1
|
de Paiva Silvino JP, Jannes CE, Pestana RMC, de Paiva Silvino LP, Silva IDFO, Gomes KB. New cardiovascular disease markers in patients with familial hypercholesterolemia carriers of genetic variants. J Diabetes Metab Disord 2025; 24:13. [PMID: 39697859 PMCID: PMC11649891 DOI: 10.1007/s40200-024-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 12/20/2024]
Abstract
Objectives Familial hypercholesterolemia (FH) is an autosomal dominant genetic disease characterized by elevated levels of low-density lipoprotein cholesterol (LDLc). The early diagnosis of FH can reduce unfavorable outcomes in this population, but genetic study is not available in all populations. This study aimed to evaluate new cardiovascular plasma markers (GDF-15, CXCL16, FABP3, FABP4, LIGHT, sCD14, ucMGP), as well as Lp(a) levels, in individuals genetically characterized for FH, classified according to treatment with statins. Methods Sequencing was performed by next generation sequencing (NGS) for 17 ICs and by the Sanger method for 120 relatives. Lp(a) was measured by turbidimetry and the other cardiovascular markers by the multiplex method for Luminex®. Statistical analyses were performed using the R Platform version 4.2.2 program. Results 86 individuals carrying FH genetic variants and 51 non-carrier family members were identified. Lp(a) showed higher levels in the group with variants and was correlated to LDLc levels. FABP3 levels were higher in the group carrying variants using statins compared to the group without statins. The non-carrier group using statins showed higher levels of FABP4 compared to the carrier group using statins. The markers GDF-15, CXCL16, LGHT, sCD14 and ucMGP did not show a significant difference between groups, but GDF-15 and sCD14 were correlated to LDLc levels. Conclusions Lp(a) and the new markers FABP3 e FABP4 are associated with FH, their levels are modulated by the use of statins, and they could be potential markers to assess the disease when genetic testing is not available. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01537-w.
Collapse
Affiliation(s)
| | - Cinthia Elim Jannes
- Laboratório de Genética do Instituto do Coração (INCOR), Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Iêda de Fátima Oliveira Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha. Belo Horizonte, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Karina Braga Gomes
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerias Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha. Belo Horizonte, Belo Horizonte, Minas Gerais 31270-901 Brazil
| |
Collapse
|
2
|
Yamamura Y, Sabiu G, Zhao J, Jung S, Seelam AJ, Li X, Song Y, Shirkey MW, Li L, Piao W, Wu L, Zhang T, Ahn S, Kim P, Kasinath V, Azzi JR, Bromberg JS, Abdi R. CXCL12+ fibroblastic reticular cells in lymph nodes facilitate immune tolerance by regulating T cell-mediated alloimmunity. J Clin Invest 2025; 135:e182709. [PMID: 40309773 PMCID: PMC12043101 DOI: 10.1172/jci182709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025] Open
Abstract
Fibroblastic reticular cells (FRCs) are the master regulators of the lymph node (LN) microenvironment. However, the role of specific FRC subsets in controlling alloimmune responses remains to be studied. Single-cell RNA sequencing (scRNA-Seq) of naive and draining LNs (DLNs) of heart-transplanted mice and human LNs revealed a specific subset of CXCL12hi FRCs that expressed high levels of lymphotoxin-β receptor (LTβR) and are enriched in the expression of immunoregulatory genes. CXCL12hi FRCs had high expression of CCL19, CCL21, indoleamine 2,3-dioxygenase (IDO), IL-10, and TGF-β1. Adoptive transfer of ex vivo-expanded FRCs resulted in their homing to LNs and induced immunosuppressive environments in DLNs to promote heart allograft acceptance. Genetic deletion of LTβR and Cxcl12 in FRCs increased alloreactivity, abrogating the effect of costimulatory blockade in prolonging heart allograft survival. As compared with WT recipients, CXCL12+ FRC-deficient recipients exhibited increased differentiation of CD4+ T cells into Th1 cells. Nano delivery of CXCL12 to DLNs improved allograft survival in heart-transplanted mice. Our study highlights the importance of DLN CXCL12hi FRCs in promoting transplant tolerance.
Collapse
Affiliation(s)
- Yuta Yamamura
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianmarco Sabiu
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhao
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sungwook Jung
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andy J. Seelam
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofei Li
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina W. Shirkey
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lushen Li
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Soyeon Ahn
- R&D Division, IVIM Technology, Seoul, South Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering
- Korea Advanced Institute of Science and Technology Institute for Health Science and Technology, and
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Vivek Kasinath
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Craig R, McIntosh K, Ho Ho K, McCulloch A, Riley C, Lawson C, Mackay SP, Paul A, Coats P, Plevin R. IL-1β stimulates a novel axis within the NFκB pathway in endothelial cells regulated by IKKα and TAK-1. Biochem Pharmacol 2025; 232:116736. [PMID: 39710275 DOI: 10.1016/j.bcp.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In this study we examined the activation of the non-canonical NFκB signalling pathway in endothelial cells. In HUVECs, LIGHT stimulated a delayed induction of serine 866/870 p100 phosphorylation linked to p52 NFκB formation. Surprisingly, the canonical ligand, IL-1β, stimulated a rapid phosphorylation or p100 which was not associated with p52 formation. Inhibition of IKKα activity, using DN-IKKα adenovirus, IKKα siRNA or a novel first-in-class selective IKKα inhibitor, SU1261, revealed IL-1β induced p100 phosphorylation to be dependent on IKKα. In contrast, IKKβ inhibition was found to be without effect. The NIK inhibitor, CW15337, did not affect IL-1β induced p100 phosphorylation however, both p100 and pIKKα/β phosphorylation was substantially reduced by inhibition of the upstream kinase TAK-1, suggesting phosphorylation of p100 is mediated by IKKα from within the canonical NEMO/IKKβ /IKKα complex. IL-1β also stimulated a rapid increase in nuclear translocation of p52, which was not affected by NIK inhibition, suggesting a source of p52 independent of p100 processing. Inhibition of TAK-1 abolished p52 and p65 nuclear translocation in response to IL-1β. SiRNA deletion or inhibition with dominant-negative virus of IKKα activity partially reduced p52 translocation, however pharmacological inhibition of IKKα was without effect. Inhibition of IKKβ abolished both p52 and p65 translocation. Taken together these results show that IL-1β stimulates a novel IKKα -dependent axis within the non-canonical NFκB pathway in endothelial cells which is NIK-independent and regulated by TAK-1. However, this pathway is not primarily responsible for the early nuclear translocation of p52, which is dependent on IKKβ. Elucidation of both these new pathways may be significant for NFκB biology within the endothelium.
Collapse
Affiliation(s)
- Rachel Craig
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Kathryn McIntosh
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| | - Ka Ho Ho
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Riley
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Simon P Mackay
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Paul Coats
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
4
|
Wang F, Wang S, Gu Y, Luo S, Chen A, Kong C, Zhou W, Wang L, Wang Z, Zuo G, Gao X, Zhang J, Chen S. Disturbed shear stress promotes atherosclerosis through TRIM21-regulated MAPK6 degradation and consequent endothelial inflammation. Clin Transl Med 2025; 15:e70168. [PMID: 39763069 PMCID: PMC11705438 DOI: 10.1002/ctm2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
RATIONALE Coronary artery plaques often develop in regions subjected to disturbed shear stress (DSS), yet the mechanisms underlying this phenomenon remain poorly understood. Our study aimed to elucidate the unknown role of MAPK6 in shear stress and plaque formation. METHODS In vitro and in vivo experiments, RNA-seq, CO-IP and proteomic analysis, combined with single-cell RNA-seq datasets were used to reveal the upstream and downstream mechanisms involved. AAV-MAPK6, ApoE-/-MAPK6flox/floxTEKCre mice and the CXCL12 neutraligand were used to confirm the beneficial effects of MAPK6 against atherosclerosis. RESULTS Our study revealed a substantial decrease in MAPK6 protein levels in endothelial cells in response to DSS, both in vivo and in vitro, which was contingent on the binding of the ubiquitin ligase TRIM21 to MAPK6. Endothelium-specific MAPK6 overexpression exerts antiatherosclerotic effects in ApoE-/- mice, elucidating the unexplored role of MAPK6 in atherosclerosis. Comprehensive RNA-seq, integrated single-cell mapping and further experiments unveiled the involvement of MAPK6 in inflammation through the EGR1/CXCL12 axis. ApoE-/-MAPK6flox/floxTEKCre mice finally confirmed that conditional MAPK6 knockout resulted in endothelial inflammation and significant increases in plaque areas. Notably, these effects could be reversed through the neutralization of CXCL12. CONCLUSIONS Our study illuminates the advantages of MAPK6 in decelerating plaque progression, highlighting the potential of safeguarding MAPK6 as a novel therapeutic strategy against atherosclerosis. KEY POINTS Disturbed flow activates the ubiquitin‒proteasome degradation pathway of MAPK6 in endothelial cells, which is contingent on the binding of the ubiquitin ligase TRIM21 to MAPK6. Endothelial MAPK6 has an advantageous impact on decelerating plaque progression. MAPK6 regulates endothelial inflammation via the EGR1/CXCL12 axis.
Collapse
Affiliation(s)
- Feng Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shu‐Yu Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Yue Gu
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shuai Luo
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Ai‐Qun Chen
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Chao‐Hua Kong
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Wen‐Ying Zhou
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Li‐Guo Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhi‐Mei Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Guang‐Feng Zuo
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiao‐Fei Gao
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Jun‐Jie Zhang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shao‐Liang Chen
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
- College of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
5
|
dos Santos TW, Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, Ribeiro ML. Body Composition and Senescence: Impact of Polyphenols on Aging-Associated Events. Nutrients 2024; 16:3621. [PMID: 39519454 PMCID: PMC11547493 DOI: 10.3390/nu16213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is a dynamic and progressive process characterized by the gradual accumulation of cellular damage. The continuous functional decline in the intrinsic capacity of living organisms to precisely regulate homeostasis leads to an increased susceptibility and vulnerability to diseases. Among the factors contributing to these changes, body composition-comprised of fat mass and lean mass deposits-plays a crucial role in the trajectory of a disability. Particularly, visceral and intermuscular fat deposits increase with aging and are associated with adverse health outcomes, having been linked to the pathogenesis of sarcopenia. Adipose tissue is involved in the secretion of bioactive factors that can ultimately mediate inter-organ pathology, including skeletal muscle pathology, through the induction of a pro-inflammatory profile such as a SASP, cellular senescence, and immunosenescence, among other events. Extensive research has shown that natural compounds have the ability to modulate the mechanisms associated with cellular senescence, in addition to exhibiting anti-inflammatory, antioxidant, and immunomodulatory potential, making them interesting strategies for promoting healthy aging. In this review, we will discuss how factors such as cellular senescence and the presence of a pro-inflammatory phenotype can negatively impact body composition and lead to the development of age-related diseases, as well as how the use of polyphenols can be a functional measure for restoring balance, maintaining tissue quality and composition, and promoting health.
Collapse
Affiliation(s)
- Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Fabrício de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| |
Collapse
|
6
|
Jia D, Zhao M, Zhang X, Cheng X, Wei Q, Lou L, Zhao Y, Jin Q, Chen M, Zhang D. Transcriptomic analysis reveals the critical role of chemokine signaling in the anti-atherosclerosis effect of Xuefu Zhuyu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118245. [PMID: 38679399 DOI: 10.1016/j.jep.2024.118245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The process of atherosclerosis (AS) is complicated. Transcriptomics technology can assist in discovering the underlying mechanisms and exploring the key targets of Traditional Chinese Medicine (TCM) against atherosclerosis. AIM This study aimed to investigate targets and signaling pathways significantly related to AS and the potential intervention targets of Xuefu Zhuyu decoction by transcriptomics. MATERIALS AND METHODS AS models were established by subjecting ApoE-/-mice to an 8-week high-fat diet. Structural changes and plaque formation in the aortic root were observed using hematoxylin-eosin staining (HE staining), while Oil Red O staining was employed to visualize lipid deposition within the aortic root plaque. Movat staining and immunohistochemical staining were conducted to examine the components present in the aortic root plaque. Macrophage content within the plaque was observed through immunofluorescence. Additionally, mRNA sequencing was performed on aortic tissues to identify differentially expressed genes. Enrichment analysis was performed using GO and KEGG analysis. Visualization of the protein-protein interaction (PPI) network was achieved using Cytoscape 3.7.1 and STRING. Western blotting (WB) was employed to assess the protein expression of major differentially expressed genes in the aortic tissue. The drug freeze-dried powder of Xuefu Zhuyu decoction was prepared and the RAW264.7 cells were induced by lipopolysaccharide (LPS) to build an in vitro model. Real-time quantitative PCR was employed to measure the mRNA expression of major differential genes. RESULTS After ApoE-/- mice were fed with an 8-week high-fat diet, observable changes included the thinning of the aortic root wall, the accumulation of foam cells within the plaque, and the formation of cholesterol crystals in the model group. Treatment with Xuefu Zhuyu (XFZY) decoction for 12 weeks significantly reduced the lipid deposition and the number of macrophages (P < 0.05) and significantly increased the collagen content within the plaque (P < 0.01). Enrichment analysis revealed a high enrichment of the Cytokine-cytokine receptor interaction pathway and Chemokine signaling pathway. Noteworthy genes involved in this response included Ccl12, Ccl22, Cx3cr1, Ccr7, Ccr2, Tnfrsf25, and Gdf5. Xuefu Zhuyu decoction significantly downregulated the expression of CX3CL1 and CX3CR1 (P < 0.05) and upregulated the expression of GDF5 (P < 0.01). Compared with control group, in cell models, the mRNA expressions of Ccl12, Ccl22, and Ccr2 were significantly upregulated (P < 0.05 or P < 0.01). Xuefu Zhuyu decoction significantly downregulated the expression of Ccl12, Ccl22, Cx3cr1, Ccr7 and Ccr2 (P < 0.05 or P < 0.01). CONCLUSION Xuefu Zhuyu decoction demonstrates effective regulation of plaque components, retarding plaque progression and preserving plaque stability by modulating lipid metabolism and inflammatory responses. Subsequent transcriptome analysis identified the Cytokine-cytokine receptor interaction and Chemokine signaling pathway as potential key pathways for the therapeutic effects of Xuefu Zhuyu decoction. This insight not only provides crucial avenues for further exploration into the mechanisms underlying Xuefu Zhuyu decoction but also offers valuable perspectives and hypotheses for enhancing disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Dongdong Jia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Mengzhu Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Xinyue Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Department of Research and Teaching, Beijing Hepingli Hospital, Beijing, 100010, China.
| | - Xu Cheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Qiong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
7
|
Morrison HA, Eden K, Trusiano B, Rothschild DE, Qin Y, Wade PA, Rowe AJ, Mounzer C, Stephens MC, Hanson KM, Brown SL, Holl EK, Allen IC. NF-κB Inducing Kinase Attenuates Colorectal Cancer by Regulating Noncanonical NF-κB Mediated Colonic Epithelial Cell Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101356. [PMID: 38750899 PMCID: PMC11278896 DOI: 10.1016/j.jcmgh.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND & AIMS Dysregulated colonic epithelial cell (CEC) proliferation is a critical feature in the development of colorectal cancer. We show that NF-κB-inducing kinase (NIK) attenuates colorectal cancer through coordinating CEC regeneration/differentiation via noncanonical NF-κB signaling that is unique from canonical NF-kB signaling. METHODS Initial studies evaluated crypt morphology/functionality, organoid generation, transcriptome profiles, and the microbiome. Inflammation and inflammation-induced tumorigenesis were initiated in whole-body NIK knockout mice (Nik-/-) and conditional-knockout mice following administration of azoxymethane and dextran sulfate sodium. RESULTS Human transcriptomic data revealed dysregulated noncanonical NF-kB signaling. In vitro studies evaluating Nik-/- crypts and organoids derived from mature, nondividing CECs, and colonic stem cells exhibited increased accumulation and stunted growth, respectively. Transcriptomic analysis of Nik-/- cells revealed gene expression signatures associated with altered differentiation-regeneration. When assessed in vivo, Nik-/- mice exhibited more severe colitis with dextran sulfate sodium administration and an altered microbiome characterized by increased colitogenic microbiota. In the inflammation-induced tumorigenesis model, we observed both increased tumor burdens and inflammation in mice where NIK is knocked out in CECs (NikΔCEC). Interestingly, this was not recapitulated when NIK was conditionally knocked out in myeloid cells (NikΔMYE). Surprisingly, conditional knockout of the canonical pathway in myeloid cells (RelAΔMYE) revealed decreased tumor burden and inflammation and no significant changes when conditionally knocked out in CECs (RelAΔCEC). CONCLUSIONS Dysregulated noncanonical NF-κB signaling is associated with the development of colorectal cancer in a tissue-dependent manner and defines a critical role for NIK in regulating gastrointestinal inflammation and regeneration associated with colorectal cancer.
Collapse
Affiliation(s)
- Holly A Morrison
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Kristin Eden
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Brie Trusiano
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Daniel E Rothschild
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Yufeng Qin
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Paul A Wade
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Audrey J Rowe
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Christina Mounzer
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Morgan C Stephens
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Katherine M Hanson
- Via College of Osteopathic Medicine, Department of Cell Biology and Physiology, Spartanburg, South Carolina
| | - Stephan L Brown
- Via College of Osteopathic Medicine, Department of Cell Biology and Physiology, Spartanburg, South Carolina
| | - Eda K Holl
- Duke University, Department of Surgery, Durham, North Carolina
| | - Irving C Allen
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia; Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia.
| |
Collapse
|
8
|
Ezzat GM, Meki ARMA, Meligy FY, Omar H, Nassar AY. Antiapoptotic and chemotaxis-stimulating effects of poly (D, L-lactide-co-glycolide)-chitosan and whey proteins against aflatoxicosis-induced splenic and thymic atrophy. Mol Biol Rep 2023; 50:9805-9824. [PMID: 37840065 PMCID: PMC10676322 DOI: 10.1007/s11033-023-08902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Aflatoxin B (AFB) induces toxicological effects on the liver and immune organs. The whey proteins can modulate the immune response during aflatoxicosis. Our work evaluates the novel polylactic acid-glycolic acid-chitosan-encapsulated bovine and camel whey proteins against AFB-induced thymic and splenic atrophy in rats. METHODS AND RESULTS Seventy adult male Wister albino rats were divided into a control healthy group (G1) and six AFB1-intoxicated groups (G2-G7). One of the following supplements: distilled water, camel whey proteins (CWP), bovine whey proteins, poly (D, L-lactide-co-glycolide) (PLGA)- chitosan-loaded with camel whey protein microparticles (CMP), PLGA-chitosan loaded with bovine whey protein microparticles (BMP), and PLGA-chitosan nanoparticles were administered as prophylactic supplements to AFB1-intoxicated groups. The AFB-treated group showed significantly higher hepatic levels of oxidative stress and lower levels of antioxidants. In the aflatoxicated group, atrophy of the splenic lymphatic nodules and disfigurement in the organisation with an apparent decrease in the thickness of the cortex in the thymus were observed, as well as a decrease in splenic and thymic CD4+T and CD8+T lymphocytes. Moreover, CXCL12 levels were downregulated, whereas tumour necrosis factor-alpha, nuclear factor kappa B, and cleaved caspase-3 levels were upregulated. CWP, BMP, and CMP supplements markedly decreased oxidative stress, inflammation, and apoptosis, as well as significantly raised CXCL12, CD4+T, and CD8+T cells. CONCLUSIONS The CWP, BMP, and CMP supplements rescue the liver and immune tissues from the toxic effects of AFB through their antioxidant, antiapoptotic, anti-inflammatory, and chemotaxis-enhancing roles.
Collapse
Affiliation(s)
- Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Biochemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, 11196, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hend Omar
- Animal Health Research Institute, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
9
|
Morrison HA, Trusiano B, Rowe AJ, Allen IC. Negative regulatory NLRs mitigate inflammation via NF-κB pathway signaling in inflammatory bowel disease. Biomed J 2023; 46:100616. [PMID: 37321320 PMCID: PMC10494316 DOI: 10.1016/j.bj.2023.100616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023] Open
Abstract
A subset of Nucleotide-binding and leucine-rich repeat-containing receptors (NLRs) function to mitigate overzealous pro-inflammatory signaling produced by NF-κB activation. Under normal pathophysiologic conditions, proper signaling by these NLRs protect against potential autoimmune responses. These NLRs associate with several different proteins within both the canonical and noncanonical NF-κB signaling pathways to either prevent activation of the pathway or inhibit signal transduction. Inhibition of the NF-κB pathways ultimately dampens the production of pro-inflammatory cytokines and activation of other downstream pro-inflammatory signaling mechanisms. Dysregulation of these NLRs, including NLRC3, NLRX1, and NLRP12, have been reported in human inflammatory bowel disease (IBD) and colorectal cancer patients, suggesting the potential of these NLRs as biomarkers for disease detection. Mouse models deficient in these NLRs also have increased susceptibility to colitis and colitis-associated colorectal cancer. While current standard of care for IBD patients and FDA-approved therapeutics function to remedy symptoms associated with IBD and chronic inflammation, these negative regulatory NLRs have yet to be explored as potential drug targets. In this review, we describe a comprehensive overview of recent studies that have evaluated the role of NLRC3, NLRX1, and NLRP12 in IBD and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Holly A Morrison
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Brie Trusiano
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Audrey J Rowe
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Irving C Allen
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
10
|
Aaron T, Laudermilch E, Benet Z, Ovando LJ, Chandran K, Fooksman D. TNF-α Limits Serological Memory by Disrupting the Bone Marrow Niche. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:595-608. [PMID: 36645344 PMCID: PMC9998356 DOI: 10.4049/jimmunol.2200053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/17/2022] [Indexed: 01/17/2023]
Abstract
Both infection and autoimmune disease can disrupt pre-existing Ab titers leading to diminished serological memory, yet the underlying mechanisms are not well understood. In this article, we report that TNF-α, an inflammatory cytokine, is a master regulator of the plasma cell (PC) niche in the bone marrow (BM). Acute rTNF-α treatment depletes previously existing Ab titers after vaccination by limiting PC occupancy or retention in the BM. Consistent with this phenomenon, mice lacking TNF-α signaling have elevated PC capacity in the BM and higher Ab titers. Using BM chimeric mice, we found that PC egress from the BM is regulated in a cell-extrinsic manner, by radiation-resistant cells via TNF-α receptor 1 signaling, leading to increased vascular permeability and CD138 downregulation on PCs. PC motility and egress in the BM are triggered within 6 h of recombinant TNF-α treatment. In addition to promoting egress, TNF-α signaling also prevented re-engraftment into the BM, leading to reduced PC survival. Although other inflammatory stimuli can promote PC egress, TNF-α signaling is necessary for limiting the PC capacity in the BM. Collectively, these data characterize how TNF-α-mediated inflammation attenuates the durability of serological memory and shapes the overall size and composition of the Ab-secreting cell pool in the BM.
Collapse
Affiliation(s)
- Tonya Aaron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ethan Laudermilch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Zachary Benet
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Luis Jose Ovando
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
11
|
Lymph node formation and B cell homeostasis require IKK-α in distinct endothelial cell-derived compartments. Proc Natl Acad Sci U S A 2021; 118:2100195118. [PMID: 34810256 DOI: 10.1073/pnas.2100195118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Global inactivation of IκB kinase (IKK)-α results in defective lymph node (LN) formation and B cell maturation, and loss of IKK-α-dependent noncanonical NF-κB signaling in stromal organizer and hematopoietic cells is thought to underlie these distinct defects. We previously demonstrated that this pathway is also activated in vascular endothelial cells (ECs). To determine the physiologic function of EC-intrinsic IKK-α, we crossed IkkαF/F mice with Tie2-cre or Cdh5-cre mice to ablate IKK-α in ECs. Notably, the compound defects of global IKK-α inactivation were recapitulated in IkkαTie2 and IkkαCdh5 mice, as both lacked all LNs and mature follicular and marginal zone B cell numbers were markedly reduced. However, as Tie2-cre and Cdh5-cre are expressed in all ECs, including blood forming hemogenic ECs, IKK-α was also absent in hematopoietic cells (HC). To determine if loss of HC-intrinsic IKK-α affected LN development, we generated IkkαVav mice lacking IKK-α in only the hematopoietic compartment. While mature B cell numbers were significantly reduced in IkkαVav mice, LN formation was intact. As lymphatic vessels also arise during development from blood ECs, we generated IkkαLyve1 mice lacking IKK-α in lymphatic ECs (LECs) to determine if IKK-α in lymphatic vessels impacts LN development. Strikingly, while mature B cell numbers were normal, LNs were completely absent in IkkαLyve1 mice. Thus, our findings reveal that IKK-α in distinct EC-derived compartments is uniquely required to promote B cell homeostasis and LN development, and we establish that LEC-intrinsic IKK-α is absolutely essential for LN formation.
Collapse
|
12
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
13
|
Bharat A, Angulo M, Sun H, Akbarpour M, Alberro A, Cheng Y, Shigemura M, Berdnikovs S, Welch LC, Kanter JA, Budinger GRS, Lecuona E, Sznajder JI. High CO 2 Levels Impair Lung Wound Healing. Am J Respir Cell Mol Biol 2020; 63:244-254. [PMID: 32275835 DOI: 10.1165/rcmb.2019-0354oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Delayed lung repair leads to alveolopleural fistulae, which are a major cause of morbidity after lung resections. We have reported that intrapleural hypercapnia is associated with delayed lung repair after lung resection. Here, we provide new evidence that hypercapnia delays wound closure of both large airway and alveolar epithelial cell monolayers because of inhibition of epithelial cell migration. Cell migration and airway epithelial wound closure were dependent on Rac1-GTPase activation, which was suppressed by hypercapnia directly through the upregulation of AMP kinase and indirectly through inhibition of injury-induced NF-κB-mediated CXCL12 (pleural CXC motif chemokine 12) release, respectively. Both these pathways were independently suppressed, because dominant negative AMP kinase rescued the effects of hypercapnia on Rac1-GTPase in uninjured resting cells, whereas proteasomal inhibition reversed the NF-κB-mediated CXCL12 release during injury. Constitutive overexpression of Rac1-GTPase rescued the effects of hypercapnia on both pathways as well as on wound healing. Similarly, exogenous recombinant CXCL12 reversed the effects of hypercapnia through Rac1-GTPase activation by its receptor, CXCR4. Moreover, CXCL12 transgenic murine recipients of orthotopic tracheal transplantation were protected from hypercapnia-induced inhibition of tracheal epithelial cell migration and wound repair. In patients undergoing lobectomy, we found inverse correlation between intrapleural carbon dioxide and pleural CXCL12 levels as well as between CXCL12 levels and alveolopleural leak. Accordingly, we provide first evidence that high carbon dioxide levels impair lung repair by inhibiting epithelial cell migration through two distinct pathways, which can be restored by recombinant CXCL12.
Collapse
Affiliation(s)
- Ankit Bharat
- Division of Thoracic Surgery.,Division of Pulmonary and Critical Care Medicine, and
| | - Martín Angulo
- Division of Pulmonary and Critical Care Medicine, and.,Pathophysiology Department, School of Medicine, Universidad de la República, Montevideo, Uruguay; and
| | | | | | - Andrés Alberro
- Division of Pulmonary and Critical Care Medicine, and.,Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Yuan Cheng
- Division of Pulmonary and Critical Care Medicine, and
| | | | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University, Chicago, Illinois
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, and
| | | | | | | | | |
Collapse
|
14
|
Jiang X, Cao G, Gao G, Wang W, Zhao J, Gao C. Triptolide decreases tumor-associated macrophages infiltration and M2 polarization to remodel colon cancer immune microenvironment via inhibiting tumor-derived CXCL12. J Cell Physiol 2020; 236:193-204. [PMID: 32495392 DOI: 10.1002/jcp.29833] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Colon cancer is a common and deadly human digestive tract malignant tumor with poor prognosis. Immunotherapy has elicited tremendous success as a treatment modality for multiple solid tumors. Triptolide is extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F which shows various pharmacological actions including antitumor, anti-inflammatory, antimicrobial, antifibrosis, and antirheumatic. However, the influence of triptolide treatment on remodeling tumor immune microenvironment is still unknown in colon cancer. This study was aimed to investigate the therapeutic effect of triptolide treatment on colon cancer and the impact on tumor immune microenvironment and its underlying mechanism. We used CT26 subcutaneous tumors to conduct in vivo experiments and HT29, CT16, and Raw264.7 cells to perform in vitro assays. Triptolide had a therapeutic effect against colon cancer in vivo. Triptolide treatment distinctly inhibited the proliferation of colon cancer cells and induced apoptosis in vitro. In colon cancer immune microenvironment, triptolide treatment decreased the infiltration of tumor-associated macrophages through downregulating tumor-derived CXCL12 expression via nuclear factor kappa B and extracellular signal-regulated protein kinases 1 and 2 axis to remodel the immune microenvironment. Triptolide-educated colon cancers retarded the macrophages polarize to anti-inflammatory M2 status by decreasing the expression of Arg-1, CD206, and interleukin-10. Moreover, triptolide inhibited the migration of colon cancer cells via decreasing vascular endothelial growth factor expression. Our results identified the role of triptolide treatment in remodeling colon cancer immune microenvironment along with the distinct cytotoxicity function against colon cancer cells, which may provide the evidence for triptolide treatment in clinical.
Collapse
Affiliation(s)
- Xuan Jiang
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People's Hospital, Hongze, Jiangsu, China
| | - Guangyi Gao
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Wei Wang
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Jiasheng Zhao
- Department of Oncology, Huaiyin Hospital of Huai'an City, Huai'an, China
| | - Chao Gao
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Dong Y, Liu J, Xue Z, Sun J, Huang Z, Jing Y, Han B, Shen B, Yan J, Huang R. Pao Pereira extract suppresses benign prostatic hyperplasia by inhibiting inflammation-associated NFκB signaling. BMC Complement Med Ther 2020; 20:150. [PMID: 32416730 PMCID: PMC7231430 DOI: 10.1186/s12906-020-02943-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Our previous study revealed the extract from the bark of an Amazonian tree Pao Pereira can suppress benign prostatic hyperplasia (BPH) in a rat model. Herein, we examined its inhibitory effects on human BPH cells and dissect its molecular mechanism. METHODS We applied Pao extract to human BPH epithelial BPH-1 and prostate myofibroblast WPMY-1 cells. Cell viability, apoptosis and immunoblotting were performed, followed by gene expression profiling and gene set enrichment analysis (GSEA) to detect the differentially expressed genes and signaling pathway induced by Pao extract. Human ex vivo BPH explant organ culture was also used to examine the effects of Pao extract on human BPH tissues. RESULTS Pao extract treatment inhibited viability and induced apoptosis in human BPH-1 and WPMY-1 cells. Gene expression profiling and the following validation indicated that the expression levels of pro-apoptotic genes (eg. PCDC4, CHOP and FBXO32) were induced by Pao extract in both two cell lines. GSEA further revealed that Pao extract treatment was negatively associated with the activation of NFκB signaling. Pao extract suppressed the transcriptional activity of NFκB and down-regulated its target genes involved in inflammation (CXCL5, CXCL6 and CXCL12) and extracellular matrix (ECM) remodeling (HAS2, TNC and MMP13) in both cultured cells and human ex vivo BPH explants. CONCLUSION In both BPH epithelial and stromal cells, Pao extract induces apoptosis by upregulating the pro-apoptotic genes and inhibiting the inflammation-associated NFκB signaling via reducing phosphorylation of NFκB subunit RelA. Our data suggest that Pao extract may be a promising phytotherapeutic agent for BPH.
Collapse
Affiliation(s)
- Yu Dong
- Shanghai University, Shanghai, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jiakuan Liu
- Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China
| | - Zesheng Xue
- Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China
| | - Jingya Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zhengnan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Yifeng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China.
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, 130 Dong'an Road, Shanghai, 200032, China.
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China.
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, Huang J, Cui J. TRIM14 Promotes Noncanonical NF-κB Activation by Modulating p100/p52 Stability via Selective Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901261. [PMID: 31921549 PMCID: PMC6947505 DOI: 10.1002/advs.201901261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/29/2019] [Indexed: 05/15/2023]
Abstract
The noncanonical NF-κB signaling pathway plays a critical role in a variety of biological functions including chronic inflammation and tumorigenesis. Activation of noncanonical NF-κB signaling largely relies on the abundance as well as the processing of the NF-κB family member p100/p52. Here, TRIM14 is identified as a novel positive regulator of the noncanonical NF-κB signaling pathway. TRIM14 promotes noncanonical NF-κB activation by targeting p100/p52 in vitro and in vivo. Furthermore, a mechanistic study shows that TRIM14 recruits deubiquitinase USP14 to cleave the K63-linked ubiquitin chains of p100/p52 at multiple sites, thereby preventing p100/p52 from cargo receptor p62-mediated autophagic degradation. TRIM14 deficiency in mice significantly impairs noncanonical NF-κB-mediated inflammatory responses as well as acute colitis and colitis-associated colon cancer development. Taken together, these findings establish the TRIM14-USP14 axis as a crucial checkpoint that controls noncanonical NF-κB signaling and highlight the crosstalk between autophagy and innate immunity.
Collapse
Affiliation(s)
- Meixin Chen
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Zhiyao Zhao
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
- Department of Internal MedicineGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhouGuangdong510623China
| | - Qingcai Meng
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Puping Liang
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Zexiong Su
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Yaoxing Wu
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Junjiu Huang
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Jun Cui
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
17
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
18
|
Abstract
Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose "organ," and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. © 2018 American Physiological Society. Compr Physiol 8:237-282, 2018.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley M. Fuller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
19
|
IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma. Blood 2017; 129:2507-2518. [DOI: 10.1182/blood-2016-08-737239] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/12/2017] [Indexed: 01/02/2023] Open
Abstract
Key Points
FL-infiltrating stromal cells overexpress CXCL12, which triggers FL B-cell migration, adhesion, and activation. Polarization into CXCL12hi stroma involves IL-4+ TFH cells, unlike malignant B cells, revealing an indirect protumoral activity of FL-TFH cells.
Collapse
|
20
|
Tan J, Tedrow JR, Nouraie M, Dutta JA, Miller DT, Li X, Yu S, Chu Y, Juan-Guardela B, Kaminski N, Ramani K, Biswas PS, Zhang Y, Kass DJ. Loss of Twist1 in the Mesenchymal Compartment Promotes Increased Fibrosis in Experimental Lung Injury by Enhanced Expression of CXCL12. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2269-2285. [PMID: 28179498 PMCID: PMC5337810 DOI: 10.4049/jimmunol.1600610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/12/2017] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow-derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury.
Collapse
Affiliation(s)
- Jiangning Tan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - John R Tedrow
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Justin A Dutta
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - David T Miller
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Shibing Yu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yanxia Chu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brenda Juan-Guardela
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Kritika Ramani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213;
| |
Collapse
|
21
|
Ager A. High Endothelial Venules and Other Blood Vessels: Critical Regulators of Lymphoid Organ Development and Function. Front Immunol 2017; 8:45. [PMID: 28217126 PMCID: PMC5289948 DOI: 10.3389/fimmu.2017.00045] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
The blood vasculature regulates both the development and function of secondary lymphoid organs by providing a portal for entry of hemopoietic cells. During the development of lymphoid organs in the embryo, blood vessels deliver lymphoid tissue inducer cells that initiate and sustain the development of lymphoid tissues. In adults, the blood vessels are structurally distinct from those in other organs due to the requirement for high levels of lymphocyte recruitment under non-inflammatory conditions. In lymph nodes (LNs) and Peyer's patches, high endothelial venules (HEVs) especially adapted for lymphocyte trafficking form a spatially organized network of blood vessels, which controls both the type of lymphocyte and the site of entry into lymphoid tissues. Uniquely, HEVs express vascular addressins that regulate lymphocyte entry into lymphoid organs and are, therefore, critical to the function of lymphoid organs. Recent studies have demonstrated important roles for CD11c+ dendritic cells in the induction, as well as the maintenance, of vascular addressin expression and, therefore, the function of HEVs. Tertiary lymphoid organs (TLOs) are HEV containing LN-like structures that develop inside organized tissues undergoing chronic immune-mediated inflammation. In autoimmune lesions, the development of TLOs is thought to exacerbate disease. In cancerous tissues, the development of HEVs and TLOs is associated with improved patient outcomes in several cancers. Therefore, it is important to understand what drives the development of HEVs and TLOs and how these structures contribute to pathology. In several human diseases and experimental animal models of chronic inflammation, there are some similarities between the development and function of HEVs within LN and TLOs. This review will summarize current knowledge of how hemopoietic cells with lymphoid tissue-inducing, HEV-inducing, and HEV-maintaining properties are recruited from the bloodstream to induce the development and control the function of lymphoid organs.
Collapse
Affiliation(s)
- Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
22
|
Guo L, Lee HH, Noriega MDLM, Paust HJ, Zahner G, Thaiss F. Lymphocyte-specific deletion of IKK2 or NEMO mediates an increase in intrarenal Th17 cells and accelerates renal damage in an ischemia-reperfusion injury mouse model. Am J Physiol Renal Physiol 2016; 311:F1005-F1014. [PMID: 27582100 DOI: 10.1152/ajprenal.00242.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is associated with poor patient outcome and a global burden for end-stage renal disease. Ischemia-reperfusion injury (IRI) is one of the major causes of AKI, and experimental work has revealed many details of the inflammatory response in the kidney, such as activation of the NF-κB pathway. Here, we investigated whether deletion of the NF-κB kinases IKK2 or NEMO in lymphocytes or systemic inhibition of IKK2 would cause different kidney inflammatory responses after IRI induction. Serum creatinine, blood urea nitrogen (BUN) level, and renal tubular injury score were significantly increased in CD4creIKK2f/f (CD4xIKK2Δ) and CD4creNEMOf/f (CD4xNEMOΔ) mice compared with CD4cre mice after IRI induction. The frequency of Th17 cells infiltrating the kidneys of CD4xIKK2Δ or CD4xNEMOΔ mice was also significantly increased at all time points. CCL20, an important chemokine in Th17 cell recruitment, was significantly increased at early time points after the induction of IRI. IL-1β, TNF-α, and CCL2 were also significantly increased in different patterns. A specific IKK2 inhibitor, KINK-1, reduced BUN and serum creatinine compared with nontreated mice after IRI induction, but the frequency of kidney Th17 cells was also significantly increased. In conclusion, although systemic IKK2 inhibition improved kidney function, lymphocyte-specific deletion of IKK2 or NEMO aggravated kidney injury after IRI, and, in both conditions, the percentage of Th17 cells was increased. Our findings demonstrate the critical role of the NF-κB pathway in Th17 activation, which advises caution when using systemic IKK2 inhibitors in patients with kidney injury, since they might impair the T cell response and aggravate renal disease.
Collapse
Affiliation(s)
- Linlin Guo
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Heejung Lee
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Hans J Paust
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Thaiss
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Wang M, Wang L, Huang C, Wang IW, Turrentine MW. Regulation of myocardial stromal cell-derived factor 1α/CXCL12 by tumor necrosis factor signaling. J Surg Res 2016; 207:155-163. [PMID: 27979472 DOI: 10.1016/j.jss.2016.08.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Global myocardial ischemia-reperfusion (I/R) occurs during cardiac operations. This I/R injury leads to increased production of tumor necrosis factor α (TNF) instantly and upregulated expression of stromal cell-derived factor 1 α (SDF-1). On the basis of the published data from our laboratory and other groups, locally produced TNF contributes to cardiac dysfunction mainly via binding to its receptor (tumor necrosis factor receptor 1 [TNFR1]), whereas ischemia-induced myocardial SDF-1 mediates cardioprotection. Although TNF has been shown to work as an upstream initiator for induction of other cytokines and chemokines, there is no information regarding the interaction among TNF, TNFRs, and myocardial SDF-1 expression. In this study, given that TNF downregulated SDF-1 in vascular endothelial cells, we therefore hypothesized that TNF would have a negative effect on myocardial SDF-1 production, which is attributable to TNFR-initiated actions. METHODS Using a Langendorff model, isolated male mouse hearts were infused with TNF for 45 min. Male adult mouse hearts from wild type, TNFR1 knockout (TNFR1KO), TNFR2KO, and TNFR1/2KO were subjected to global I/R. H9c2 cells with small interfering RNA transfection were used as an in vitro model. The levels of SDF-1 (protein and messenger RNA) were detected by enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction . Protein kinases of IκB (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α) and c-jun N-terminal kinase were also determined using Western blot assay. RESULTS TNF infusion downregulated myocardial SDF-1 production in a dose-dependent manner in the hearts. In addition, using TNF significantly decreased SDF-1 expression in cardiomyoblasts (H9c2 cells), which was associated with reduced IκB level. Knockdown of TNFR1 or TNFR2 by small interfering RNAs neutralized TNF-suppressed SDF-1 in H9c2 cells. Furthermore, deletion of TNFR1/2 or TNFR2 increased SDF-1 production in the hearts after I/R. CONCLUSIONS Our study represents the initial evidence showing that TNF plays an inhibitory role in modulating myocardial SDF-1 production and blockade of TNF signaling by ablation of TNFR1 and TNFR2 genes increased SDF-1 expression in the heart. These data expand on TNF signaling-initiated mechanisms in myocardium, which may lend a more complete understanding of SDF-1 and TNFR-derived actions in hopes of advancing ischemic heart injury treatments.
Collapse
Affiliation(s)
- Meijing Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Lina Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chunyan Huang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - I-Wen Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark W Turrentine
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
24
|
Börnigen D, Tyekucheva S, Wang X, Rider JR, Lee GS, Mucci LA, Sweeney C, Huttenhower C. Computational Reconstruction of NFκB Pathway Interaction Mechanisms during Prostate Cancer. PLoS Comput Biol 2016; 12:e1004820. [PMID: 27078000 PMCID: PMC4831844 DOI: 10.1371/journal.pcbi.1004820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular research in cancer is one of the largest areas of bioinformatic investigation, but it remains a challenge to understand biomolecular mechanisms in cancer-related pathways from high-throughput genomic data. This includes the Nuclear-factor-kappa-B (NFκB) pathway, which is central to the inflammatory response and cell proliferation in prostate cancer development and progression. Despite close scrutiny and a deep understanding of many of its members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. Here, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for ATF3, CXCL2, DUSP5, JUNB, NEDD9, SELE, TRIB1, and ZFP36 in this pathway, in addition to new mechanistic interactions between these genes and 10 known NFκB pathway members. A newly predicted interaction between NEDD9 and ZFP36 in particular was validated by co-immunoprecipitation, as was NEDD9's potential biological role in prostate cancer cell growth regulation. We combined 651 gene expression datasets with 1.4M gene product interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction among pathway members were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in a total of 112 interactions in the fully reconstructed NFκB pathway: 13 (11%) previously known, 29 (26%) supported by existing literature, and 70 (63%) novel. This method is generalizable to other tissue types, cancers, and organisms, and this new information about the NFκB pathway will allow us to further understand prostate cancer and to develop more effective prevention and treatment strategies. In molecular research in cancer it remains challenging to uncover biomolecular mechanisms in cancer-related pathways from high-throughput genomic data, including the Nuclear-factor-kappa-B (NFκB) pathway. Despite close scrutiny and a deep understanding of many of the NFκB pathway members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. In this study, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for 8 genes in this pathway and new mechanistic interactions between these genes and 10 known pathway members. We combined 651 gene expression datasets with 1.4M interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in 112 interactions in the fully reconstructed NFκB pathway. This method is generalizable, and this new information about the NFκB pathway will allow us to further understand prostate cancer.
Collapse
Affiliation(s)
- Daniela Börnigen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Svitlana Tyekucheva
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Xiaodong Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer R Rider
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Gwo-Shu Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Christopher Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
25
|
Herro R, Croft M. The control of tissue fibrosis by the inflammatory molecule LIGHT (TNF Superfamily member 14). Pharmacol Res 2015; 104:151-5. [PMID: 26748035 DOI: 10.1016/j.phrs.2015.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
The TNF Superfamily member LIGHT (TNFSF14) has recently emerged as a potential target for therapeutic interventions aiming to halt tissue fibrosis. In this perspective, we discuss how LIGHT may influence the inflammatory and remodeling steps that characterize fibrosis, relevant for many human diseases presenting with scarring such as asthma, idiopathic pulmonary fibrosis, systemic sclerosis, and atopic dermatitis. LIGHT acts through two receptors in the TNF receptor superfamily, HVEM (TNFRSF14) and LTβR (TNFRSF3), which are broadly expressed on hematopoietic and non-hematopoietic cells. LIGHT can regulate infiltrating T cells, macrophages, and eosinophils, controlling their trafficking or retention in the inflamed tissue, their proliferation, and their ability to produce cytokines that amplify fibrotic processes. More interestingly, LIGHT can act on structural cells, namely epithelial cells, fibroblasts, smooth muscle cells, adipocytes, and endothelial cells. By signaling through either HVEM or LTβR expressed on these cells, LIGHT can contribute to their proliferation and expression of chemokines, growth factors, and metalloproteinases. This will lead to hyperplasia of epithelial cells, fibroblasts, and smooth muscle cells, deposition of extracellular matrix proteins, vascular damage, and further immune alterations that in concert constitute fibrosis. Because of its early expression by T cells, LIGHT may be an initiator of fibrotic diseases, but other sources in the immune system could also signify a role for LIGHT in maintaining or perpetuating fibrotic activity. LIGHT may then be an attractive prognostic marker as well as an appealing target for fibrosis therapies relevant to humans.
Collapse
Affiliation(s)
- Rana Herro
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Jane-wit D, Surovtseva YV, Qin L, Li G, Liu R, Clark P, Manes TD, Wang C, Kashgarian M, Kirkiles-Smith NC, Tellides G, Pober JS. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes. Proc Natl Acad Sci U S A 2015; 112:9686-91. [PMID: 26195760 PMCID: PMC4534258 DOI: 10.1073/pnas.1503535112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB-inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5(+)endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC(+) endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt(+)NIK(+) signalosome on Rab5(+) endosomes.
Collapse
Affiliation(s)
- Dan Jane-wit
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06516
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Rebecca Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Pamela Clark
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Thomas D Manes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Chen Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | | | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
27
|
Yang B, Li W, Zheng Q, Qin T, Wang K, Li J, Guo B, Yu Q, Wu Y, Gao Y, Cheng X, Hu S, Kumar SN, Liu S, Song Z. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells. Biochem Biophys Res Commun 2015; 463:130-6. [DOI: 10.1016/j.bbrc.2015.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/03/2015] [Indexed: 01/18/2023]
|
28
|
Ager A, May MJ. Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology 2015; 4:e1008791. [PMID: 26155419 PMCID: PMC4485764 DOI: 10.1080/2162402x.2015.1008791] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/06/2023] Open
Abstract
High endothelial venules (HEVs) are blood vessels especially adapted for lymphocyte trafficking which are normally found in secondary lymphoid organs such as lymph nodes (LN) and Peyer's patches. It has long been known that HEVs develop in non-lymphoid organs during chronic inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have been observed in solid, vascularized tumors and their presence correlated with reduced tumor size and improved patient outcome. It is proposed that newly formed HEV promote antitumor immunity by recruiting naive lymphocytes into the tumor, thus allowing the local generation of cancerous tissue-destroying lymphocytes. Understanding how HEVs develop and function are therefore important to unravel their role in human cancers. In LN, HEVs develop during embryonic and early post-natal life and are actively maintained by the LN microenvironment. Systemic blockade of lymphotoxin-β receptor leads to HEV de-differentiation, but the LN components that induce HEV differentiation have remained elusive. Recent elegant studies using gene-targeted mice have demonstrated clearly that triggering the lymphotoxin-β receptor in endothelial cells (EC) induces the differentiation of HEV and that CD11c+ dendritic cells play a crucial role in this process. It will be important to determine whether lymphotoxin-β receptor-dependent signaling in EC drives the development of HEV during tumorigenesis and which cells have HEV-inducer properties. This may reveal therapeutic approaches to promote HEV neogenesis and determine the impact of newly formed HEV on tumor immunity.
Collapse
Key Words
- EC, endothelial cells
- FRC, fibroblast reticular cells
- HEC, high endothelial cells
- HEV, high endothelial venules
- LN, lymph nodes
- LPA, lysophosphatidic acid
- LT, lymphotoxin
- LT-βR, lymphotoxin-β receptor
- MAdCAM, mucosal cell adhesion molecule
- PNAd, peripheral node addressin
- SIP, sphingosine-1-phosphate
- T cell homing
- TLO, tertiary lymphoid organ
- VE-cadherin, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- dendritic cells
- high endothelial venules
- lymphotoxin-β receptor
- tumor immunotherapy
Collapse
Affiliation(s)
- Ann Ager
- Infection and Immunity; School of Medicine; Cardiff University ; Cardiff, UK
| | - Michael J May
- School of Veterinary Medicine; University of Pennsylvania ; Philadelphia, PA, USA
| |
Collapse
|
29
|
Mackow ER, Gorbunova EE, Gavrilovskaya IN. Endothelial cell dysfunction in viral hemorrhage and edema. Front Microbiol 2015; 5:733. [PMID: 25601858 PMCID: PMC4283606 DOI: 10.3389/fmicb.2014.00733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/04/2014] [Indexed: 12/31/2022] Open
Abstract
The endothelium maintains a vascular barrier by controlling platelet and immune cell interactions, capillary tone and interendothelial cell (EC) adherence. Here we suggest common elements in play during viral infection of the endothelium that alter normal EC functions and contribute to lethal hemorrhagic or edematous diseases. In viral reservoir hosts, infection of capillaries and lymphatic vessels may direct immunotolerance without disease, but in the absence of these cognate interactions they direct the delayed onset of human disease characterized by thrombocytopenia and vascular leakage in a severe endothelial dysfunction syndrome. Here we present insight into EC controls of hemostasis, immune response and capillary permeability that are altered by viral infection of the endothelium.
Collapse
Affiliation(s)
- Erich R Mackow
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| | - Elena E Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| | - Irina N Gavrilovskaya
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| |
Collapse
|
30
|
Beloribi-Djefaflia S, Siret C, Lombardo D. Exosomal lipids induce human pancreatic tumoral MiaPaCa-2 cells resistance through the CXCR4-SDF-1α signaling axis. Oncoscience 2014; 2:15-30. [PMID: 25821841 PMCID: PMC4341461 DOI: 10.18632/oncoscience.96] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/09/2014] [Indexed: 12/18/2022] Open
Abstract
We previously reported that exosomes secreted by human pancreatic tumor cells induce cell death through the inhibition of the Notch-1 survival pathway (Ristorcelli et al., 2009). We demonstrated that exosomal lipids evoked apoptosis of human pancreatic cancer SOJ-6 cells. Based on the lipid composition of efficient exosomes we designed Synthetic Exosome-Like Nanoparticles (SELN) in which the ratio ordered lipids versus disordered lipids was equal to 6.0 (SELN6.0). These SELN decreased SOJ-6 cells survival by inhibiting the Notch-1 pathway. However MiaPaCa-2 cells were resistant to exosomes (Ristorcelli et al., 2008) and to SELN6.0 (Beloribi et al.,2012). In this paper we aimed at deciphering the reason(s) of this resistance. We observed, in presence of SELN6.0, that the expression of the Notch IntraCytoplasmic Domain (NICD) decreases in MiaPaCa-2 cells but neither Hes-1, the nuclear target of NICD, nor the ratio Bax/Bcl-2 were affected. We further showed that in MiaPaCa-2 cells SELN6.0 induced the activation of NF-kB, which promotes the expression and the secretion of SDF-1α. This chemokine interacts with its receptor CXCR4 on MiaPaCa-2 cells and activates the Akt survival pathway protecting cells from death. This activation process promoted by exosomal lipids could have implications in tumor progression and drug resistance.
Collapse
Affiliation(s)
| | - Carole Siret
- Aix-Marseille Université, CRO2, INSERM, UMR 911, Marseille cedex 5, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, INSERM, UMR 911, Marseille cedex 5, France
| |
Collapse
|
31
|
IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors. Proc Natl Acad Sci U S A 2014; 111:14794-9. [PMID: 25267645 DOI: 10.1073/pnas.1410124111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TNFα is a potent cytokine that plays a critical role in numerous cellular processes, particularly immune and inflammatory responses, programmed cell death, angiogenesis, and cell migration. Thus, understanding the molecular mechanisms that mediate TNFα-induced cellular responses is a crucial issue. It is generally accepted that global DNA binding activity of the NF-κB avian reticuloendotheliosis viral (v-rel) oncogene related B (RelB) subunit is not induced upon TNFα treatment in fibroblasts, despite its TNFα-induced nuclear accumulation. Here, we demonstrate that RelB plays a critical role in promoting fibroblast migration upon prolonged TNFα treatment. We identified the two kinases IκB kinase α (IKKα) and IκB kinase β (IKKβ) as RelB interacting partners whose activation by TNFα promotes RelB phosphorylation at serine 472. Once phosphorylated on serine 472, nuclear RelB dissociates from its interaction with the inhibitory protein IκBα and binds to the promoter of critical migration-associated genes, such as the matrix metallopeptidase 3 (MMP3). Further, we show that RelB serine 472 phosphorylation status controls MMP3 expression and promigration activity downstream of TNF receptors. Our findings provide new insights into the regulation of RelB activity and reveal a novel link between selective NF-κB target gene expression and cellular response in response to TNFα.
Collapse
|
32
|
Affiliation(s)
- Ishan Roy
- Department of Microbiology & Molecular Genetics,
Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin,
Milwaukee, Wisconsin, USA
| | - Michael B Dwinell
- Department of Microbiology & Molecular Genetics,
Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
33
|
Allen IC. Non-Inflammasome Forming NLRs in Inflammation and Tumorigenesis. Front Immunol 2014; 5:169. [PMID: 24795716 PMCID: PMC4001041 DOI: 10.3389/fimmu.2014.00169] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022] Open
Abstract
Aberrant inflammation is an enabling characteristic of tumorigenesis. Thus, signaling cascades that alter inflammatory activation and resolution are of specific relevance to disease pathogenesis. Pattern recognition receptors (PRRs) are essential mediators of the host immune response and have emerged as critical elements affecting multiple facets of tumor pathobiology. The nucleotide-binding domain and leucine-rich repeat containing (NLR) proteins are intracellular PRRs that sense microbial and non-microbial products. Members of the NLR family can be divided into functional sub-groups based on their ability to either positively or negatively regulate the host immune response. Recent studies have identified a novel sub-group of non-inflammasome forming NLRs that negatively regulate diverse biological pathways associated with both inflammation and tumorigenesis. Understanding the mechanisms underlying the function of these unique NLRs will assist in the rationale design of future therapeutic strategies targeting a wide spectrum of inflammatory diseases and cancer. Here, we will discuss recent findings associated with this novel NLR sub-group and mechanisms by which these PRRs may function to alter cancer pathogenesis.
Collapse
Affiliation(s)
- Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA , USA
| |
Collapse
|
34
|
Gray CM, Remouchamps C, McCorkell KA, Solt LA, Dejardin E, Orange JS, May MJ. Noncanonical NF-κB signaling is limited by classical NF-κB activity. Sci Signal 2014; 7:ra13. [PMID: 24497610 PMCID: PMC3960999 DOI: 10.1126/scisignal.2004557] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Precise regulation of nuclear factor κB (NF-κB) signaling is crucial for normal immune responses, and defective NF-κB activity underlies a range of immunodeficiencies. NF-κB is activated through two signaling cascades: the classical and noncanonical pathways. The classical pathway requires inhibitor of κB kinase β (IKKβ) and NF-κB essential modulator (NEMO), and hypomorphic mutations in the gene encoding NEMO (ikbkg) lead to inherited immunodeficiencies, collectively termed NEMO-ID. Noncanonical NF-κB activation requires NF-κB-inducing kinase (NIK) and IKKα, but not NEMO. We found that noncanonical NF-κB was basally active in peripheral blood mononuclear cells from NEMO-ID patients and that noncanonical NF-κB signaling was similarly enhanced in cell lines lacking functional NEMO. NIK, which normally undergoes constitutive degradation, was aberrantly present in resting NEMO-deficient cells, and regulation of its abundance was rescued by reconstitution with full-length NEMO, but not a mutant NEMO protein unable to physically associate with IKKα or IKKβ. Binding of NEMO to IKKα was not required for ligand-dependent stabilization of NIK or noncanonical NF-κB signaling. Rather, an intact and functional IKK complex was essential to suppress basal NIK activity in unstimulated cells. Despite interacting with IKKα and IKKβ to form an IKK complex, NEMO mutants associated with immunodeficiency failed to rescue classical NF-κB signaling or reverse the accumulation of NIK. Together, these findings identify a crucial role for classical NF-κB activity in the suppression of basal noncanonical NF-κB signaling.
Collapse
Affiliation(s)
- Carolyn M. Gray
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Caroline Remouchamps
- Laboratory of Molecular Immunology and Signal Transduction, The University of Liège-GIGA Research, Liège, Belgium
| | - Kelly A. McCorkell
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Laura A. Solt
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, The University of Liège-GIGA Research, Liège, Belgium
| | - Jordan S. Orange
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael J. May
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
- The Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Miljković D, Spasojević I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2013; 19:2286-334. [PMID: 23473637 PMCID: PMC3869544 DOI: 10.1089/ars.2012.5068] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/09/2012] [Accepted: 03/09/2013] [Indexed: 12/15/2022]
Abstract
The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy.
Collapse
Affiliation(s)
- Djordje Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković,” University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
36
|
Petković F, Blaževski J, Momčilović M, Mostarica Stojkovic M, Miljković D. Nitric oxide inhibits CXCL12 expression in neuroinflammation. Immunol Cell Biol 2013; 91:427-34. [PMID: 23732617 DOI: 10.1038/icb.2013.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
Chemokine CXCL12 (C-X-C motif chemokine ligand 12) restricts immune cell invasion of the central nervous system (CNS) and limits neuroinflammation in experimental autoimmune encephalomyelitis (EAE), an animal model of inflammatory and demyelinating disease of the CNS, multiple sclerosis (MS). Nitric oxide (NO), by contrast, predominantly contributes to CNS tissue destruction in MS and EAE. Thus, the influence of NO on CXCL12 in the inflamed CNS was investigated. Excess expression of inducible NO synthase was inversely correlated to CXCL12 gene expression in spinal cord homogenates of rats immunized to develop EAE. NO inhibited gene expression of CXCL12 in astrocytes and endothelial cells in vitro. The inhibition was paralleled with reduction of p38 mitogen-activated protein kinase (MAPK) phosphorylation and it was mimicked with inhibitors of p38 MAPK activation in astrocytes. In vivo suppression of nitric generation recovered CXCL12 expression in the CNS and attenuated EAE in Dark Agouti rats. On the contrary, in vivo NO donation decreased CXCL12 expression in the CNS of EAE-resistant Albino Oxford (AO) rats. However, the effect was not paralleled with induction of EAE in AO rats. It is suggested that NO acting through suppression of p38 MAPK inhibits CXCL12 expression in neuroinflammation. These results imply that downregulation of NO release and protection of CXCL12 expression within the CNS might present the potential approaches in MS therapy.
Collapse
Affiliation(s)
- Filip Petković
- Department of Immunology, Institute for Biological Research, Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
37
|
Aberrant IKKα and IKKβ cooperatively activate NF-κB and induce EGFR/AP1 signaling to promote survival and migration of head and neck cancer. Oncogene 2013; 33:1135-47. [PMID: 23455325 PMCID: PMC3926900 DOI: 10.1038/onc.2013.49] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 01/07/2013] [Accepted: 01/18/2013] [Indexed: 12/23/2022]
Abstract
The Inhibitor-κB Kinase-Nuclear Factor-κB (IKK-NF-κB) and Epidermal Growth Factor Receptor-Activator Protein-1 (EGFR-AP-1) pathways are often co-activated and promote malignant behavior, but the underlying basis for this relationship is unclear. Resistance to inhibitors of IKKβ or EGFR is observed in head and neck squamous cell carcinomas (HNSCC). Here, we reveal that both IKKα and β contribute to nuclear activation of canonical and alternate NF-κB/REL family transcription factors, and overexpression of signal components enhancing co-activation of the EGFR-AP1 pathway. We observed that IKKα and IKKβ exhibit increased protein expression, nuclear localization and phosphorylation in HNSCC tissues and cell lines. Individually, IKK activity varied amongst different cell lines, but overexpression of both IKKs induced the strongest NF-κB activation. Conversely, siRNA knockdown of both IKKs significantly decreased nuclear localization and phosphorylation of canonical RELA and IκBα, and alternative p52 and RELB subunits. Knockdown of both IKKs more effectively inhibited NF-κB activation, broadly modulated gene expression, and suppressed cell proliferation and migration. Global expression profiling revealed that NF-κB, cytokine, inflammatory response, and growth factor signaling are among the top pathways and networks regulated by IKKs. Importantly, IKKα and IKKβ together promoted the expression and activity of TGFα, EGFR, and AP1 transcription factors cJun, JunB, and Fra1. Knockdown of AP1 subunits individually decreased 8/15 (53%) of IKK-targeted genes sampled, and similarly inhibited cell proliferation and migration. Mutations of NF-κB and AP1 binding sites abolished or decreased IKK-induced IL-8 promoter activity. Compounds such as wedelactone with dual IKK inhibitory activity, and geldanomycins that block IKKα/β and EGFR pathways were more active than IKKβ-specific inhibitors in suppressing NF-κB activation and proliferation, and inducing cell death. We conclude that IKKα and IKKβ cooperatively activate NF-κB and EGFR/AP1 networks of signaling pathways, and contribute to the malignant phenotype and the intrinsic or acquired therapeutic resistance of HNSCC.
Collapse
|
38
|
Kulp GA, Tilton RG, Herndon DN, Jeschke MG. Hyperglycemia exacerbates burn-induced liver inflammation via noncanonical nuclear factor-κB pathway activation. Mol Med 2012; 18:948-56. [PMID: 22572938 PMCID: PMC3459487 DOI: 10.2119/molmed.2011.00357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 05/03/2012] [Indexed: 01/04/2023] Open
Abstract
Hyperglycemia and inflammation are hallmarks of burn injury. In this study, we used a rat model of hyperglycemia and burn injury to investigate the effects of hyperglycemia on inflammatory responses in the liver. Hyperglycemia was induced in male Sprague-Dawley rats with streptozotocin (STZ) (35-40 mg/kg), followed by a 60% third-degree scald burn injury. Cytokine levels (by multiplex, in cytosolic liver extracts), hormones (by enzyme-linked immunosorbent assay [ELISA], in serum), nuclear factor (NF)-κB protein deoxyribonucleic acid (DNA) binding (by ELISA, in nuclear liver extracts) and liver functional panel (using VetScan, in serum) were measured at different time points up to 7 d after burn injury. Blood glucose significantly increased after burn injury in both groups with different temporal patterns. Hyperglycemic rats were capable of endogenous insulin secretion, which was enhanced significantly versus controls 12 h after burn injury. DNA binding data of liver nuclear extracts showed a robust and significant activation of the noncanonical NF-κB pathway in the hyperglycemic versus control burn animals, including increased NF-κB-inducing kinase expression (p < 0.05). Liver acute-phase proteins and cytokine expression were increased, whereas secretion of constitutive proteins was decreased after burn injury in hyperglycemic versus control animals (p < 0.05). These results indicate that burn injury to the skin rapidly activated canonical and noncanonical NF-κB pathways in the liver. Robust activation of the NF-κB noncanonical pathway was associated with increased expression of inflammatory markers and acute-phase proteins, and impaired glucose metabolism. Hyperglycemia is detrimental to burn outcome by augmenting inflammation mediated by hepatic noncanonical NF-κB pathway activation.
Collapse
Affiliation(s)
- Gabriela A Kulp
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ronald G Tilton
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David N Herndon
- Shriners Hospital for Children and Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Sunnybrook Research Institute, Department of Surgery, Division of Plastic Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
40
|
Otero JE, Chen T, Zhang K, Abu-Amer Y. Constitutively active canonical NF-κB pathway induces severe bone loss in mice. PLoS One 2012; 7:e38694. [PMID: 22685599 PMCID: PMC3369901 DOI: 10.1371/journal.pone.0038694] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022] Open
Abstract
Physiologic osteoclastogenesis entails activation of multiple signal transduction pathways distal to the cell membrane receptor RANK. However, atypical osteoclastogenesis driven by pro-inflammatory stimuli has been described. We have reported recently a novel mechanism whereby endogenous mutational activation of the classical NF-κB pathway is sufficient to induce RANKL/RANK-independent osteoclastogenesis. Here we investigate the physiologic relevance of this phenomenon in vivo. Using a knock-in approach, the active form of IKK2, namely IKK2SSEE, was introduced into the myeloid lineage with the aid of CD11b-cre mice. Phenotypic assessment revealed that expression of IKK2SSEE in the myeloid compartment induced significant bone loss in vivo. This observation was supported by a dramatic increase in the number and size of osteoclasts in trabecular regions, elevated levels of circulating TRACP-5b, and reduced bone volume. Mechanistically, we observed that IKK2SSEE induced high expression of not only p65 but also p52 and RelB; the latter two molecules are considered exclusive members of the alternative NF-κB pathway. Intriguingly, RelB and P52 were both required to mediate the osteoclastogenic effect of IKK2SSEE and co-expression of these two proteins was sufficient to recapitulate osteoclastogenesis in the absence of RANKL or IKK2SSEE. Furthermore, we found that NF-κB2/p100 is a potent inhibitor of IKK2SSEE-induced osteoclastogenesis. Deletion of p52 enabled more robust osteoclast formation by the active kinase. In summary, molecular activation of IKK2 may play a role in conditions of pathologic bone destruction, which may be refractory to therapeutic interventions targeting the proximal RANKL/RANK signal.
Collapse
Affiliation(s)
- Jesse E. Otero
- Department of Orthopedic Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Tim Chen
- Department of Orthopedic Surgery and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kaihua Zhang
- Department of Orthopedic Surgery and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
41
|
Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RMT, Davis BK, Uronis JM, Herfarth HH, Jobin C, Rogers AB, Ting JPY. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 2012; 36:742-54. [PMID: 22503542 PMCID: PMC3658309 DOI: 10.1016/j.immuni.2012.03.012] [Citation(s) in RCA: 410] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 01/07/2012] [Accepted: 02/04/2012] [Indexed: 11/25/2022]
Abstract
In vitro data suggest that a subgroup of NLR proteins, including NLRP12, inhibits the transcription factor NF-κB, although physiologic and disease-relevant evidence is largely missing. Dysregulated NF-κB activity is associated with colonic inflammation and cancer, and we found Nlrp12(-/-) mice were highly susceptible to colitis and colitis-associated colon cancer. Polyps isolated from Nlrp12(-/-) mice showed elevated noncanonical NF-κB activation and increased expression of target genes that were associated with cancer, including Cxcl13 and Cxcl12. NLRP12 negatively regulated ERK and AKT signaling pathways in affected tumor tissues. Both hematopoietic- and nonhematopoietic-derived NLRP12 contributed to inflammation, but the latter dominantly contributed to tumorigenesis. The noncanonical NF-κB pathway was regulated upon degradation of TRAF3 and activation of NIK. NLRP12 interacted with both NIK and TRAF3, and Nlrp12(-/-) cells have constitutively elevated NIK, p100 processing to p52 and reduced TRAF3. Thus, NLRP12 is a checkpoint of noncanonical NF-κB, inflammation, and tumorigenesis.
Collapse
Affiliation(s)
- Irving C Allen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Relevance of new drug discovery to reduce NF-κB activation in cardiovascular disease. Vascul Pharmacol 2012; 57:41-7. [PMID: 22366375 DOI: 10.1016/j.vph.2012.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/04/2023]
Abstract
The transcription factor nuclear factor-κB (NF-κB) is a main regulator of the expression of several genes involved in the activation of inflammation, cell proliferation, cell immunity and apoptosis. Excess or inappropriate activation of NF-κB has been observed in human inflammatory diseases, including atherosclerosis. Because of the extensive involvement of NF-κB signaling in human diseases, efforts have been made in developing inhibitors of this pathway. Here we will provide an overview of the biology of NF-κB activation pathways. We will here especially focus on current knowledge of the role of the classical ("canonical") NF-κB activation pathway as a potential therapeutic target for anti-atherosclerotic therapies in clinical applications, and discuss classical and novel therapeutic strategies to reduce its prolonged activation.
Collapse
|
44
|
Zimmerman NP, Vongsa RA, Faherty SL, Salzman NH, Dwinell MB. Targeted intestinal epithelial deletion of the chemokine receptor CXCR4 reveals important roles for extracellular-regulated kinase-1/2 in restitution. J Transl Med 2011; 91:1040-55. [PMID: 21537329 PMCID: PMC3167207 DOI: 10.1038/labinvest.2011.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Barrier defects and/or alterations in the ability of the gut epithelium to repair itself are critical etiological mechanisms of gastrointestinal disease. Our ongoing studies indicate that the chemokine receptor CXCR4 and its cognate ligand CXCL12 regulate intestinal-epithelial barrier maturation and restitution in cell culture models. Gene-deficient mice lacking CXCR4 expression specifically by the cells of the intestinal epithelium were used to test the hypothesis that CXCR4 regulates mucosal barrier integrity in vivo. Epithelial expression of CXCR4 was assessed by RT-PCR, Southern blot, immunoblot and immunohistochemistry. In vivo wounding assays were performed by addition of 3% dextran sodium sulfate (DSS) in drinking water for 5 days. Intestinal damage and DAI scores were assessed by histological examination. Extracellular-regulated kinase (ERK) phosphorylation was assessed in vivo by immunoblot and immunofluorescence. CXCR4 knockdown cells were established using a lentiviral approach and ERK phosphorylation was assessed. Consistent with targeted roles in restitution, epithelium from patients with inflammatory bowel disease indicated that CXCR4 and CXCL12 expression was stable throughout the human colonic epithelium. Conditional CXCR4-deficient mice developed normally, with little phenotypic differences in epithelial morphology, proliferation or migration. Re-epithelialization was absent in CXCR4 conditional knockout mice following acute DSS-induced inflammation. In contrast, heterozygous CXCR4-depleted mice displayed significant improvement in epithelial ulcer healing in acute and chronic inflammation. Mucosal injury repair was correlated with ERK1/2 activity and localization along the crypt-villus axis, with heterozygous mice characterized by increased ERK1/2 activation. Lentiviral depletion of CXCR4 in IEC-6 cells similarly altered ERK1/2 activity and prevented chemokine-stimulated migration. Taken together, these data indicate that chemokine receptors participate in epithelial barrier responses through coordination of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Noah P. Zimmerman
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Rebecca A. Vongsa
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Sheena L. Faherty
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Nita H. Salzman
- Department of Pediatrics Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Michael B. Dwinell
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226,Address Correspondence: Michael B. Dwinell, Ph.D., Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, Phone: (414) 955-7427 / FAX: (414) 955-6535,
| |
Collapse
|
45
|
McCall CE, El Gazzar M, Liu T, Vachharajani V, Yoza B. Epigenetics, bioenergetics, and microRNA coordinate gene-specific reprogramming during acute systemic inflammation. J Leukoc Biol 2011; 90:439-46. [PMID: 21610199 DOI: 10.1189/jlb.0211075] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute systemic inflammation from infectious and noninfectious etiologies has stereotypic features that progress through an initiation (proinflammatory) phase, an adaptive (anti-inflammatory) phase, and a resolution (restoration of homeostasis) phase. These phase-shifts are accompanied by profound and predictable changes in gene expression and metabolism. Here, we review the emerging concept that the temporal phases of acute systemic inflammation are controlled by an integrated bioenergy and epigenetic bridge that guides the timing of transcriptional and post-transcriptional processes of specific gene sets. This unifying connection depends, at least in part, on redox sensor NAD(+)-dependent deacetylase, Sirt1, and a NF-κB-dependent p65 and RelB feed-forward and gene-specific pathway that generates silent facultative heterochromatin and active euchromatin. An additional level of regulation for gene-specific reprogramming is generated by differential expression of miRNA that directly and indirectly disrupts translation of inflammatory genes. These molecular reprogramming circuits generate a dynamic chromatin landscape that temporally defines the course of acute inflammation.
Collapse
Affiliation(s)
- Charles E McCall
- Wake Forest University Medical Center, Winston Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|