1
|
Cai S, Zhou J, Luo X, Zhang C, Jin S, Ren J, Cui J. Phase transition of WTAP regulates m 6A modification of interferon-stimulated genes. eLife 2025; 13:RP100601. [PMID: 40424294 DOI: 10.7554/elife.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification of mRNA which controls diverse physiological processes. Although m6A modification has been reported to regulate type I interferon (IFN) responses by targeting the mRNA of IFN-β and the interferon-stimulated genes (ISGs), the detailed mechanism of how m6A methyltransferase complex (MTC) rapidly responds to conduct the modification on nascent mRNA during IFN-β stimulation remains largely unclear. Here, we demonstrate that WTAP, the adaptor protein of m6A MTC, undergoes dephosphorylation-regulated phase transition from aggregates to liquid-like condensates under IFN-β stimulation, thereby mediating m6A modification of a subset of ISGs to restrict their expression. The phase transition of WTAP promotes the interaction with nucleus-translocated transcription factor STAT1, recruits MTC to the promoter regions of ISGs and directs the co-transcriptional m6A modification on ISG mRNAs. Collectively, our findings reveal a novel regulatory role of WTAP phase transition in manipulating signaling pathways and fine-tuning immune response by orchestrating dynamic m6A modification through the cooperation of transcription factors and MTC. Our findings unveil a novel mechanism by which WTAP phase transition controls immune homeostasis via transcription factor-MTC-driven dynamic m6A modification, thereby proposing a potential therapeutic target for alleviating immune dysregulation.
Collapse
Affiliation(s)
- Sihui Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Xiaotong Luo
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Yang Q, Lv Z, Wang M, Kong M, Zhong C, Gao K, Wan X. LATS1/2 loss promote tumor immune evasion in endometrial cancer through downregulating MHC-I expression. J Exp Clin Cancer Res 2024; 43:54. [PMID: 38383447 PMCID: PMC10880206 DOI: 10.1186/s13046-024-02979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND LATS1/2 are frequently mutated and down-regulated in endometrial cancer (EC), but the contributions of LATS1/2 in EC progression remains unclear. Impaired antigen presentation due to mutations or downregulation of the major histocompatibility complex class I (MHC-I) has been implicated in tumor immune evasion. Herein, we elucidate the oncogenic role that dysregulation of LATS1/2 in EC leads to immune evasion through the down-regulation of MHC-I. METHODS The mutation and expression as well as the clinical significance of LATS1/2 in EC was assessed in the TCGA cohort and our sample cohort. CRISPR-Cas9 was used to construct knockout cell lines of LATS1/2 in EC. Differentially expressed genes were analyzed by RNA-seq. The interaction between LATS1/2 and STAT1 was verified using co-immunoprecipitation and GST pull-down assays. Mass spectrometry, in vitro kinase assays, ChIP-qPCR, flow cytometry, immunohistochemistry, immunofluorescence and confocal microscopy were performed to investigate the regulation of LATS1/2 on MHC-I through interaction with and phosphorylate STAT1. The killing effect of activated PBMCs on EC cells were used to monitor anti-tumor activity. RESULTS Here, we demonstrate that LATS1/2 are frequently mutated and down-regulated in EC. Moreover, LATS1/2 loss was found to be associated with a significant down-regulation of MHC-I, independently of the Hippo-YAP pathway. Instead, LATS1/2 were found to directly interact with and phosphorylate STAT1 at Ser727, a crucial transcription factor for MHC-I upregulation in response to interferon-gamma (IFN-γ) signaling, to promote STAT1 accumulating and moving into the nucleus to enhance the transcriptional activation of IRF1/NLRC5 on MHC-I. Additionally, the loss of LATS1/2 was observed to confer increased resistance of EC cells to immune cell-mediated killing and this resistance could be reversed by over-expression of MHC-I. CONCLUSION Our findings indicate that dysregulation of LATS1/2 in EC leads to immune evasion through the down-regulation of MHC-I, leading to the suppression of infiltrating activated CD8 + T cells and highlight the importance of LATS1/2 in IFN-γ signaling-mediated tumor immune response, suggesting that LATS1/2 is a promising target for immune checkpoint blockade therapy in EC.
Collapse
Affiliation(s)
- Qianlan Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Zehen Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Mengfei Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Mengwen Kong
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Cheng Zhong
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| |
Collapse
|
3
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Subedi P, Huber K, Sterr C, Dietz A, Strasser L, Kaestle F, Hauck SM, Duchrow L, Aldrian C, Monroy Ordonez EB, Luka B, Thomsen AR, Henke M, Gomolka M, Rößler U, Azimzadeh O, Moertl S, Hornhardt S. Towards unravelling biological mechanisms behind radiation-induced oral mucositis via mass spectrometry-based proteomics. Front Oncol 2023; 13:1180642. [PMID: 37384298 PMCID: PMC10298177 DOI: 10.3389/fonc.2023.1180642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Objective Head and neck cancer (HNC) accounts for almost 890,000 new cases per year. Radiotherapy (RT) is used to treat the majority of these patients. A common side-effect of RT is the onset of oral mucositis, which decreases the quality of life and represents the major dose-limiting factor in RT. To understand the origin of oral mucositis, the biological mechanisms post-ionizing radiation (IR) need to be clarified. Such knowledge is valuable to develop new treatment targets for oral mucositis and markers for the early identification of "at-risk" patients. Methods Primary keratinocytes from healthy volunteers were biopsied, irradiated in vitro (0 and 6 Gy), and subjected to mass spectrometry-based analyses 96 h after irradiation. Web-based tools were used to predict triggered biological pathways. The results were validated in the OKF6 cell culture model. Immunoblotting and mRNA validation was performed and cytokines present in cell culture media post-IR were quantified. Results Mass spectrometry-based proteomics identified 5879 proteins in primary keratinocytes and 4597 proteins in OKF6 cells. Amongst them, 212 proteins in primary keratinocytes and 169 proteins in OKF6 cells were differentially abundant 96 h after 6 Gy irradiation compared to sham-irradiated controls. In silico pathway enrichment analysis predicted interferon (IFN) response and DNA strand elongation pathways as mostly affected pathways in both cell systems. Immunoblot validations showed a decrease in minichromosome maintenance (MCM) complex proteins 2-7 and an increase in IFN-associated proteins STAT1 and ISG15. In line with affected IFN signalling, mRNA levels of IFNβ and interleukin 6 (IL-6) increased significantly following irradiation and also levels of secreted IL-1β, IL-6, IP-10, and ISG15 were elevated. Conclusion This study has investigated biological mechanisms in keratinocytes post-in vitro ionizing radiation. A common radiation signature in keratinocytes was identified. The role of IFN response in keratinocytes along with increased levels of pro-inflammatory cytokines and proteins could hint towards a possible mechanism for oral mucositis.
Collapse
Affiliation(s)
- Prabal Subedi
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Katharina Huber
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Christoph Sterr
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Anne Dietz
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Lukas Strasser
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Felix Kaestle
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Stefanie M. Hauck
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Metabolomics and Proteomics Core, Munich, Germany
| | - Lukas Duchrow
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Christine Aldrian
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
| | - Elsa Beatriz Monroy Ordonez
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
| | - Benedikt Luka
- Department of Conservative Dentistry Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Andreas R. Thomsen
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Michael Henke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Ute Rößler
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Omid Azimzadeh
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Simone Moertl
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Sabine Hornhardt
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| |
Collapse
|
5
|
Campbell RA, Manne BK, Banerjee M, Middleton EA, Ajanel A, Schwertz H, Denorme F, Stubben C, Montenont E, Saperstein S, Page L, Tolley ND, Lim DL, Brown SM, Grissom CK, Sborov DW, Krishnan A, Rondina MT. IFITM3 regulates fibrinogen endocytosis and platelet reactivity in nonviral sepsis. J Clin Invest 2022; 132:e153014. [PMID: 36194487 PMCID: PMC9711880 DOI: 10.1172/jci153014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/29/2022] [Indexed: 01/13/2023] Open
Abstract
Platelets and megakaryocytes are critical players in immune responses. Recent reports suggest infection and inflammation alter the megakaryocyte and platelet transcriptome to induce altered platelet reactivity. We determined whether nonviral sepsis induces differential platelet gene expression and reactivity. Nonviral sepsis upregulated IFN-induced transmembrane protein 3 (IFITM3), an IFN-responsive gene that restricts viral replication. As IFITM3 has been linked to clathrin-mediated endocytosis, we determined whether IFITM3 promoted endocytosis of α-granule proteins. IFN stimulation enhanced fibrinogen endocytosis in megakaryocytes and platelets from Ifitm+/+ mice, but not Ifitm-/- mice. IFITM3 overexpression or deletion in megakaryocytes demonstrated IFITM3 was necessary and sufficient to regulate fibrinogen endocytosis. Mechanistically, IFITM3 interacted with clathrin and αIIb and altered their plasma membrane localization into lipid rafts. In vivo IFN administration increased fibrinogen endocytosis, platelet reactivity, and thrombosis in an IFITM-dependent manner. In contrast, Ifitm-/- mice were completely rescued from IFN-induced platelet hyperreactivity and thrombosis. During murine sepsis, platelets from Ifitm+/+ mice demonstrated increased fibrinogen content and platelet reactivity, which was dependent on IFN-α and IFITMs. Platelets from patients with nonviral sepsis had increases in platelet IFITM3 expression, fibrinogen content, and hyperreactivity. These data identify IFITM3 as a regulator of platelet endocytosis, hyperreactivity, and thrombosis during inflammatory stress.
Collapse
Affiliation(s)
- Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Department of Internal Medicine
- Department of Pathology, and
| | - Bhanu Kanth Manne
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Meenakshi Banerjee
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Elizabeth A. Middleton
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Department of Internal Medicine
| | | | - Hansjorg Schwertz
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, Utah, USA
- Occupational Medicine, Billings Clinic Bozeman, Bozeman, Montana, USA
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Emilie Montenont
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | | | - Lauren Page
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Neal D. Tolley
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Diana L. Lim
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Samuel M. Brown
- Division of Pulmonary and Critical Medicine, Department of Medicine, Intermountain Medical Center, Murray, Utah, USA
| | - Colin K. Grissom
- Division of Pulmonary and Critical Medicine, Department of Medicine, Intermountain Medical Center, Murray, Utah, USA
| | - Douglas W. Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Anandi Krishnan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Matthew T. Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Department of Internal Medicine
- Department of Pathology, and
- George E. Wahlen Department of Veterans Affairs Medical Center, Department of Internal Medicine, and Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Gurjar D, Kumar Patra S, Bodhale N, Lenka N, Saha B. Leishmania intercepts IFN-γR signaling at multiple levels in macrophages. Cytokine 2022; 157:155956. [PMID: 35785668 DOI: 10.1016/j.cyto.2022.155956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
IFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination. As befits the principle of parasitism, the impaired IFN-γ responsiveness in macrophages ensures Leishmania survival. IFN-γ responsiveness is a function of integrated molecular events at multiple levels in the cells that express IFN-γ receptors. In Leishmania-infected macrophages, reduced IFN-γRα expression, impaired IFN-γRα and IFN-γRβ hetero-dimerization due to altered membrane lipid composition, reduced JAK-1 and STAT-1 phosphorylation but increased STAT-1 degradation and impaired ISGs induction collectively determine the IFN-γ responsiveness and the efficacy of IFN-γ induced antileishmanial function of macrophages. Therefore, parasite load is not only decided by the levels of IFN-γ produced but also by the IFN-γ responsiveness. Indeed, in Leishmania-infected patients, IFN-γ is produced but IFN-γ signalling is downregulated. However, the molecular mechanisms of IFN-γ responsiveness remain unclear. Therefore, we review the current understanding of IFN-γ responsiveness of Leishmania-infected macrophages.
Collapse
Affiliation(s)
- Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
7
|
van Haren SD, Pedersen GK, Kumar A, Ruckwardt TJ, Moin S, Moore IN, Minai M, Liu M, Pak J, Borriello F, Doss-Gollin S, Beijnen EMS, Ahmed S, Helmel M, Andersen P, Graham BS, Steen H, Christensen D, Levy O. CAF08 adjuvant enables single dose protection against respiratory syncytial virus infection in murine newborns. Nat Commun 2022; 13:4234. [PMID: 35918315 PMCID: PMC9346114 DOI: 10.1038/s41467-022-31709-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation. In a murine in vivo model a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protects newborn mice from RSV infection by induction of antigen-specific CD8+ T-cells and Th1 cells. Overall, we describe a pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other respiratory viral pathogens.
Collapse
Affiliation(s)
- Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Azad Kumar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Syed Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Simon Doss-Gollin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Saima Ahmed
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michaela Helmel
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Andersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
8
|
Zuo Y, He J, Liu S, Xu Y, Liu J, Qiao C, Zang L, Sun W, Yuan Y, Zhang H, Chen X, Jin L, Miao Y, Huang F, Ren T, Wang J, Qian F, Zhu C, Zhang W, Liu Y, Xu G, Ma F, Zheng H. LATS1 is a central signal transmitter for achieving full type-I interferon activity. SCIENCE ADVANCES 2022; 8:eabj3887. [PMID: 35394840 PMCID: PMC8993116 DOI: 10.1126/sciadv.abj3887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/19/2022] [Indexed: 05/14/2023]
Abstract
Interferons (IFNs) have broad-spectrum antiviral activity to resist virus epidemic. However, IFN antiviral efficacy needs to be greatly improved. Here, we reveal that LATS1 is a vital signal transmitter governing full type-I IFN (IFN-I) signaling activity. LATS1 constitutively binds with the IFN-I receptor IFNAR2 and is rapidly tyro-phosphorylated by Tyk2 upon IFN-I engagement. Tyro-phosphorylation of LATS1 promotes LATS1 activation and YAP degradation, thereby promoting IFN-mediated antiproliferation activity. Moreover, activated LATS1 translocates into the nucleus and induces CDK8-Ser62 phosphorylation, which in turn phosphorylates STAT1 at Ser727 and induces full IFN-I antiviral activity. LATS1 deficiency restricts in vivo IFN-I signaling and attenuates host antiviral immune response. Our study identifies IFN-I as a previously unidentified extracellular diffusible ligand signal for activation of the Hippo core LATS1 pathway and reveals Tyk2-LATS1-CDK8 as a complete signaling cascade controlling full IFN-I activity.
Collapse
Affiliation(s)
- Yibo Zuo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jiuyi He
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Siying Liu
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ying Xu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Liu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wenhuan Sun
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hongguang Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiangjie Chen
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Lincong Jin
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fan Huang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Tengfei Ren
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jun Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Qian
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chuanwu Zhu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Feng Ma
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Discovery of a signaling feedback circuit that defines interferon responses in myeloproliferative neoplasms. Nat Commun 2022; 13:1750. [PMID: 35365653 PMCID: PMC8975834 DOI: 10.1038/s41467-022-29381-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK. We show that this pathway is essential for IFN-suppressive effects on primary malignant erythroid precursors from MPN patients, and that increased levels of ULK1 and p38 MAPK correlate with clinical response to IFNα therapy in these patients. We also demonstrate that IFNα treatment induces cleavage/activation of the ULK1-interacting ROCK1/2 proteins in vitro and in vivo, triggering a negative feedback loop that suppresses IFN responses. Overexpression of ROCK1/2 is seen in MPN patients and their genetic or pharmacological inhibition enhances IFN-anti-neoplastic responses in malignant erythroid precursors from MPN patients. These findings suggest the clinical potential of pharmacological inhibition of ROCK1/2 in combination with IFN-therapy for the treatment of MPNs. Interferon alpha (IFNalpha) therapy is showing promising results to treat myeloproliferative neoplasms (MPNs). Here, the authors show that IFNalpha response requires ULK1 phosphorylation to induce p38-MAPK signalling but it is counteracted by ROCK1-2 activation suggesting combination therapy of IFNalpha-ROCK1-2 inhibition may improve MPNs treatment.
Collapse
|
10
|
Xiong W, He W, Wang T, He S, Xu F, Wang Z, Wang X, Guo H, Ling J, Zhang H, Liu Y, Xing K, Li M, Zhang H, Li J, Niu N, Xue J, Zhan Q, Liu Z, Bei J, Huang P, Liu J, Xia L, Xia X. Smad4 Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancer-Autonomous DNA-Sensing Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103029. [PMID: 35064757 PMCID: PMC8895117 DOI: 10.1002/advs.202103029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Smad4, a key mediator of the transforming growth factor-β signaling, is mutated or deleted in 20% of pancreatic ductal adenocarcinoma (PDAC) cancers and significantly affects cancer development. However, the effect of Smad4 loss on the immunogenicity and tumor immune microenvironment of PDAC is still unclear. Here, a surprising function of Smad4 in suppressing mouse PDAC tumor immunogenicity is identified. Although Smad4 deletion in tumor cells enhances proliferation in vitro, the in vivo growth of Smad4-deficient PDAC tumor is significantly inhibited on immunocompetent C57BL/6 (B6) mice, but not on immunodeficient mice or CD8+ cell-depleted B6 mice. Mechanistically, Smad4 deficiency significantly increases tumor cell immunogenicity by promoting spontaneous DNA damage and stimulating STING-mediated type I interferon signaling,which contributes to the activation of type 1 conventional dendritic cells (cDC1) and subsequent CD8+ T cells for tumor control. Furthermore, retarded tumor growth of Smad4-deficient PDAC cells on B6 mice is largely reversed when Sting is codeleted, or when the cells are implanted into interferon-alpha receptor-deficientmice or cDC1-deficientmice. Accordingly, Smad4 deficiency promotes PDAC immunogenicity by inducing tumor-intrinsic DNA damage-elicited type I interferon signaling.
Collapse
Affiliation(s)
- Wenjing Xiong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shuai He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Feifei Xu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zining Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hui Guo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jianhua Ling
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Huanling Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Kaili Xing
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Mengyun Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jiahui Li
- College of Food Science and EngineeringDalian Polytechnic UniversityLiaoning116034P. R. China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Qiuyao Zhan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ze‐Xian Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jin‐Xin Bei
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Peng Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Liangping Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
11
|
Suppression of a Subset of Interferon-Induced Genes by Human Papillomavirus Type 16 E7 via a Cyclin Dependent Kinase 8-Dependent Mechanism. Viruses 2020; 12:v12030311. [PMID: 32183180 PMCID: PMC7150855 DOI: 10.3390/v12030311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Persistent infection by human papillomaviruses (HPVs), small, double-stranded DNA viruses that infect keratinocytes of the squamous epithelia, can lead to the development of cervical and other cancers. The viral oncoprotein E7 contributes to viral persistence in part by regulating host gene expression through binding host transcriptional regulators, although mechanisms responsible for E7-mediated transcriptional regulation are incompletely understood. Type I IFN signaling promotes the expression of anti-viral genes, called interferon-stimulated genes (ISGs), through the phosphorylation and activation of STAT1. In this study, we have observed that the CR3 domain of E7 contributes to the episomal maintenance of viral genomes. Transcriptome analysis revealed that E7 transcriptionally suppresses a subset of ISGs but not through regulation of STAT1 activation. Instead, we discovered that E7 associates with Mediator kinase CDK8 and this is correlated with the recruitment of CDK8 to ISG promoters and reduced ISG expression. E7 fails to suppress ISGs in the absence of CDK8, indicating that CDK8 function contributes to the suppression of ISGs by E7. Altogether, E7/CDK8 association may be a novel mechanism by which E7 inhibits innate immune signaling.
Collapse
|
12
|
Ren J, Zhou T, Pilli VSS, Phan N, Wang Q, Gupta K, Liu Z, Sheibani N, Liu B. Novel Paracrine Functions of Smooth Muscle Cells in Supporting Endothelial Regeneration Following Arterial Injury. Circ Res 2020; 124:1253-1265. [PMID: 30739581 DOI: 10.1161/circresaha.118.314567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Regeneration of denuded or injured endothelium is an important component of vascular injury response. Cell-cell communication between endothelial cells and smooth muscle cells (SMCs) plays a critical role not only in vascular homeostasis but also in disease. We have previously demonstrated that PKCδ (protein kinase C-delta) regulates multiple components of vascular injury response including apoptosis of SMCs and production of chemokines, thus is an attractive candidate for a role in SMC-endothelial cells communication. OBJECTIVE To test whether PKCδ-mediated paracrine functions of SMCs influence reendothelialization in rodent models of arterial injury. METHODS AND RESULTS Femoral artery wire injury was performed in SMC-conditional Prkcd knockout mice, and carotid angioplasty was conducted in rats receiving transient Prkcd knockdown or overexpression. SMC-specific knockout of Prkcd impaired reendothelialization, reflected by a smaller Evans blue-excluding area in the knockout compared with the wild-type controls. A similar impediment to reendothelialization was observed in rats with SMC-specific knockdown of Prkcd. In contrast, SMC-specific gene transfer of Prkcd accelerated reendothelialization. In vitro, medium conditioned by AdPKCδ-infected SMCs increased endothelial wound closure without affecting their proliferation. A polymerase chain reaction-based array analysis identified Cxcl1 and Cxcl7 among others as PKCδ-mediated chemokines produced by SMCs. Mechanistically, we postulated that PKCδ regulates Cxcl7 expression through STAT3 (signal transducer and activator of transcription 3) as knockdown of STAT3 abolished Cxcl7 expression. The role of CXCL7 in SMC-endothelial cells communication was demonstrated by blocking CXCL7 or its receptor CXCR2, both significantly inhibited endothelial wound closure. Furthermore, insertion of a Cxcl7 cDNA in the lentiviral vector that carries a Prkcd shRNA overcame the adverse effects of Prkcd knockdown on reendothelialization. CONCLUSIONS SMCs promote reendothelialization in a PKCδ-dependent paracrine mechanism, likely through CXCL7-mediated recruitment of endothelial cells from uninjured endothelium.
Collapse
Affiliation(s)
- Jun Ren
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Ting Zhou
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Vijaya Satish Sekhar Pilli
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Noel Phan
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Qiwei Wang
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Kartik Gupta
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Zhenjie Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.).,Department of Vascular Surgery, 2nd Affiliated Hospital School of Medicine, Zhejiang University (Z.L.)
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison (N.S.)
| | - Bo Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| |
Collapse
|
13
|
Ma G, Gezer D, Herrmann O, Feldberg K, Schemionek M, Jawhar M, Reiter A, Brümmendorf TH, Koschmieder S, Chatain N. LCP1 triggers mTORC2/AKT activity and is pharmacologically targeted by enzastaurin in hypereosinophilia. Mol Carcinog 2019; 59:87-103. [DOI: 10.1002/mc.23131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Guangxin Ma
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine RWTH Aachen University Aachen Germany
- Hematology and Oncology Unit, Department of Geriatrics Qilu Hospital of Shandong University Jinan Shandong China
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine RWTH Aachen University Aachen Germany
| | - Oliver Herrmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine RWTH Aachen University Aachen Germany
| | - Kristina Feldberg
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine RWTH Aachen University Aachen Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine RWTH Aachen University Aachen Germany
| | - Mohamad Jawhar
- Department of Hematology and Oncology University Medical Centre Mannheim, Heidelberg University Mannheim Germany
| | - Andreas Reiter
- Department of Hematology and Oncology University Medical Centre Mannheim, Heidelberg University Mannheim Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine RWTH Aachen University Aachen Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine RWTH Aachen University Aachen Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine RWTH Aachen University Aachen Germany
| |
Collapse
|
14
|
Manjari P, Hyder I, Dang AK. Implantation associated divergence in neutrophil glucocorticoid and cysteine-X-cysteine receptor genes in cattle. Mol Biol Rep 2019; 46:5493-5499. [PMID: 31165367 DOI: 10.1007/s11033-019-04865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
The differential roles of Interferon-tau (IFNT) and Progesterone (P4) in triggering pro- and anti-inflammatory responses during peri-implantation period were assessed in cows. An ex vivo study was done by isolating neutrophils from the animals post artificial insemination (AI) at defined intervals and analyzing the expression changes of Glucocorticoid receptor-α (GRα) and Interleukin-8 receptor (CXCR1) genes. An in vitro study was also done isolating neutrophils from prepubertal heifers subjecting them to IFNT and Progesterone P4 supplementation separately. We observed that from day 14 post Artificial Insemination, there is a significant up-regulation of neutrophil GRα and CXCR1 in pregnant and non-pregnant cows respectively. The in vitro study showed that IFNT significantly up-regulates GRα whereas P4 significantly up-regulates CXCR1. The total leukocyte count and neutrophil count were also significantly higher in non-pregnant cows. We conclude that IFNT efficiently mediates neutrophil immunosuppression during peri-implantation period in cows by interacting with Interleukin 8 receptor and can also exert ligand independent actions on GRα.
Collapse
Affiliation(s)
- P Manjari
- Krishi Vigyan Kendra, KVK Venkatagiri (YSR Horticulture University), Nellore, Andhra Pradesh, 524132, India.
| | - Iqbal Hyder
- Department of Veterinary Physiology, NTR CVSc, Gannavaram, 521102, India.,Institute of Farm Animal Genetics (FLI), Mariensee, 31535, Neustadt, Germany
| | - A K Dang
- Division of Dairy Cattle Physiology, ICAR-NDRI, Karnal, Haryana, 132001, India
| |
Collapse
|
15
|
Saleiro D, Platanias LC. Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Semin Immunol 2019; 43:101299. [PMID: 31771762 PMCID: PMC8177745 DOI: 10.1016/j.smim.2019.101299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/01/2023]
Abstract
The interferons (IFNs) are cytokines with important antineoplastic and immune modulatory effects. These cytokines have been conserved through evolution as important elements of the immune surveillance against cancer. Despite this, defining their precise and specific roles in the generation of antitumor responses remains challenging. Emerging evidence suggests the existence of previously unknown roles for IFNs in the control of the immune response against cancer that may redefine our understanding on how these cytokines function. Beyond the engagement of classical JAK-STAT signaling pathways that promote transcription and expression of gene products, the IFNs engage multiple other signaling cascades to generate products that mediate biological responses and outcomes. There is recent emerging evidence indicating that IFNs control the expression of both traditional immune checkpoints like the PD-L1/PD1 axis, but also less well understood "intracellular" immune checkpoints whose targeting may define new approaches for the treatment of malignancies.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| |
Collapse
|
16
|
The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int J Mol Sci 2019; 20:ijms20061498. [PMID: 30917487 PMCID: PMC6471617 DOI: 10.3390/ijms20061498] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.
Collapse
|
17
|
Stanifer ML, Pervolaraki K, Boulant S. Differential Regulation of Type I and Type III Interferon Signaling. Int J Mol Sci 2019; 20:E1445. [PMID: 30901970 PMCID: PMC6471306 DOI: 10.3390/ijms20061445] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are very powerful cytokines, which play a key role in combatting pathogen infections by controlling inflammation and immune response by directly inducing anti-pathogen molecular countermeasures. There are three classes of IFNs: type I, type II and type III. While type II IFN is specific for immune cells, type I and III IFNs are expressed by both immune and tissue specific cells. Unlike type I IFNs, type III IFNs have a unique tropism where their signaling and functions are mostly restricted to epithelial cells. As such, this class of IFN has recently emerged as a key player in mucosal immunity. Since the discovery of type III IFNs, the last 15 years of research in the IFN field has focused on understanding whether the induction, the signaling and the function of these powerful cytokines are regulated differently compared to type I IFN-mediated immune response. This review will cover the current state of the knowledge of the similarities and differences in the signaling pathways emanating from type I and type III IFN stimulation.
Collapse
Affiliation(s)
- Megan L Stanifer
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Kalliopi Pervolaraki
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Steeve Boulant
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Cancer-induced inflammation and inflammation-induced cancer in colon: a role for S1P lyase. Oncogene 2019; 38:4788-4803. [PMID: 30816345 DOI: 10.1038/s41388-019-0758-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
A role of sphingolipids for inflammatory bowel disease and cancer is evident. However, the relative and separate contribution of sphingolipid deterioration in inflammation versus carcinogenesis for the pathophysiology of colitis-associated colon cancer (CAC) was unknown and therefore examined in this study. We performed isogenic bone marrow transplantation of inducible sphingosine-1-phosphate (S1P) lyase knockout mice to specifically modulate sphingolipids and associated genes and proteins in a compartment-specific way in a DSS/AOM mediated CAC model. 3D organoid cultures were used in vitro. S1P lyase (SGPL1) knockout in either immune cells or tissue, caused local sphingolipid accumulation leading to a dichotomic development of CAC: Immune cell SGPL1 knockout (I-SGPL-/-) augmented massive immune cell infiltration initiating colitis with lesions and calprotectin increase. Pathological crypt remodeling plus extracellular S1P-signaling caused delayed tumor formation characterized by S1P receptor 1, STAT3 mRNA increase, as well as programmed cell death ligand 1 expression, accompanied by a putatively counter regulatory STAT1S727 phosphorylation. In contrast, tissue SGPL1 knockout (T-SGPL-/-) provoked immediate occurrence of epithelial-driven tumors with upregulated sphingosine kinase 1, S1P receptor 2 and epidermal growth factor receptor. Here, progressing carcinogenesis was accompanied by an IL-12 to IL-23 shift with a consecutive development of a Th2/GATA3-driven, tumor-favoring microenvironment. Moreover, the knockout models showed distinct lymphopenia and neutrophilia, different from the full SGPL1 knockout. This study shows that depending on the initiating cellular S1P source, the pathophysiology of inflammation-induced cancer versus cancer-induced inflammation develops through separate, discernible molecular steps.
Collapse
|
19
|
Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Exp Neurobiol 2019; 28:85-103. [PMID: 30853827 PMCID: PMC6401554 DOI: 10.5607/en.2019.28.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) following ischemic stroke is a promising potential therapeutic strategy, but lacks efficacy for human central nervous system (CNS) therapeutics. In a previous in vitro study, we reported that the overexpression of human arginine decarboxylase (ADC) genes by a retroviral plasmid vector promoted the neuronal differentiation of mouse NPCs. In the present study, we focused on the cellular mechanism underlying cell proliferation and differentiation following ischemic injury, and the therapeutic feasibility of NPCs overexpressing ADC genes (ADC-NPCs) following ischemic stroke. To mimic cerebral ischemia in vitro , we subjected the NPCs to oxygen-glucose deprivation (OGD). The overexpressing ADC-NPCs were differentiated by neural lineage, which was related to excessive intracellular calcium-mediated cell cycle arrest and phosphorylation in the ERK1/2, CREB, and STAT1 signaling cascade following ischemic injury. Moreover, the ADC-NPCs were able to resist mitochondrial membrane potential collapse in the increasingly excessive intracellular calcium environment. Subsequently, transplanted ADC-NPCs suppressed infarct volume, and promoted neural differentiation, synapse formation, and motor behavior performance in an in vivo tMCAO rat model. The results suggest that ADC-NPCs are potentially useful for cell replacement therapy following ischemic stroke.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
20
|
Pervolaraki K, Rastgou Talemi S, Albrecht D, Bormann F, Bamford C, Mendoza JL, Garcia KC, McLauchlan J, Höfer T, Stanifer ML, Boulant S. Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathog 2018; 14:e1007420. [PMID: 30485383 PMCID: PMC6287881 DOI: 10.1371/journal.ppat.1007420] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
It is currently believed that type I and III interferons (IFNs) have redundant functions. However, the preferential distribution of type III IFN receptor on epithelial cells suggests functional differences at epithelial surfaces. Here, using human intestinal epithelial cells we could show that although both type I and type III IFNs confer an antiviral state to the cells, they do so with distinct kinetics. Type I IFN signaling is characterized by an acute strong induction of interferon stimulated genes (ISGs) and confers fast antiviral protection. On the contrary, the slow acting type III IFN mediated antiviral protection is characterized by a weaker induction of ISGs in a delayed manner compared to type I IFN. Moreover, while transcript profiling revealed that both IFNs induced a similar set of ISGs, their temporal expression strictly depended on the IFNs, thereby leading to unique antiviral environments. Using a combination of data-driven mathematical modeling and experimental validation, we addressed the molecular reason for this differential kinetic of ISG expression. We could demonstrate that these kinetic differences are intrinsic to each signaling pathway and not due to different expression levels of the corresponding IFN receptors. We report that type III IFN is specifically tailored to act in specific cell types not only due to the restriction of its receptor but also by providing target cells with a distinct antiviral environment compared to type I IFN. We propose that this specific environment is key at surfaces that are often challenged with the extracellular environment.
Collapse
Affiliation(s)
- Kalliopi Pervolaraki
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Cellular polarity and viral infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soheil Rastgou Talemi
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Dorothee Albrecht
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Bormann
- Division of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Connor Bamford
- MRC- University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Juan L. Mendoza
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - John McLauchlan
- MRC- University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Megan L. Stanifer
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Cellular polarity and viral infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Zhang Y, Chen Y, Liu Z, Lai R. ERK is a negative feedback regulator for IFN-γ/STAT1 signaling by promoting STAT1 ubiquitination. BMC Cancer 2018; 18:613. [PMID: 29855346 PMCID: PMC5984314 DOI: 10.1186/s12885-018-4539-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/21/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We recently reported that STAT1 plays a tumor suppressor role, and ERK was inversely correlation with STAT1 expression in esophageal squamous cell carcinoma (ESCC). Here, we investigated the mechanism(s) that are responsible for the ERK regulates STAT1 in ESCC. METHODS We performed the immunoprecipitation (IP) to detect the ubiquitin of STAT1 upon MEK transfection or U0126 treatment and co-IP to confirm the binding of STAT1 and ERK in ESCC cell lines. RESULTS We found evidence that the ubiquitin-proteasome pathway can efficiently degrade STAT1 in ESCC cells, as MG132 treatment rapidly and dramatically increased STAT1 expression in these cells. This process is not dependent on the phosphorylation of the two important STAT1 residues, Y701 and S727, as site-directed mutagenesis of these two sites did not affect STAT1 degradation. We also found that ERK promotes proteasome degradation of STAT1, supported by the observations that pharmacologic inhibition of ERK resulted in a substantial increase of STAT1 whereas expression of constitutively active ERK further reduced the STAT1 protein level. In addition to suppressing STAT1 expression, ERK limited STAT1 signaling by decreasing the production of IFNγ. CONCLUSION To conclude, ERK is an effective negative regulator of STAT1 signaling in ESCC, by promoting its proteasome degradation and decreasing IFNγ production. Our data further supports that targeting ERK and/or STAT1 may be useful for treating ESCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong Province China
| | - Yelong Chen
- Department of Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong Province China
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 Guangdong China
| | - Zhaoyong Liu
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 Guangdong China
| | - Raymond Lai
- Department of Pathology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
22
|
Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: A comprehensive review. J Autoimmun 2017; 83:1-11. [PMID: 28330758 DOI: 10.1016/j.jaut.2017.03.008] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/14/2023]
Abstract
Type I interferons (IFNs) play essential roles in establishing and modulating host defense against microbial infection via induction of IFN-stimulated genes (ISGs) through Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. However, dysregulation of IFNs production and function could also mediate immune pathogenesis such as inflammatory autoimmune diseases and infectious diseases via aberrantly activating inflammatory responses or improperly suppressing microbial controls. Thus, IFN responses need to be tightly regulated to achieve protective immunity against microbial infection while avoiding harmful toxicity caused by improper or prolonged IFN signaling. Multiple levels of cellular and molecular events act in a cooperated manner to regulate IFN responses, in especial, post-translational modification (PTMs) of signaling molecules and epigenetic modification of gene expression programs are two important mechanisms for regulation of IFN signaling and thus critical for orchestrating IFN-mediated host immune response to the complex pathogenic or environmental stimuli. Conventional PTMs such as phosphorylation and polyubiquitylation, as well as numerous other PTMs including acetylation, ISGylation, SUMOylation and methylation have been shown to potently modulate type I IFN signaling transduction via targeting distinct signaling steps or components. Moreover, epigenetic mechanisms, such as histone modification, DNA methylation, non-coding RNAs play critical roles in regulating chromatin structure and function, leading to flexible and dynamic gene expression patterns downstream type I IFN signaling. Herein, we summarize the recent advances in the PTMs and epigenetic mechanisms in regulation of type I IFN signaling and responses. The involvement of dysregulated IFN signaling in inflammatory and autoimmune diseases are also discussed.
Collapse
Affiliation(s)
- Kun Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China; National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
23
|
Moretti S, Menicali E, Nucci N, Voce P, Colella R, Melillo RM, Liotti F, Morelli S, Fallarino F, Macchiarulo A, Santoro M, Avenia N, Puxeddu E. Signal Transducer and Activator of Transcription 1 Plays a Pivotal Role in RET/PTC3 Oncogene-induced Expression of Indoleamine 2,3-Dioxygenase 1. J Biol Chem 2017; 292:1785-1797. [PMID: 27994058 PMCID: PMC5290952 DOI: 10.1074/jbc.m116.745448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a single chain oxidoreductase that catalyzes tryptophan degradation to kynurenine. In cancer, it exerts an immunosuppressive function as part of an acquired mechanism of immune escape. Recently, we demonstrated that IDO1 expression is significantly higher in all thyroid cancer histotypes compared with normal thyroid and that its expression levels correlate with T regulatory (Treg) lymphocyte densities in the tumor microenvironment. BRAFV600E- and RET/PTC3-expressing PcCL3 cells were used as cellular models for the evaluation of IDO1 expression in thyroid carcinoma cells and for the study of involved signal transduction pathways. BRAFV600E-expressing PcCL3 cells did not show IDO1 expression. Conversely, RET/PTC3-expressing cells were characterized by a high IDO1 expression. Moreover, we found that, the STAT1-IRF1 pathway was instrumental for IDO1 expression in RET/PTC3 expressing cells. In detail, RET/PTC3 induced STAT1 overexpression and phosphorylation at Ser-727 and Tyr-701. STAT1 transcriptional regulation appeared to require activation of the canonical NF-κB pathway. Conversely, activation of the MAPK and PI3K-AKT pathways primarily regulated Ser-727 phosphorylation, whereas a physical interaction between RET/PTC3 and STAT1, followed by a direct tyrosine phosphorylation event, was necessary for STAT1 Tyr-701 phosphorylation. These data provide the first evidence of a direct link between IDO1 expression and the oncogenic activation of RET in thyroid carcinoma and describe the involved signal transduction pathways. Moreover, they suggest possible novel molecular targets for the abrogation of tumor microenvironment immunosuppression. The detection of those targets is becoming increasingly important to yield the full function of novel immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Sonia Moretti
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | - Elisa Menicali
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | - Nicole Nucci
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | - Pasquale Voce
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | - Renato Colella
- Department of Experimental Medicine, University of Perugia, 06100 Perugia
| | - Rosa Marina Melillo
- the Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II,", 80131 Naples, Italy; Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Federica Liotti
- the Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II,", 80131 Naples, Italy
| | - Silvia Morelli
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | | | | | - Massimo Santoro
- the Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II,", 80131 Naples, Italy
| | - Nicola Avenia
- the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni; Departments of Surgical and Biomedical Sciences, University of Perugia, 06100 Perugia
| | - Efisio Puxeddu
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni.
| |
Collapse
|
24
|
Wang W, Xu L, Su J, Peppelenbosch MP, Pan Q. Transcriptional Regulation of Antiviral Interferon-Stimulated Genes. Trends Microbiol 2017; 25:573-584. [PMID: 28139375 PMCID: PMC7127685 DOI: 10.1016/j.tim.2017.01.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/16/2022]
Abstract
Interferon-stimulated genes (ISGs) are a group of gene products that coordinately combat pathogen invasions, in particular viral infections. Transcription of ISGs occurs rapidly upon pathogen invasion, and this is classically provoked via activation of the Janus kinase/signal transducer and activator of transcription (JAK–STAT) pathway, mainly by interferons (IFNs). However, a plethora of recent studies have reported a variety of non-canonical mechanisms regulating ISG transcription. These new studies are extremely important for understanding the quantitative and temporal differences in ISG transcription under specific circumstances. Because these canonical and non-canonical regulatory mechanisms are essential for defining the nature of host defense and associated detrimental proinflammatory effects, we comprehensively review the state of this rapidly evolving field and the clinical implications of recently acquired knowledge in this respect. Transcriptional regulation of ISGs defines the state of host anti-pathogen defense. In light of the recently identified regulatory elements and mechanisms of the IFN–JAK–STAT pathway, new insights have been gained into this classical cascade in regulating ISG transcription. A variety of non-canonical mechanisms have been recently revealed that coordinately regulate ISG transcription. With regards to the adverse effects of IFNs in clinic, ISG-based antiviral strategy could be the next promising frontier in drug discovery.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Salzer E, Santos-Valente E, Keller B, Warnatz K, Boztug K. Protein Kinase C δ: a Gatekeeper of Immune Homeostasis. J Clin Immunol 2016; 36:631-40. [PMID: 27541826 PMCID: PMC5018258 DOI: 10.1007/s10875-016-0323-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/21/2016] [Indexed: 01/20/2023]
Abstract
Human autoimmune disorders present in various forms and are associated with a life-long burden of high morbidity and mortality. Many different circumstances lead to the loss of immune tolerance and often the origin is suspected to be multifactorial. Recently, patients with autosomal recessive mutations in PRKCD encoding protein kinase c delta (PKCδ) have been identified, representing a monogenic prototype for one of the most prominent forms of humoral systemic autoimmune diseases, systemic lupus erythematosus (SLE). PKCδ is a signaling kinase with multiple downstream target proteins and with functions in various signaling pathways. Interestingly, mouse models have indicated a special role of the ubiquitously expressed protein in the control of B-cell tolerance revealed by the severe autoimmunity in Prkcd (-/-) knockout mice as the major phenotype. As such, the study of PKCδ deficiency in humans has tremendous potential in enhancing our knowledge on the mechanisms of B-cell tolerance.
Collapse
Affiliation(s)
- Elisabeth Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria
| | - Elisangela Santos-Valente
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria
| | - Bärbel Keller
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria.
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases and CeRUD Vienna Center for Rare and Undiagnosed Diseases, Vienna, Austria.
| |
Collapse
|
26
|
Shoenfelt JL, Fenton MJ. TLR2- and TLR4-dependent activation of STAT1 serine phosphorylation in murine macrophages is protein kinase C-δ-independent. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Engagement of Toll-like receptor (TLR) proteins activates multiple signal transduction pathways. Previous studies demonstrated that TLR2 and TLR4 engagement leads to rapid phosphorylation of the transcription factor STAT1 at serine 727 (Ser-727 STAT1) in murine macrophages. Only TLR4 engagement induced STAT1 phosphorylation at tyrosine 701, although this response was delayed compared with Ser-727 STAT1 phosphorylation. Unlike other cell types, the p38 mitogen-activated protein kinase was necessary, but not sufficient, for TLR-induced phosphorylation of Ser-727 STAT1 in macrophages. We and others had previously shown that Ser-727 STAT1 phosphorylation could be blocked by rottlerin, an inhibitor of protein kinase C-δ (PKC—δ). Here we report that peritoneal exudate macrophages from PKC-δ-deficient mice can be activated through TLR2 and TLR4 to elicit rapid phosphorylation of Ser-727 STAT1, which was blocked by both rottlerin and the p38 inhibitor SB203580, but not by the pan-PKC inhibitor bisindoylmaleamide. Furthermore, both normal and PKC-δ-deficient macrophages secreted comparable amounts of IL-6, IP-10, and RANTES following TLR engagement. In contrast, IFN-γ-induced STAT1 serine phosphorylation was independent of both PKC-δ and p38. Overall, these studies demonstrate that a PKC-δindependent signaling pathway downstream of both TLR2 and TLR4 is necessary for Ser-727 STAT1 phosphorylation in primary murine macrophages.
Collapse
Affiliation(s)
- Joanna L. Shoenfelt
- Division of Pulmonary and Critical Care Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew J. Fenton
- Division of Pulmonary and Critical Care Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
27
|
Roy A, Srivastava M, Saqib U, Liu D, Faisal SM, Sugathan S, Bishnoi S, Baig MS. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol 2016; 40:79-89. [PMID: 27584057 DOI: 10.1016/j.intimp.2016.08.026] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Abstract
Inflammation is set off when innate immune cells detect infection or tissue injury. Tight control of the severity, duration, and location of inflammation is an absolute requirement for an appropriate balance between clearance of injured tissue and pathogens versus damage to host cells. Impeding the risk associated with the imbalance in the inflammatory response requires precise identification of potential therapeutic targets involved in provoking the inflammation. Toll-like receptors (TLRs) primarily known for the pathogen recognition and subsequent immune responses are being investigated for their pathogenic role in various chronic diseases. A mammalian homologue of Drosophila Toll receptor 4 (TLR4) was shown to induce the expression of genes involved in inflammatory responses. Signaling pathways via TLR4 activate various transcription factors like Nuclear factor kappa-light-chain-enhancer (NF-κB), activator protein 1 (AP1), Signal Transducers and Activators of Transcription family of transcription factors (STAT1) and Interferon regulatory factors (IRF's), which are the key players regulating the inflammatory response. Inhibition of these targets and their upstream signaling molecules provides a potential therapeutic approach to treat inflammatory diseases. Here we review the therapeutic targets involved in TLR-4 signaling pathways that are critical for suppressing chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anjali Roy
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Mansi Srivastava
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore (IITI), Indore, MP, India
| | - Dongfang Liu
- Center for Inflammation & Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Subi Sugathan
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Suman Bishnoi
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Mirza S Baig
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India.
| |
Collapse
|
28
|
Galani V, Kastamoulas M, Varouktsi A, Lampri E, Mitselou A, Arvanitis DL. IFNs-signaling effects on lung cancer: an up-to-date pathways-specific review. Clin Exp Med 2016; 17:281-289. [PMID: 27416926 DOI: 10.1007/s10238-016-0432-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
IFNs have found important applications in clinical medicine, including the treatment of lung malignancies. The biological effect of the IFN-receptor signaling is regulated essentially by three factors: the expression profile of the IFN itself, the profile of the receptor, and the expression of target genes. IFNs initiate their signaling by binding to specific receptors. The activated IFNs can directly induce gene transcription and/or multiple downstream signaling that both induce diverse cellular responses including the cell cycle arrest and the apoptosis in tumor cells. We provided evidence that IFN-γ enhances the pro cell death effects of Fas/CD95 in human neoplastic alveolar epithelial cell line, A549. We also found that p27 protein plays a pivotal role in the inducing cell death of IFNγ-CH-11-treated A549 cells, since it is involved in the Ras/Raf signaling pathway. This article discusses recent insights into these possible additional functions of IFNs in lung cancer treatment.
Collapse
Affiliation(s)
- Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | - Michalis Kastamoulas
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | | | - Evangeli Lampri
- Department of Cancer Biobank Center, University of Ioannina, Ioannina, Greece
| | - Antigoni Mitselou
- Department of Forensic Pathology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios L Arvanitis
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
29
|
Complementary PTM Profiling of Drug Response in Human Gastric Carcinoma by Immunoaffinity and IMAC Methods with Total Proteome Analysis. Proteomes 2015; 3:160-183. [PMID: 28248267 PMCID: PMC5217380 DOI: 10.3390/proteomes3030160] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023] Open
Abstract
Gaining insight into normal cellular signaling and disease biology is a critical goal of proteomic analyses. The ability to perform these studies successfully to extract the maximum value and discovery of biologically relevant candidate biomarkers is therefore of primary importance. Many successful studies in the past have focused on total proteome analysis (changes at the protein level) combined with phosphorylation analysis by metal affinity enrichment (changes at the PTM level). Here, we use the gastric carcinoma cell line MKN-45 treated with the c-Met inhibitor SU11274 and PKC inhibitor staurosporine to investigate the most efficient and most comprehensive strategies for both total protein and PTM analysis. Under the conditions used, total protein analysis yielded few changes in response to either compound, while analysis of phosphorylation identified thousands of sites that changed differentially between the two treatments. Both metal affinity and antibody-based enrichments were used to assess phosphopeptide changes, and the data generated by the two methods was largely complementary (non-overlapping). Label-free quantitation of peptide peak abundances was used to accurately determine fold-changes between control and treated samples. Protein interaction network analysis allowed the data to be placed in a biologically relevant context, and follow-up validation of selected findings confirmed the accuracy of the proteomic data. Together, this study provides a framework for start-to-finish proteomic analysis of any experimental system under investigation to maximize the value of the proteomic study and yield the best chance for uncovering actionable target candidates.
Collapse
|
30
|
Kuriakose T, Tripp RA, Watford WT. Tumor Progression Locus 2 Promotes Induction of IFNλ, Interferon Stimulated Genes and Antigen-Specific CD8+ T Cell Responses and Protects against Influenza Virus. PLoS Pathog 2015; 11:e1005038. [PMID: 26241898 PMCID: PMC4524623 DOI: 10.1371/journal.ppat.1005038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/22/2015] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinase (MAP) cascades are important in antiviral immunity through their regulation of interferon (IFN) production as well as virus replication. Although the serine-threonine MAP kinase tumor progression locus 2 (Tpl2/MAP3K8) has been implicated as a key regulator of Type I (IFNα/β) and Type II (IFNγ) IFNs, remarkably little is known about how Tpl2 might contribute to host defense against viruses. Herein, we investigated the role of Tpl2 in antiviral immune responses against influenza virus. We demonstrate that Tpl2 is an integral component of multiple virus sensing pathways, differentially regulating the induction of IFNα/β and IFNλ in a cell-type specific manner. Although Tpl2 is important in the regulation of both IFNα/β and IFNλ, only IFNλ required Tpl2 for its induction during influenza virus infection both in vitro and in vivo. Further studies revealed an unanticipated function for Tpl2 in transducing Type I IFN signals and promoting expression of interferon-stimulated genes (ISGs). Importantly, Tpl2 signaling in nonhematopoietic cells is necessary to limit early virus replication. In addition to early innate alterations, impaired expansion of virus-specific CD8+ T cells accompanied delayed viral clearance in Tpl2-/- mice at late time points. Consistent with its critical role in facilitating both innate and adaptive antiviral responses, Tpl2 is required for restricting morbidity and mortality associated with influenza virus infection. Collectively, these findings establish an essential role for Tpl2 in antiviral host defense mechanisms.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Wendy T. Watford
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Type-I interferon (IFN)-induced activation of the mammalian target of rapamycin (mTOR) signaling pathway has been implicated in translational control of mRNAs encoding interferon-stimulated genes (ISGs). However, mTOR-sensitive translatomes commonly include mRNAs with a 5’ terminal oligopyrimidine tract (TOP), such as those encoding ribosomal proteins, but not ISGs. Because these translatomes were obtained under conditions when ISG expression is not induced, we examined the mTOR-sensitive translatome in human WISH cells stimulated with IFN β. The mTOR inhibitor Torin1 resulted in a repression of global protein synthesis, including that of ISG products, and translation of all but 3 ISG mRNAs (TLR3, NT5C3A, and RNF19B) was not selectively more sensitive to mTOR inhibition. Detailed studies of NT5C3A revealed an IFN-induced change in transcription start site resulting in a switch from a non-TOP to a TOP-like transcript variant and mTOR sensitive translation. Thus, we show that, in the cell model used, translation of the vast majority of ISG mRNAs is not selectively sensitive to mTOR activity and describe an uncharacterized mechanism wherein the 5’-UTR of an mRNA is altered in response to a cytokine, resulting in a shift from mTOR-insensitive to mTOR-sensitive translation.
Collapse
|
32
|
Liu J, Huang W, Lin Y, Bian L, He Y. Identification of proteins interacting with protein kinase C-δ in hyperthermia-induced apoptosis and thermotolerance of Tca8113 cells. Mol Med Rep 2015; 12:3821-3828. [PMID: 26017369 DOI: 10.3892/mmr.2015.3861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
The purpose of the present study was to investigate the differential proteins that interact with protein kinase C‑δ (PKC‑δ) in hyperthermia‑induced apoptosis as well as thermotolerance in Tca8113 cells, and furthermore, to investigate the mechanisms of these processes in tumor cells. Activation of PKC‑δ was previously indicated to be involved in the heat sensitivity and thermal resistance of tongue squamous carcinoma cells. Tca8113 cell apoptosis was induced by incubation at 43˚C for 80 min and the thermotolerant Tca8113 cells (TT‑Tca8113) were generated through a gradient temperature‑elevating method. The apoptotic rate of the cells was determined by flow cytometry, while cleavage and activation of PKC‑δ were analyzed by western blot analysis. The proteins that interacted with PKC‑δ in the Tca8113 and TT‑Tca8113 cells were identified by co‑immunoprecipitation coupled with mass spectrometry. Co‑immunoprecipitation analysis followed by electrospray ionization mass spectrometric analysis were utilized to identify the pro‑ and anti‑apoptotic proteins that interacted with PKC‑δ. Significant cell apoptosis was observed in Tca8113 cells following hyperthermia, and the apoptotic rate was significantly higher than that in the control group (P<0.05). Marked PKC‑δ cleavage fragmentation was also identified. By contrast, the apoptotic rate of the TT‑Tca8113 cells was not significantly increased following hyperthermia and no PKC‑δ cleavage fragmentation was observed. Among the proteins interacting with PKC‑δ, 39 were found to be involved in the promotion of apoptosis and 16 in the inhibition of apoptosis of Tca8113 cells; these proteins were known to be involved in the regulation of cell proliferation, apoptosis, transcription and intracellular protein transport. The results of the present study provided evidence that PKC‑δ is a crucial factor in the heat sensitivity and thermal resistance of tongue squamous carcinoma cells and elucidated the underlying molecular basis, which may aid in the improvement of hyperthermic cancer treatments.
Collapse
Affiliation(s)
- Jianqi Liu
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Wenchuan Huang
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Yunhong Lin
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yongwen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
33
|
Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells. Mol Cell Biol 2015; 35:2684-98. [PMID: 26012550 DOI: 10.1128/mcb.00019-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
We provide evidence that human SLFN5, an interferon (IFN)-inducible member of the Schlafen (SLFN) family of proteins, exhibits key roles in controlling motility and invasiveness of renal cell carcinoma (RCC) cells. Our studies define the mechanism by which this occurs, demonstrating that SLFN5 negatively controls expression of the matrix metalloproteinase 1 gene (MMP-1), MMP-13, and several other genes involved in the control of malignant cell motility. Importantly, our data establish that SLFN5 expression correlates with a better overall survival in a large cohort of patients with RCC. The inverse relationship between SLFN5 expression and RCC aggressiveness raises the possibility of developing unique therapeutic approaches in the treatment of RCC, by modulating SLFN5 expression.
Collapse
|
34
|
Gonnella R, Granato M, Farina A, Santarelli R, Faggioni A, Cirone M. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1586-95. [PMID: 25827954 DOI: 10.1016/j.bbamcr.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 01/14/2023]
Abstract
PKC activation by combining TPA with sodium butyrate (T/B) represents the most effective and widely used strategy to induce the Epstein-Barr virus (EBV) lytic cycle. The results obtained in this study show that novel PKCθ is involved in such process and that it acts through the activation of p38 MAPK and autophagy induction. Autophagy, a mechanism of cellular defense in stressful conditions, is manipulated by EBV to enhance viral replication. Besides promoting the EBV lytic cycle, the activation of p38 and autophagy resulted in a pro-survival effect, as indicated by p38 or ATG5 knocking down experiments. However, this pro-survival role was counteracted by a pro-death activity of PKCθ, due to the dephosphorylation of AKT. In conclusion, this study reports, for the first time, that T/B activates a PKCθ-p38 MAPK axis in EBV infected B cells, that promotes the viral lytic cycle and cell survival and dephosphorylates AKT, balancing cell life and cell death.
Collapse
Affiliation(s)
- Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Antonella Farina
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy.
| |
Collapse
|
35
|
Reetz O, Stadler K, Strauss U. Protein kinase C activation mediates interferon-β-induced neuronal excitability changes in neocortical pyramidal neurons. J Neuroinflammation 2014; 11:185. [PMID: 25359459 PMCID: PMC4222407 DOI: 10.1186/s12974-014-0185-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytokines are key players in the interactions of the immune and nervous systems. Recently, we showed that such interplay is mediated by type I interferons (IFNs), which elevate the excitability of neocortical pyramidal neurons. A line of indirect evidence suggested that modulation of multiple ion channels underlies the effect. However, which currents are principally involved and how the IFN signaling cascade is linked to the respective ion channels remains elusive. METHODS We tested several single and combined ionic current modulations using an in silico model of a neocortical layer 5 neuron. Subsequently we investigated resulting predictions by whole-cell patch-clamp recordings in layer 5 neurons of ex vivo neocortical rat brain slices pharmacologically reproducing or prohibiting neuronal IFN effects. RESULTS The amount and type of modulation necessary to replicate IFN effects in silico suggested protein kinase C (PKC) activation as link between the type I IFN signaling and ion channel modulations. In line with this, PKC activation with 4β-phorbol 12-myristate 13-acetate (4β-PMA) or Bryostatin1 augmented the excitability of neocortical layer 5 neurons comparable to IFN-β in our ex vivo recordings. In detail, both PKC activators attenuated the rheobase and increased the input-output gain as well as the input resistance, thereby augmenting the neuronal excitability. Similar to IFN-β they also left the threshold of action potential generation unaffected. In further support of PKC mediating type I IFN effects, IFN-β, 4β-PMA and Bryostatin1 reduced the amplitude of post-train after-hyperpolarizations in a similar manner. In conjunction with this finding, IFN-β reduced M-currents, which contribute to after-hyperpolarizations and are modulated by PKC. Finally, blocking PKC activation with GF109203X at the catalytic site or calphostin C at the regulatory site prevented the main excitatory effects of IFN-β. CONCLUSION Multiple ion channel modulations underlie the neuromodulatory effect of type I IFNs. PKC activation is both sufficient and necessary for mediating the effect, and links the IFN signaling cascade to the intrinsic ion channels. Therefore, we regard PKC activation as unitary mechanism for the neuromodulatory potential of type I IFNs in neocortical neurons.
Collapse
|
36
|
Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res 2014; 12:1691-703. [PMID: 25217450 DOI: 10.1158/1541-7786.mcr-14-0450] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFNs are cytokines with important antiproliferative activity and exhibit key roles in immune surveillance against malignancies. Early work initiated over three decades ago led to the discovery of IFN receptor activated Jak-Stat pathways and provided important insights into mechanisms for transcriptional activation of IFN-stimulated genes (ISG) that mediate IFN biologic responses. Since then, additional evidence has established critical roles for other receptor-activated signaling pathways in the induction of IFN activities. These include MAPK pathways, mTOR cascades, and PKC pathways. In addition, specific miRNAs appear to play a significant role in the regulation of IFN signaling responses. This review focuses on the emerging evidence for a model in which IFNs share signaling elements and pathways with growth factors and tumorigenic signals but engage them in a distinctive manner to mediate antiproliferative and antiviral responses.
Collapse
Affiliation(s)
- Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
37
|
Wang R, Ferraris JD, Izumi Y, Dmitrieva N, Ramkissoon K, Wang G, Gucek M, Burg MB. Global discovery of high-NaCl-induced changes of protein phosphorylation. Am J Physiol Cell Physiol 2014; 307:C442-54. [PMID: 24965592 DOI: 10.1152/ajpcell.00379.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High extracellular NaCl, such as in the renal medulla, can perturb and even kill cells, but cells mount protective responses that enable them to survive and function. Many high-NaCl-induced perturbations and protective responses are known, but the signaling pathways involved are less clear. Change in protein phosphorylation is a common mode of cell signaling, but there was no unbiased survey of protein phosphorylation in response to high NaCl. We used stable isotopic labeling of amino acids in cell culture coupled to mass spectrometry to identify changes in protein phosphorylation in human embryonic kidney (HEK 293) cells exposed to high NaCl. We reproducibly identify >8,000 unique phosphopeptides in 4 biological replicate samples with a 1% false discovery rate. High NaCl significantly changed phosphorylation of 253 proteins. Western analysis and targeted ion selection mass spectrometry confirm a representative sample of the phosphorylation events. We analyze the affected proteins by functional category to infer how altered protein phosphorylation might signal cellular responses to high NaCl, including alteration of cell cycle, cyto/nucleoskeletal organization, DNA double-strand breaks, transcription, proteostasis, metabolism of mRNA, and cell death.
Collapse
Affiliation(s)
- Rong Wang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joan D Ferraris
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuichiro Izumi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalia Dmitrieva
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin Ramkissoon
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Guanghui Wang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marjan Gucek
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maurice B Burg
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Pal D, Basu A. The unique protein kinase Cη: implications for breast cancer (review). Int J Oncol 2014; 45:493-8. [PMID: 24841225 DOI: 10.3892/ijo.2014.2443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/18/2014] [Indexed: 11/05/2022] Open
Abstract
Deregulation of key signal transduction pathways that govern important cellular processes leads to cancer. The development of effective therapeutics for cancer warrants a comprehensive understanding of the signaling pathways that are deregulated in cancer. The protein kinase C (PKC) family has served as an attractive target for cancer therapy for decades owing to its crucial roles in several cellular processes. PKCη is a novel member of the PKC family that plays critical roles in various cellular processes such as growth, proliferation, differentiation and cell death. The regulation of PKCη appears to be unique compared to other PKC isozymes, and there are conflicting reports regarding its role in cancer. This review focuses on the unique aspects of PKCη in terms of its structure, regulation and subcellular distribution and speculates on how these features could account for its distinct functions. We have also discussed the functional implications of PKCη in cancer with particular emphasis on breast cancer.
Collapse
Affiliation(s)
- Deepanwita Pal
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center and Institute for Cancer Research, Fort Worth, TX 76107, USA
| | - Alakananda Basu
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center and Institute for Cancer Research, Fort Worth, TX 76107, USA
| |
Collapse
|
39
|
Berardi DE, Bessone MID, Motter A, Bal de Kier Joffé ED, Urtreger AJ, Todaro LB. Involvement of protein kinase C α and δ activities on the induction of the retinoic acid system in mammary cancer cells. Mol Carcinog 2014; 54:1110-21. [PMID: 24838400 DOI: 10.1002/mc.22181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 01/26/2023]
Abstract
It has been established that retinoids exert some of their effects on cell differentiation and malignant phenotype reversion through the interaction with different members of the protein kinase C (PKC) family. Till nowadays the nature and extension of this interaction is not well understood. Due to the cytostatic and differentiating effects of retinoids, in the present study we propose to evaluate whether the crosstalk between the retinoid system and the PKC pathway could become a possible target for breast cancer treatment. We could determine that ATRA (all-trans retinoic) treatment showed a significant growth inhibition due to (G1 or G2) cell cycle arrest both in LM3 and SKBR3, a murine and human mammary cell line respectively. ATRA also induced a remarkable increase in PKCα and PKCδ expression and activity. Interestingly, the pharmacological inhibition of these two PKC isoforms prevented the activation of retinoic acid receptors (RARs) by ATRA, indicating that both PKC isoforms are required for RARs activation. Moreover, PKCδ inhibition also impaired ATRA-induced RARα translocation to the nucleus. In vivo assays revealed that a combined treatment using ATRA and PKCα inhibitors prevented lung metastatic dissemination in an additive way. Our results clearly indicate that ATRA modulates the expression and activity of different PKCs. Besides inducing cell arrest, the activity of both PKC is necessary for the induction of the retinoic acid system. The combined ATRA and PKCα inhibitors could be an option for the hormone-independent breast cancer treatment.
Collapse
Affiliation(s)
- Damián E Berardi
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - María I Díaz Bessone
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Andrea Motter
- Scientific Coordination, Operative Unit Biological Containment Center (UOCCB) ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Elisa D Bal de Kier Joffé
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Urtreger
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Laura B Todaro
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunol Rev 2014; 255:25-39. [PMID: 23947345 DOI: 10.1111/imr.12101] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interferons (IFNs) are produced in response to virus infection and induce an antiviral state in virtually all cell types. In addition to upregulating the transcription of genes that inhibit virus replication, type I (or -α/β) IFNs also act to orchestrate the adaptive immune response to virus infection. Recently a new family of antiviral cytokines, the type III (or -λ) IFNs, has been identified that activate the same antiviral pathways via a distinct receptor. Although the identical transcription factor, IFN-stimulated gene factor 3 is activated by either IFN-α/β or IFN-λ signaling, differences in the induction and action of these two cytokine families are beginning to be appreciated. In this article, we review this emerging body of literature on the differing roles these cytokines play in host defense of the mucosal surface. Although many viruses enter the body through the respiratory and gastrointestinal tracts, we have focused the discussion on influenza A virus, respiratory syncytial virus, and rotavirus, three ubiquitous human pathogens that target the epithelial lining and are associated with a major disease burden.
Collapse
Affiliation(s)
- Russell K Durbin
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
41
|
Bolen CR, Ding S, Robek MD, Kleinstein SH. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression. Hepatology 2014; 59:1262-72. [PMID: 23929627 PMCID: PMC3938553 DOI: 10.1002/hep.26657] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
Despite activating similar signaling cascades, the type I and type III interferons (IFNs) differ in their ability to antagonize virus replication. However, it is not clear whether these cytokines induce unique antiviral states, particularly in the liver, where the clinically important hepatitis B and C viruses cause persistent infection. Here, clustering and promoter analyses of microarray-based gene expression profiling were combined with mechanistic studies of signaling pathways to dynamically characterize the transcriptional responses induced by these cytokines in Huh7 hepatoma cells and primary human hepatocytes. Type I and III IFNs differed greatly in their level of interferon-stimulated gene (ISG) induction with a clearly detectable hierarchy (IFN-β > IFN-α > IFN-λ3 > IFN-λ1 > IFN-λ2). Notably, although the hierarchy identified varying numbers of differentially expressed genes when quantified using common statistical thresholds, further analysis of gene expression over multiple timepoints indicated that the individual IFNs do not in fact regulate unique sets of genes. The kinetic profiles of IFN-induced gene expression were also qualitatively similar with the important exception of IFN-α. While stimulation with either IFN-β or IFN-λs resulted in a similar long-lasting ISG induction, IFN-α signaling peaked early after stimulation then declined due to a negative feedback mechanism. The quantitative expression hierarchy and unique kinetics of IFN-α reveal potential specific roles for individual IFNs in the immune response, and elucidate the mechanism behind previously observed differences in IFN antiviral activity. While current clinical trials are focused on IFN-λ1 as a potential antiviral therapy, the finding that IFN-λ3 invariably possesses the highest activity among type III IFNs suggests that this cytokine may have superior clinical activity.
Collapse
Affiliation(s)
- Christopher R. Bolen
- Interdepartmental program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - Siyuan Ding
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Michael D. Robek
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Steven H. Kleinstein
- Interdepartmental program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
42
|
Kroczynska B, Mehrotra S, Arslan AD, Kaur S, Platanias LC. Regulation of interferon-dependent mRNA translation of target genes. J Interferon Cytokine Res 2014; 34:289-96. [PMID: 24559173 DOI: 10.1089/jir.2013.0148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) are released by cells on exposure to various stimuli, including viruses, double-stranded RNA, and other cytokines and various polypeptides. These IFNs play important physiological and pathophysiological roles in humans. Many clinical studies have established activity for these cytokines in the treatment of several malignancies, viral syndromes, and autoimmune disorders. In this review, the regulatory effects of type I and II IFN receptors on the translation-initiation process mediated by mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and the known mechanisms of control of mRNA translation of IFN-stimulated genes are summarized and discussed.
Collapse
Affiliation(s)
- Barbara Kroczynska
- 1 Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School , Chicago, Illinois
| | | | | | | | | |
Collapse
|
43
|
Wu EJ, Goussetis DJ, Beauchamp E, Kosciuczuk EM, Altman JK, Eklund EA, Platanias LC. Resveratrol enhances the suppressive effects of arsenic trioxide on primitive leukemic progenitors. Cancer Biol Ther 2014; 15:473-8. [PMID: 24496081 DOI: 10.4161/cbt.27824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Efforts to enhance the antileukemic properties of arsenic trioxide are clinically relevant and may lead to the development of new therapeutic approaches for the management of certain hematological malignancies. We provide evidence that concomitant treatment of acute myeloid leukemia (AML) cells or chronic myeloid leukemia (CML) cells with resveratrol potentiates arsenic trioxide-dependent induction of apoptosis. Importantly, clonogenic assays in methylcellulose demonstrate potent suppressive effects of the combination of these agents on primitive leukemic progenitors derived from patients with AML or CML. Taken together, these findings suggest that combinations of arsenic trioxide with resveratrol may provide an approach for targeting of early leukemic precursors and, possibly, leukemia initiating stem cells.
Collapse
Affiliation(s)
- Edward J Wu
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA
| | - Dennis J Goussetis
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL USA
| | - Elspeth Beauchamp
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA
| | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL USA
| | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL USA
| |
Collapse
|
44
|
Ooi EL, Chan ST, Cho NE, Wilkins C, Woodward J, Li M, Kikkawa U, Tellinghuisen T, Gale M, Saito T. Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. Proc Natl Acad Sci U S A 2014; 111:1909-14. [PMID: 24449862 PMCID: PMC3918791 DOI: 10.1073/pnas.1314268111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to viral infection, the host induces over 300 IFN-stimulated genes (ISGs), which are the central component of intracellular antiviral innate immunity. Inefficient induction of ISGs contributes to poor control and persistence of hepatitis C virus infection. Therefore, further understanding of the hepatocytic ISG regulation machinery will guide us to an improved management strategy against hepatitis C virus infection. In this study, comprehensive genome-wide, high-throughput cDNA screening for genes regulating ISG expression identified a tyrosine kinase nonreceptor 1 (TNK1) as a unique player in the ISG induction pathway. The immune-modulatory function of TNK1 has never been studied, and this study characterizes its significance in antiviral innate immunity. TNK1 is abundantly expressed in hepatocytes and maintains basal ISG expression. More importantly, TNK1 plays a critical role in type I IFN-mediated ISG induction. We discovered that the activated IFN receptor complex recruits TNK1 from the cytoplasm. TNK1 is then phosphorylated to enhance its kinase activity. The activated TNK1 potentiates JAK-STAT signaling through dual phosphorylation of STAT1 at tyrosine 701 and serine 727 amino acid positions. Our loss-of-function approach demonstrated that TNK1 governs a cluster of ISG expression that defines the TNK1 pathway effector genes. More importantly, TNK1 abundance is inversely correlated to viral replication efficiency and is also a determinant factor for the hepatocytic response to antiviral treatment. Taken together, our studies found a critical but unidentified integrated component of the IFN-JAK-STAT signaling cascade.
Collapse
Affiliation(s)
- Ee Lyn Ooi
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Stephanie T. Chan
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Noell E. Cho
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Courtney Wilkins
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650
| | - Jessica Woodward
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650
| | - Meng Li
- Bioinformatics Service, Norris Medical Library, University of Southern California, Los Angeles, CA 90089
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Nada-ku, Kobe 657-8501, Japan; and
| | - Timothy Tellinghuisen
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458
| | - Michael Gale
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650
| |
Collapse
|
45
|
Kaur S, Kroczynska B, Sharma B, Sassano A, Arslan AD, Majchrzak-Kita B, Stein BL, McMahon B, Altman JK, Su B, Calogero RA, Fish EN, Platanias LC. Critical roles for Rictor/Sin1 complexes in interferon-dependent gene transcription and generation of antiproliferative responses. J Biol Chem 2014; 289:6581-6591. [PMID: 24469448 DOI: 10.1074/jbc.m113.537852] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We provide evidence that type I IFN-induced STAT activation is diminished in cells with targeted disruption of the Rictor gene, whose protein product is a key element of mTOR complex 2. Our studies show that transient or stable knockdown of Rictor or Sin1 results in defects in activation of elements of the STAT pathway and reduced STAT-DNA binding complexes. This leads to decreased expression of several IFN-inducible genes that mediate important biological functions. Our studies also demonstrate that Rictor and Sin1 play essential roles in the generation of the suppressive effects of IFNα on malignant erythroid precursors from patients with myeloproliferative neoplasms. Altogether, these findings provide evidence for critical functions for Rictor/Sin1 complexes in type I IFN signaling and the generation of type I IFN antineoplastic responses.
Collapse
Affiliation(s)
- Surinder Kaur
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Barbara Kroczynska
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Bhumika Sharma
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Antonella Sassano
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Ahmet Dirim Arslan
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Beata Majchrzak-Kita
- Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Brandon McMahon
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Bing Su
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Raffaele A Calogero
- Department of Biotechnology and Health Sciences, University of Turin, 8 Turin, Italy
| | - Eleanor N Fish
- Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612.
| |
Collapse
|
46
|
Guo P. Suppression of interferon-mediated antiviral immunity by hepatitis B virus: an overview of research progress. Scand J Immunol 2013; 78:230-7. [PMID: 23790137 DOI: 10.1111/sji.12086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/04/2013] [Indexed: 01/30/2023]
Abstract
Interferon (IFN)-α is an indispensable drug for hepatitis B treatment in clinical settings. However, hepatitis B virus (HBV) can attenuate IFN-mediated antiviral responses to avoid being inhibited or cleared. Much progress has been made in exploring how the IFN-induced anti-HBV effect is inhibited. This review examines and summarizes new advances regarding the molecular mechanism underlying the HBV-induced suppression of type I IFN-mediated antiviral immunity.
Collapse
Affiliation(s)
- P Guo
- West Campus Hospital of Shandong University, Jinan, China
| |
Collapse
|
47
|
Jeon YJ, Yoo H, Kim BH, Lee YS, Jeon B, Kim SS, Kim TY. IFNγ-mediated inhibition of cell proliferation through increased PKCδ-induced overexpression of EC-SOD. BMB Rep 2013. [PMID: 23187006 PMCID: PMC4133801 DOI: 10.5483/bmbrep.2012.45.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD) overexpression modulates cellular responses such as tumor cell suppression and is induced by IFNγ. Therefore, we examined the role of EC-SOD in IFNγ-mediated tumor cell suppression. We observed that the dominant-negative protein kinase C delta (PKCδ) suppresses IFNγ-induced EC-SOD expression in both keratinocytes and melanoma cells. Our results also showed that PKCδ-induced ECSOD expression was reduced by pretreatment with a PKCspecific inhibitor or a siRNA against PKCδ. PKCδ-induced ECSOD expression suppressed cell proliferations by the up-regulation of p21 and Rb, and the downregulation of cyclin A and D. Finally, we demonstrated that increased expression of EC-SOD drastically suppressed lung melanoma proliferation in an EC-SOD transgenic mouse via p21 expression. In summary, our findings suggest that IFNγ-induced EC-SOD expression occurs via activation of PKCδ. Therefore, the upregulation of EC-SOD may be effective for prevention of various cancers, including melanoma, via cell cycle arrest. [BMB Reports 2012; 45(11): 659-664]
Collapse
Affiliation(s)
- Yoon-Jae Jeon
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Handy I, Patel RC. STAT1 requirement for PKR-induced cell cycle arrest in vascular smooth muscle cells in response to heparin. Gene 2013; 524:15-21. [PMID: 23597922 DOI: 10.1016/j.gene.2013.03.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/18/2013] [Accepted: 03/27/2013] [Indexed: 11/27/2022]
Abstract
Interferons (IFNs) are a family of cytokines that exhibit antiviral, antiproliferative, and immunomodulatory properties. PKR (protein kinase, RNA activated) is of central importance in mediating the antiproliferative actions of IFNs. Our research has established that PKR inhibits vascular smooth muscle cell (VSMC) proliferation by regulating G1 to S transition. Many cardiovascular diseases result from complications of atherosclerosis, a chronic and progressive inflammatory condition often characterized by excessive proliferation of VSMC. Thus, an effective method for inhibiting VSMC proliferation is likely to arrest atherosclerosis and restenosis at early stages. Our research establishes that PKR activation in VSMC leads to a G1 arrest brought about by an inhibition of cyclin-dependent kinase 2 (Cdk2) activity by p27(kip1). In quiescent VSMC, p27(kip1) levels are high and when stimulated by serum/growth factors, p27(kip1) levels drop by destabilization of the protein. Under conditions that lead to activation of PKR, there is a marked inhibition of p27(kip1) down-regulation due to increased stability of p27(kip1) protein. In order to understand the mechanism of heparin-induced stabilization of p27(kip1) in VSMC, we examined the involvement of the Signal Transducer and Activator of Transcription-1 (STAT1), which is an important player in mediating antiproliferative effects of IFNs. Our results demonstrate that PKR overexpression in VSMC leads to an increase in p27(kip1) protein levels and this increase requires the catalytic activity of PKR. PKR activation induced by antiproliferative agent heparin leads to phosphorylation of STAT1 on serine 727, which is essential for the cell cycle block. STAT1 null VSMCs are largely defective in heparin-induced cell cycle arrest and in PKR null cells the STAT1 phosphorylation in response to heparin was absent. These results establish that heparin causes STAT1 phosphorylation on serine 727 via activation of PKR and that this event is required for the G1 arrest in VSMC.
Collapse
Affiliation(s)
- Indhira Handy
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208,USA
| | | |
Collapse
|
49
|
A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase. Exp Cell Res 2013; 319:1471-81. [PMID: 23562842 DOI: 10.1016/j.yexcr.2013.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells.
Collapse
|
50
|
Chen J, Wu M, Zhang X, Zhang W, Zhang Z, Chen L, He J, Zheng Y, Chen C, Wang F, Hu Y, Zhou X, Wang C, Xu Y, Lu M, Yuan Z. Hepatitis B virus polymerase impairs interferon-α-induced STA T activation through inhibition of importin-α5 and protein kinase C-δ. Hepatology 2013; 57:470-82. [PMID: 22996189 DOI: 10.1002/hep.26064] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/30/2012] [Indexed: 12/24/2022]
Abstract
UNLABELLED Treatment with exogenous interferon (IFN)-α is not effective in the majority of patients with chronic hepatitis B virus (HBV) infection. Recent evidence suggests that HBV has evolved strategies to block the nuclear translocation of signal transducer and activator of transcription (STAT) 1 to limit IFN-α-induced cellular antiviral responses. However, it remains unclear whether STAT1 translocation is impaired in chronic hepatitis B patients and what mechanisms are involved. Here we report that the expression of HBV polymerase (Pol) in human hepatic cell lines inhibited induction of IFN-stimulated genes and resulted in a weakened antiviral activity of IFN-α. Ectopic expression of Pol suppressed IFN-α-induced STAT1 serine 727 phosphorylation and STAT1/2 nuclear accumulation, whereas STAT1 tyrosine 701 phosphorylation, and STAT1-STAT2 heterodimer formation were not affected. Further studies demonstrated that Pol interacted with the catalytic domain of protein kinase C-δ (PKC-δ) and perturbed PKC-δ phosphorylation and its association with STAT1, which resulted in the suppression of STAT1 Ser727 phosphorylation. Moreover, Pol was found to interfere with nuclear transportation of STAT1/2 by competitively binding to the region of importin-α5 required for STAT1/2 recruitment. Truncation analysis suggested that the terminal protein and RNase H domains of Pol were able to bind to PKC-δ and importin-α5, respectively, and were responsible for the inhibition of IFN-α signaling. More importantly, the inhibition of STAT1 and PKC-δ phosphorylation were confirmed in a hydrodynamic-based HBV mouse model, and the blockage of IFN-α-induced STAT1/2 nuclear translocation was observed in HBV-infected cells from liver biopsies of chronic HBV patients. CONCLUSIONS These results demonstrate a role for Pol in HBV-mediated antagonization of IFN-α signaling and provide a possible molecular mechanism by which HBV resists the IFN therapy and maintains its persistence.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology, Ministry of Education and HealthShanghai Medical College of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|