1
|
Cifuentes C, Horndler L, Grosso P, Oeste CL, Hortal AM, Castillo J, Fernández-Pisonero I, Paradela A, Bustelo X, Alarcón B. The R-RAS2 GTPase is a signaling hub in triple-negative breast cancer cell metabolism and metastatic behavior. J Hematol Oncol 2025; 18:41. [PMID: 40221767 PMCID: PMC11993990 DOI: 10.1186/s13045-025-01693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Recent research from our group has shown that the overexpression of the wild-type RAS-family GTPase RRAS2 drives the onset of triple-negative breast cancer (TNBC) in mice following one or more pregnancies. This phenomenon mirrors human TNBC, where RRAS2 is overexpressed in approximately 75% of cases, particularly in tumors associated with the postpartum period. These findings underscore the relevance of R-RAS2 in TNBC development and progression. METHODS We conducted RNA sequencing on tumors derived from conditional knock-in mice overexpressing human wild-type RRAS2 to identify the somatic mutation landscape associated with TNBC development in these mice. Additionally, we developed a TNBC cell line from RRAS2-overexpressing mice, enabling loss-of-function studies to investigate the role of R-RAS2 in various pathobiological parameters of TNBC cells, including cell migration, invasiveness, metabolic activity, and metastatic spread. Furthermore, proteomic analysis of a freshly isolated tumor identified plasma membrane receptors interacting with R-RAS2. RESULTS Our findings demonstrate that TNBC driven by RRAS2 overexpression exhibits a pattern of somatic mutations similar to those observed in human breast cancer, particularly in genes involved in stemness, extracellular matrix interactions, and actin cytoskeleton regulation. Proteomic analysis revealed that wild-type R-RAS2 interacts with 245 membrane-associated proteins, including key solute carriers involved in cell metabolism (CD98/LAT1, GLUT1, and basigin), adhesion and matrix interaction proteins (CD44, EpCAM, MCAM, ICAM1, integrin-α6, and integrin-β1), and stem cell markers (β1-catenin, α1-catenin, PTK7, and CD44). We show that R-RAS2 regulates CD98/LAT1 transporter-mediated mTOR pathway activation and mediates CD44-dependent cancer cell migration and invasion, thus providing a mechanism by which R-RAS2 promotes breast cancer cell metastasis. CONCLUSIONS R-RAS2 associates with CD44, CD98/LAT1, and other plasma membrane receptors to regulate metabolic activity, actin cytoskeleton reorganization, cell migration, invasion, and distant metastasis formation in TNBC. These findings establish R-RAS2 as a central driver of TNBC malignancy and highlight its potential as a promising therapeutic target, particularly in aggressive, postpartum-associated breast cancers.
Collapse
Affiliation(s)
- Claudia Cifuentes
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Lydia Horndler
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pilar Grosso
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Clara L Oeste
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Savana, S.L., Calle Gran Vía 30, Madrid, 28013, Spain
| | - Alejandro M Hortal
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Jennifer Castillo
- University Hospital Miguel Servet, P.º de Isabel la Católica, 1-3, Zaragoza, 50009, Spain
| | - Isabel Fernández-Pisonero
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Campus Unamuno s/n, Salamanca, 37007, Spain
| | - Alberto Paradela
- Proteomics Unit, Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Xosé Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Campus Unamuno s/n, Salamanca, 37007, Spain
| | - Balbino Alarcón
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
2
|
Hortal AM, Calleja E, Oeste CL, Arellano I, Lacuna M, Blanco S, Martín-Blanco N, Montanuy I, Alcamí A, Bustelo XR, Alarcón B. Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2. Sci Signal 2025; 18:eadk4204. [PMID: 39874377 DOI: 10.1126/scisignal.adk4204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/10/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025]
Abstract
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity. R-RAS2 exhibited direct, high-affinity interactions with ITAM peptides derived from B and T cell receptors through a proline-rich sequence in the hypervariable domain of R-RAS2. In resting T and B cells, the presence of antigen receptors at the plasma membrane was sufficient to promote the activation of R-RAS2 and PI3K, and mutations that abolished the interaction of R-RAS2 with ITAMs reduced R-RAS2 signaling. Binding to ITAMs increased GDP-GTP exchange on R-RAS2 through a mechanism distinct from that by which conventional cytosolic guanosine nucleotide exchange factors (GEFs) activate RAS proteins. These results define antigen receptors as noncanonical GEFs involved in the basal activation state of R-RAS2 in lymphocytes. Such a mechanism may underlie the leukemic transformation of B cells that occurs when wild-type R-RAS2 is present in high amounts.
Collapse
Affiliation(s)
- Alejandro M Hortal
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Calleja
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Irene Arellano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Lacuna
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nadia Martín-Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Inmaculada Montanuy
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Wang K, Peng K. RRAS2 knockdown suppresses osteosarcoma progression by inactivating the MEK/ERK signaling pathway. Anticancer Drugs 2019; 30:933-939. [PMID: 31517733 DOI: 10.1097/cad.0000000000000799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant function of RRAS2 drives malignant transformation in a various of cancers. However, little information exists on the function of RRAS2 in tumorigenesis of osteosarcoma. In this study, we investigated the effect of RRAS2 on osteosarcoma progression and its underlying mechanism. The gene expression level and prognostic power of RRAS2 in osteosarcoma were first investigated using the data from the Gene Expression Omnibus database. Then RNA interference was performed to silence the expression of RRAS2 in osteosarcoma cells. Quantitative real-time-PCR and western blot were used to examine the gene and protein expressions of RRAS2 in osteosarcoma cells. In-vitro cancer proliferation and migration were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolum bromide solution and wound-healing assays, respectively. We found that RRAS2 was significantly upregulated in osteosarcoma cells and high expression of RRAS2 was associated with a poor prognosis for patients with osteosarcoma. RNA interference decreased the gene and protein expression of RRAS2, reduced in-vitro the proliferation and migration of osteosarcoma cells, and suppressed the activation of the MEK/ERK signaling pathway. RRAS2 as an adverse prognostic factor promoted cell proliferation and migration by activating the MEK/ERK signaling pathway, and may provide new therapeutic value for osteosarcoma.
Collapse
Affiliation(s)
- Kejun Wang
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou
| | - Kan Peng
- Department of Trauma Orthopaedics, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Liao S, Maertens O, Cichowski K, Elledge SJ. Genetic modifiers of the BRD4-NUT dependency of NUT midline carcinoma uncovers a synergism between BETis and CDK4/6is. Genes Dev 2018; 32:1188-1200. [PMID: 30135075 PMCID: PMC6120715 DOI: 10.1101/gad.315648.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
Abstract
Using CRISPR and ORF expression screens, Liao et al. systematically examined the ability of cancer drivers to mediate resistance of NUT midline carcinoma (NMC) to bromodomain and extraterminal domain inhibitors (BETis) and uncovered six general classes/pathways mediating resistance. Bromodomain and extraterminal (BET) domain inhibitors (BETis) show efficacy on NUT midline carcinoma (NMC). However, not all NMC patients respond, and responders eventually develop resistance and relapse. Using CRISPR and ORF expression screens, we systematically examined the ability of cancer drivers to mediate resistance of NMC to BETis and uncovered six general classes/pathways mediating resistance. Among these, we showed that RRAS2 attenuated the effect of JQ1 in part by sustaining ERK pathway function during BRD4 inhibition. Furthermore, overexpression of Kruppel-like factor 4 (KLF4), mediated BETi resistance in NMC cells through restoration of the E2F and MYC gene expression program. Finally, we found that expression of cyclin D1 or an oncogenic cyclin D3 mutant or RB1 loss protected NMC cells from BETi-induced cell cycle arrest. Consistent with these findings, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors showed synergistic effects with BETis on NMC in vitro as well as in vivo, thereby establishing a potential two-drug therapy for NMC.
Collapse
Affiliation(s)
- Sida Liao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ophélia Maertens
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Karen Cichowski
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System. J Neurosci 2018; 38:5096-5110. [PMID: 29720552 DOI: 10.1523/jneurosci.3364-17.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.
Collapse
|
6
|
Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML. High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development 2017; 144:292-304. [PMID: 28096217 DOI: 10.1242/dev.139220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023]
Abstract
During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA-sequencing analysis to comprehensively interrogate animal and vegetal pole RNAs in the fully grown Xenopus laevis oocyte. We identified 411 (198 annotated) and 27 (15 annotated) enriched mRNAs at the vegetal and animal pole, respectively. Ninety were novel mRNAs over 4-fold enriched at the vegetal pole and six were over 10-fold enriched at the animal pole. Unlike mRNAs, microRNAs were not asymmetrically distributed. Whole-mount in situ hybridization confirmed that all 17 selected mRNAs were localized. Biological function and network analysis of vegetally enriched transcripts identified protein-modifying enzymes, receptors, ligands, RNA-binding proteins, transcription factors and co-factors with five defining hubs linking 47 genes in a network. Initial functional studies of maternal vegetally localized mRNAs show that sox7 plays a novel and important role in primordial germ cell (PGC) development and that ephrinB1 (efnb1) is required for proper PGC migration. We propose potential pathways operating at the vegetal pole that highlight where future investigations might be most fruitful.
Collapse
Affiliation(s)
- Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Tristan H Aguero
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Karen M Newman
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Derek Van Booven
- The Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
7
|
Zhang X, Spiegelman NA, Nelson OD, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. eLife 2017; 6. [PMID: 28406396 PMCID: PMC5391209 DOI: 10.7554/elife.25158] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
The Ras family of GTPases are important in cell signaling and frequently mutated in human tumors. Understanding their regulation is thus important for studying biology and human diseases. Here, we report that a novel posttranslational mechanism, reversible lysine fatty acylation, regulates R-Ras2, a member of the Ras family. SIRT6, a sirtuin with established tumor suppressor function, regulates the lysine fatty acylation of R-Ras2. In mouse embryonic fibroblasts (MEFs), Sirt6 knockout (KO) increased R-Ras2 lysine fatty acylation. Lysine fatty acylation promotes the plasma membrane localization of R-Ras2 and its interaction with phosphatidylinositol 3-kinase PI3K, leading to activated Akt and increased cell proliferation. Our study establishes lysine fatty acylation as a previously unknown mechanism that regulates the Ras family of GTPases and provides an important mechanism by which SIRT6 functions as a tumor suppressor. DOI:http://dx.doi.org/10.7554/eLife.25158.001 Cancer is one of the leading causes of death worldwide. Proteins that cause and promote cancer are called oncoproteins. Other proteins, called tumor suppressors, counteract the oncoproteins but are frequently inactive or not present in cancer cells. SIRT6 is a tumor suppressor protein that has been studied in many different types of cancer. In 2013, researchers found that SIRT6 can remove chemical groups known as fatty acyl groups from the lysine residues of proteins. However, it was unclear whether and how this activity of SIRT6 contributes to its role as a tumor suppressor. Zhang et al. – who are part of the research group who performed the 2013 study – have now compared mouse cells that lack SIRT6 with normal mouse cells to find out which proteins SIRT6 removes fatty acyl groups from. A biochemical technique that makes use of synthetic fatty acids, which get incorporated into the mouse cells, showed that SIRT6 removes fatty acyl groups from a protein called R-Ras2. This protein is part of a large family of oncoproteins. Zhang et al. discovered that when R-Ras2 is tagged with the fatty acyl group it moves to the cell’s membrane and causes the cell to divide more rapidly. Hence, this promotes the growth and spread of cancerous tumors. SIRT6 acts as an eraser, removing the fatty acyl group, and therefore slows down the growth of cancer cells. Future experiments will aim to find out whether fatty acyl groups also control the activity of other oncoproteins that are similar to R-Ras2. If that is the case, drugs that can regulate the removal of fatty acyl groups from oncoproteins may eventually form new cancer treatment options. DOI:http://dx.doi.org/10.7554/eLife.25158.002
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Nicole A Spiegelman
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Ornella D Nelson
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Hui Jing
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Hening Lin
- Departmeunt of Chemistry and Chemical Biology, Cornell University, Ithaca, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, United States
| |
Collapse
|
8
|
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15:7-24. [PMID: 25533673 PMCID: PMC4384662 DOI: 10.1038/nrc3860] [Citation(s) in RCA: 1041] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are crucial coordinators of intracellular signalling in response to extracellular stimuli. Hyperactivation of PI3K signalling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of specific PI3K isoforms in normal and oncogenic signalling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Lauren M. Thorpe
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haluk Yuzugullu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Correspondence to J.J.Z. by
| |
Collapse
|
9
|
Larive RM, Moriggi G, Menacho-Márquez M, Cañamero M, de Álava E, Alarcón B, Dosil M, Bustelo XR. Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease. Nat Commun 2014; 5:3881. [PMID: 24826867 DOI: 10.1038/ncomms4881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/14/2014] [Indexed: 02/07/2023] Open
Abstract
R-Ras2 is a transforming GTPase that shares downstream effectors with Ras subfamily proteins. However, little information exists about the function of this protein in tumorigenesis and its signalling overlap with classical Ras GTPases. Here we show, by combining loss- and gain-of-function studies in breast cancer cells, mammary epithelial cells and mouse models, that endogenous R-Ras2 has a role in both primary breast tumorigenesis and the late metastatic steps of cancer cells in the lung parenchyma. R-Ras2 drives tumorigenesis in a phosphatidylinostiol-3 kinase (PI3K)-dependent and signalling autonomous manner. By contrast, its prometastatic role requires other priming oncogenic signals and the engagement of several downstream elements. R-Ras2 function is required even in cancer cells exhibiting constitutive activation of classical Ras proteins, indicating that these GTPases are not functionally redundant. Our results also suggest that application of long-term R-Ras2 therapies will result in the development of compensatory mechanisms in breast tumours.
Collapse
Affiliation(s)
- Romain M Larive
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [3]
| | - Giulia Moriggi
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Marta Cañamero
- Centro Nacional de Investigaciones Oncológicas (CNIO), 3 Fernández Almagro Street, 28029 Madrid, Spain
| | - Enrique de Álava
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [3] Hospital Universitario Virgen del Rocío, Manuel Suriot Avenue, 41013 Sevilla, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular "Severo Ochoa", CSIC-Madrid Autonomous University, 1 Nicolás Cabrera Street, 28049 Madrid, Spain
| | - Mercedes Dosil
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [3] Departamento de Bioquímica y Biología Molecular, University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Xosé R Bustelo
- 1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Gutierrez-Erlandsson S, Herrero-Vidal P, Fernandez-Alfara M, Hernandez-Garcia S, Gonzalo-Flores S, Mudarra-Rubio A, Fresno M, Cubelos B. R-RAS2 overexpression in tumors of the human central nervous system. Mol Cancer 2013; 12:127. [PMID: 24148564 PMCID: PMC3900289 DOI: 10.1186/1476-4598-12-127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/17/2013] [Indexed: 01/06/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are the 10th most frequent cause of cancer mortality. Despite the strong malignancy of some such tumors, oncogenic mutations are rarely found in classic members of the RAS family of small GTPases. This raises the question as to whether other RAS family members may be affected in CNS tumors, excessively activating RAS pathways. The RAS-related subfamily of GTPases is that which is most closely related to classical Ras and it currently contains 3 members: RRAS, RRAS2 and RRAS3. While R-RAS and R-RAS2 are expressed ubiquitously, R-RAS3 expression is restricted to the CNS. Significantly, both wild type and mutated RRAS2 (also known as TC21) are overexpressed in human carcinomas of the oral cavity, esophagus, stomach, skin and breast, as well as in lymphomas. Hence, we analyzed the expression of R-RAS2 mRNA and protein in a wide variety of human CNS tumors and we found the R-RAS2 protein to be overexpressed in all of the 90 CNS cancer samples studied, including glioblastomas, astrocytomas and oligodendrogliomas. However, R-Ras2 was more strongly expressed in low grade (World Health Organization grades I-II) rather than high grade (grades III-IV) tumors, suggesting that R-RAS2 is overexpressed in the early stages of malignancy. Indeed, R-RAS2 overexpression was evident in pre-malignant hyperplasias, both at the mRNA and protein levels. Nevertheless, such dramatic changes in expression were not evident for the other two subfamily members, which implies that RRAS2 is the main factor triggering neural transformation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Beatriz Cubelos
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|
11
|
Abstract
Activating mutations and overexpression of classical Ras subfamily members (K-Ras, N-Ras and H-Ras) have been widely investigated as key events in the development of human cancers. The role in cancer of its closest relatives, the Ras-related (RRas) subfamily members, has been less studied despite the fact that one of its members (TC21 or RRas2) is strongly transforming in vitro. Nevertheless, and in spite the paucity of publications, several studies have shown that wild type TC21 is overexpressed in different types of carcinomas and lymphomas. If the study of RRas members in cancer is still in its infancy, their role in physiological functions is even behind. For instance, T and B cell immunologists still use the vague term "Ras activation" without indication of what Ras family molecule is indeed intervening. In this view, we discuss the participation of TC21 in the specific process of T cell antigen receptor internalization from the immunological synapse and acquisition of membrane fragments from the antigen presenting cells by phagocytosis.
Collapse
Affiliation(s)
- Balbino Alarcón
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
12
|
Hasan MR, Chauhan SS, Sharma R, Ralhan R. siRNA-mediated downregulation of TC21 sensitizes esophageal cancer cells to cisplatin. World J Gastroenterol 2012; 18:4127-35. [PMID: 22919244 PMCID: PMC3422792 DOI: 10.3748/wjg.v18.i31.4127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/07/2012] [Accepted: 05/26/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the functional significance of TC21 in esophageal squamous cell carcinoma (ESCC).
METHODS: TC21 siRNA transfection was carried out using Hyperfectamine to knock down TC21, and transcripts were analyzed by reverse transcription-polymerase chain reaction and protein by Western blotting. We demonstrated the effect of TC21 downregulation of cell signaling in esophageal cancer cells by assessing the phosphorylation status of its downstream targets, phosphoinositide 3-kinase (PI3K), phosphatase and tensin homolog (PTEN), protein kinase B (pAkt), nuclear factor-κB (NF-κB) and cyclinD1 using specific antibodies. Cell survival analysis after cisplatin treatment was carried out by cell viability assay and cell cycle analysis using flow cytometry.
RESULTS: TC21 knockdown in human ESCC cell line TE13 cells, showed only a marginal increase (14.2%) in cell death compared with control cells. The expressions of the signaling proteins PI3K and pAkt, transcription factor NF-κB, and cell cycle protein cyclin D1 were markedly decreased in response to TC21 downregulation, whereas the level of pPTEN, an antagonist of PI3K, was increased. In addition, we evaluated the potential of TC21 as a putative target for sensitizing ESCC cells to the chemotherapeutic agent cisplatin. Increased cell death (38.4%) was observed in cells treated with cisplatin after TC21 knockdown compared with cells which were treated with cisplatin alone (20% cell death).
CONCLUSION: Results suggest that TC21 mediates its effects via the PI3K-Akt pathway, NF-κB and cyclin D1, and enhances chemoresistance in esophageal cancer cells.
Collapse
|
13
|
Larive RM, Abad A, Cardaba CM, Hernández T, Cañamero M, de Álava E, Santos E, Alarcón B, Bustelo XR. The Ras-like protein R-Ras2/TC21 is important for proper mammary gland development. Mol Biol Cell 2012; 23:2373-87. [PMID: 22535521 PMCID: PMC3374755 DOI: 10.1091/mbc.e12-01-0060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
R-Ras2/TC21 is a GTPase with high sequence and signaling similarity with Ras subfamily members. Although it has been extensively studied using overexpression studies in cell lines, its physiological role remains poorly characterized. Here we used RRas2-knockout mice expressing β-galactosidase under the regulation of the endogenous RRas2 promoter to investigate the function of this GTPase in vivo. Despite its expression in tissues critical for organismal viability, RRas2(-/-) mice show no major alterations in viability, growth rates, cardiovascular parameters, or fertility. By contrast, they display a marked and specific defect in the development of the mammary gland during puberty. In the absence of R-Ras2/TC21, this gland forms reduced numbers of terminal end buds (TEBs) and ductal branches, leading to a temporal delay in the extension and arborization of the gland tree in mammary fat pads. This phenotype is linked to cell-autonomous proliferative defects of epithelial cells present in TEBs. These cells also show reduced Erk activation but wild type-like levels of phosphorylated Akt. Using compound RRas2-, HRas-, and NRas-knockout mice, we demonstrate that these GTPases act in a nonsynergistic and nonadditive manner during this morphogenic process.
Collapse
Affiliation(s)
- Romain M Larive
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, E37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ebi H, Corcoran RB, Singh A, Chen Z, Song Y, Lifshits E, Ryan DP, Meyerhardt JA, Benes C, Settleman J, Wong KK, Cantley LC, Engelman JA. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest 2011; 121:4311-21. [PMID: 21985784 DOI: 10.1172/jci57909] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 09/03/2011] [Indexed: 12/31/2022] Open
Abstract
Therapies inhibiting receptor tyrosine kinases (RTKs) are effective against some human cancers when they lead to simultaneous downregulation of PI3K/AKT and MEK/ERK signaling. However, mutant KRAS has the capacity to directly activate ERK and PI3K signaling, and this is thought to underlie the resistance of KRAS mutant cancers to RTK inhibitors. Here, we have elucidated the molecular regulation of both the PI3K/AKT and MEK/ERK signaling pathways in KRAS mutant colorectal cancer cells and identified combination therapies that lead to robust cancer cell apoptosis. KRAS knockdown using shRNA suppressed ERK signaling in all of the human KRAS mutant colorectal cancer cell lines examined. However, no decrease, and actually a modest increase, in AKT phosphorylation was often seen. By performing PI3K immunoprecipitations, we determined that RTKs, often IGF-IR, regulated PI3K signaling in the KRAS mutant cell lines. This conclusion was also supported by the observation that specific RTK inhibition led to marked suppression of PI3K signaling and biochemical assessment of patient specimens. Interestingly, combination of RTK and MEK inhibitors led to concomitant inhibition of PI3K and MEK signaling, marked growth suppression, and robust apoptosis of human KRAS mutant colorectal cancer cell lines in vitro and upon xenografting in mice. These findings provide a framework for utilizing RTK inhibitors in the treatment of KRAS mutant colorectal cancers.
Collapse
Affiliation(s)
- Hiromichi Ebi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Martínez-Martín N, Fernández-Arenas E, Cemerski S, Delgado P, Turner M, Heuser J, Irvine DJ, Huang B, Bustelo XR, Shaw A, Alarcón B. T cell receptor internalization from the immunological synapse is mediated by TC21 and RhoG GTPase-dependent phagocytosis. Immunity 2011; 35:208-22. [PMID: 21820331 PMCID: PMC4033310 DOI: 10.1016/j.immuni.2011.06.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 04/13/2011] [Accepted: 06/01/2011] [Indexed: 12/31/2022]
Abstract
The immunological synapse (IS) serves a dual role for sustained T cell receptor (TCR) signaling and for TCR downregulation. TC21 (Rras2) is a RRas subfamily GTPase that constitutively associates with the TCR and is implicated in tonic TCR signaling by activating phosphatidylinositol 3-kinase. In this study, we demonstrate that TC21 both cotranslocates with the TCR to the IS and is necessary for TCR internalization from the IS through a mechanism dependent on RhoG, a small GTPase previously associated with phagocytosis. Indeed, we found that the TCR triggers T cells to phagocytose 1-6 μm beads through a TC21- and RhoG-dependent pathway. We further show that TC21 and RhoG are necessary for the TCR-promoted uptake of major histocompatibility complex (MHC) from antigen-presenting cells. Therefore, TC21 and RhoG dependence underlie the existence of a common phagocytic mechanism that drives TCR internalization from the IS together with its peptide-MHC ligand.
Collapse
|
16
|
Filippakis H, Dimitropoulou P, Eliopoulos AG, Spandidos DA, Sourvinos G. The enhanced host-cell permissiveness of human cytomegalovirus is mediated by the Ras signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1872-82. [PMID: 21782855 DOI: 10.1016/j.bbamcr.2011.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus utilizes cellular signal transduction pathways to activate viral or cellular transcription factors involved in the control of viral gene expression and DNA replication. In the present study, we demonstrate that Harvey-ras-transformed cells show increased permissiveness to human cytomegalovirus when compared to their parental non-transformed cells. Both the progeny viral yield and the protein levels were elevated in the human cytomegalovirus-infected Harvey-ras-transformed cells requiring active viral gene replication, as shown by the infection with UV-inactivated human cytomegalovirus. Inhibition of Ras or of key molecules of the Ras pathway, effectively suppressed viral infection in the Harvey-ras-transformed cells. On a cellular level, the human cytomegalovirus-infected Harvey-ras-transformed cells formed larger cellular foci, which were significantly higher in number, compared to the uninfected cells and preferentially recruited human cytomegalovirus virions, thereby incriminating human cytomegalovirus infection for the increased transformation of these cells. Furthermore, proliferation assays revealed a higher rate for the human cytomegalovirus-infected Harvey-ras-transformed cells compared to mock-infected cells, whereas human cytomegalovirus infection had no considerable effect on the proliferation of the non-transformed cells. Higher susceptibility to apoptosis was also detected in the human cytomegalovirus-infected ras-transformed cells, which in combination with the higher progeny virus reveals a mode by which human cytomegalovirus achieves efficient spread of infection in the cells expressing the oncogenic Harvey-ras (12V) gene. Collectively, our data suggest that human cytomegalovirus employs the host-cell Ras signaling pathway to ensue viral expression and ultimately successful propagation. Transformed cells with an activated Ras signaling pathway are therefore particularly susceptible to human cytomegalovirus infection.
Collapse
|
17
|
Neel NF, Martin TD, Stratford JK, Zand TP, Reiner DJ, Der CJ. The RalGEF-Ral Effector Signaling Network: The Road Less Traveled for Anti-Ras Drug Discovery. Genes Cancer 2011; 2:275-87. [PMID: 21779498 PMCID: PMC3128631 DOI: 10.1177/1947601911407329] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The high frequency of RAS mutations in human cancers (33%) has stimulated intense interest in the development of anti-Ras inhibitors for cancer therapy. Currently, the major focus of these efforts is centered on inhibitors of components involved in Ras downstream effector signaling. In particular, more than 40 inhibitors of the Raf-MEK-ERK mitogen-activated protein kinase cascade and phosphoinositide 3-kinase-AKT-mTOR effector signaling networks are currently under clinical evaluation. However, these efforts are complicated by the fact that Ras can utilize at least 9 additional functionally distinct effectors, with at least 3 additional effectors with validated roles in Ras-mediated oncogenesis. Of these, the guanine nucleotide exchange factors of the Ras-like (Ral) small GTPases (RalGEFs) have emerged as important effectors of mutant Ras in pancreatic, colon, and other cancers. In this review, we summarize the evidence for the importance of this effector pathway in cancer and discuss possible directions for therapeutic inhibition of aberrant Ral activation and signaling.
Collapse
Affiliation(s)
- Nicole F Neel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
18
|
Dibble CF, Horst JA, Malone MH, Park K, Temple B, Cheeseman H, Barbaro JR, Johnson GL, Bencharit S. Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate. PLoS One 2010; 5:e11740. [PMID: 20668527 PMCID: PMC2909203 DOI: 10.1371/journal.pone.0011740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/01/2010] [Indexed: 11/25/2022] Open
Abstract
Cerebral cavernous malformations (CCM) are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1), OSM (CCM2), and PDCD10 (CCM3) are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5)P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (alpha1-3 and alpha4-6) sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5)P3 binding site, in the alpha5 helix. We generated a recombinant wild-type (WT) and three PDCD10 mutants that have two (Delta2KA), three (Delta3KA), and five (Delta5KA) K to A mutations. Delta2KA and Delta3KA mutants hypothetically lack binding residues to PtdIns(3,4,5)P3 at the beginning and the end of predicted helix, while Delta5KA completely lacks all predicted binding residues. The WT, Delta2KA, and Delta3KA mutants maintain their binding to PtdIns(3,4,5)P3. Only the Delta5KA abolishes binding to PtdIns(3,4,5)P3. Both Delta5KA and WT show similar secondary and tertiary structures; however, Delta5KA does not bind to OSM. When WT and Delta5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX), the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5)P3 is presumably abundant. In contrast, the Delta5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5)P3.
Collapse
Affiliation(s)
- Christopher F. Dibble
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy A. Horst
- Department of Microbiology, School of Medicine, and Department of Oral Biology, School of Dentistry, University of Washington, Seattle, Washington, United States of America
| | - Michael H. Malone
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kun Park
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brenda Temple
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Holly Cheeseman
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Justin R. Barbaro
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sompop Bencharit
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
19
|
Calvo F, Crespo P. Structural and spatial determinants regulating TC21 activation by RasGRF family nucleotide exchange factors. Mol Biol Cell 2009; 20:4289-302. [PMID: 19692568 DOI: 10.1091/mbc.e09-03-0212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RasGRF family guanine nucleotide exchange factors (GEFs) promote guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange on several Ras GTPases, including H-Ras and TC21. Although the mechanisms controlling RasGRF function as an H-Ras exchange factor are relatively well characterized, little is known about how TC21 activation is regulated. Here, we have studied the structural and spatial requirements involved in RasGRF 1/2 exchange activity on TC21. We show that RasGRF GEFs can activate TC21 in all of its sublocalizations except at the Golgi complex. We also demonstrate that TC21 susceptibility to activation by RasGRF GEFs depends on its posttranslational modifications: farnesylated TC21 can be activated by both RasGRF1 and RasGRF2, whereas geranylgeranylated TC21 is unresponsive to RasGRF2. Importantly, we show that RasGRF GEFs ability to catalyze exchange on farnesylated TC21 resides in its pleckstrin homology 1 domain, by a mechanism independent of localization and of its ability to associate to membranes. Finally, our data indicate that Cdc42-GDP can inhibit TC21 activation by RasGRF GEFs, demonstrating that Cdc42 negatively affects the functions of RasGRF GEFs irrespective of the GTPase being targeted.
Collapse
Affiliation(s)
- Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas - IDICAN - Universidad de Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Santander, 39011 Cantabria, Spain
| | | |
Collapse
|
20
|
Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol 2009; 10:880-8. [PMID: 19561613 DOI: 10.1038/ni.1749] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/12/2009] [Indexed: 12/11/2022]
Abstract
T cell antigen receptors (TCRs) and B cell antigen receptors (BCRs) transmit low-grade signals necessary for the survival and maintenance of mature cell pools. We show here that TC21, a small GTPase encoded by Rras2, interacted constitutively with both kinds of receptors. Expression of a dominant negative TC21 mutant in T cells produced a rapid decrease in cell viability, and Rras2(-/-) mice were lymphopenic, possibly as a result of diminished homeostatic proliferation and impaired T cell and B cell survival. In contrast, TC21 was overexpressed in several human lymphoid malignancies. Finally, the p110delta catalytic subunit of phosphatidylinositol-3-OH kinase (PI(3)K) was recruited to the TCR and BCR in a TC21-dependent way. Consequently, we propose TC21 directly links antigen receptors to PI(3)K-mediated survival pathways.
Collapse
|
21
|
Rokavec M, Schroth W, Amaral SM, Fritz P, Antoniadou L, Glavač D, Simon W, Schwab M, Eichelbaum M, Brauch H. A Polymorphism in the TC21 Promoter Associates with an Unfavorable Tamoxifen Treatment Outcome in Breast Cancer. Cancer Res 2008; 68:9799-808. [DOI: 10.1158/0008-5472.can-08-0247] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Erdogan M, Pozzi A, Bhowmick N, Moses HL, Zent R. Transforming growth factor-beta (TGF-beta) and TGF-beta-associated kinase 1 are required for R-Ras-mediated transformation of mammary epithelial cells. Cancer Res 2008; 68:6224-31. [PMID: 18676846 DOI: 10.1158/0008-5472.can-08-0513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) cooperates with oncogenic members of the Ras superfamily to promote cellular transformation and tumor progression. Apart from the classic (H-, K-, and N-) Ras GTPases, only the R-Ras subfamily (R-Ras, R-Ras2/TC21, and R-Ras3/M-Ras) has significant oncogenic potential. In this study, we show that oncogenic R-Ras transformation of EpH4 cells requires TGF-beta signaling. When murine EpH4 cells were stably transfected with a constitutively active R-Ras(G38V) mutant, they were no longer sensitive to TGF-beta-mediated growth inhibition and showed increased proliferation and transformation in response to exogenous TGF-beta. R-Ras/EpH4 cells require TGF-beta signaling for transformation to occur and they produce significantly elevated levels of endogenous TGF-beta, which signals in an autocrine fashion. The effects of TGF-beta are independent of Smad2/3 activity and require activation of TGF-beta-associated kinase 1 (TAK1) and its downstream effectors c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase as well as the phosphoinositide 3-kinase/Akt and mammalian target of rapamycin pathways. Thus, TAK1 is a novel link between TGF-beta signaling and oncogenic R-Ras in the promotion of tumorigenesis.
Collapse
Affiliation(s)
- Mete Erdogan
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
23
|
Campbell PM, Singh A, Williams FJ, Frantz K, Ulkü AS, Kelley GG, Der CJ. Genetic and pharmacologic dissection of Ras effector utilization in oncogenesis. Methods Enzymol 2008; 407:195-217. [PMID: 16757325 DOI: 10.1016/s0076-6879(05)07017-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras proteins function as signaling nodes that are activated by diverse extracellular stimuli. Equally complex for this family of molecular switches is the multitude of downstream effectors and the pathways that they traverse to translate extracellular signals into a spectrum of cellular consequences. To better understand the individual and collective roles of these effector signaling networks, both genetic and pharmacological tools have been developed. By either stimulating or ablating specific components in a cascade downstream of Ras activation, one can gain insight into the specific signaling underlying a particular Ras phenotype, for example, malignant transformation. In this chapter, we describe the use of activating and dominant-negative mutations, both artificial and naturally occurring, of Ras and its effectors, as well as pharmacological inhibitors used to probe the effector pathways (Raf kinase, phosphoinositol 3-kinase, Tiam1, phospholipase C epsilon, and RalGEF) implicated in Ras-mediated oncogenesis.
Collapse
Affiliation(s)
- Paul M Campbell
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Repasky GA, Zhou Y, Morita S, Der CJ. Ras-mediated intestinal epithelial cell transformation requires cyclooxygenase-2-induced prostaglandin E2 signaling. Mol Carcinog 2007; 46:958-70. [PMID: 17477350 DOI: 10.1002/mc.20333] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ras-mediated transformation is associated with upregulation of cyclooxygenase-2 (COX-2), which in turn promotes prostaglandin E2 (PGE2) synthesis and secretion. Although recent studies have identified molecular mechanisms by which Ras mediates upregulation of COX-2, conflicting observations have been made. Furthermore, while COX-2 upregulation has been shown to be important for Ras transformation, the signaling pathways initiated by PGE2-stimulation of EP family of heterotrimeric G protein-coupled receptors (GPCR) and contribution of PGE2 signaling to Ras-mediated transformation are issues that remain unresolved. In this study, we first determined that Raf effector pathway activation of the extracellular-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) cascade alone was sufficient and necessary for COX-2 and PGE2 upregulation. However, Raf-independent regulation of the c-jun N-terminal kinase (JNK) and p38 MAPK cascades is also involved in COX-2 and PGE2 upregulation, with the JNK and p38 pathways exhibiting opposing roles in COX-2 and PGE2 upregulation. Furthermore, in contrast to previous studies, we found that an epidermal growth factor (EGF) receptor autocrine growth mechanism, another Raf-independent signaling mechanism, was necessary for COX-2 and PGE2 upregulation. Second, we determined that inhibition of EP1/2 receptor function blocked growth transformation by Ras, demonstrating that PGE2 upregulation is a key transforming function of COX-2. Finally, we found that PGE2 stimulated the activation of Ras and ERK, but not Akt, and reduced matrix deprivation-induced apoptosis, in untransformed epithelial cells. In summary, our studies define additional, multiple signaling mechanisms that promote COX-2 and PGE2 expression and show that COX-2-stimulated PGE2-EP receptor signaling is required for growth and survival transformation by Ras.
Collapse
Affiliation(s)
- Gretchen A Repasky
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
25
|
Oude Weernink PA, Han L, Jakobs KH, Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:888-900. [PMID: 17054901 DOI: 10.1016/j.bbamem.2006.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
26
|
Pozzi A, Coffa S, Bulus N, Zhu W, Chen D, Chen X, Mernaugh G, Su Y, Cai S, Singh A, Brissova M, Zent R. H-Ras, R-Ras, and TC21 differentially regulate ureteric bud cell branching morphogenesis. Mol Biol Cell 2006; 17:2046-56. [PMID: 16467383 PMCID: PMC1415315 DOI: 10.1091/mbc.e05-08-0800] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The collecting system of the kidney, derived from the ureteric bud (UB), undergoes repetitive bifid branching events during early development followed by a phase of tubular growth and elongation. Although members of the Ras GTPase family control cell growth, differentiation, proliferation, and migration, their role in development of the collecting system of the kidney is unexplored. In this study, we demonstrate that members of the R-Ras family of proteins, R-Ras and TC21, are expressed in the murine collecting system at E13.5, whereas H-Ras is only detected at day E17.5. Using murine UB cells expressing activated H-Ras, R-Ras, and TC21, we demonstrate that R-Ras-expressing cells show increased branching morphogenesis and cell growth, TC21-expressing cells branch excessively but lose their ability to migrate, whereas H-Ras-expressing cells migrated the most and formed long unbranched tubules. These differences in branching morphogenesis are mediated by differential regulation/activation of the Rho family of GTPases and mitogen-activated protein kinases. Because most branching of the UB occurs early in development, it is conceivable that R-Ras and TC-21 play a role in facilitating branching and growth in early UB development, whereas H-Ras might favor cell migration and elongation of tubules, events that occur later in development.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Research Medicine, Veterans Affairs Hospital, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dai Z, Barbacioru C, Huang Y, Sadée W. Prediction of anticancer drug potency from expression of genes involved in growth factor signaling. Pharm Res 2006; 23:336-49. [PMID: 16425089 DOI: 10.1007/s11095-005-9260-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/25/2005] [Indexed: 01/13/2023]
Abstract
PURPOSE This study develops and evaluates a systematic approach to finding biomarker genes for predicting potency of anticancer drugs against tumor cells, focusing on gene families related to growth factor signaling. METHODS Cytotoxic potencies of 119 drugs against 60 neoplastic cell lines (NCI-60) were correlated with expression of 343 genes, including 90 growth factors and receptors, 63 metalloproteinases, and 92 ras-like GTPases as downstream signaling factors. Progressively more stringent criteria and predictive models aim at identifying the smallest subset of genes predictive of cytotoxic potency. RESULTS Comparing gene expression with drug potency across the NCI-60 yielded genes with negative and positive correlations (p < 0.001), indicative of a role in chemoresistance and chemosensitivity, respectively. Of 17 genes with multiple negative correlations, 8 are known chemoresistance factors, validating the approach. Negatively correlated genes clustered into two main groups with distinct expression profiles and drug correlations, represented by EGFR and ERBB2 (Her-2/Neu). Accordingly, no synergism was observed between EGFR and ERBB2 inhibitors. However, combinations with classical anticacer drugs were not correlated with EGFR and ERBB2 expression in four cell lines tested, suggesting complex interactions in combination treatments. Finally, a subset of only 13 genes was found to be sufficient for near optimal prediction of drug potency against the NCI-60. CONCLUSIONS Our approach using a small subset of genes reveals known and potential biomarkers in cancer chemotherapy, providing a strategy for genome-wide analysis.
Collapse
Affiliation(s)
- Zunyan Dai
- Program of Pharmacogenomics, Department of Pharmacology, The Ohio State University, 5078 Graves Hall, 333 West 10th Avenue, Columbus, 43210, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Ras proteins function as signaling hubs that are activated by convergent signaling pathways initiated by extracellular stimuli. Activated Ras in turn regulates a diversity of downstream cytoplasmic signaling cascades. Ras proteins are founding members of a large superfamily of small GTPases that have significant sequence and biochemical similarities. Recent observations have established a complex signaling interplay between Ras and other members of the family. A key biochemical mechanism facilitating this crosstalk involves guanine nucleotide exchange factors (GEFs), which serve as regulators and effectors, as well as signaling integrators, of Ras signaling.
Collapse
Affiliation(s)
- Natalia Mitin
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, NC 27599, USA.
| | | | | |
Collapse
|
29
|
Sharma R, Sud N, Chattopadhyay TK, Ralhan R. TC21/R-Ras2 Upregulation in Esophageal Tumorigenesis: Potential Diagnostic Implications. Oncology 2005; 69:10-8. [PMID: 16088230 DOI: 10.1159/000087283] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 10/24/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Early detection of esophageal cancer is hampered by paucity of molecular markers for diagnosis of this aggressive gastrointestinal malignancy in early stages. We recently identified TC21/R-Ras2, a small GTP-binding protein (SMG) in esophageal squamous cell carcinomas (ESCCs) by differential display. This study was designed to test the hypothesis that differential expression of TC21 in normal, dysplastic and malignant esophageal tissues may be of clinical relevance in esophageal tumorigenesis. METHODS Immunohistochemical analysis of TC21 was carried out in 83 ESCCs, 37 dysplasias and 29 matched histologically normal esophageal tissues and correlated with clinicopathological parameters. The cellular localization of TC21 was determined by confocal microscopy. RESULTS Expression of TC21 protein was observed in 60/83 (73%) ESCCs predominantly localized in tumor nuclei. Intriguingly, intense TC21 immunoreactivity was observed in all endoscopic biopsies with histological evidence of dysplasia (16 cases) as well as in dysplastic areas distant to ESCCs (21 cases), while matched distant histologically normal epithelia did not show detectable TC21 expression. Immunoblotting and semi-quantitative RT-PCR confirmed TC21 expression in dysplastias and ESCCs. Confocal microscopy showed nuclear as well as cytoplasmic TC21 expression in ESCCs and TE13 cells. CONCLUSIONS To our knowledge, this is the first report demonstrating differential expression of TC21 in normal, dysplastic and ESCC tissues, suggesting that TC21 expression is associated with early stages of esophageal tumorigenesis. Nuclear localization of TC21 makes it the third of over 100 small SMGs identified to be localized in the nucleus.
Collapse
Affiliation(s)
- Rinu Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | |
Collapse
|
30
|
Rong R, Montalbano J, Jin W, Zhang J, Garling M, Sheikh MS, Huang Y. Oncogenic Ras-mediated downregulation of Gadd153/CHOP is required for Ras-induced cellular transformation. Oncogene 2005; 24:4867-72. [PMID: 15870698 DOI: 10.1038/sj.onc.1208660] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncogenic Ras proteins transform cells via multiple downstream signaling cascades that are important for cell proliferation and survival. Gadd153, also known as CHOP, is a growth inhibitory and proapoptotic protein and its expression is upregulated by many agents that induce apoptosis. Here, we report our novel findings that oncogenic Ras downregulates Gadd153 expression at both protein and mRNA levels and that such downregulation occurs, at least in part, via decreases in GADD153 mRNA stability. Gadd153 downregulation is specific to oncogenic Ras since another oncogenic family member R-Ras2/TC21 does not downregulate Gadd153. We further demonstrate that the expression of exogenous Gadd153 interferes with Ras-induced oncogenic transformation, which suggests that downregulation of Gadd153 appears to be an important mechanism by which oncogenic Ras promotes cellular transformation. Thus, oncogenic Ras-mediated cellular transformation also involves downmodulation of important molecules such as Gadd153 that negatively regulate cell growth and survival.
Collapse
Affiliation(s)
- Rong Rong
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 E Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Arora S, Matta A, Shukla NK, Deo SVS, Ralhan R. Identification of differentially expressed genes in oral squamous cell carcinoma. Mol Carcinog 2005; 42:97-108. [PMID: 15599930 DOI: 10.1002/mc.20048] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rapid advances in multimodality therapy have not significantly improved the overall 5-yr survival of oral cancer patients in the past two decades, thereby underscoring the need for molecular therapeutics. The development of new treatment strategies for more effective management of oral cancer requires identification of novel biological targets. Therefore, the aim of this study was to identify novel genes associated with oral tumorigenesis by comparing gene expression profile of oral squamous cell carcinomas (OSCCs) and matched nonmalignant oral epithelial tissues with differential display. Of the 180 differentially expressed cDNAs isolated, reamplified, and cloned into pGEMT-Easy Vector, 26 cDNAs were confirmed to be upregulated in OSCCs by reverse Northern blot analysis. The differentially expressed genes included components of immune system, signaling pathways, angiogenesis, cell structure, proliferation, apoptosis, cell-adhesion, and cellular metabolism. Reverse transcription (RT)-polymerase chain reaction (PCR) analysis of 15 OSCCs and matched nonmalignant oral tissues provided the first evidence that 14-3-3-zeta, melanoma metastasizing clone D (MEMD), KIAA0471, sperm protein 17 (SP17), TC21, and anti-TNF alpha antibody are upregulated in OSCCs. Immunohistochemical analysis confirmed overexpression of 14-3-3-zeta and TC21 protein, a member of the Ras family, in OSCCs as compared to histologically normal oral tissues validating the differential display analysis. Identification of six novel differentially expressed genes in oral tumors adds to the repertoire of genes associated with oral carcinogenesis and provides candidate potential biological targets for diagnosis and/or therapy. Further characterization of the 14 unknown differentially expressed cDNAs identified in this study may provide significant clues for understanding the molecular mechanisms underlying oral tumorigenesis.
Collapse
Affiliation(s)
- Shilpi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | |
Collapse
|
32
|
Kariya KI, Bui YK, Gao X, Sternberg PW, Kataoka T. Phospholipase Cepsilon regulates ovulation in Caenorhabditis elegans. Dev Biol 2004; 274:201-10. [PMID: 15355798 DOI: 10.1016/j.ydbio.2004.06.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/24/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC with unknown physiological functions. Here, we present the first genetic analysis of PLCepsilon in an intact organism, the nematode Caenorhabditis elegans. Ovulation in C. elegans is dependent on an inositol 1,4,5-trisphosphate (IP(3)) signaling pathway activated by the receptor tyrosine kinase LET-23. We generated deletion mutants of the gene, plc-1, encoding C. elegans PLCepsilon. We observed a novel ovulation phenotype whereby oocytes are trapped in the spermatheca due to delayed dilation of the spermatheca-uterine valve. The expression of plc-1 in the adult spermatheca is consistent with its involvement in regulation of ovulation. On the other hand, we failed to observe genetic interaction of plc-1 with let-23-mediated IP(3) signaling pathway genes, suggesting a complex mechanism for control of ovulation.
Collapse
Affiliation(s)
- Ken-Ichi Kariya
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan.
| | | | | | | | | |
Collapse
|
33
|
Oliva JL, Zarich N, Martínez N, Jorge R, Castrillo A, Azañedo M, García-Vargas S, Gutiérrez-Eisman S, Juarranz A, Boscá L, Gutkind JS, Rojas JM. The P34G mutation reduces the transforming activity of K-Ras and N-Ras in NIH 3T3 cells but not of H-Ras. J Biol Chem 2004; 279:33480-33491. [PMID: 15181015 DOI: 10.1074/jbc.m404058200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ras proteins (H-, N-, and K-Ras) operate as molecular switches in signal transduction cascades controlling cell proliferation, differentiation, or apoptosis. The interaction of Ras with its effectors is mediated by the effector-binding loop, but different data about Ras location to plasma membrane subdomains and new roles for some docking/scaffold proteins point to signaling specificities of the different Ras proteins. To investigate the molecular mechanisms for these specificities, we compared an effector loop mutation (P34G) of three Ras isoforms (H-, N-, and K-Ras4B) for their biological and biochemical properties. Although this mutation diminished the capacity of Ras proteins to activate the Raf/ERK and the phosphatidylinositol 3-kinase/AKT pathways, the H-Ras V12G34 mutant retained the ability to cause morphological transformation of NIH 3T3 fibroblasts, whereas both the N-Ras V12G34 and the K-Ras4B V12G34 mutants were defective in this biological activity. On the other hand, although both the N-Ras V12G34 and the K-Ras4B V12G34 mutants failed to promote activation of the Ral-GDS/Ral A/PLD and the Ras/Rac pathways, the H-Ras V12G34 mutant retained the ability to activate these signaling pathways. Interestingly, the P34G mutation reduced specifically the N-Ras and K-Ras4B in vitro binding affinity to Ral-GDS, but not in the case of H-Ras. Thus, independently of Ras location to membrane subdomains, there are marked differences among Ras proteins in the sensitivity to an identical mutation (P34G) affecting the highly conserved effector-binding loop.
Collapse
Affiliation(s)
- José Luis Oliva
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rodriguez-Viciana P, Sabatier C, McCormick F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol 2004; 24:4943-54. [PMID: 15143186 PMCID: PMC416418 DOI: 10.1128/mcb.24.11.4943-4954.2004] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ras family GTPases (RFGs) regulate signaling pathways that control multiple biological processes. How signaling specificity among the closely related family members is achieved is poorly understood. We have taken a proteomics approach to signaling by RFGs, and we have analyzed interactions of a panel of RFGs with a comprehensive group of known and potential effectors. We have found remarkable differences in the ability of RFGs to regulate the various isoforms of known effector families. We have also identified several proteins as novel effectors of RFGs with differential binding specificities to the various RFGs. We propose that specificity among RFGs is achieved by the differential regulation of combinations of effector families as well as by the selective regulation of different isoforms within an effector family. An understanding of this new level of complexity in the signaling pathways regulated by RFGs is necessary to understand how they carry out their many cellular functions. It will also likely have critical implications in the treatment of human diseases such as cancer.
Collapse
Affiliation(s)
- Pablo Rodriguez-Viciana
- Cancer Research Institute and Comprehensive Cancer Center, University of California, San Francisco, 2340 Sutter St., San Francisco, CA 94143, USA
| | | | | |
Collapse
|
35
|
Kelley GG, Reks SE, Smrcka AV. Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochem J 2004; 378:129-39. [PMID: 14567755 PMCID: PMC1223921 DOI: 10.1042/bj20031370] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 10/20/2003] [Indexed: 11/17/2022]
Abstract
PLCepsilon (phospholipase Cepsilon) is a novel PLC that has a CDC25 guanine nucleotide exchange factor domain and two RA (Ras-association) domains of which the second (RA2) is critical for Ras activation of the enzyme. In the present studies, we examined hormonal stimulation to elucidate receptor-mediated pathways that functionally regulate PLCepsilon. We demonstrate that EGF (epidermal growth factor), a receptor tyrosine kinase agonist, and LPA (lysophosphatidic acid), S1P (sphingosine 1-phosphate) and thrombin, GPCR (G-protein-coupled receptor) agonists, stimulate PLCepsilon overexpressed in COS-7 cells. EGF stimulated PLCepsilon in an RA2-dependent manner through Ras and Rap. In contrast, LPA, S1P and thrombin stimulated PLCepsilon by both RA2-independent and -dependent mechanisms. To determine the G-proteins that mediate the effects of these GPCR agonists, we co-expressed constitutively active G-proteins with PLCepsilon and found that G(alpha12), G(alpha13), Rho, Rac and Ral stimulate PLCepsilon in an RA2-independent manner; whereas TC21, Rap1A, Rap2A and Rap2B stimulate PLCepsilon in an RA2-dependent manner similar to H-Ras. Of these G-proteins, we show that G(alpha12)/G(alpha13) and Rap partly mediate the effects of LPA, S1P and thrombin to stimulate PLCepsilon. In addition, the stimulation by LPA and S1P is also partly sensitive to pertussis toxin. These studies demonstrate diverse hormonal regulation of PLCepsilon by distinct and overlapping pathways.
Collapse
Affiliation(s)
- Grant G Kelley
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
36
|
Huang Y, Rangwala F, Fulkerson PC, Ling B, Reed E, Cox AD, Kamholz J, Ratner N. Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells. Oncogene 2004; 23:368-78. [PMID: 14724565 PMCID: PMC2854497 DOI: 10.1038/sj.onc.1207075] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurofibromatosis type 1 tumor suppressor protein neurofibromin, is a GTPase activating protein for H-, N-, K-, R-Ras and TC21/R-Ras2 proteins. We demonstrate that Schwann cells derived from Nf1-null mice have enhanced chemokinetic and chemotactic migration in comparison to wild-type controls. Surprisingly, this migratory phenotype is not inhibited by a farnesyltransferase inhibitor or dominant-negative (dn) (N17)H-Ras (which inhibits H-, N-, and K-Ras activation). We postulated that increased activity of R-Ras and/or TC21/R-Ras2, due to loss of Nf1, contributes to increased migration. Mouse Schwann cells (MSCs) express R-Ras and TC21/R-Ras2 and their specific guanine exchange factors, C3G and AND-34. Infection of Nf1-null MSCs with a dn(43N)R-Ras adenovirus (to inhibit both R-Ras and TC21/R-Ras2 activation) decreases migration by approximately 50%. Conversely, expression of activated (72L)TC21/R-Ras2, but not activated (38V)R-Ras, increases migration, suggesting a role of TC21/R-Ras2 activation in the migration of neurofibromin-deficient Schwann cells. TC21/R-Ras2 preferentially couples to the phosphatidylinositol 3-kinase (PI3-kinase) and MAP kinase pathways. Treatment with a PI3-kinase or MAP kinase inhibitor reduces Nf1-null Schwann cell migration, implicating these TC21 effectors in Schwann cell migration. These data reveal a key role for neurofibromin regulation of TC21/R-Ras2 in Schwann cells, a cell type critical to NF1 tumor pathogenesis.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Fatima Rangwala
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Patricia C Fulkerson
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Bo Ling
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Erin Reed
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
| | - Adrienne D Cox
- Departments of Radiation Oncology and Pharmacology, CB7512, Lineberger Cancer Center, UNC-CH, Chapel Hill, NC 27599, USA
| | - John Kamholz
- Department of Neurology, Wayne State University, Elliman Building 3206, 421 East Canfield, Detroit, MI 48201, USA
| | - Nancy Ratner
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267-0521, USA
- Correspondence: N Ratner;
| |
Collapse
|
37
|
Kim R, Trubetskoy A, Suzuki T, Jenkins NA, Copeland NG, Lenz J. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J Virol 2003; 77:2056-62. [PMID: 12525640 PMCID: PMC140962 DOI: 10.1128/jvi.77.3.2056-2062.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2002] [Accepted: 10/19/2002] [Indexed: 12/25/2022] Open
Abstract
The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors.
Collapse
Affiliation(s)
- Rachel Kim
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
38
|
Mammalian phospholipase C. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT, Der CJ, Counter CM. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 2002; 16:2045-57. [PMID: 12183360 PMCID: PMC186434 DOI: 10.1101/gad.993902] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The spectrum of tumors associated with oncogenic Ras in humans often differs from those in mice either treated with carcinogens or engineered to sporadically express oncogenic Ras, suggesting that the mechanism of Ras transformation may be different in humans. Ras stimulates primarily three main classes of effector proteins, Rafs, PI3-kinase, and RalGEFs, with Raf generally being the most potent at transforming murine cells. Using oncogenic Ras mutants that activate single effectors as well as constitutively active effectors, we find that the RalGEF, and not the Raf or PI3-kinase pathway, is sufficient for Ras transformation in human cells. Thus, oncogenic Ras may transform murine and human cells by distinct mechanisms, and the RalGEF pathway--previously deemed to play a secondary role in Ras transformation--could represent a new target for anti-cancer therapy.
Collapse
Affiliation(s)
- Nesrin M Hamad
- Department of Pharmacology, Division of Neurology, Duke University Medical Center, Durham North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, Der CJ. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 2002; 4:621-5. [PMID: 12134164 DOI: 10.1038/ncb833] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rac is a member of the Ras superfamily of GTPases and functions as a GDP/GTP-regulated switch. Formation of active Rac-GTP is stimulated by Dbl family guanine nucleotide exchange factors (GEFs), such as Tiam1 (ref. 2). Once activated, Rac stimulates signalling pathways that regulate actin organization, gene expression and cellular proliferation. Rac also functions downstream of the Ras oncoprotein in pathways that stimulate membrane ruffling, growth transformation, activation of the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase, activation of the NF-kappa B transcription factor and promotion of cell survival. Although recent studies support phosphatidylinositol 3-OH kinase (PI(3)K)-dependent mechanisms through which Ras might activate Rac (refs 9,10), the precise mechanism remains to be determined. Here we demonstrate that Tiam1, a Rac-specific GEF, preferentially associates with activated GTP-bound Ras through a Ras-binding domain. Furthermore, activated Ras and Tiam1 cooperate to cause synergistic formation of Rac-GTP in a PI(3)K-independent manner. Thus, Tiam1 can function as an effector that directly mediates Ras activation of Rac.
Collapse
Affiliation(s)
- John M Lambert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|