neck Surgery, Cleveland, OH, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Raja Hussain Ali
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abdul Wali
- Department of Biotechnology and Informatics, Faculty of Life Sciences and Informatics, BUITEMS, Quetta, Pakistan
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, MD, USA
| | - Brian M McDermott
- Case Western Reserve University, Department of Otolaryngology, Head and Neck Surgery, Cleveland, OH, USA
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, MD, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Dynamic, but Not Necessarily Disordered, Human-Virus Interactions Mediated through SLiMs in Viral Proteins. Viruses 2021; 13:v13122369. [PMID: 34960638 PMCID: PMC8703344 DOI: 10.3390/v13122369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Most viruses have small genomes that encode proteins needed to perform essential enzymatic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database.
Collapse
|
14
|
Czubak-Prowizor K, Babinska A, Swiatkowska M. The F11 Receptor (F11R)/Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A) in cancer progression. Mol Cell Biochem 2021; 477:79-98. [PMID: 34533648 PMCID: PMC8755661 DOI: 10.1007/s11010-021-04259-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022]
Abstract
The F11 Receptor (F11R), also called Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A), is a transmembrane glycoprotein of the immunoglobulin superfamily, which is mainly located in epithelial and endothelial cell tight junctions and also expressed on circulating platelets and leukocytes. It participates in the regulation of various biological processes, as diverse as paracellular permeability, tight junction formation and maintenance, leukocyte transendothelial migration, epithelial-to-mesenchymal transition, angiogenesis, reovirus binding, and platelet activation. Dysregulation of F11R/JAM-A may result in pathological consequences and disorders in normal cell function. A growing body of evidence points to its role in carcinogenesis and invasiveness, but its tissue-specific pro- or anti-tumorigenic role remains a debated issue. The following review focuses on the F11R/JAM-A tissue-dependent manner in tumorigenesis and metastasis and also discusses the correlation between poor patient clinical outcomes and its aberrant expression. In the future, it will be required to clarify the signaling pathways that are activated or suppressed via the F11R/JAM-A protein in various cancer types to understand its multiple roles in cancer progression and further use it as a novel direct target for cancer treatment.
Collapse
Affiliation(s)
- Kamila Czubak-Prowizor
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215, Lodz, Poland.
| | - Anna Babinska
- Department of Medicine, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Maria Swiatkowska
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215, Lodz, Poland
| |
Collapse
|
15
|
Jarysta A, Tarchini B. Multiple PDZ domain protein maintains patterning of the apical cytoskeleton in sensory hair cells. Development 2021; 148:270996. [PMID: 34228789 DOI: 10.1242/dev.199549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
Sound transduction occurs in the hair bundle, the apical compartment of sensory hair cells in the inner ear. The hair bundle is formed of actin-based stereocilia aligned in rows of graded heights. It was previously shown that the GNAI-GPSM2 complex is part of a developmental blueprint that defines the polarized organization of the apical cytoskeleton in hair cells, including stereocilia distribution and elongation. Here, we report a role for multiple PDZ domain (MPDZ) protein during apical hair cell morphogenesis in mouse. We show that MPDZ is enriched at the hair cell apical membrane along with MAGUK p55 subfamily member 5 (MPP5/PALS1) and the Crumbs protein CRB3. MPDZ is required there to maintain the proper segregation of apical blueprint proteins, including GNAI-GPSM2. Loss of the blueprint coincides with misaligned stereocilia placement in Mpdz mutant hair cells, and results in permanently misshapen hair bundles. Graded molecular and structural defects along the cochlea can explain the profile of hearing loss in Mpdz mutants, where deficits are most severe at high frequencies.
Collapse
Affiliation(s)
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.,Department of Medicine, Tufts University, Boston, MA 02111, USA.,Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME 04469, USA
| |
Collapse
|
16
|
Popova OP, Kuznetsova AV, Bogomazova SY, Ivanov AA. Claudins as biomarkers of differential diagnosis and prognosis of tumors. J Cancer Res Clin Oncol 2021; 147:2803-2817. [PMID: 34241653 DOI: 10.1007/s00432-021-03725-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Claudins are a superfamily of transmembrane proteins, the optimal expression and localization of which are important for the normal physiological function of the epithelium and any imbalance may have pathological consequences. Not only insufficient but also excessive production of claudins in cancer cells, as well as their aberrant localization, equally manifest the formation of a malignant phenotype. Many works are distinguished by contradictory data, which demonstrate the action of the same claudins both in the role of tumor-growth suppressors and promoters in the same cancers. The most important possible causes of significant discrepancies in the results of the works are a considerable variability of sampling and the absence of a consistent approach both to the assessment of the immune reactivity of claudins and to the differential analysis of their subcellular localization. Combined, these drawbacks hinder the histological assessment of the link between claudins and tumor progression. In particular, ambiguous expression of claudins in breast cancer subtypes, revealed by various authors in immunohistochemical analysis, not only fails to facilitate the identification of the claudin-low molecular subtype but rather complicates these efforts. Research into the role of claudins in carcinogenesis has undoubtedly confirmed the potential value of this class of proteins as significant biomarkers in some cancer types; however, the immunohistochemical approach to the assessment of claudins still has limitations, needs standardization, and, to date, has not reached a diagnostic or a prognostic value.
Collapse
Affiliation(s)
- Olga P Popova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia
| | - Alla V Kuznetsova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Svetlana Yu Bogomazova
- Department of Pathology, National Medical Research Treatment and Rehabilitation Centre, Ministry of Health of the Russian Federation, Ivankovskoe shosse, 3, Moscow, 125367, Russia
| | - Alexey A Ivanov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.
| |
Collapse
|
17
|
Scalise AA, Kakogiannos N, Zanardi F, Iannelli F, Giannotta M. The blood-brain and gut-vascular barriers: from the perspective of claudins. Tissue Barriers 2021; 9:1926190. [PMID: 34152937 PMCID: PMC8489939 DOI: 10.1080/21688370.2021.1926190] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In some organs, such as the brain, endothelial cells form a robust and highly selective blood-to-tissue barrier. However, in other organs, such as the intestine, endothelial cells provide less stringent permeability, to allow rapid exchange of solutes and nutrients where needed. To maintain the structural and functional integrity of the highly dynamic blood–brain and gut–vascular barriers, endothelial cells form highly specialized cell-cell junctions, known as adherens junctions and tight junctions. Claudins are a family of four-membrane-spanning proteins at tight junctions and they have both barrier-forming and pore-forming properties. Tissue-specific expression of claudins has been linked to different diseases that are characterized by barrier impairment. In this review, we summarize the more recent progress in the field of the claudins, with particular attention to their expression and function in the blood–brain barrier and the recently described gut–vascular barrier, under physiological and pathological conditions. Abbreviations: 22q11DS 22q11 deletion syndrome; ACKR1 atypical chemokine receptor 1; AD Alzheimer disease; AQP aquaporin; ATP adenosine triphosphate; Aβ amyloid β; BAC bacterial artificial chromosome; BBB blood-brain barrier; C/EBP-α CCAAT/enhancer-binding protein α; cAMP cyclic adenosine monophosphate (or 3ʹ,5ʹ-cyclic adenosine monophosphate); CD cluster of differentiation; CNS central nervous system; DSRED discosoma red; EAE experimental autoimmune encephalomyelitis; ECV304 immortalized endothelial cell line established from the vein of an apparently normal human umbilical cord; EGFP enhanced green fluorescent protein; ESAM endothelial cell-selective adhesion molecule; GLUT-1 glucose transporter 1; GVB gut-vascular barrier; H2B histone H2B; HAPP human amyloid precursor protein; HEK human embryonic kidney; JACOP junction-associated coiled coil protein; JAM junctional adhesion molecules; LYVE1 lymphatic vessel endothelial hyaluronan receptor 1; MADCAM1 mucosal vascular addressin cell adhesion molecule 1; MAPK mitogen-activated protein kinase; MCAO middle cerebral artery occlusion; MMP metalloprotease; MS multiple sclerosis; MUPP multi-PDZ domain protein; PATJ PALS-1-associated tight junction protein; PDGFR-α platelet-derived growth factor receptor α polypeptide; PDGFR-β platelet-derived growth factor receptor β polypeptide; RHO rho-associated protein kinase; ROCK rho-associated, coiled-coil-containing protein kinase; RT-qPCR real time quantitative polymerase chain reactions; PDGFR-β soluble platelet-derived growth factor receptor, β polypeptide; T24 human urinary bladder carcinoma cells; TG2576 transgenic mice expressing the human amyloid precursor protein; TNF-α tumor necrosis factor α; WTwild-type; ZO zonula occludens.
Collapse
|
18
|
Mesenchymal-Epithelial Transition in Fibroblasts of Human Normal Lungs and Interstitial Lung Diseases. Biomolecules 2021; 11:biom11030378. [PMID: 33806618 PMCID: PMC8000192 DOI: 10.3390/biom11030378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
In passages above ten and growing very actively, we observed that some human lung fibroblasts cultured under standard conditions were transformed into a lineage of epithelial-like cells (ELC). To systematically evaluate the possible mesenchymal–epithelial transition (MET) occurrence, fibroblasts were obtained from normal lungs and also from lungs affected by idiopathic interstitial diseases. When an unusual epithelial-like phenotypic change was observed, cultured cells were characterized by confocal immunofluorescence microscopy, immunoblotting, immunocytochemistry, cytofluorometry, gelatin zymography, RT-qPCR, and hybridization in a whole-transcript human microarray. Additionally, microvesicles fraction (MVs) from ELC and fibroblasts were used to induce MET, while the microRNAs (miRNAs) contained in the MVs were identified. Pattern-gene expression of the original fibroblasts and the derived ELC revealed profound changes, upregulating characteristic epithelial-cell genes and downregulating mesenchymal genes, with a marked increase of E-cadherin, cytokeratin, and ZO-1, and the loss of expression of α-SMA, collagen type I, and Thy-1 cell surface antigen (CD90). Fibroblasts, exposed to culture media or MVs from the ELC, acquired ELC phenotype. The miRNAs in MVs shown six expressed exclusively in fibroblasts, and three only in ELC; moreover, twelve miRNAs were differentially expressed between fibroblasts and ELC, all of them but one was overexpressed in fibroblasts. These findings suggest that the MET-like process can occur in human lung fibroblasts, either from normal or diseased lungs. However, the biological implication is unclear.
Collapse
|
19
|
Recruitment of Polarity Complexes and Tight Junction Proteins to the Site of Apical Bulk Endocytosis. Cell Mol Gastroenterol Hepatol 2021; 12:59-80. [PMID: 33548596 PMCID: PMC8082271 DOI: 10.1016/j.jcmgh.2021.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The molecular motor, Myosin Vb (MYO5B), is well documented for its role in trafficking cargo to the apical membrane of epithelial cells. Despite its involvement in regulating apical proteins, the role of MYO5B in cell polarity is less clear. Inactivating mutations in MYO5B result in microvillus inclusion disease (MVID), a disorder characterized by loss of key apical transporters and the presence of intracellular inclusions in enterocytes. We previously identified that inclusions in Myo5b knockout (KO) mice form from invagination of the apical brush border via apical bulk endocytosis. Herein, we sought to elucidate the role of polarity complexes and tight junction proteins during the formation of inclusions. METHODS Intestinal tissue from neonatal control and Myo5b KO littermates was analyzed by immunofluorescence to determine the localization of polarity complexes and tight junction proteins. RESULTS Proteins that make up the apical polarity complexes-Crumbs3 and Pars complexes-were associated with inclusions in Myo5b KO mice. In addition, tight junction proteins were observed to be concentrated over inclusions that were present at the apical membrane of Myo5b-deficient enterocytes in vivo and in vitro. Our mouse findings are complemented by immunostaining in a large animal swine model of MVID genetically engineered to express a human MVID-associated mutation that shows an accumulation of Claudin-2 over forming inclusions. The findings from our swine model of MVID suggest that a similar mechanism of tight junction accumulation occurs in patients with MVID. CONCLUSIONS These data show that apical bulk endocytosis involves the altered localization of apical polarity proteins and tight junction proteins after loss of Myo5b.
Collapse
|
20
|
Jauregi-Miguel A. The tight junction and the epithelial barrier in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:105-132. [PMID: 33707052 DOI: 10.1016/bs.ircmb.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial barriers are essential to maintain multicellular organisms well compartmentalized and protected from external environment. In the intestine, the epithelial layer orchestrates a dynamic balance between nutrient absorption and prevention of microorganisms, and antigen intrusion. Intestinal barrier function has been shown to be altered in coeliac disease but whether it contributes to the pathogenesis development or if it is merely a phenomenon secondary to the aberrant immune response is still unknown. The tight junction complexes are multiprotein cell-cell adhesions that seal the epithelial intercellular space and regulate the paracellular permeability of ions and solutes. These structures have a fundamental role in epithelial barrier integrity as well as in signaling mechanisms that control epithelial-cell polarization, the formation of apical domains and cellular processes such as cell proliferation, migration, differentiation, and survival. In coeliac disease, the molecular structures and function of tight junctions appear disrupted and are not completely recovered after treatment with gluten-free diet. Moreover, zonulin, the only known physiological regulator of the tight junction permeability, appears augmented in autoimmune conditions associated with TJ dysfunction, including coeliac disease. This chapter will examine recent discoveries about the molecular architecture of tight junctions and their functions. We will discuss how different factors contribute to tight junction disruption and intestinal barrier impairment in coeliac disease. To conclude, new insights into zonulin-driven disruption of tight junction structures and barrier integrity in coeliac disease are presented together with the advancements in novel therapy to treat the barrier defect seen in pathogenesis.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden.
| |
Collapse
|
21
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
22
|
Macedo MH, Martínez E, Barrias CC, Sarmento B. Development of an Improved 3D in vitro Intestinal Model to Perform Permeability Studies of Paracellular Compounds. Front Bioeng Biotechnol 2020; 8:524018. [PMID: 33042961 PMCID: PMC7527803 DOI: 10.3389/fbioe.2020.524018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
The small intestine is the primary site of drug absorption following oral administration, making paramount the proper monitoring of the absorption process. In vitro tools to predict intestinal absorption are particularly important in preclinical drug development since they are less laborious and cost-intensive and raise less ethical considerations compared to in vivo studies. The Caco-2 model is considered the gold standard of in vitro intestinal models regarding the prediction of absorption of orally delivered compounds. However, this model presents several drawbacks, such as the expression of tighter tight junctions, not being suitable to perform permeability of paracellular compounds. Besides, cells are representative of only one intestinal cell type, without considering the role of non-absorptive cells on the absorption pathway of drugs. In the present study, we developed a new three-dimensional (3D) intestinal model that aims to bridge the gap between in vitro tools and animal studies. Our 3D model comprises a collagen layer with human intestinal fibroblasts (HIFs) embedded, mimicking the intestinal lamina propria and providing 3D support for the epithelium, composed of Caco-2 cells and mucus-producing HT29-MTX cells, creating a model that can better resemble, both in terms of composition and regarding the outcomes of drug permeability when testing paracellular compounds, the human small intestine. The optimization of the collagen layer with HIFs was performed, testing different collagen concentrations and HIF seeding densities in order to avoid collagen contraction before day 14, maintaining HIF metabolically active inside the collagen disks during time in culture. HIF morphology and extracellular matrix (ECM) deposition were assessed, confirming that fibroblasts presented a normal and healthy elongated shape and secreted fibronectin and laminin, remodeling the collagen matrix. Regarding the epithelial layer, transepithelial electrical resistance (TEER) values decreased when cells were in the 3D configuration, comparing with the 2D analogs (Caco-2 and coculture of Caco-2+HT29-MTX models), becoming more similar with in vivo values. The permeability assay with fluorescein isothiocyanate (FITC)–Dextran 4 kDa showed that absorption in the 3D models is significantly higher than that in the 2D models, confirming the importance of using a more biorelevant model when testing the paracellular permeability of compounds.
Collapse
Affiliation(s)
- Maria Helena Macedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Elena Martínez
- Institute for Bioengineering of Catalonia, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.,Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain
| | - Cristina C Barrias
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| |
Collapse
|
23
|
Li P, Lan P, Liu S, Wang Y, Liu P. Cell Polarity Protein Pals1-Associated Tight Junction Expression Is a Favorable Prognostic Marker in Clear Cell Renal Cell Carcinoma. Front Genet 2020; 11:931. [PMID: 33005169 PMCID: PMC7484473 DOI: 10.3389/fgene.2020.00931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: The Pals1-associated tight junction (PATJ) is a Crumbs (CRB) complex component that regulates epithelial cell apico-basal polarity and directional migration. This study assessed PATJ expression in clear cell renal cell carcinoma (ccRCC) vs. normal tissues and associated with ccRCC progression and prognosis. Methods: The effects of PATJ knockdown were investigated on regulation of normal kidney epithelial cell viability and protein expression in vitro. The PATJ mRNA data in ccRCC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and analyzed with UALCAN, LinkedOmics, Kaplan-Meier Plotter, GEPIA, and SurvExpress tools. Immunohistochemistry was performed for PATJ in tissue microarray sections (n = 150 ccRCC and 30 normal renal specimens). Normal human kidney tubular epithelial cell (HKC) cells were transfected with PATJ and negative control siRNA for cell viability CCK-8 assay, flow cytometry, and western blots. Results: The data showed that PATJ mRNA and protein were downregulated in ccRCC tissues and cell lines. Downregulation of PATJ mRNA was associated with male patients, advanced tumor stages, grades, and ccB subtypes as well as poorer overall and disease-free survival of patients. Furthermore, PATJ protein was also significantly downregulated in ccRCC tissues and associated with advanced tumor pathologic, TNM stages and poorer overall. In vitro, knockdown of PATJ expression promoted HKC proliferation and the activation of mitogen-activated protein kinases (MAPK) pathway proteins. Conclusions: This study revealed that a decrease of PATJ in ccRCC, which was associated with male patients, advanced tumor, and poorer survival, suggesting that PATJ may be a useful prognostic biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ping Lan
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sheng Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Characterization and molecular evolution of claudin genes in the Pungitius sinensis. J Comp Physiol B 2020; 190:749-759. [PMID: 32778926 DOI: 10.1007/s00360-020-01301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Claudins are a family of integrated membrane-bound proteins involving in paracellular tightness, barrier forming, ion permeability, and substrate selection at tight junctions of chordate epithelial and endothelial cells. Here, 39 putative claudin genes were identified in the Pungitius sinensis based on the high throughput RNA-seq. Conservative motif distribution in each group suggested functional relevance. Divergence of duplicated genes implied the species' adaptation to the environment. In addition, selective pressure analyses identified one site, which may accelerate functional divergence in this protein family. Pesticides cause environmental pollution and have a serious impact on aquatic organisms when entering the water. The expression pattern of most claudin genes was affected by organophosphorus pesticide, indicating that they may be involved in the immune regulation of organisms and the detoxification of xenobiotics. Protein-protein network analyses also exhibited 439 interactions, which implied the functional diversity. It will provide some references for the functional study on claudin genes.
Collapse
|
25
|
Baumholtz AI, De Marco P, Capra V, Ryan AK. Functional Validation of CLDN Variants Identified in a Neural Tube Defect Cohort Demonstrates Their Contribution to Neural Tube Defects. Front Neurosci 2020; 14:664. [PMID: 32760237 PMCID: PMC7372130 DOI: 10.3389/fnins.2020.00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that affect 1–2 individuals per 2,000 births. Their etiology is complex and involves both genetic and environmental factors. Our recent discovery that simultaneous removal of Cldn3, -4, and -8 from tight junctions results in cranial and spinal NTDs in both chick and mouse embryos suggests that claudins play a conserved role in neural tube closure in vertebrates. To determine if claudins were associated with NTDs in humans, we used a Fluidigm next generation sequencing approach to identify genetic variants in CLDN loci in 152 patients with spinal NTDs. We identified eleven rare and four novel missense mutations in ten CLDN genes. In vivo validation of variant pathogenicity using a chick embryo model system revealed that overexpression of four variants caused a significant increase in NTDs: CLDN3 A128T, CLDN8 P216L, CLDN19 I22T, and E209G. Our data implicate rare missense variants in CLDN genes as risk factors for spinal NTDs and suggest a new family of proteins involved in the pathogenesis of these malformations.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patrizia De Marco
- Laboratorio di Neurogenetica e Neuroscienze, Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- U.O. Neurochirurgia, Istituto Giannina Gaslini, Genoa, Italy
| | - Aimee K Ryan
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pediatrics, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Yang J, Simonneau C, Kilker R, Oakley L, Byrne MD, Nichtova Z, Stefanescu I, Pardeep-Kumar F, Tripathi S, Londin E, Saugier-Veber P, Willard B, Thakur M, Pickup S, Ishikawa H, Schroten H, Smeyne R, Horowitz A. Murine MPDZ-linked hydrocephalus is caused by hyperpermeability of the choroid plexus. EMBO Mol Med 2019; 11:emmm.201809540. [PMID: 30518636 PMCID: PMC6328942 DOI: 10.15252/emmm.201809540] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Though congenital hydrocephalus is heritable, it has been linked only to eight genes, one of which is MPDZ. Humans and mice that carry a truncated version of MPDZ incur severe hydrocephalus resulting in acute morbidity and lethality. We show by magnetic resonance imaging that contrast medium penetrates into the brain ventricles of mice carrying a Mpdz loss‐of‐function mutation, whereas none is detected in the ventricles of normal mice, implying that the permeability of the choroid plexus epithelial cell monolayer is abnormally high. Comparative proteomic analysis of the cerebrospinal fluid of normal and hydrocephalic mice revealed up to a 53‐fold increase in protein concentration, suggesting that transcytosis through the choroid plexus epithelial cells of Mpdz KO mice is substantially higher than in normal mice. These conclusions are supported by ultrastructural evidence, and by immunohistochemistry and cytology data. Our results provide a straightforward and concise explanation for the pathophysiology of Mpdz‐linked hydrocephalus.
Collapse
Affiliation(s)
- Junning Yang
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claire Simonneau
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Kilker
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laura Oakley
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew D Byrne
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ioana Stefanescu
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fnu Pardeep-Kumar
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sushil Tripathi
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Belinda Willard
- Proteomics Core Facility, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mathew Thakur
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine University of Tsukuba, Tsukuba-City, Ibaraki, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Smeyne
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arie Horowitz
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA .,Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
27
|
Zhou S, Piao X, Wang C, Wang R, Song Z. Identification of claudin‑1, ‑3, ‑7 and ‑8 as prognostic markers in human laryngeal carcinoma. Mol Med Rep 2019; 20:393-400. [PMID: 31115553 PMCID: PMC6580001 DOI: 10.3892/mmr.2019.10265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Various genomic and epigenetic modifications that occur during the development of cancer act as potential biomarkers for early diagnosis and treatment. Previous studies have demonstrated abnormal expression of the claudin (CLDN) tight junction (TJ) proteins in numerous types of human cancer. Reverse transcription-quantitative polymerase chain reaction and western blotting were employed to investigate variations in the expression of the CLDN TJ proteins in laryngeal non-neoplastic tissues and laryngeal squamous carcinoma tissues. It was revealed that CLDN2, CLDN4, CLDN5, CLDN6, CLDN9, CLDN11 and CLDN12 were undetectable in laryngeal squamous carcinoma tissues and laryngeal non-neoplastic tissues. Additionally, CLDN10 was expressed in laryngeal squamous carcinoma tissues and laryngeal non-neoplastic tissues; however, no significant difference was reported. Conversely, the expression levels of CLDN1 and CLDN7 mRNA and protein were downregulated in laryngeal squamous carcinoma tissues compared with in adjacent non-neoplastic tissues, whereas those of CLDN3 and CLDN8 were upregulated. A total of 80 samples of laryngeal squamous carcinoma and non-neoplastic tissues were analyzed for the expression of CLDN1, −3, −7 and −8 via streptavidin-peroxidase immunohistochemical staining. It was revealed that the expression levels of CLDN1 and CLDN7 were downregulated in laryngeal squamous carcinoma tissues compared with in non-neoplastic mucosal tissues, whereas those of CLDN3 and CLDN8 were upregulated. Furthermore, the associations between CLDN expression and the clinicopathological factors of patients were analyzed. The expression levels of CLDN3 and CLDN7 were reported to be associated with distant metastasis and serve as potential predictors of poor prognosis. In conclusion, the findings of the present study demonstrated that the expression levels of CLDN1, −3, −7 and −8 varied between laryngeal squamous carcinoma tissues and non-neoplastic tissues. The expression levels of these CLDNs may be useful molecular markers for the diagnosis of laryngeal carcinoma, and determining the metastasis and prognosis of this disease.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Xue Piao
- Department of Anesthesiology, Maternity Hospital of Changchun City, Changchun, Jilin 130021, P.R. China
| | - Chengyan Wang
- Department of Ultrasound, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Rui Wang
- Department of Ultrasound, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
28
|
Mundi S, Massaro M, Scoditti E, Carluccio MA, van Hinsbergh VWM, Iruela-Arispe ML, De Caterina R. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res 2019; 114:35-52. [PMID: 29228169 DOI: 10.1093/cvr/cvx226] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Early atherosclerosis features functional and structural changes in the endothelial barrier function that affect the traffic of molecules and solutes between the vessel lumen and the vascular wall. Such changes are mechanistically related to the development of atherosclerosis. Proatherogenic stimuli and cardiovascular risk factors, such as dyslipidaemias, diabetes, obesity, and smoking, all increase endothelial permeability sharing a common signalling denominator: an imbalance in the production/disposal of reactive oxygen species (ROS), broadly termed oxidative stress. Mostly as a consequence of the activation of enzymatic systems leading to ROS overproduction, proatherogenic factors lead to a pro-inflammatory status that translates in changes in gene expression and functional rearrangements, including changes in the transendothelial transport of molecules, leading to the deposition of low-density lipoproteins (LDL) and the subsequent infiltration of circulating leucocytes in the intima. In this review, we focus on such early changes in atherogenesis and on the concept that proatherogenic stimuli and risk factors for cardiovascular disease, by altering the endothelial barrier properties, co-ordinately trigger the accumulation of LDL in the intima and ultimately plaque formation.
Collapse
Affiliation(s)
- Santa Mundi
- Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Maria Annunziata Carluccio
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat, NL-1081 BT, Amsterdam, The Netherlands
| | - Marial Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, 610 Charles E Young Dr S, 90095, Los Angeles, USA; and
| | - Raffaele De Caterina
- Department of Neuroscience, Imaging and Clinical Science and Institute of Advanced Biomedical Technologies, University G. D'Annunzio, via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
29
|
Van Itallie CM, Lidman KF, Tietgens AJ, Anderson JM. Newly synthesized claudins but not occludin are added to the basal side of the tight junction. Mol Biol Cell 2019; 30:1406-1424. [PMID: 30943107 PMCID: PMC6724697 DOI: 10.1091/mbc.e19-01-0008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A network of claudin strands creates continuous cell–cell contacts to form the intercellular tight junction barrier; a second protein, occludin, is associated along these strands. The physiological barrier remains stable despite protein turnover, which involves removal and replacement of claudins both in the steady state and during junction remodeling. Here we use a pulse–block–pulse labeling protocol with fluorescent ligands to label SNAP/CLIP-tags fused to claudins and occludin to identify their spatial trafficking pathways and kinetics in Madin–Darby canine kidney monolayers. We find that claudins are first delivered to the lateral membrane and, over time, enter the junction strand network from the basal side; this is followed by slow replacement of older claudins in the strands. In contrast, even at early times, newly synthesized occludin is found throughout the network. Taking the results together with our previous documentation of the mechanism for claudin strand assembly in a fibroblast model, we speculate that newly synthesized claudins are added at strand breaks and free ends; these are most common in the basalmost edge of the junction. In contrast, occludin can be added directly within the strand network. We further demonstrate that claudin trafficking and half-life depend on carboxy-terminal sequences and that different claudins compete for tight junction localization.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - Karin Fredriksson Lidman
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - Amber Jean Tietgens
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - James Melvin Anderson
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
30
|
Zhang X, Wang X, Wang A, Li Q, Zhou M, Li T. CLDN10 promotes a malignant phenotype of osteosarcoma cells via JAK1/Stat1 signaling. J Cell Commun Signal 2019; 13:395-405. [PMID: 30796717 DOI: 10.1007/s12079-019-00509-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/13/2019] [Indexed: 01/10/2023] Open
Abstract
In our previous study, the expression profile of tight junction (TJ) protein claudins (CLDNs) in human osteosarcoma (OS) cells was examined, and the data found the CLDN10 was high expressed in OS cells versus fetal osteoblast cells. Hence, we aim to determine the impacts and the molecular mechanisms of CLDN10 in the metastatic phenotype of OS. The exact expression profiles of CLDN10 and phosphorylated Janus kinase 1 (JAK1) in noncancerous bone tissues and OS tissues were detected via a western blotting and immunohistochemistry method. The OS cells with CLDN10 or JAK1 silencing was established via an RNA interference (RNAi) method, and an osteoblast cell line stably expressing CLDN10 was established via cell transfection. Then, the transfection effects and activation states of JAK1/ signal transducer and activator of transcription1 (Stat1) pathway in OS and osteoblast cells were detected via a western blotting assay. Moreover, the metastatic ability of osteoblast cells and OS cells in vitro were evaluated by means of a cell counting kit-8 (CCK8) assay, colony formation assay in soft agar, transwell assay and wound-healing experiment. The present data revealed that CLDN10 and phospho-JAK1 were up-regulated in OS tissues compared with noncancerous bone tissues. Genetic loss of CLDN10 or JAK1 inhibited the activation of the Stat1 and the malignant phenotype in OS cells. To sum up, our study suggested the CLDN10 enhanced the metastatic phenotype of OS cells via the activation of the JAK1/Stat1 signaling pathway.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China.,Center for Translational Medicine, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Xianbin Wang
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China
| | - Aiyu Wang
- Department of Rehabilitation, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Qian Li
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China
| | - Ming Zhou
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China
| | - Tao Li
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China. .,Center for Translational Medicine, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China.
| |
Collapse
|
31
|
Fan S, Weight CM, Luissint AC, Hilgarth RS, Brazil JC, Ettel M, Nusrat A, Parkos CA. Role of JAM-A tyrosine phosphorylation in epithelial barrier dysfunction during intestinal inflammation. Mol Biol Cell 2019; 30:566-578. [PMID: 30625033 PMCID: PMC6589701 DOI: 10.1091/mbc.e18-08-0531] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | | | - Roland S Hilgarth
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Jennifer C Brazil
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Mark Ettel
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
32
|
Wang J, Sekai M, Matsui T, Fujii Y, Matsumoto M, Takeuchi O, Minato N, Hamazaki Y. Hassall’s corpuscles with cellular-senescence features maintain IFNα production through neutrophils and pDC activation in the thymus. Int Immunol 2018; 31:127-139. [PMID: 30534943 PMCID: PMC9271218 DOI: 10.1093/intimm/dxy073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/17/2018] [Indexed: 11/14/2022] Open
Abstract
Hassall’s corpuscles (HCs) are composed of cornifying, terminally differentiated medullary thymic epithelial cells (mTECs) that are developed under the control of Aire. Here, we demonstrated that HC-mTECs show features of cellular senescence and produce inflammatory cytokines and chemokines including CXCL5, thereby recruiting and activating neutrophils to produce IL-23 in the thymic medulla. We further indicated that thymic plasmacytoid dendritic cells (pDCs) expressing IL-23 receptors constitutively produced Ifna, which plays a role in single positive (SP) cell maturation, in an Il23a-dependent manner. Neutrophil depletion with anti-Ly6G antibody injection resulted in a significant decrease of Ifna expression in the thymic pDCs, suggesting that thymic neutrophil activation underlies the Ifna expression in thymic pDCs in steady state conditions. A New Zealand White mouse strain showing HC hyperplasia exhibited greater numbers and activation of thymic neutrophils and pDCs than B6 mice, whereas Aire-deficient B6 mice with defective HC development and SP thymocyte maturation showed significantly compromised numbers and activation of these cells. These results collectively suggested that HC-mTECs with cell-senescence features initiate a unique cell activation cascade including neutrophils and pDCs leading to the constitutive IFNα expression required for SP T-cell maturation in the thymic medulla.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Yosuke Fujii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
33
|
Shi J, Barakat M, Chen D, Chen L. Bicellular Tight Junctions and Wound Healing. Int J Mol Sci 2018; 19:ijms19123862. [PMID: 30518037 PMCID: PMC6321209 DOI: 10.3390/ijms19123862] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.
Collapse
Affiliation(s)
- Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08855, USA.
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| |
Collapse
|
34
|
Zhang X, Wang H, Li Q, Li T. CLDN2 inhibits the metastasis of osteosarcoma cells via down-regulating the afadin/ERK signaling pathway. Cancer Cell Int 2018; 18:160. [PMID: 30349422 PMCID: PMC6192349 DOI: 10.1186/s12935-018-0662-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background In an earlier study, we investigated the expression of tight junction protein claudins (CLDNs) in human osteosarcoma (OS) cells, and the CLDN2 was found to be down-regulated in primary tumor cells compared with normal osteoblast cells. Here, we sought to explore the effects of CLDN2 on the malignant phenotype of OS and the underlying molecular mechanisms. Methods The expression patterns of CLDN2 and afadin in OS tissues and histologically non-neoplastic bone tissues were explored via immunohistochemistry and western blotting. CLDN2 expression levels in an OS cell line stably expressing CLDN2 and an osteoblast cell line with a CLDN2 knockout were confirmed by western blotting and immunofluorescence staining. The malignant phenotype of OS cells and osteoblast cells in vitro was assessed using a cell counting kit-8 assay, transwell assay and wound-healing experiment. Western blotting was utilized to detect the activation state of Ras/Raf/MEK/ERK pathway. Moreover, an RNA interference method were used to silence afadin in CLDN2-expressing OS cells. Results Our research group found that CLDN2 and afadin was underexpressed in OS tissues, and the overexpression of CLDN2 significantly inhibited the migration abilities of OS cells. Genetic silencing of afadin in CLDN2-overexpressing OS cells promoted U2OS cell motility and activation of the Ras/Raf/MEK/ERK pathway. Conclusions In this study, we confirmed that CLDN2 expression significantly inhibited the malignant phenotype of OS cells in vitro. Inhibition of the ERK pathway by afadin may be one of the mechanisms by which CLDN2 blocks the metastasis phenotype of OS cells.
Collapse
Affiliation(s)
- Xiaowei Zhang
- 1Center for Translational Medicine, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54Hao, Zibo, Shandong China.,3Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong China
| | - Haiming Wang
- Department of General Surgery, People's Hospital of Linzi District, Affiliated with Binzhou Medical College, Zibo, Shandong China
| | - Qian Li
- 3Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong China
| | - Tao Li
- 1Center for Translational Medicine, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54Hao, Zibo, Shandong China.,3Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong China
| |
Collapse
|
35
|
Wang YM, Ma L, Lu SY, Chan TCY, Yam JCS, Tang SM, Kam KW, Tam POS, Tham CC, Young AL, Jhanji V, Pang CP, Chen LJ. Analysis of multiple genetic loci reveals MPDZ-NF1B rs1324183 as a putative genetic marker for keratoconus. Br J Ophthalmol 2018; 102:1736-1741. [PMID: 30002070 DOI: 10.1136/bjophthalmol-2018-312218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 06/24/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the associations between 16 single-nucleotide polymorphisms (SNPs) in 14 genetic loci and keratoconus in an independent Chinese cohort. METHODS This cross-sectional, case-control association study included a Chinese cohort of 133 patients with keratoconus and 371 control subjects. In a recent meta-analysis study, we identified association of 16 SNPs in 14 gene loci with keratoconus. In this study, we genotyped these 16 SNPs in all the patients and controls and analysed their association with keratoconus, its clinical severities and progression profiles. We also analysed the genotype-phenotype correlation between individual SNPs and steep keratometry, flat keratometry (Kf), average keratometry (Avg K) and best-fit sphere diameter (BFS) of the anterior and posterior corneal surface. RESULTS Among the 16 selected SNPs, rs1324183 in the MPDZ-NF1B locus showed a significant association with keratoconus (OR=2.22; 95% CI 1.42 to 3.45, p=4.30×10-4), especially severe keratoconus (OR=5.10, 95% CI 1.63 to 15.93, p=0.005). The rs1324183 A allele was positively associated with anterior Kf (p=0.008), anterior Avg K (p=0.017), posterior Kf (p=0.01) and negatively associated with apex pachymetry (p=0.007) and anterior BFS (p=0.023) in keratoconus. The other 15 SNPs had no significant association with keratoconus or genotype-phenotype correlations. CONCLUSIONS This study confirmed the association of SNP rs1324183 in MPDZ-NF1B with keratoconus and revealed the association of this SNP with keratoconus severity and corneal parameters. It is thus a putative genetic marker for monitoring the progression of keratoconus to a severe form and facilitating early intervention.
Collapse
Affiliation(s)
- Yu Meng Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Ma
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tommy Chung Yan Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C S Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu Min Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Pancy O S Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
36
|
The Claudin-like Protein HPO-30 Is Required to Maintain LAChRs at the C. elegans Neuromuscular Junction. J Neurosci 2018; 38:7072-7087. [PMID: 29950505 PMCID: PMC6083452 DOI: 10.1523/jneurosci.3487-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
Communications across chemical synapses are primarily mediated by neurotransmitters and their postsynaptic receptors. There are diverse molecular systems to localize and regulate the receptors at the synapse. Here, we identify HPO-30, a member of the claudin superfamily of membrane proteins, as a positive regulator for synaptic localization of levamisole-dependent AChRs (LAChRs) at the Caenorhabditis elegans neuromuscular junction (NMJ). The HPO-30 protein localizes at the NMJ and shows genetic and physical association with the LAChR subunits LEV-8, UNC-29, and UNC-38. Using genetic and electrophysiological assays in the hermaphrodite C. elegans, we demonstrate that HPO-30 functions through Neuroligin at the NMJ to maintain postsynaptic LAChR levels at the synapse. Together, this work suggests a novel function for a tight junction protein in maintaining normal receptor levels at the NMJ. SIGNIFICANCE STATEMENT Claudins are a large superfamily of membrane proteins. Their role in maintaining the functional integrity of tight junctions has been widely explored. Our experiments suggest a critical role for the claudin-like protein, HPO-30, in maintaining synaptic levamisole-dependent AChR (LAChR) levels. LAChRs contribute to <20% of the acetylcholine-mediated conductance in adult Caenorhabditis elegans; however, they play a significant functional role in worm locomotion. This study provides a new perspective in the study of LAChR physiology.
Collapse
|
37
|
Steinbacher T, Kummer D, Ebnet K. Junctional adhesion molecule-A: functional diversity through molecular promiscuity. Cell Mol Life Sci 2018; 75:1393-1409. [PMID: 29238845 PMCID: PMC11105642 DOI: 10.1007/s00018-017-2729-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022]
Abstract
Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell proliferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling cascades at cell-cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds to specific sites of cell-cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.
Collapse
Affiliation(s)
- Tim Steinbacher
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Daniel Kummer
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany.
| |
Collapse
|
38
|
Al-Jezawi NK, Al-Shamsi AM, Suleiman J, Ben-Salem S, John A, Vijayan R, Ali BR, Al-Gazali L. Compound heterozygous variants in the multiple PDZ domain protein (MPDZ) cause a case of mild non-progressive communicating hydrocephalus. BMC MEDICAL GENETICS 2018; 19:34. [PMID: 29499638 PMCID: PMC5834892 DOI: 10.1186/s12881-018-0540-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/12/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Congenital hydrocephalus (CH) results from the accumulation of excessive amounts of cerebrospinal fluid (CSF) in the brain, often leading to severe neurological impairments. However, the adverse effects of CH can be reduced if the condition is detected and treated early. Earlier reports demonstrated that some CH cases are caused by mutations in L1CAM gene encoding the neural cell adhesion molecule L1. On the other hand, recent studies have implicated the multiple PDZ domain (MPDZ) gene in some severe forms of CH, inherited in an autosomal recessive pattern. METHODS In this study, whole-exome and Sanger sequencing were performed on a 9 months old Emirati child clinically diagnosed by CH. In addition, in silico, cellular, and molecular assays have been conducted to confirm pathogenicity of the identified variants and to establish disease mechanism. RESULTS Whole exome sequencing revealed two compound heterozygous novel variants (c.394G > A and c.1744C > G) in the affected child within the MPDZ gene. Segregation analysis revealed that each of the parents is heterozygous for one of the two variants and therefore passed that variant to their child. The outcome of the in silico and bioinformatics analyses came in line with the experimental data, suggesting that the two variants are most likely disease causing. CONCLUSIONS The compound heterozygous variants identified in this study are the most likely cause of CH in the affected child. The study further confirms MPDZ as a gene underlying some CH cases.
Collapse
Affiliation(s)
- Nesreen K. Al-Jezawi
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | | | - Jehan Suleiman
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Anne John
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| |
Collapse
|
39
|
Zhang L, Feng T, Spicer LJ. The role of tight junction proteins in ovarian follicular development and ovarian cancer. Reproduction 2018; 155:R183-R198. [PMID: 29374086 DOI: 10.1530/rep-17-0503] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/26/2018] [Indexed: 01/01/2023]
Abstract
Tight junctions (TJ) are protein structures that control the transport of water, ions and macromolecules across cell layers. Functions of the transmembrane TJ protein, occluding (OCLN) and the cytoplasmic TJ proteins, tight junction protein 1 (TJP1; also known as zona occludens protein-1), cingulin (CGN) and claudins (CLDN) are reviewed, and current evidence of their role in the ovarian function is reviewed. Abundance of OCLN, CLDNs and TJP1 mRNA changed during follicular growth. In vitro treatment with various growth factors known to affect ovarian folliculogenesis indicated that CGN, OCLN and TJP1 are hormonally regulated. The summarized studies indicate that expression of TJ proteins (i.e., OCLN, CLDN, TJP1 and CGN) changes with follicle size in a variety of vertebrate species but whether these changes in TJ proteins are increased or decreased depends on species and cell type. Evidence indicates that autocrine, paracrine and endocrine regulators, such as fibroblast growth factor-9, epidermal growth factor, androgens, tumor necrosis factor-α and glucocorticoids may modulate these TJ proteins. Additional evidence presented indicates that TJ proteins may be involved in ovarian cancer development in addition to normal follicular and luteal development. A model is proposed suggesting that hormonal downregulation of TJ proteins during ovarian follicular development could reduce barrier function (i.e., selective permeability of molecules between theca and granulosa cells) and allow for an increase in the volume of follicular fluid as well as allow additional serum factors into the follicle that may directly impact granulosa cell functions.
Collapse
Affiliation(s)
- Lingna Zhang
- Department of Animal ScienceOklahoma State University, Stillwater, Oklahoma, USA
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary MedicineBeijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Leon J Spicer
- Department of Animal ScienceOklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
40
|
Van Itallie CM, Anderson JM. Phosphorylation of tight junction transmembrane proteins: Many sites, much to do. Tissue Barriers 2017; 6:e1382671. [PMID: 29083946 DOI: 10.1080/21688370.2017.1382671] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation is a dynamic post-translational modification that can alter protein structure, localization, protein-protein interactions and stability. All of the identified tight junction transmembrane proteins can be multiply phosphorylated, but only in a few cases are the consequences of phosphorylation at specific sites well characterized. The goal of this review is to highlight some of the best understood examples of phosphorylation changes in the integral membrane tight junction proteins in the context of more general overview of the effects of phosphorylation throughout the proteome. We expect as that structural information for the tight junction proteins becomes more widely available and the molecular modeling algorithms improve, so will our understanding of the relevance of phosphorylation changes at single and multiple sites in tight junction proteins.
Collapse
Affiliation(s)
- Christina M Van Itallie
- a National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , MD , USA
| | - James M Anderson
- a National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
41
|
Niggeler A, Tetens J, Stäuble A, Steiner A, Drögemüller C. A genome-wide significant association on chromosome 2 for footrot resistance/susceptibility in Swiss White Alpine sheep. Anim Genet 2017; 48:712-715. [PMID: 28983925 DOI: 10.1111/age.12614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 11/30/2022]
Abstract
Footrot is one of the most important causes of lameness in global sheep populations and is characterized by a bacterial infection of the interdigital skin. As a multifactorial disease, its clinical representation depends not only on pathogen factors and environmental components but also on the individual resistance/susceptibility of the host. A genetic component has been shown in previous studies; however, so far no causative genetic variant influencing the risk of developing footrot has been identified. In this study, we genotyped 373 Swiss White Alpine sheep, using the ovine high-density 600k SNP chip, in order to run a DNA-based comparison of individuals with known clinical footrot status. We performed a case-control genome-wide association study, which revealed a genome-wide significant association for SNP rs418747104 on ovine chromosome 2 at 81.2 Mb. The three best associated SNP markers were located at the MPDZ gene, which codes for the multiple PDZ domain crumbs cell polarity complex component protein, also known as multi-PDZ domain protein 1 (MUPP1). This protein is possibly involved in maintaining the barrier function and integrity of tight junctions. Therefore, we speculate that individuals carrying MPDZ variants may differ in their footrot resistance/susceptibility due to modified horn and interdigital skin integrity. In conclusion, our study reveals that MPDZ might represent a functional candidate gene, and further research is needed to explore its role in footrot affected sheep.
Collapse
Affiliation(s)
- A Niggeler
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012, Bern, Switzerland
| | - J Tetens
- Division Functional Breeding, Department of Animal Sciences, Georg-August University, Burckhardtweg 2, 37077, Göttingen, Germany
| | - A Stäuble
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012, Bern, Switzerland
| | - A Steiner
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012, Bern, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012, Bern, Switzerland
| |
Collapse
|
42
|
Ebnet K. Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiol Rev 2017; 97:1529-1554. [PMID: 28931565 DOI: 10.1152/physrev.00004.2017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Cells-In-Motion Cluster of Excellence (EXC1003-CiM), and Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
43
|
Campbell M, Cassidy PS, O'Callaghan J, Crosbie DE, Humphries P. Manipulating ocular endothelial tight junctions: Applications in treatment of retinal disease pathology and ocular hypertension. Prog Retin Eye Res 2017; 62:120-133. [PMID: 28951125 DOI: 10.1016/j.preteyeres.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/20/2017] [Indexed: 11/25/2022]
Abstract
Protein levels of endothelial tight-junctions of the inner retinal microvasculature, together with those of Schlemm's canal, can be readily manipulated by RNA interference (RNAi), resulting in the paracellular clefts between such cells to be reversibly modulated. This facilitates access to the retina of systemically-deliverable low molecular weight, potentially therapeutic compounds, while also allowing potentially toxic material, for example, soluble Amyloid-β1-40, to be removed from the retina into the peripheral circulation. The technique has also been shown to be highly effective in alleviation of pathological cerebral oedema and we speculate that it may therefore have similar utility in the oedematous retina. Additionally, by manipulating endothelial tight-junctions of Schlemm's canal, inflow of aqueous humour from the trabecular meshwork into the Canal can be radically enhanced, suggesting a novel avenue for control of intraocular pressure. Here, we review the technology underlying this approach together with specific examples of clinical targets that are, or could be, amenable to this novel form of genetic intervention.
Collapse
Affiliation(s)
- Matthew Campbell
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland.
| | - Paul S Cassidy
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Jeffrey O'Callaghan
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Darragh E Crosbie
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Pete Humphries
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
44
|
Lo Sardo F, Muti P, Blandino G, Strano S. Melatonin and Hippo Pathway: Is There Existing Cross-Talk? Int J Mol Sci 2017; 18:ijms18091913. [PMID: 28878191 PMCID: PMC5618562 DOI: 10.3390/ijms18091913] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.
Collapse
Affiliation(s)
- Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
45
|
Abstract
The claudin family of tetraspan transmembrane proteins is essential for tight junction formation and regulation of paracellular transport between epithelial cells. Claudins also play a role in apical-basal cell polarity, cell adhesion and link the tight junction to the actin cytoskeleton to exert effects on cell shape. The function of claudins in paracellular transport has been extensively studied through loss-of-function and gain-of-function studies in cell lines and in animal models, however, their role in morphogenesis has been less appreciated. In this review, we will highlight the importance of claudins during morphogenesis by specifically focusing on their critical functions in generating epithelial tubes, lumens, and tubular networks during organ formation.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada
| | - Indra R Gupta
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| | - Aimee K Ryan
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| |
Collapse
|
46
|
Papadopoulos D, Scheiner-Bobis G. Dehydroepiandrosterone sulfate augments blood-brain barrier and tight junction protein expression in brain endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1382-1392. [DOI: 10.1016/j.bbamcr.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022]
|
47
|
Michgehl U, Pavenstädt H, Vollenbröker B. Cross talk between the Crumbs complex and Hippo signaling in renal epithelial cells. Pflugers Arch 2017; 469:917-926. [PMID: 28612137 DOI: 10.1007/s00424-017-2004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Cell polarity has a crucial role in organizing cells into tissues and in mediating transport processes and cell-cell communication. Especially the cells of the nephron require apicobasal polarity to establish and maintain their barrier function. The Crumbs complex including the integral membrane protein Crumbs, as well as Pals1 and Patj, is essential for the establishment of apicobasal polarity. The interactions of the core proteins and the interplay with other processes have been characterized in various epithelial cell lines in detail. Notably, Crb2 and Crb3 are expressed within the kidney and play an important role in the proper function of podocytes and tubules, respectively. The interaction of polarity proteins and components of the Hippo pathway-an evolutionarily highly conserved kinase cascade regulating cell proliferation, organ size, and tissue regeneration-has been discovered recently. Here, we discuss potential molecular and physiological links between the Crumbs complex and the Hippo pathway in renal cells.
Collapse
Affiliation(s)
- U Michgehl
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany.
| | - H Pavenstädt
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany
| | - B Vollenbröker
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany
| |
Collapse
|
48
|
Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 2017; 1397:66-79. [PMID: 28493289 DOI: 10.1111/nyas.13360] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
The intestinal epithelium forms a highly dynamic and selective barrier that controls absorption of fluid and solutes while restricting pathogen access to underlying tissues. Barrier properties are achieved by intercellular junctions that include an apical tight junction (TJ) and subjacent adherens junctions and desmosomes. The TJ tetraspan claudin proteins form pores between epithelial cells to control paracellular fluid and ion movement. In addition to regulation of barrier function, claudin family members control epithelial homeostasis and are expressed in a spatiotemporal manner in the intestinal crypt-luminal axis. This delicate balance of physiologic differential claudin protein expression is altered during mucosal inflammation. Inflammatory mediators influence transcriptional regulation, as well as endocytic trafficking, targeting, and retention of claudins in the TJ. Increased expression of intestinal epithelial claudin-1, -2, and -18 with downregulation of claudin-3, -4, -5, -7, -8, and -12 has been observed in intestinal inflammatory disorders. Such changes in claudin proteins modify the epithelial barrier function in addition to influencing epithelial and mucosal homeostasis. An improved understanding of the regulatory mechanisms that control epithelial claudin proteins will provide strategies to strengthen the epithelial barrier function and restore mucosal homeostasis in inflammatory disorders.
Collapse
Affiliation(s)
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
49
|
Saugier-Veber P, Marguet F, Lecoquierre F, Adle-Biassette H, Guimiot F, Cipriani S, Patrier S, Brasseur-Daudruy M, Goldenberg A, Layet V, Capri Y, Gérard M, Frébourg T, Laquerrière A. Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MPDZ gene. Acta Neuropathol Commun 2017; 5:36. [PMID: 28460636 PMCID: PMC5412059 DOI: 10.1186/s40478-017-0438-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 11/20/2022] Open
Abstract
Congenital hydrocephalus is considered as either acquired due to haemorrhage, infection or neoplasia or as of developmental nature and is divided into two subgroups, communicating and obstructive. Congenital hydrocephalus is either syndromic or non-syndromic, and in the latter no cause is found in more than half of the patients. In patients with isolated hydrocephalus, L1CAM mutations represent the most common aetiology. More recently, a founder mutation has also been reported in the MPDZ gene in foetuses presenting massive hydrocephalus, but the neuropathology remains unknown. We describe here three novel homozygous null mutations in the MPDZ gene in foetuses whose post-mortem examination has revealed a homogeneous phenotype characterized by multiple ependymal malformations along the aqueduct of Sylvius, the third and fourth ventricles as well as the central canal of the medulla, consisting in multifocal rosettes with immature cell accumulation in the vicinity of ependymal lining early detached from the ventricular zone. MPDZ also named MUPP1 is an essential component of tight junctions which are expressed from early brain development in the choroid plexuses and ependyma. Alterations in the formation of tight junctions within the ependyma very likely account for the lesions observed and highlight for the first time that primary multifocal ependymal malformations of the ventricular system is genetically determined in humans. Therefore, MPDZ sequencing should be performed when neuropathological examination reveals multifocal ependymal rosette formation within the aqueduct of Sylvius, of the third and fourth ventricles and of the central canal of the medulla.
Collapse
|
50
|
Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res 2017; 358:39-44. [PMID: 28372972 DOI: 10.1016/j.yexcr.2017.03.061] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/17/2022]
Abstract
Cell-cell adhesions are critical for the development and maintenance of tissues. Present at sites of cell-cell contact are the adherens junctions and tight junctions. The adherens junctions mediate cell-cell adhesion via the actions of nectins and cadherins. The tight junctions regulate passage of ions and small molecules between cells and establish cell polarity. Historically, the adherens and tight junctions have been thought of as discrete complexes. However, it is now clear that a high level of interdependency exists between the two junctional complexes. The adherens junctions and tight junctions are physically linked, by the zonula occludens proteins, and linked via signaling molecules including several polarity complexes and actin cytoskeletal modifiers. This review will first describe the individual components of both the adherens and tight junctions and then discuss the coupling of the two complexes with an emphasis on the signaling links and physical interactions between the two junctional complexes.
Collapse
Affiliation(s)
- Hannah K Campbell
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica L Maiers
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|