1
|
Nakahara T, Fujimoto S, Jinzaki M. Molecular imaging of cardiovascular disease: Current status and future perspective. J Cardiol 2025; 85:386-398. [PMID: 39922562 DOI: 10.1016/j.jjcc.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Advancements in knowledge of cardiovascular disease, pharmacology, and chemistry have led to the development of newer radiopharmaceuticals and targets for new and more suitable molecules. Molecular imaging encompasses multiple imaging techniques for identifying the characteristics of key components involved in disease. Despite its limitations in spatial resolution, the affinity for key molecules compensates for disadvantages in diagnosing diseases and elucidating their pathophysiology. This review introduce established molecular tracers involved in clinical practice and emerging tracers already applied in clinical studies, classifying the key component in A: artery, specifically those vulnerable plaque (A-I) inflammatory cells [18F-FDG]; A-II) lipid/fatty acid; A-III) hypoxia; A-IV) angiogenesis; A-V) protease [18F/68Ga-FAPI]; A-VI) thrombus/hemorrhage; A-VII) apoptosis and A-VIII) microcalcification [18F-NaF]) and B: myocardium, including myocardial ischemia, infarction and myocardiopathy (B-I) myocardial ischemia; B-II) myocardial infarction (myocardial damage and fibrosis); B-III) myocarditis and endocarditis; B-IV) sarcoidosis; B-V) amyloidosis; B-VI) metabolism; B-VII) innervation imaging). In addition to cardiovascular-specific tracers tested in animal models, many radiotracers may have been developed in other areas, such as oncology imaging or neuroimaging. While this review does not cover all available tracers, some of them hold potential for future use assessing cardiovascular disease. Advances in molecular biology, pharmaceuticals, and imaging sciences will facilitate the identification of precise disease mechanisms, enabling precise diagnoses, better assessment of disease status, and enhanced therapeutic evaluation in this multi-modality era.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2025; 480:1763-1783. [PMID: 39198360 PMCID: PMC11842501 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
3
|
Meade R, Ibrahim D, Engel C, Belaygorod L, Arif B, Hsu FF, Adak S, Catlett R, Zhou M, Ilagan MXG, Semenkovich CF, Zayed MA. Targeting fatty acid synthase reduces aortic atherosclerosis and inflammation. Commun Biol 2025; 8:262. [PMID: 39972116 PMCID: PMC11840040 DOI: 10.1038/s42003-025-07656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Fatty acid synthase (FAS) is predominantly expressed in the liver and adipose tissue. It plays vital roles in de novo synthesis of saturated fatty acids and regulates insulin sensitivity. We previously demonstrated that serum circulating FAS (cFAS) is a clinical biomarker for advanced atherosclerosis, and that it is conjugated to low-density lipoproteins (LDL). However, it remains unknown whether cFAS can directly impact atheroprogression. To investigate this, we evaluate whether cFAS impacts macrophage foam cell formation - an important cellular process leading to atheroprogression. Macrophages exposed to human serum containing high levels of cFAS show increased foam cell formation as compared to cells exposed to serum containing low levels of cFAS. This difference is not observed using serum containing either high or low LDL. Pharmacological inhibition of cFAS using Platensimycin (PTM) decreases foam cell formation in vitro. In Apoe-/- mice with normal FAS expression, administration of PTM over 16 weeks along with a high fat diet decreases cFAS activity and aortic atherosclerosis without affecting circulating total cholesterol. This effect is also observed in Apoe-/- mice with liver-specific knockout of hepatic Fasn. Reductions in aortic root plaque are associated with decreased macrophage infiltration. These findings demonstrate that cFAS plays an important role in arterial atheroprogression.
Collapse
Affiliation(s)
- Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Dina Ibrahim
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Connor Engel
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Larisa Belaygorod
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Batool Arif
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sangeeta Adak
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Catlett
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mingzhou Zhou
- Department Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ma Xenia G Ilagan
- Department Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Clay F Semenkovich
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, USA.
- McKelvey School of Engineering, Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- CardioVascular Research Innovation in Surgery & Engineering Center, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
5
|
Certo M, Rahimzadeh M, Mauro C. Immunometabolism in atherosclerosis: a new understanding of an old disease. Trends Biochem Sci 2024; 49:791-803. [PMID: 38937222 DOI: 10.1016/j.tibs.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic inflammatory condition, remains a leading cause of death globally, necessitating innovative approaches to target pro-atherogenic pathways. Recent advancements in the field of immunometabolism have highlighted the crucial interplay between metabolic pathways and immune cell function in atherogenic milieus. Macrophages and T cells undergo dynamic metabolic reprogramming to meet the demands of activation and differentiation, influencing plaque progression. Furthermore, metabolic intermediates intricately regulate immune cell responses and atherosclerosis development. Understanding the metabolic control of immune responses in atherosclerosis, known as athero-immunometabolism, offers new avenues for preventive and therapeutic interventions. This review elucidates the emerging intricate interplay between metabolism and immunity in atherosclerosis, underscoring the significance of metabolic enzymes and metabolites as key regulators of disease pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Mahsa Rahimzadeh
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Sukhorukov VN, Khotina VA, Kalmykov VA, Zhuravlev AD, Sinyov VV, Popov DY, Vinokurov AY, Sobenin IA, Orekhov AN. Mitochondrial Genome Editing: Exploring the Possible Relationship of the Atherosclerosis-Associated Mutation m.15059G>A With Defective Mitophagy. J Lipid Atheroscler 2024; 13:166-183. [PMID: 38826184 PMCID: PMC11140244 DOI: 10.12997/jla.2024.13.2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Objective The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, pro-inflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis. Methods The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TC-HSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Pro-inflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy. Results In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation. Conclusion The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vladislav A. Kalmykov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Alexander D. Zhuravlev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
| |
Collapse
|
7
|
Bogan BJ, Williams HC, Holden CM, Patel V, Joseph G, Fierro C, Sepulveda H, Taylor WR, Rezvan A, San Martin A. The Role of Fatty Acid Synthase in the Vascular Smooth Muscle Cell to Foam Cell Transition. Cells 2024; 13:658. [PMID: 38667273 PMCID: PMC11048793 DOI: 10.3390/cells13080658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs), in their contractile and differentiated state, are fundamental for maintaining vascular function. Upon exposure to cholesterol (CHO), VSMCs undergo dedifferentiation, adopting characteristics of foam cells-lipid-laden, macrophage-like cells pivotal in atherosclerotic plaque formation. CHO uptake by VSMCs leads to two primary pathways: ABCA1-mediated efflux or storage in lipid droplets as cholesterol esters (CEs). CE formation, involving the condensation of free CHO and fatty acids, is catalyzed by sterol O-acyltransferase 1 (SOAT1). The necessary fatty acids are synthesized by the lipogenic enzyme fatty acid synthase (FASN), which we found to be upregulated in atherosclerotic human coronary arteries. This observation led us to hypothesize that FASN-mediated fatty acid biosynthesis is crucial in the transformation of VSMCs into foam cells. Our study reveals that CHO treatment upregulates FASN in human aortic SMCs, concurrent with increased expression of CD68 and upregulation of KLF4, markers associated with the foam cell transition. Crucially, downregulation of FASN inhibits the CHO-induced upregulation of CD68 and KLF4 in VSMCs. Additionally, FASN-deficient VSMCs exhibit hindered lipid accumulation and an impaired transition to the foam cell phenotype following CHO exposure, while the addition of the fatty acid palmitate, the main FASN product, exacerbates this transition. FASN-deficient cells also show decreased SOAT1 expression and elevated ABCA1. Notably, similar effects are observed in KLF4-deficient cells. Our findings demonstrate that FASN plays an essential role in the CHO-induced upregulation of KLF4 and the VSMC to foam cell transition and suggest that targeting FASN could be a novel therapeutic strategy to regulate VSMC phenotypic modulation.
Collapse
Affiliation(s)
- Bethany J. Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA; (B.J.B.); (H.C.W.); (C.M.H.); (V.P.); (G.J.); (W.R.T.); (A.R.)
| | - Holly C. Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA; (B.J.B.); (H.C.W.); (C.M.H.); (V.P.); (G.J.); (W.R.T.); (A.R.)
| | - Claire M. Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA; (B.J.B.); (H.C.W.); (C.M.H.); (V.P.); (G.J.); (W.R.T.); (A.R.)
| | - Vraj Patel
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA; (B.J.B.); (H.C.W.); (C.M.H.); (V.P.); (G.J.); (W.R.T.); (A.R.)
| | - Giji Joseph
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA; (B.J.B.); (H.C.W.); (C.M.H.); (V.P.); (G.J.); (W.R.T.); (A.R.)
| | - Christopher Fierro
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile; (C.F.); (H.S.)
| | - Hugo Sepulveda
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile; (C.F.); (H.S.)
| | - W. Robert Taylor
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA; (B.J.B.); (H.C.W.); (C.M.H.); (V.P.); (G.J.); (W.R.T.); (A.R.)
| | - Amir Rezvan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA; (B.J.B.); (H.C.W.); (C.M.H.); (V.P.); (G.J.); (W.R.T.); (A.R.)
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA; (B.J.B.); (H.C.W.); (C.M.H.); (V.P.); (G.J.); (W.R.T.); (A.R.)
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile; (C.F.); (H.S.)
| |
Collapse
|
8
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
9
|
Gindri dos Santos B, Goedeke L. Macrophage immunometabolism in diabetes-associated atherosclerosis. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00032. [PMID: 37849988 PMCID: PMC10578522 DOI: 10.1097/in9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Macrophages play fundamental roles in atherosclerotic plaque formation, growth, and regression. These cells are extremely plastic and perform different immune functions depending on the stimuli they receive. Initial in vitro studies have identified specific metabolic pathways that are crucial for the proper function of pro-inflammatory and pro-resolving macrophages. However, the plaque microenvironment, especially in the context of insulin resistance and type 2 diabetes, constantly challenges macrophages with several simultaneous inflammatory and metabolic stimuli, which may explain why atherosclerosis is accelerated in diabetic patients. In this mini review, we discuss how macrophage mitochondrial function and metabolism of carbohydrates, lipids, and amino acids may be affected by this complex plaque microenvironment and how risk factors associated with type 2 diabetes alter the metabolic rewiring of macrophages and disease progression. We also briefly discuss current challenges in assessing macrophage metabolism and identify future tools and possible strategies to alter macrophage metabolism to improve treatment options for diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bernardo Gindri dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Xue S, Su Z, Liu D. Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev 2023; 90:101993. [PMID: 37379970 DOI: 10.1016/j.arr.2023.101993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Macrophages are crucial in the progression of atherosclerotic cardiovascular disease (ASCVD). In the atherosclerotic lesions, macrophages play a central role in maintaining inflammatory response, promoting plaque development, and facilitating thrombosis. Increasing studies indicate that metabolic reprogramming and immune response mediate macrophage functional changes in all stages of atherosclerosis. In this review article, we explain how metabolic changes in glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, fatty acid synthesis, fatty acid oxidation, and cholesterol metabolism regulate macrophage function in atherosclerosis. We discuss how immune response to oxidized lipids regulate macrophage function in atherosclerosis. Additionally, we explore how abnormal metabolism leads to macrophage mitochondrial dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Sheng Xue
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China.
| | - Zhe Su
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| | - Dacheng Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| |
Collapse
|
11
|
Duarte Lau F, Giugliano RP. Adenosine Triphosphate Citrate Lyase and Fatty Acid Synthesis Inhibition: A Narrative Review. JAMA Cardiol 2023; 8:879-887. [PMID: 37585218 DOI: 10.1001/jamacardio.2023.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Importance Adenosine triphosphate citrate lyase (ACLY) is a key regulatory enzyme of glucose metabolism, cholesterol and fatty acid synthesis, and the inflammatory cascade. Bempedoic acid, an ACLY inhibitor, significantly reduces atherogenic lipid markers, including low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol, and apolipoprotein B. Additional effects of ACLY inhibition include antitumor growth; reduction of triglycerides and proinflammatory molecules such as high-sensitivity C-reactive protein; less insulin resistance; reduction of hepatic lipogenesis; and weight loss. Observations While numerous ACLY inhibitors have been identified, most of the clinical data have focused on bempedoic acid. The Cholesterol Lowering via Bempedoic Acid, an ACL-Inhibiting Regimen (CLEAR) program was a series of phase 3 clinical trials that evaluated its effects on lipid parameters and safety, leading to US Food and Drug Administration approval in 2020. CLEAR Outcomes was a phase 3, double-blind, randomized, placebo-controlled trial in individuals with a history of statin intolerance, serum LDL-C level of 100 mg/dL or higher, and a history of, or at high risk for, cardiovascular disease. Bempedoic acid modestly reduced the primary 4-way cardiovascular composite end point as well as the individual components of myocardial infarction and coronary revascularization but did not reduce stroke, cardiovascular death, or all-cause mortality. Rates of gout and cholelithiasis were higher with bempedoic acid, and small increases in serum creatinine, uric acid, and hepatic-enzyme levels were also observed. Conclusions and relevance ACLY inhibition with bempedoic acid has been established as a safe and effective therapy in high-risk patients who require further LDL-C lowering, particularly for those with a history of statin intolerance. The recently published CLEAR Outcomes trial revealed modest reductions in cardiovascular events with bempedoic acid, proportional to its LDL-C lowering, in high-risk individuals with statin intolerance and LDL-C levels of 100 mg/dL or higher. The additional effects of ACLY inhibition have prompted a more thorough search for novel ACLY inhibitors for conditions such as cancer, hypertriglyceridemia, chronic inflammation, type 2 diabetes, fatty liver disease, obesity, and metabolic syndrome. Similarly, therapies that reduce fatty acid synthesis are being explored for their use in cardiometabolic conditions.
Collapse
Affiliation(s)
| | - Robert P Giugliano
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
12
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
13
|
Chen Y, Wang Z, Xian X, Zhuang Y, Chang J, Zhan X, Han X, Chen Q, Yang Z, Chen R. Eukaryotic initiation factor 6 repression mitigates atherosclerosis progression by inhibiting macrophages expressing Fasn. IUBMB Life 2022; 75:440-452. [PMID: 36469534 DOI: 10.1002/iub.2696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease that often leads to myocardial infarction and stroke, is mainly caused by lipid accumulation. Eukaryotic initiation factor 6 (Eif6) is a rate-limiting factor in protein translation of transcription factors necessary for lipogenesis. To determine whether Eif6 affects atherosclerosis, Eif6+/- mice were crossed into Apoe-/- background. Apoe-/-/Eif6+/- mice on high fat diet showed significant reduction in atherosclerotic lesions and necrotic core content in aortic root sections in comparison with Apoe-/- mice. RNA-Seq was used to investigate the effect of Eif6 in aorta. Deficiency of Eif6 shows broad effect on cell metabolism. Expression of genes for fatty acid synthesis including Fatty acid synthase (Fasn), Elovl3, Elovl6 and Acaca are down-regulated in aortas. Importantly, Fasn is decreased in macrophages. Results suggest that Eif6 deficiency may decrease atherosclerosis through inhibition of Fasn and lipids metabolism in macrophages.
Collapse
Affiliation(s)
- Yang Chen
- College of Life Sciences Xuzhou Medical University Xuzhou China
| | - Zhenzhen Wang
- Cancer Institute Xuzhou Medical University Xuzhou China
| | - Xuemei Xian
- College of Life Sciences Xuzhou Medical University Xuzhou China
| | - Yun Zhuang
- College of Life Sciences Xuzhou Medical University Xuzhou China
| | - Jiajia Chang
- College of Life Sciences Xuzhou Medical University Xuzhou China
| | - Xiaoqiang Zhan
- College of Life Sciences Xuzhou Medical University Xuzhou China
| | - Xufeng Han
- College of Life Sciences Xuzhou Medical University Xuzhou China
| | - Quangang Chen
- College of Life Sciences Xuzhou Medical University Xuzhou China
| | - Zhangping Yang
- Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design Yangzhou University Yangzhou China
| | - Renjin Chen
- College of Life Sciences Xuzhou Medical University Xuzhou China
| |
Collapse
|
14
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
15
|
Wei L, Weng S, Lu X, Zhu S, Yang Q, Chen YQ. 3-Hydroxyacyl-CoA dehydratase 2 deficiency confers resistance to diet-induced obesity and glucose intolerance. Biochem Biophys Res Commun 2022; 605:134-140. [PMID: 35325655 DOI: 10.1016/j.bbrc.2022.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Obesity and associated complications are becoming a pandemic. Inhibiting fatty acid synthesis and elongation is an important intervention for the treatment of obesity. Despite intensive investigations, many potential therapeutic targets have yet to be discovered. In this study, decreased expression of Hacd2 (a newly found enzyme in fatty acid elongation) was found in HFD induced mice and loss of Hacd2 expression in the liver protected mice against HFD induced obesity as well as associated fatty liver disease and diabetes. Additionally, further study indicated that hepatic HACD2 deficiency increased energy expenditure by upregulating the transcription of thermogenic programming genes. Our results suggest that HACD2 may be a promising therapeutic target for the management of obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Lengyun Wei
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; School of Food Science and Technology, Jiangnan University, Jiangsu Province, 214122, China
| | - Shengmei Weng
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Xuyang Lu
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; School of Food Science and Technology, Jiangnan University, Jiangsu Province, 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; School of Food Science and Technology, Jiangnan University, Jiangsu Province, 214122, China.
| |
Collapse
|
16
|
Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022; 21:283-305. [PMID: 35031766 PMCID: PMC8758994 DOI: 10.1038/s41573-021-00367-2] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Fatty acids are essential for survival, acting as bioenergetic substrates, structural components and signalling molecules. Given their vital role, cells have evolved mechanisms to generate fatty acids from alternative carbon sources, through a process known as de novo lipogenesis (DNL). Despite the importance of DNL, aberrant upregulation is associated with a wide variety of pathologies. Inhibiting core enzymes of DNL, including citrate/isocitrate carrier (CIC), ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), represents an attractive therapeutic strategy. Despite challenges related to efficacy, selectivity and safety, several new classes of synthetic DNL inhibitors have entered clinical-stage development and may become the foundation for a new class of therapeutics. De novo lipogenesis (DNL) is vital for the maintenance of whole-body and cellular homeostasis, but aberrant upregulation of the pathway is associated with a broad range of conditions, including cardiovascular disease, metabolic disorders and cancers. Here, Steinberg and colleagues provide an overview of the physiological and pathological roles of the core DNL enzymes and assess strategies and agents currently in development to therapeutically target them.
Collapse
Affiliation(s)
- Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
17
|
Xu C, Li H, Tang CK. Sterol Carrier Protein 2: A promising target in the pathogenesis of atherosclerosis. Genes Dis 2022; 10:457-467. [DOI: 10.1016/j.gendis.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
|
18
|
Qin YS, Li H, Wang SZ, Wang ZB, Tang CK. Microtubule affinity regulating kinase 4: A promising target in the pathogenesis of atherosclerosis. J Cell Physiol 2021; 237:86-97. [PMID: 34289095 DOI: 10.1002/jcp.30530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), an important member of the serine/threonine kinase family, regulates the phosphorylation of microtubule-associated proteins and thus modulates microtubule dynamics. In human atherosclerotic lesions, the expression of MARK4 is significantly increased. Recently, accumulating evidence suggests that MARK4 exerts a proatherogenic effect via regulation of lipid metabolism (cholesterol, fatty acid, and triglyceride), inflammation, cell cycle progression and proliferation, insulin signaling, and glucose homeostasis, white adipocyte browning, and oxidative stress. In this review, we summarize the latest findings regarding the role of MARK4 in the pathogenesis of atherosclerosis to provide a rationale for future investigation and therapeutic intervention.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmacy; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmacy; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Guo W, Kim SH, Wu D, Li L, Ortega EF, Thomas M, Meydani SN, Meydani M. Dietary Fruit and Vegetable Supplementation Suppresses Diet-Induced Atherosclerosis in LDL Receptor Knockout Mice. J Nutr 2021; 151:902-910. [PMID: 33561256 DOI: 10.1093/jn/nxaa410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epidemiologic studies suggest that fruit and vegetable (F&V) consumption is inversely associated with incidence of cardiovascular disease (CVD). However, evidence for causality is lacking, and the underlying mechanisms are not well understood. OBJECTIVES We aimed to determine whether there is a causal relation between consuming high levels of F&V and prevention of atherosclerosis, the hallmark of CVD pathogenesis. Furthermore, the underlying mechanisms were determined. METHODS Six-week-old male LDL receptor-knockout mice were randomly assigned to 3 diet groups (12 mice/group) for 20 wk: control (CON, 10% kcal fat, 0.20 g/kg cholesterol), atherogenic (Ath, 27% kcal fat, 0.55 g/kg cholesterol), and Ath supplemented with 15% F&V (Ath + FV) (equivalent to 8-9 servings/d in humans). F&V was added as a freeze-dried powder that was prepared from the 24 most commonly consumed F&Vs in the United States. Body weight, aortic atherosclerotic lesion area, hepatic steatosis area, serum lipid profile and proinflammatory cytokine TNF-α concentrations, gut microbiota, and liver TNF-α and fatty acid synthase (Fasn) mRNA concentrations were assessed. RESULTS F&V supplementation did not affect weight gain. Mice fed the Ath + FV diet had a smaller aortic atherosclerotic lesion area (71.7% less) and hepatic steatosis area (80.7% less) than those fed the Ath diet (both P < 0.001) independent of impact on weight, whereas no difference was found between Ath + FV and CON groups in these 2 pathologic markers. Furthermore, F&V supplementation prevented Ath diet-induced dyslipidemia (high concentrations of serum TG and VLDL cholesterol and lower concentrations of HDL cholesterol), reduced serum TNF-α concentration (by 21.5%), suppressed mRNA expression of liver TNF-α and Fasn, and ameliorated Ath-induced gut microbiota dysbiosis. CONCLUSIONS Our results indicate that consuming a large quantity and variety of F&Vs causally attenuates diet-induced atherosclerosis and hepatic steatosis in mice. These effects of F&Vs are associated with, and may be mediated through, improved atherogenic dyslipidemia, alleviated gut dysbiosis, and suppressed inflammation.
Collapse
Affiliation(s)
- Weimin Guo
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Sharon H Kim
- Vascular Biology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lijun Li
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Edwin Frank Ortega
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Michael Thomas
- Vascular Biology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Vascular Biology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
20
|
Metabolic Effects of Selective Deletion of Group VIA Phospholipase A 2 from Macrophages or Pancreatic Islet Beta-Cells. Biomolecules 2020; 10:biom10101455. [PMID: 33080873 PMCID: PMC7602969 DOI: 10.3390/biom10101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
To examine the role of group VIA phospholipase A2 (iPLA2β) in specific cell lineages in insulin secretion and insulin action, we prepared mice with a selective iPLA2β deficiency in cells of myelomonocytic lineage, including macrophages (MØ-iPLA2β-KO), or in insulin-secreting β-cells (β-Cell-iPLA2β-KO), respectively. MØ-iPLA2β-KO mice exhibited normal glucose tolerance when fed standard chow and better glucose tolerance than floxed-iPLA2β control mice after consuming a high-fat diet (HFD). MØ-iPLA2β-KO mice exhibited normal glucose-stimulated insulin secretion (GSIS) in vivo and from isolated islets ex vivo compared to controls. Male MØ-iPLA2β-KO mice exhibited enhanced insulin responsivity vs. controls after a prolonged HFD. In contrast, β-cell-iPLA2β-KO mice exhibited impaired glucose tolerance when fed standard chow, and glucose tolerance deteriorated further when introduced to a HFD. β-Cell-iPLA2β-KO mice exhibited impaired GSIS in vivo and from isolated islets ex vivo vs. controls. β-Cell-iPLA2β-KO mice also exhibited an enhanced insulin responsivity compared to controls. These findings suggest that MØ iPLA2β participates in HFD-induced deterioration in glucose tolerance and that this mainly reflects an effect on insulin responsivity rather than on insulin secretion. In contrast, β-cell iPLA2β plays a role in GSIS and also appears to confer some protection against deterioration in β-cell functions induced by a HFD.
Collapse
|
21
|
van der Heijden CDCC, Keating ST, Groh L, Joosten LAB, Netea MG, Riksen NP. Aldosterone induces trained immunity: the role of fatty acid synthesis. Cardiovasc Res 2020; 116:317-328. [PMID: 31119285 DOI: 10.1093/cvr/cvz137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/09/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
AIMS Supranormal levels of aldosterone are associated with an increased cardiovascular risk in humans, and with accelerated atherosclerosis in animal models. Atherosclerosis is a low-grade inflammatory disorder, with monocyte-derived macrophages as major drivers of plaque formation. Monocytes can adopt a long-term pro-inflammatory phenotype after brief stimulation with microbial pathogens or endogenous atherogenic lipoproteins via a process termed trained immunity. In this study, we aimed to investigate whether aldosterone can induce trained immunity in primary human monocytes in vitro and explored the underlying mechanism. METHODS AND RESULTS We exposed human monocytes to aldosterone for 24 h, after which they were rested to differentiate into monocyte-derived macrophages for 5 days, and re-stimulated with toll-like receptor 2 and 4 ligands on day 6. We demonstrated that aldosterone augments pro-inflammatory cytokine production and reactive oxygen species production in monocyte-derived macrophages after re-stimulation, via the mineralocorticoid receptor. Fatty acid synthesis was identified as a crucial pathway necessary for this induction of trained immunity and pharmacological inhibition of this pathway blunted aldosterone-induced trained immunity. At the level of gene regulation, aldosterone promoted enrichment of the transcriptionally permissive H3K4me3 modification at promoters of genes central to the fatty acid synthesis pathway. CONCLUSION Aldosterone induces trained immunity in vitro, which is dependent on epigenetically mediated up-regulation of fatty acid synthesis. These data provide mechanistic insight into the contribution of aldosterone to inflammation, atherosclerosis, and cardiovascular disease.
Collapse
Affiliation(s)
- Charlotte D C C van der Heijden
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Samuel T Keating
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Laszlo Groh
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Riksen NP, Netea MG. Immunometabolic control of trained immunity. Mol Aspects Med 2020; 77:100897. [PMID: 32891423 PMCID: PMC7466946 DOI: 10.1016/j.mam.2020.100897] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Innate immune cells can adopt long-term inflammatory phenotypes following brief encounters with exogenous (microbial) or endogenous stimuli. This phenomenon is named trained immunity and can improve host defense against (recurrent) infections. In contrast, trained immunity can also be maladaptive in the context of chronic inflammatory disorders, such as atherosclerosis. Key to future therapeutic exploitation of this mechanism is thorough knowledge of the mechanisms driving trained immunity, which can be used as pharmacological targets. These mechanisms include profound changes in intracellular metabolism, which are closely intertwined with epigenetic reprogramming at the level of histone modifications. Glycolysis, glutamine replenishment of the tricarboxylic acid cycle with accumulation of fumarate, and the mevalonate pathway have all been identified as critical pathways for trained immunity in monocytes and macrophages. In this review, we provide a state-of-the-art overview of how these metabolic pathways interact with epigenetic programs to develop trained immunity.
Collapse
Affiliation(s)
- Niels P Riksen
- Dept. of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Mihai G Netea
- Dept. of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Yvan-Charvet L, Ivanov S. Metabolic Reprogramming of Macrophages in Atherosclerosis: Is It All about Cholesterol? J Lipid Atheroscler 2020; 9:231-242. [PMID: 32821733 PMCID: PMC7379089 DOI: 10.12997/jla.2020.9.2.231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Hypercholesterolemia contributes to the chronic inflammatory response during the progression of atherosclerosis, in part by favoring cholesterol loading in macrophages and other immune cells. However, macrophages encounter a substantial amount of other lipids and nutrients after ingesting atherogenic lipoprotein particles or clearing apoptotic cells, increasing their metabolic load and impacting their behavior during atherosclerosis plaque progression. This review examines whether and how fatty acids and glucose shape the cellular metabolic reprogramming of macrophages in atherosclerosis to modulate the onset phase of inflammation and the later resolution stage, in which the balance is tipped toward tissue repair.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Stoyan Ivanov
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| |
Collapse
|
24
|
Abstract
Macrophage immunometabolism, the changes in intracellular metabolic pathways that alter the function of these highly plastic cells, has been the subject of intense interest in the past few years, in part because macrophage immunometabolism plays important roles in atherosclerosis and other inflammatory diseases. In this review article, part of the Compendium on Atherosclerosis, we introduce the concepts of (1) intracellular immunometabolism-the canonical pathways of intrinsic cell activation leading to changes in intracellular metabolism, which in turn alter cellular function; and (2) intercellular immunometabolism-conditions in which intermediates of cellular metabolism are transferred from one cell to another, thereby altering the function of the recipient cell. The recent discovery that the metabolite cargo of dead and dying cells ingested through efferocytosis by macrophages can alter metabolic pathways and downstream function of the efferocyte is markedly changing the way we think about macrophage immunometabolism. Metabolic transitions of macrophages contribute to their functions in all stages of atherosclerosis, from lesion initiation to formation of advanced lesions characterized by necrotic cores, to lesion regression following aggressive lipid lowering. This review article discusses recent advances in our understanding of these different aspects of macrophage immunometabolism in atherosclerosis. With the increasing understanding of the roles of macrophage immunometabolism in atherosclerosis, new exciting concepts and potential targets for intervention are emerging.
Collapse
Affiliation(s)
- Ira Tabas
- From the Departments of Medicine, Anatomy and Cell Biology, and Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY (I.T.)
| | - Karin E Bornfeldt
- Department of Medicine, and Division of Metabolism, Endocrinology and Nutrition, Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (K.E.B.)
| |
Collapse
|
25
|
Kumar A, Gupta P, Rana M, Chandra T, Dikshit M, Barthwal MK. Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation. J Lipid Res 2020; 61:351-364. [PMID: 31988148 DOI: 10.1194/jlr.ra119000382] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/22/2020] [Indexed: 01/10/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) links metabolic and inflammatory dysfunction in atherosclerotic coronary artery disease; however, its role in oxidized LDL (Ox-LDL)-induced macrophage foam cell formation and inflammation is unknown and therefore was studied. In recombinant mouse granulocyte-macrophage colony-stimulating factor-differentiated murine bone marrow-derived macrophages, early (1-6 h) Ox-LDL treatment induced PKM2 tyrosine 105 phosphorylation and promotes its nuclear localization. PKM2 regulates aerobic glycolysis and inflammation because PKM2 shRNA or Shikonin abrogated Ox-LDL-induced hypoxia-inducible factor-1α target genes lactate dehydrogenase, glucose transporter member 1, interleukin 1β (IL-1β) mRNA expression, lactate, and secretory IL-1β production. PKM2 inhibition significantly increased Ox-LDL-induced ABCA1 and ABCG1 protein expression and NBD-cholesterol efflux to apoA1 and HDL. PKM2 shRNA significantly inhibited Ox-LDL-induced CD36, FASN protein expression, DiI-Ox-LDL binding and uptake, and cellular total cholesterol, free cholesterol, and cholesteryl ester content. Therefore, PKM2 regulates lipid uptake and efflux. DASA-58, a PKM2 activator, downregulated LXR-α, ABCA1, and ABCG1, and augmented FASN and CD36 protein expression. Peritoneal macrophages showed similar results. Ox-LDL induced PKM2- SREBP-1 interaction and FASN expression in a PKM2-dependent manner. Therefore, this study suggests a role for PKM2 in Ox-LDL-induced aerobic glycolysis, inflammation, and macrophage foam cell formation.
Collapse
Affiliation(s)
- Amit Kumar
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Priya Gupta
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Minakshi Rana
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| |
Collapse
|
26
|
Abstract
Macrophages play an essential role not only in mediating the first line of defense but also in maintaining tissue homeostasis. In response to extrinsic factors derived from a given tissue, macrophages activate different functional programs to produce polarized macrophage populations responsible for inducing inflammation against microbes, removing cellular debris, and tissue repair. However, accumulating evidence has revealed that macrophage polarization is pivotal in the pathophysiology of metabolic syndromes and cancer, as well as in infectious and autoimmune diseases. Recent advances in transcriptomic and metabolomic studies have highlighted the link between metabolic rewiring of macrophages and their functional plasticity. These findings imply that metabolic adaption to their surrounding microenvironment instructs activation of macrophages with functionally distinct phenotypes, which in turn probably leads to the pathogenesis of a wide spectrum of diseases. In this review, we have introduced emerging concepts in immunometabolism with focus on the impact on functional activation of macrophages. Furthermore, we have discussed the implication of macrophage plasticity on the pathogenesis of metabolic syndromes and cancer, and how the disease microenvironment manipulates macrophage metabolism with regard to the pathophysiology. [BMB Reports 2019; 52(6): 360-372].
Collapse
Affiliation(s)
- Bikash Thapa
- Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Keunwook Lee
- Institute of Bioscience and Biotechnology, and Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
27
|
Korbecki J, Gutowska I, Wiercioch M, Łukomska A, Tarnowski M, Drozd A, Barczak K, Chlubek D, Baranowska-Bosiacka I. Sodium Orthovanadate Changes Fatty Acid Composition and Increased Expression of Stearoyl-Coenzyme A Desaturase in THP-1 Macrophages. Biol Trace Elem Res 2020; 193:152-161. [PMID: 30927246 PMCID: PMC6914714 DOI: 10.1007/s12011-019-01699-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
Vanadium compounds are promising antidiabetic agents. In addition to regulating glucose metabolism, they also alter lipid metabolism. Due to the clear association between diabetes and atherosclerosis, the purpose of the present study was to assess the effect of sodium orthovanadate on the amount of individual fatty acids and the expression of stearoyl-coenzyme A desaturase (SCD or Δ9-desaturase), Δ5-desaturase, and Δ6-desaturase in macrophages. THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate (PMA) were incubated in vitro for 48 h with 1 μM or 10 μM sodium orthovanadate (Na3VO4). The estimation of fatty acid composition was performed by gas chromatography. Expressions of the genes SCD, fatty acid desaturase 1 (FADS1), and fatty acid desaturase 2 (FADS2) were tested by qRT-PCR. Sodium orthovanadate in THP-1 macrophages increased the amount of saturated fatty acids (SFA) such as palmitic acid and stearic acid, as well as monounsaturated fatty acids (MUFA)-oleic acid and palmitoleic acid. Sodium orthovanadate caused an upregulation of SCD expression. Sodium orthovanadate at the given concentrations did not affect the amount of polyunsaturated fatty acids (PUFA) such as linoleic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). In conclusion, sodium orthovanadate changed SFA and MUFA composition in THP-1 macrophages and increased expression of SCD. Sodium orthovanadate did not affect the amount of any PUFA. This was associated with a lack of influence on the expression of FADS1 and FADS2.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Marta Wiercioch
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland.
| |
Collapse
|
28
|
Ménégaut L, Jalil A, Thomas C, Masson D. Macrophage fatty acid metabolism and atherosclerosis: The rise of PUFAs. Atherosclerosis 2019; 291:52-61. [PMID: 31693943 DOI: 10.1016/j.atherosclerosis.2019.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 01/24/2023]
Abstract
Among the pathways involved in the regulation of macrophage functions, the metabolism of unsaturated fatty acids is central. Indeed, unsaturated fatty acids act as precursors of bioactive molecules such as prostaglandins, leukotrienes, resolvins and related compounds. As components of phospholipids, they have a pivotal role in cell biology by regulating membrane fluidity and membrane-associated cellular processes. Finally, polyunsaturated fatty acids (PUFAs) are also endowed with ligand properties for numerous membrane or nuclear receptors. Although myeloid cells are dependent on the metabolic context for the uptake of essential FAs, recent studies showed that these cells autonomously handle the synthesis of n-3 and n-6 long chain PUFAs such as arachidonic acid and eicosapentaenoic acid. Moreover, targeting PUFA metabolism in macrophages influences pathological processes, including atherosclerosis, by modulating macrophage functions. Omics evidence also supports a role for macrophage PUFA metabolism in the development of cardiometabolic diseases in humans. Currently, there is a renewed interest in the role of n-3/n-6 PUFAs and their oxygenated derivatives in the onset of atherosclerosis and plaque rupture. Purified n-3 FA supplementation appears as a potential strategy in the treatment and prevention of cardiovascular diseases. In this context, the ability of immune cells to handle and to synthesize very long chain PUFA must absolutely be integrated and better understood.
Collapse
Affiliation(s)
- Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France.
| |
Collapse
|
29
|
Involvement of fatty acid synthase in right ventricle dysfunction in pulmonary hypertension. Exp Cell Res 2019; 383:111569. [DOI: 10.1016/j.yexcr.2019.111569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
30
|
Wei Y, Corbalán-Campos J, Gurung R, Natarelli L, Zhu M, Exner N, Erhard F, Greulich F, Geißler C, Uhlenhaut NH, Zimmer R, Schober A. Dicer in Macrophages Prevents Atherosclerosis by Promoting Mitochondrial Oxidative Metabolism. Circulation 2019; 138:2007-2020. [PMID: 29748186 DOI: 10.1161/circulationaha.117.031589] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alternative macrophage activation, which relies on mitochondrial oxidative metabolism, plays a central role in the resolution of inflammation and prevents atherosclerosis. Moreover, macrophages handle large amounts of cholesterol and triglycerides derived from the engulfed modified lipoproteins during atherosclerosis. Although several microRNAs regulate macrophage polarization, the role of the microRNA-generating enzyme Dicer in macrophage activation during atherosclerosis is unknown. METHODS To evaluate the role of Dicer in atherosclerosis, Apoe-/- mice with or without macrophage-specific Dicer deletion were fed a high-fat diet for 12 weeks. Anti-argonaute 2 RNA immunoprecipitation chip and RNA deep sequencing combined with microRNA functional screening were performed in the Dicer wild-type and knockout bone marrow-derived macrophages to identify the individual microRNAs and the mRNA targets mediating the phenotypic effects of Dicer. The role of the identified individual microRNA and its target in atherosclerosis was determined by tail vein injection of the target site blockers in atherosclerotic Apoe-/- mice. RESULTS We show that Dicer deletion in macrophages accelerated atherosclerosis in mice, along with enhanced inflammatory response and increased lipid accumulation in lesional macrophages. In vitro, alternative activation was limited whereas lipid-filled foam cell formation was exacerbated in Dicer-deficient macrophages as a result of impaired mitochondrial fatty acid oxidative metabolism. Rescue of microRNA (miR)-10a, let-7b, and miR-195a expression restored the oxidative metabolism in alternatively activated Dicer-deficient macrophages. Suppression of ligand-dependent nuclear receptor corepressor by miR-10a promoted fatty acid oxidation, which mediated the lipolytic and anti-inflammatory effect of Dicer. miR-10a expression was negatively correlated to the progression of atherosclerosis in humans. Blocking the interaction between ligand-dependent nuclear receptor corepressor and miR-10a by target site blockers aggravated atherosclerosis development in mice. CONCLUSIONS Dicer plays an atheroprotective role by coordinately regulating the inflammatory response and lipid metabolism in macrophages through enhancing fatty acid-fueled mitochondrial respiration, suggesting that promoting Dicer/miR-10a-dependent metabolic reprogramming in macrophages has potential therapeutic implications to prevent atherosclerosis.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention (Y.W., J.C.-C., R.G., L.N., M.Z., C.G., A.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (Y.W., A.S.)
| | - Judit Corbalán-Campos
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention (Y.W., J.C.-C., R.G., L.N., M.Z., C.G., A.S.), Ludwig-Maximilians-University Munich, Germany
| | - Rashmi Gurung
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention (Y.W., J.C.-C., R.G., L.N., M.Z., C.G., A.S.), Ludwig-Maximilians-University Munich, Germany
| | - Lucia Natarelli
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention (Y.W., J.C.-C., R.G., L.N., M.Z., C.G., A.S.), Ludwig-Maximilians-University Munich, Germany
| | - Mengyu Zhu
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention (Y.W., J.C.-C., R.G., L.N., M.Z., C.G., A.S.), Ludwig-Maximilians-University Munich, Germany
| | - Nicole Exner
- Biomedical Research Center, Biochemistry (N.E.), Ludwig-Maximilians-University Munich, Germany
| | - Florian Erhard
- Institut für Informatik (F.E., R.Z.), Ludwig-Maximilians-University Munich, Germany.,Dr Erhard is currently at the Institut für Virologie, Julius-Maximilians-Universität Würzburg, Germany
| | - Franziska Greulich
- Helmholtz Diabetes Center and German Center for Diabetes Research, IDO, Munich, Germany (F.G., N.H.U.)
| | - Claudia Geißler
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention (Y.W., J.C.-C., R.G., L.N., M.Z., C.G., A.S.), Ludwig-Maximilians-University Munich, Germany
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center and German Center for Diabetes Research, IDO, Munich, Germany (F.G., N.H.U.)
| | - Ralf Zimmer
- Institut für Informatik (F.E., R.Z.), Ludwig-Maximilians-University Munich, Germany
| | - Andreas Schober
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention (Y.W., J.C.-C., R.G., L.N., M.Z., C.G., A.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (Y.W., A.S.)
| |
Collapse
|
31
|
Baranowska-Bosiacka I, Olszowski T, Gutowska I, Korbecki J, Rębacz-Maron E, Barczak K, Lubkowska A, Chlubek D. Fatty acid levels alterations in THP-1 macrophages cultured with lead (Pb). J Trace Elem Med Biol 2019; 52:222-231. [PMID: 30732887 DOI: 10.1016/j.jtemb.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/16/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE As cardiovascular events are one of the main causes of death in developed countries, each factor potentially increasing the risk of cardiovascular disease deserves special attention. One such factor is the potentially atherogenic effect of lead (Pb) on lipid metabolism, and is significant in view of the still considerable Pb environmental pollution and the non-degradability of Pb compounds. METHODS Analysis of saturated fatty acids (SFA) (caprylic acid (C8:0), decanoic acid (C10:0), lauric acid (C12:0), tridecanoic acid (C13:0), myristic acid (C14:0), pentadecanoic acid (C15:0), palmitic acid (C16:0), heptadecanoic acid (C17:0), stearic acid (C18:0), and behenic acid (C22:0)), monounsaturated fatty acid (MUFA) (palmitoleic acid (C16:1), oleic acid (18:1w9), trans-vaccenic acid (C18:1 trans11)), and polyunsaturated fatty acid (PUFA) (linoleic acid (C18:2n6), gamma-linolenic acid (C18:3n6), arachidonic acid (C20:4n6)), was conducted by gas chromatography. Analysis of stearoyl-CoA desaturase (SCD), fatty acid desaturase 1 (FADS1) and fatty acid desaturase 2 (FADS2) expression was performed using qRT-PCR. Oxidative stress intensity (malondialdehyde - MDA concentration) was measured using spectrophotometric method. Intracellular generation of reactive oxygen species (ROS) in macrophages was visualized by fluorescence microscopy and quantitatively measured by plate reader. RESULTS Pb caused quantitative alterations in FAs profile in macrophages; the effect was Pb-concentration dependent and selective (i.e. concerned only selected FAs). In general, the effect of Pb was biphasic, with Pb levels of 1.25 μg/dL and 2.5 μg/dL being stimulatory, and 10 μg/dL being inhibitory on concentrations of selected FAs. The most potent Pb concentration, resulting in increase in levels of 9 FAs, was 2.5 μg/dL, the Pb-level corresponding to the mean blood Pb concentrations of people living in urban areas not contaminated by Pb. Pb was found to exert similar, biphasic effect on the expression of FADS1. However, Pb decreased, in a concentration-dependent manner, the expression of SCD and FADS2. Pb significantly increased MDA and ROS concentration in macrophages. CONCLUSION Environmental Pb exposure might be a risk factor resulting in alterations in FAs levels, oxidative stress and increased MDA concentration in macrophages, which might lead to the formation of foam cells and to inflammatory reactions.
Collapse
Affiliation(s)
- Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 St., 70-111, Szczecin, Poland.
| | - Tomasz Olszowski
- Department of Hygiene and Epidemiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 St., 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24 St., 71-460, Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 St., 70-111, Szczecin, Poland
| | - Ewa Rębacz-Maron
- University of Szczecin, Department of Vertebrate Zoology and Anthropology, Institute for Research on Biodiversity, Faculty of Biology, University of Szczecin, Wąska 13 St., 71-415, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 St., 70-111, Szczecin, Poland
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW It is increasingly recognized that profound metabolic changes occur in activated myeloid cells, which shape their inflammatory phenotype and cellular functions. The purpose of this review is to summarize the accumulating evidence that major metabolic adaptations occur in monocytes and macrophages in the context of atherosclerosis ultimately modulating atherosclerotic plaque formation. RECENT FINDINGS Plaque macrophages show a profound metabolic reprogramming which is driven by atherogenic factors in the plaque microenvironment, such as damage associated molecular patterns, modified lipoproteins, and hypoxia. In addition, systemic atherogenic factors modulate metabolism of circulating monocytes and their bone marrow progenitors. Activation of glycolysis, the pentose phosphate pathway, and fatty acid synthesis, a reduction of fatty acid oxidation accompanied by complex changes in the lysosomal handling of lipids all appear to facilitate atherogenesis. These processes also drive the development of trained immunity, a phenomenon describing the persistent pro-inflammatory phenotype that develops after brief stimulation of monocytes with pro-atherogenic stimuli. SUMMARY A pro-atherosclerotic environment reprograms the metabolism of myeloid cells in the various developmental phases of atherosclerosis. Knowledge of these metabolic programs facilitates the development of novel drugs to prevent atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
33
|
Thomas C, Jalil A, Magnani C, Ishibashi M, Queré R, Bourgeois T, Bergas V, Ménégaut L, Patoli D, Le Guern N, Labbé J, Gautier T, de Barros JPP, Lagrost L, Masson D. LPCAT3 deficiency in hematopoietic cells alters cholesterol and phospholipid homeostasis and promotes atherosclerosis. Atherosclerosis 2018; 275:409-418. [PMID: 29866392 DOI: 10.1016/j.atherosclerosis.2018.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS LPCAT3 plays a major role in phospholipid metabolism in the liver and intestine. However, the impact of LPCAT3 on hematopoietic cell and macrophage functions has yet to be described. Our aim was to understand the functions of LPCAT3 in macrophages and to investigate whether LPCAT3 deficiency in hematopoietic cells may affect atherosclerosis development. METHODS Mice with constitutive Lpcat3 deficiency (Lpcat3-/-) were generated. We used fetal hematopoietic liver cells to generate WT and Lpcat3-/- macrophages in vitro and to perform hematopoietic cell transplantation in recipient Ldlr-/- mice. RESULTS Lpcat3-deficient macrophages displayed major reductions in the arachidonate content of phosphatidylcholines, phosphatidylethanolamines and, unexpectedly, plasmalogens. These changes were associated with altered cholesterol homeostasis, including an increase in the ratio of free to esterified cholesterol and a reduction in cholesterol efflux in Lpcat3-/- macrophages. This correlated with the inhibition of some LXR-regulated pathways, related to altered cellular availability of the arachidonic acid. Indeed, LPCAT3 deficiency was associated with decreased Abca1, Abcg1 and ApoE mRNA levels in fetal liver cells derived macrophages. In vivo, these changes translated into a significant increase in atherosclerotic lesions in Ldlr-/- mice with hematopoietic LPCAT3 deficiency. CONCLUSIONS This study identifies LPCAT3 as a key factor in the control of phospholipid homeostasis and arachidonate availability in myeloid cells and underlines a new role for LPCAT3 in plasmalogen metabolism. Moreover, our work strengthens the link between phospholipid and sterol metabolism in hematopoietic cells, with significant consequences on nuclear receptor-regulated pathways and atherosclerosis development.
Collapse
Affiliation(s)
- Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Charlène Magnani
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Minako Ishibashi
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Ronan Queré
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Thibaut Bourgeois
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Victoria Bergas
- Lipidomic analytic plate-forme, UBFC, Batiment B3, Bvd Maréchal de Lattre de Tassigny, 21000, Dijon, France
| | - Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France
| | - Danish Patoli
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Naig Le Guern
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Jérôme Labbé
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Thomas Gautier
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Jean Paul Pais de Barros
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; Lipidomic analytic plate-forme, UBFC, Batiment B3, Bvd Maréchal de Lattre de Tassigny, 21000, Dijon, France
| | - Laurent Lagrost
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France.
| |
Collapse
|
34
|
Monocyte and macrophage immunometabolism in atherosclerosis. Semin Immunopathol 2017; 40:203-214. [PMID: 28971272 PMCID: PMC5809534 DOI: 10.1007/s00281-017-0656-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023]
Abstract
Atherosclerosis is characterized by chronic low grade inflammation of arteries that results in the development of lipid dense plaques. Chronic inflammation induced by Western-type diet is associated with the risk of developing atherosclerosis, and new insights shed light on the importance of metabolic and functional reprogramming in monocytes and macrophages for progression of atherosclerosis. This review aims to provide an overview of our current understanding into how the metabolic reprogramming of glucose, cholesterol, fatty acid, and amino acid metabolism in macrophages contributes to inflammation during atherosclerosis. Recent insights suggest that transcriptional and epigenetic adaptation within innate immune cells (termed trained immunity) play an important role in the pathogenesis of atherosclerosis. We propose that metabolic changes induced by pro-atherogenic lipoproteins partly mediate these changes in trained macrophages. Finally, we discuss the possibility of manipulating cellular metabolism of immune cells for targeted therapeutic intervention against atherosclerosis.
Collapse
|
35
|
Kulkarni MM, Ratcliff AN, Bhat M, Alwarawrah Y, Hughes P, Arcos J, Loiselle D, Torrelles JB, Funderburg NT, Haystead TA, Kwiek JJ. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 2017; 14:45. [PMID: 28962653 PMCID: PMC5622536 DOI: 10.1186/s12977-017-0368-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background
Like all viruses, HIV-1 relies on host systems to replicate. The human purinome consists of approximately two thousand proteins that bind and use purines such as ATP, NADH, and NADPH. By virtue of their purine binding pockets, purinome proteins are highly druggable, and many existing drugs target purine-using enzymes. Leveraging a protein affinity media that uses the purine-binding pocket to capture the entire purinome, we sought to define purine-binding proteins regulated by HIV-1 infection. Results Using purinome capture media, we observed that HIV-1 infection increases intracellular levels of fatty acid synthase (FASN), a NADPH-using enzyme critical to the synthesis of de novo fatty acids. siRNA mediated knockdown of FASN reduced HIV-1 particle production by 80%, and treatment of tissue culture cells or primary PBMCs with Fasnall, a newly described selective FASN inhibitor, reduced HIV-1 virion production by 90% (EC50 = 213 nM). Despite the requirement of FASN for nascent virion production, FASN activity was not required for intracellular Gag protein production, indicating that FASN dependent de novo fatty acid biosynthesis contributes to a late step of HIV-1 replication. Conclusions Here we show that HIV-1 replication both increases FASN levels and requires host FASN activity. We also report that Fasnall, a novel FASN inhibitor that demonstrates anti-tumor activity in vivo, is a potent and efficacious antiviral, blocking HIV-1 replication in both tissue culture and primary cell models of HIV-1 replication. In adults, most fatty acids are obtained exogenously from the diet, thus making FASN a plausible candidate for pharmacological intervention. In conclusion, we hypothesize that FASN is a novel host dependency factor and that inhibition of FASN activity has the potential to be exploited as an antiretroviral strategy.
Collapse
Affiliation(s)
- Manjusha M Kulkarni
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Annette N Ratcliff
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA.,Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711-5399, USA
| | - Menakshi Bhat
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Yazan Alwarawrah
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - David Loiselle
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA.,Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA.
| | - Jesse J Kwiek
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Masoudkabir F, Sarrafzadegan N, Gotay C, Ignaszewski A, Krahn AD, Davis MK, Franco C, Mani A. Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis 2017; 263:343-351. [PMID: 28624099 PMCID: PMC6207942 DOI: 10.1016/j.atherosclerosis.2017.06.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of mortality and morbidity worldwide. Strategies to improve their treatment and prevention are global priorities and major focus of World Health Organization's joint prevention programs. Emerging evidence suggests that modifiable risk factors including diet, sedentary lifestyle, obesity and tobacco use are central to the pathogenesis of both diseases and are reflected in common genetic, cellular, and signaling mechanisms. Understanding this important biological overlap is critical and may help identify novel therapeutic and preventative strategies for both disorders. In this review, we will discuss the shared genetic and molecular factors central to CVD and cancer and how the strategies commonly used for the prevention of atherosclerotic vascular disease can be applied to cancer prevention.
Collapse
Affiliation(s)
- Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Carolyn Gotay
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Cancer Control Research Program, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Andrew Ignaszewski
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot K Davis
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Franco
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
37
|
Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB, Netea MG. Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate Immune Responses. Cell Metab 2017; 26:142-156. [PMID: 28683282 DOI: 10.1016/j.cmet.2017.06.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/12/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Renewed interest in immune cell metabolism has led to the emergence of a research field aimed at studying the importance of metabolic processes for an effective immune response. In addition to the adaptive immune system, cells of the myeloid lineage have been shown to undergo robust metabolic changes upon activation. Whereas the specific metabolic requirements of myeloid cells after lipopolysaccharide/TLR4 stimulation have been extensively studied, recent evidence suggested that this model does not represent a metabolic blueprint for activated myeloid cells. Instead, different microbial stimuli, pathogens, or tissue microenvironments lead to specific and complex metabolic rewiring of myeloid cells. Here we present an overview of the metabolic heterogeneity in activated myeloid cells during health and disease. Directions for future research are suggested to ultimately provide new therapeutic opportunities. The uniqueness of metabolic signatures accompanying different conditions will require tailor-made interventions to ultimately modulate aberrant myeloid cell activation during disease.
Collapse
Affiliation(s)
- Rinke Stienstra
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Division of Human Nutrition, Wageningen University, 6700 AA Wageningen, the Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
38
|
Semenkovich CF. We Know More Than We Can Tell About Diabetes and Vascular Disease: The 2016 Edwin Bierman Award Lecture. Diabetes 2017; 66:1735-1741. [PMID: 28637825 PMCID: PMC5482089 DOI: 10.2337/db17-0093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
The Edwin Bierman Award Lecture is presented in honor of the memory of Edwin L. Bierman, MD, an exemplary scientist, mentor, and leader in the field of diabetes, obesity, hyperlipidemia, and atherosclerosis. The award and lecture recognizes a leading scientist in the field of macrovascular complications and contributing risk factors in diabetes. Clay F. Semenkovich, MD, the Irene E. and Michael M. Karl Professor and Chief of the Division of Endocrinology, Metabolism and Lipid Research at Washington University School of Medicine in St. Louis, St. Louis, MO, received the prestigious award at the American Diabetes Association's 76th Scientific Sessions, 10-14 June 2016, in New Orleans, LA. He presented the Edwin Bierman Award Lecture, "We Know More Than We Can Tell About Diabetes and Vascular Disease," on Sunday, 12 June 2016.Diabetes is a disorder of abnormal lipid metabolism, a notion strongly supported by the work of Edwin Bierman, for whom this eponymous lecture is named. This abnormal lipid environment continues to be associated with devastating vascular complications in diabetes despite current therapies, suggesting that our understanding of the pathophysiology of blood vessel disease in diabetes is limited. In this review, potential new insights into the nature of diabetic vasculopathy will be discussed. Recent observations suggest that while the concept of distinct macrovascular and microvascular complications of diabetes has been useful, vascular diseases in diabetes may be more interrelated than previously appreciated. Moreover, the intermediary metabolic pathway of de novo lipogenesis, which synthesizes lipids from simple precursors, is robustly sensitive to insulin and may contribute to these complications. De novo lipogenesis requires fatty acid synthase, and recent studies of this enzyme suggest that endogenously produced lipids are channeled to specific intracellular sites to affect physiology. These findings raise the possibility that novel approaches to treating diabetes and its complications could be based on altering the intracellular lipid milieu.
Collapse
Affiliation(s)
- Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
39
|
Ménégaut L, Thomas C, Lagrost L, Masson D. Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases. Curr Opin Lipidol 2017; 28:19-26. [PMID: 27870652 DOI: 10.1097/mol.0000000000000370] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Recent studies have highlighted that macrophages dynamically and autonomously handle all the facets of fatty acid (FA) metabolism including FA oxidation and FA synthesis as well as the synthesis of monounsaturated FAs and long chain n-3 and n-6 polyunsaturated FAs. RECENT FINDINGS Macrophage M2 polarization is associated with an increase of FA oxidation. However, whether increased FA oxidation simply correlates with or is required for M2 polarization needs to be further evaluated. Macrophage M1 polarization is associated with the activation of FA synthesis, which directly contributes to the inflammatory response and affects cholesterol homeostasis and neutral lipid accumulation. Finally, recent evidences suggest that macrophages are able to autonomously produce signaling monounsaturated FAs, such as palmitoleic acid (C16 : 1 n-7), and long chain n-3 and n-6 polyunsaturated FAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. This pathway is regulated by liver X receptors and has significant consequences on inflammation and on the FA composition of atheroma plaques. SUMMARY These studies shed new light on the tight relationship between FA metabolism, macrophage polarization, and M1/M2 macrophage functions. These processes may have major consequences for atherosclerosis pathogenesis as well as other metabolic disorders.
Collapse
Affiliation(s)
- Louise Ménégaut
- aUniversity Bourgogne Franche-Comté, LNC UMR866 bINSERM, LNC UMR866 cFCS Bourgogne-Franche Comté dCHU Dijon, laboratoire de Biochimie, Dijon, France
| | | | | | | |
Collapse
|
40
|
Wei X, Song H, Yin L, Rizzo MG, Sidhu R, Covey DF, Ory DS, Semenkovich CF. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 2016; 539:294-298. [PMID: 27806377 PMCID: PMC5671339 DOI: 10.1038/nature20117] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
Dietary fat promotes pathological insulin resistance through chronic inflammation. The inactivation of inflammatory proteins produced by macrophages improves diet-induced diabetes, but how nutrient-dense diets induce diabetes is unknown. Membrane lipids affect the innate immune response, which requires domains that influence high-fat-diet-induced chronic inflammation and alter cell function based on phospholipid composition. Endogenous fatty acid synthesis, mediated by fatty acid synthase (FAS), affects membrane composition. Here we show that macrophage FAS is indispensable for diet-induced inflammation. Deleting Fasn in macrophages prevents diet-induced insulin resistance, recruitment of macrophages to adipose tissue and chronic inflammation in mice. We found that FAS deficiency alters membrane order and composition, impairing the retention of plasma membrane cholesterol and disrupting Rho GTPase trafficking-a process required for cell adhesion, migration and activation. Expression of a constitutively active Rho GTPase, however, restored inflammatory signalling. Exogenous palmitate was partitioned to different pools from endogenous lipids and did not rescue inflammatory signalling. However, exogenous cholesterol, as well as other planar sterols, did rescue signalling, with cholesterol restoring FAS-induced perturbations in membrane order. Our results show that the production of endogenous fat in macrophages is necessary for the development of exogenous-fat-induced insulin resistance through the creation of a receptive environment at the plasma membrane for the assembly of cholesterol-dependent signalling networks.
Collapse
Affiliation(s)
- Xiaochao Wei
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Haowei Song
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Michael G Rizzo
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
41
|
Goh VJ, Tan JSY, Tan BC, Seow C, Ong WY, Lim YC, Sun L, Ghosh S, Silver DL. Postnatal Deletion of Fat Storage-inducing Transmembrane Protein 2 (FIT2/FITM2) Causes Lethal Enteropathy. J Biol Chem 2015; 290:25686-99. [PMID: 26304121 DOI: 10.1074/jbc.m115.676700] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 02/03/2023] Open
Abstract
Lipid droplets (LDs) are phylogenetically conserved cytoplasmic organelles that store neutral lipids within a phospholipid monolayer. LDs compartmentalize lipids and may help to prevent cellular damage caused by their excess or bioactive forms. FIT2 is a ubiquitously expressed transmembrane endoplasmic reticulum (ER) membrane protein that has previously been implicated in LD formation in mammalian cells and tissue. Recent data indicate that FIT2 plays an essential role in fat storage in an in vivo constitutive adipose FIT2 knock-out mouse model, but the physiological effects of postnatal whole body FIT2 depletion have never been studied. Here, we show that tamoxifen-induced FIT2 deletion using a whole body ROSA26CreER(T2)-driven FIT2 knock-out (iF2KO) mouse model leads to lethal intestinal pathology, including villus blunting and death of intestinal crypts, and loss of lipid absorption. iF2KO mice lose weight and die within 2 weeks after the first tamoxifen dose. At the cellular level, LDs failed to form in iF2KO enterocytes after acute oil challenge and instead accumulated within the ER. Intestinal bile acid transporters were transcriptionally dysregulated in iF2KO mice, leading to the buildup of bile acids within enterocytes. These data support the conclusion that FIT2 plays an essential role in regulating intestinal health and survival postnatally.
Collapse
Affiliation(s)
- Vera J Goh
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore and
| | - Jolene S Y Tan
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore and
| | - Bryan C Tan
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore and
| | - Colin Seow
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore and
| | - Wei-Yi Ong
- the Department of Anatomy and Neurobiology and Aging Research Programme, National University of Singapore, Singapore 119260, Singapore
| | - Yen Ching Lim
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore and
| | - Lei Sun
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore and
| | - Sujoy Ghosh
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore and
| | - David L Silver
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore and
| |
Collapse
|
42
|
Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: More friend than foe? Mol Metab 2015; 4:367-77. [PMID: 25973385 PMCID: PMC4421107 DOI: 10.1016/j.molmet.2015.03.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 02/09/2023] Open
Abstract
Background An acute surplus of carbohydrates, and other substrates, can be converted and safely stored as lipids in adipocytes via de novo lipogenesis (DNL). However, in obesity, a condition characterized by chronic positive energy balance, DNL in non-adipose tissues may lead to ectopic lipid accumulation leading to lipotoxicity and metabolic stress. Indeed, DNL is dynamically recruited in liver during the development of fatty liver disease, where DNL is an important source of lipids. Nonetheless, a number of evidences indicates that DNL is an inefficient road for calorie to lipid conversion and that DNL may play an important role in sustaining metabolic homeostasis. Scope of review In this manuscript, we discuss the role of DNL as source of lipids during obesity, the energetic efficiency of this pathway in converting extra calories to lipids, and the function of DNL as a pathway supporting metabolic homeostasis. Major conclusion We conclude that inhibition of DNL in obese subjects, unless coupled with a correction of the chronic positive energy balance, may further promote lipotoxicity and metabolic stress. On the contrary, strategies aimed at specifically activating DNL in adipose tissue could support metabolic homeostasis in obese subjects by a number of mechanisms, which are discussed in this manuscript.
Collapse
Affiliation(s)
- Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Abdul G Dulloo
- Division of Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
43
|
Lodhi IJ, Wei X, Yin L, Feng C, Adak S, Abou-Ezzi G, Hsu FF, Link DC, Semenkovich CF. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab 2015; 21:51-64. [PMID: 25565205 PMCID: PMC4287274 DOI: 10.1016/j.cmet.2014.12.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/26/2014] [Accepted: 12/09/2014] [Indexed: 12/31/2022]
Abstract
Fatty acid synthase (FAS) is altered in metabolic disorders and cancer. Conventional FAS null mice die in utero, so effects of whole-body inhibition of lipogenesis following development are unknown. Inducible global knockout of FAS (iFASKO) in mice was lethal due to a disrupted intestinal barrier and leukopenia. Conditional loss of FAS was associated with the selective suppression of granulopoiesis without disrupting granulocytic differentiation. Transplantation of iFASKO bone marrow into wild-type mice followed by Cre induction resulted in selective neutrophil depletion, but not death. Impaired lipogenesis increased ER stress and apoptosis in neutrophils by preferentially decreasing peroxisome-derived membrane phospholipids containing ether bonds. Inducible global knockout of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, also produced neutropenia. FAS knockdown in neutrophil-like HL-60 cells caused cell loss that was partially rescued by ether lipids. Inhibiting ether lipid synthesis selectively constrains neutrophil development, revealing an unrecognized pathway in immunometabolism.
Collapse
Affiliation(s)
- Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Grazia Abou-Ezzi
- Oncology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Link
- Oncology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Suburu J, Shi L, Wu J, Wang S, Samuel M, Thomas MJ, Kock ND, Yang G, Kridel S, Chen YQ. Fatty acid synthase is required for mammary gland development and milk production during lactation. Am J Physiol Endocrinol Metab 2014; 306:E1132-43. [PMID: 24668799 PMCID: PMC4116404 DOI: 10.1152/ajpendo.00514.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammary gland is one of the few adult tissues that strongly induce de novo fatty acid synthesis upon physiological stimulation, suggesting that fatty acid is important for milk production during lactation. The committed enzyme to perform this function is fatty acid synthase (FASN). To determine whether de novo fatty acid synthesis is obligatory or dietary fat is sufficient for mammary gland development and function during lactation, Fasn was specifically knocked out in mouse mammary epithelial cells. We found that deletion of Fasn hindered the development and induced the premature involution of the lactating mammary gland and significantly decreased medium- and long-chain fatty acids and total fatty acid contents in the milk. Consequently, pups nursing from Fasn knockout mothers experienced growth retardation and preweanling death, which was rescued by cross-fostering pups to a lactating wild-type mother. These results demonstrate that FASN is essential for the development, functional competence, and maintenance of the lactating mammary gland.
Collapse
Affiliation(s)
- Janel Suburu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jiansheng Wu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shihua Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael Samuel
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael J Thomas
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Guangyu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Steven Kridel
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yong Q Chen
- The Synergistic Innovation Center for Food Safety and Nutrition, State Key Laboratory of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, Wuxi, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
45
|
Suburu J, Gu Z, Chen H, Chen W, Zhang H, Chen YQ. Fatty acid metabolism: Implications for diet, genetic variation, and disease. FOOD BIOSCI 2013; 4:1-12. [PMID: 24511462 DOI: 10.1016/j.fbio.2013.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases.
Collapse
Affiliation(s)
- Janel Suburu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China ; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China ; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
46
|
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304:H1060-76. [PMID: 23396451 PMCID: PMC3625904 DOI: 10.1152/ajpheart.00646.2012] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
47
|
Jensen-Urstad APL, Song H, Lodhi IJ, Funai K, Yin L, Coleman T, Semenkovich CF. Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPARα. J Lipid Res 2013; 54:1848-59. [PMID: 23585690 DOI: 10.1194/jlr.m036103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPARα by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated. In mouse liver and cultured hepatoma cells, the ratio of cytoplasmic to membrane FAS-specific activity was increased with fasting, indicating higher cytoplasmic FAS activity under conditions associated with PPARα activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS. Cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPARα target gene expression. Rapamycin-induced inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a mediator of the feeding/insulin signal to induce lipogenesis, reduced FAS phosphorylation, increased cytoplasmic FAS enzyme activity, and increased PPARα target gene expression. Rapamycin-mediated induction of the same gene was abrogated with FAS knockdown. These findings suggest that hepatic FAS channels lipid synthesis through specific subcellular compartments that allow differential gene expression based on nutritional status.
Collapse
|
48
|
Nagy ZS, Czimmerer Z, Nagy L. Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Mol Cell Endocrinol 2013; 368:85-98. [PMID: 22546548 DOI: 10.1016/j.mce.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Macrophages comprise a family of multi-faceted phagocytic effector cells that differentiate "in situ" from circulating monocytes to exert various functions including clearance of foreign pathogens as well as debris derived from host cells. Macrophages also possess the ability to engulf and metabolize lipids and this way connect lipid metabolism and inflammation. The molecular link between these processes is provided by certain members of the nuclear receptor family. For instance, peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) are able to sense the dynamically changing lipid environment and translate it to gene expression changes in order to modulate the cellular phenotype. Atherosclerosis embodies both sides of this coin: it is a disease in which macrophages with altered cholesterol metabolism keep the arteries in a chronically inflamed state. A large body of publications has accumulated during the past few decades describing the role of nuclear receptors in the regulation of macrophage cholesterol homeostasis, their contribution to the formation of atherosclerotic plaques and their crosstalk with inflammatory pathways. This review will summarize the most recent findings from this field narrowly focusing on the contribution of various nuclear receptors to macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen Medical and Health Science Center, H-4032 Debrecen, Nagyerdei krt 98, Hungary.
| | | | | |
Collapse
|
49
|
Fullerton MD, Steinberg GR, Schertzer JD. Immunometabolism of AMPK in insulin resistance and atherosclerosis. Mol Cell Endocrinol 2013; 366:224-34. [PMID: 22361321 DOI: 10.1016/j.mce.2012.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/06/2012] [Indexed: 12/14/2022]
Abstract
Obesity leads to insulin resistance and atherosclerosis, which precede Type 2 diabetes and cardiovascular disease. Immunometabolism addresses how metabolic and inflammatory pathways converge to maintain health and a contemporary problem is determining how obesity-induced inflammation precipitates chronic diseases such as insulin resistance and atherosclerosis. AMP-activated protein kinase (AMPK) is an important serine/threonine kinase well known for regulating metabolic processes and maintaining energy homeostasis. However, both metabolic and immunological AMPK-mediated effects play a role in disease. Pro-inflammatory mediators suppress AMPK activity and hinder lipid oxidation. In addition, AMPK activation curbs inflammation by directly inhibiting pro-inflammatory signaling pathways and limiting the build-up of specific lipid intermediates that elicit immune responses. In the context of obesity and chronic disease, these reciprocal responses involve both immune and metabolic cells. Therefore, the immunometabolism of AMPK-mediated processes and therapeutics should be considered in atherosclerosis and insulin resistance.
Collapse
Affiliation(s)
- Morgan D Fullerton
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
50
|
Funai K, Song H, Yin L, Lodhi IJ, Wei X, Yoshino J, Coleman T, Semenkovich CF. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. J Clin Invest 2013; 123:1229-40. [PMID: 23376793 DOI: 10.1172/jci65726] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/14/2012] [Indexed: 12/24/2022] Open
Abstract
Exogenous dietary fat can induce obesity and promote diabetes, but endogenous fat production is not thought to affect skeletal muscle insulin resistance, an antecedent of metabolic disease. Unexpectedly, the lipogenic enzyme fatty acid synthase (FAS) was increased in the skeletal muscle of mice with diet-induced obesity and insulin resistance. Skeletal muscle-specific inactivation of FAS protected mice from insulin resistance without altering adiposity, specific inflammatory mediators of insulin signaling, or skeletal muscle levels of diacylglycerol or ceramide. Increased insulin sensitivity despite high-fat feeding was driven by activation of AMPK without affecting AMP content or the AMP/ATP ratio in resting skeletal muscle. AMPK was induced by elevated cytosolic calcium caused by impaired sarco/endoplasmic reticulum calcium ATPase (SERCA) activity due to altered phospholipid composition of the sarcoplasmic reticulum (SR), but came at the expense of decreased muscle strength. Thus, inhibition of skeletal muscle FAS prevents obesity-associated diabetes in mice, but also causes muscle weakness, which suggests that mammals have retained the capacity for lipogenesis in muscle to preserve physical performance in the setting of disrupted metabolic homeostasis.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|