1
|
Chen D, Zhao Z, Hong R, Yang D, Gong Y, Wu Q, Wang Y, Cao Y, Chen J, Tai Y, Liu H, Li J, Fan J, Zhang W, Song Y, Zhan Q. Harnessing the FGFR2/NF2/YAP signaling-dependent necroptosis to develop an FGFR2/IL-8 dual blockade therapeutic strategy. Nat Commun 2025; 16:4128. [PMID: 40319089 PMCID: PMC12049493 DOI: 10.1038/s41467-025-59318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
The multifaceted roles and mechanisms of necroptosis in cancer cells remain incompletely understood. Here, we demonstrate that FGFR2 inhibition potently inhibits esophageal squamous cell carcinoma (ESCC) by inducing necroptosis in a RIP1/MLKL-dependent manner and show RIP3 is dispensable in this pathway. Notably, MST1 is identified as a necroptotic pathway component that interacts with RIP1 and MLKL to promote necroptosis by phosphorylating MLKL at Thr216. Additionally, FGFR2 inhibition induces Ser518 phosphorylation and triggers ubiquitin-mediated degradation of NF2, culminating in Hippo pathway suppression. Subsequently, YAP activation promotes RIP1 and MLKL transcriptional upregulation, further amplifying necroptosis. Intriguingly, IL-8 derived from necrotic cells stimulates peripheral surviving tumor cells to increase PD-L1 expression. Dual blockade of FGFR2/PD-L1 or FGFR2/IL-8-CXCR1/2 robustly impedes tumor growth in humanized mouse xenografts. Collectively, our findings delineate an alternative FGFR2-NF2-YAP signaling-dependent necroptotic pathway and shed light on the immunoregulatory role of FGFR2, offering promising avenues for combinatorial therapeutic strategies in clinical cancer management.
Collapse
Affiliation(s)
- Dongshao Chen
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoxi Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Di Yang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Gong
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiren Cao
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Chen
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yidi Tai
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Haoyu Liu
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinting Li
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiawen Fan
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
- International Cancer Institute, Peking University Health Science Center, Beijing, China.
- Soochow University Cancer institute, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Gong P, Guo Z, Wang S, Gao S, Cao Q. Histone Phosphorylation in DNA Damage Response. Int J Mol Sci 2025; 26:2405. [PMID: 40141048 PMCID: PMC11941871 DOI: 10.3390/ijms26062405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The DNA damage response (DDR) is crucial for maintaining genomic stability and preventing the accumulation of mutations that can lead to various diseases, including cancer. The DDR is a complex cellular regulatory network that involves DNA damage sensing, signal transduction, repair, and cell cycle arrest. Modifications in histone phosphorylation play important roles in these processes, facilitating DNA repair factor recruitment, damage signal transduction, chromatin remodeling, and cell cycle regulation. The precise regulation of histone phosphorylation is critical for the effective repair of DNA damage, genomic integrity maintenance, and the prevention of diseases such as cancer, where DNA repair mechanisms are often compromised. Thus, understanding histone phosphorylation in the DDR provides insights into DDR mechanisms and offers potential therapeutic targets for diseases associated with genomic instability, including cancers.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shufeng Gao
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Qinhong Cao
- College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| |
Collapse
|
3
|
Su YT, Quagliato SM, St. Louis BM, Abdelaziz MH, He Y, Bondage D, Lehman SS, Lee PC. Activation of the conserved Hippo kinases by inflammasome-triggered proteolytic cleavage controls programmed cell death in macrophages. Proc Natl Acad Sci U S A 2025; 122:e2418613122. [PMID: 39883842 PMCID: PMC11804562 DOI: 10.1073/pnas.2418613122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025] Open
Abstract
The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear. Here, we identify the crucial role of MST1/2 in inflammasome-triggered cell death. Macrophages proteolytically convert full-length MST1/2 into the MST1/2 N-terminal fragments (MST1/2-NT) when the NLRC4 inflammasome detects flagellin from the pathogenic bacterium, Legionella pneumophila. Activation of the NLRP3 inflammasome by the damage-associated molecular pattern, extracellular ATP, also produces MST1/2-NT. Caspase-1, the protease activated by these inflammasomes, directly cleaves MST1/2, and blockage of caspase-1 inhibits MST1/2-NT production in macrophages challenged with L. pneumophila. Importantly, MST1/2-NT production is critical for macrophages to trigger a set of death processes associated with apoptosis upon inflammasome activation and knocking out Mst1/2 causes dysregulated gasdermin protein cleavage for pyroptotic death. Furthermore, macrophages lacking MST1/2 have increased susceptibility to virulent L. pneumophila, revealing that the Hippo kinases are important restriction factors against the pathogen. These findings demonstrate that proteolytic cleavage of MST1/2 induced by inflammatory stimuli is an immune pathway to regulate programmed cell death in macrophages and uncover a unique link between the tumor-suppressive Hippo kinases and the inflammasomes in innate immunity.
Collapse
Affiliation(s)
- Yu-Ting Su
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI48202
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI48202
| | - Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI48202
| | - Mohamed H. Abdelaziz
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI48201
| | - Yuan He
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI48201
| | - Devanand Bondage
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| | - Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| | - Pei-Chung Lee
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI48202
| |
Collapse
|
4
|
Tan M, Mao J, Zheng J, Meng Y, Li J, Hao J, Shen H. Mammalian STE20-like kinase 1 inhibits synoviocytes activation in rheumatoid arthritis through mitochondrial dysfunction mediated by SIRT3/mTOR axis. Inflamm Res 2024; 73:415-432. [PMID: 38265688 DOI: 10.1007/s00011-023-01846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Mammalian STE20-like kinase 1 (MST1) is involved in the occurrence of cancer and autoimmune diseases by regulating cell proliferation, differentiation, apoptosis and other functions. However, its role and downstream targets in rheumatoid arthritis (RA) remain unclear. METHODS The model of RA fibroblast-like synoviocytes (RA-FLSs) overexpressing MST1 was constructed by lentiviral transfection in vitro and analyzed the effects of MST1 on apoptosis, migration, invasion, and inflammation of RA-FLSs. The effect of MST1 on joint synovial membrane inflammation and bone destruction was observed in vivo by establishing a rat model of arthritis with complete Freund's adjuvant. RESULTS MST1 is down-regulated in RA-FLSs, and up-regulation of MST1 inhibits the survival, migration, invasion and inflammation of RA-FLSs. Mechanistically, MST1 inhibits SIRT3/mTOR-signaling pathway, inducing decreased mitochondrial autophagy and increased mitochondrial fission, resulting in mitochondrial morphological abnormalities and dysfunction, and ultimately increased apoptosis. We have observed that activation of MST1 alleviates synovial inflammation and bone erosion in vivo. CONCLUSIONS MST1 reduces the survival, migration, invasion and inflammation of FLSs by inhibiting the SIRT3/mTOR axis to reduce mitochondrial autophagy and promote mitochondrial division, thereby achieving the potential role of relieving rheumatoid arthritis.
Collapse
Affiliation(s)
- Min Tan
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jing Mao
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jianxiong Zheng
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yu Meng
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jun Li
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jiayao Hao
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China.
| |
Collapse
|
5
|
Dobrewa W, Bielska M, Bąbol-Pokora K, Janczar S, Młynarski W. Congenital neutropenia: From lab bench to clinic bedside and back. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108476. [PMID: 37989463 DOI: 10.1016/j.mrrev.2023.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Neutropenia is a hematological condition characterized by a decrease in absolute neutrophil count (ANC) in peripheral blood, typically classified in adults as mild (1-1.5 × 109/L), moderate (0.5-1 × 109/L), or severe (< 0.5 × 109/L). It can be categorized into two types: congenital and acquired. Congenital severe chronic neutropenia (SCN) arises from mutations in various genes, with different inheritance patterns, including autosomal recessive, autosomal dominant, and X-linked forms, often linked to mitochondrial diseases. The most common genetic cause is alterations in the ELANE gene. Some cases exist as non-syndromic neutropenia within the SCN spectrum, where genetic origins remain unidentified. The clinical consequences of congenital neutropenia depend on granulocyte levels and dysfunction. Infants with this condition often experience recurrent bacterial infections, with approximately half facing severe infections within their first six months of life. These infections commonly affect the respiratory system, digestive tract, and skin, resulting in symptoms like fever, abscesses, and even sepsis. The severity of these symptoms varies, and the specific organs and systems affected depend on the genetic defect. Congenital neutropenia elevates the risk of developing acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS), particularly with certain genetic variants. SCN patients may acquire CSF3R and RUNX1 mutations, which can predict the development of leukemia. It is important to note that high-dose granulocyte colony-stimulating factor (G-CSF) treatment may have the potential to promote leukemogenesis. Treatment for neutropenia involves antibiotics, drugs that boost neutrophil production, or bone marrow transplants. Immediate treatment is essential due to the heightened risk of severe infections. In severe congenital or cyclic neutropenia (CyN), the primary therapy is G-CSF, often combined with antibiotics. The G-CSF dosage is gradually increased to normalize neutrophil counts. Hematopoietic stem cell transplants are considered for non-responders or those at risk of AML/MDS. In cases of WHIM syndrome, CXCR4 inhibitors can be effective. Future treatments may involve gene editing and the use of the diabetes drug empagliflozin to alleviate neutropenia symptoms.
Collapse
Affiliation(s)
- Weronika Dobrewa
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| | - Marta Bielska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| |
Collapse
|
6
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
7
|
Cai X, Jiang Y, Cao Z, Zhang M, Kong N, Yu L, Tang Y, Kong S, Deng W, Wang H, Sun J, Ding L, Jiang R, Sun H, Yan G. Mst1-mediated phosphorylation of Nur77 improves the endometrial receptivity in human and mice. EBioMedicine 2023; 88:104433. [PMID: 36623453 PMCID: PMC9841229 DOI: 10.1016/j.ebiom.2022.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Successful embryo implantation requires the attachment of a blastocyst to the receptive endometrial epithelium, which was disturbed in the women with recurrent implantation failure (RIF). Endometrial β3-integrin was the most important adhesion molecule contributing to endometrial receptivity in both humans and mice. Nur77 has been proven indispensable for fertility in mice, here we explore the role of Nur77 on embryo-epithelial adhesion and potential treatment to embryo implantation failure. METHODS The expression and location of Mst1 and Nur77 in endometrium from fertile women and RIF patients were examined by IHC, qRT-PCR and Western blotting. In vitro kinase assay following with LC-MS/MS were used to identify the phosphorylation site of Nur77 activated by Mst1. The phosphorylated Nur77 was detected by phos-tag SDS-PAGE assay and specific antibody against phospho-Nur77-Thr366. The effect of embryo-epithelium interaction was determined in the BeWo spheroid or mouse embryo adhesion assay, and delayed implantation mouse model. RNA-seq was used to explore the mechanism by which Nur77 derived peptide promotes endometrial receptivity. FINDINGS Endometrial Mammalian sterile 20 (STE20)-like kinase 1 (Mst1) expression level was decreased in the women with RIF than that in the fertile control group, while Mst1 activation in the epithelial cells promoted trophoblast-uterine epithelium adhesion. The effect of Nur77 mediated trophoblast-uterine epithelium adhesion was facilitated by active Mst1. Mechanistically, mst1 promotes the transcription activity of Nur77 by phosphorylating Nur77 at threonine 366 (T366), and consequently increased downstream target β3-integrin expression. Furthermore, a Nur77-derived peptide containing phosphorylated T366 markedly promoted mouse embryo attachment to Ishikawa cells ([4 (2-4)] vs [3 (2-4)]) and increased the embryo implantation rate (4 vs 1.4) in a delayed implantation mouse model by regulating integrin signalling. Finally, it is observed that the endometrial phospho-Nur77 (T366) level is decreased by 80% in the women with RIF. INTERPRETATION In addition to uncovering a potential regulatory mechanism of Mst1/Nur77/β3-integrin signal axis involved in the regulation of embryo-epithelium interaction, our finding provides a novel marker of endometrial receptivity and a potential therapeutic agent for embryo implantation failure. FUNDING National Key Research and Development Program of China (2018YFC1004400), the National Natural Science Foundation of China (82171653, 82271698, 82030040, 81971387 and 30900727), and National Institutes of Health grants (R01HL103869).
Collapse
Affiliation(s)
- Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Mei Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yedong Tang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Wenbo Deng
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032 Nanjing, China.
| |
Collapse
|
8
|
Abstract
Bao G, Pan W, Huang J, Zhou T. K-RasG12V/T35S -ERK1/2 pathway regulates H2BS14ph through Mst1 to facilitate the advancement of breast cancer cells. BioFactors. 2023;49:202. https://doi.org/10.1002/biof.1589 This article, published online on 28 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 4, 5, and 6. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
9
|
Masgrau-Alsina S, Wackerbarth LM, Lim DS, Sperandio M. MST1 controls murine neutrophil homeostasis via the G-CSFR/STAT3 axis. Front Immunol 2022; 13:1038936. [PMID: 36618429 PMCID: PMC9816424 DOI: 10.3389/fimmu.2022.1038936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The release of neutrophils from the bone marrow into the blood circulation is essential for neutrophil homeostasis and the protection of the organism from invading microorganisms. Granulocyte colony-stimulating factor (G-CSF) plays a pivotal role in this process and guides granulopoiesis as well as the release of bone marrow neutrophils into the blood stream both during homeostasis and in case of infection through activation of the G-CSF receptor/signal transduction and activation of transcription 3 (STAT3) signaling pathway. Here, we investigated the role of the mammalian sterile 20-like kinase 1 (MST1) for neutrophil homeostasis and neutrophil mobilization. We found increased plasma levels of G-CSF in Mst1 -/- mice compared to wild type mice both under homeostatic conditions as well as after stimulation with the proinflammatory cytokine TNF-α. In addition, G-CSF-induced mobilization of neutrophils from the bone marrow into the blood circulation in vivo was markedly reduced in the absence of MST1. Interestingly, this was not accompanied by differences in the number of blood neutrophils. Addressing the underlying molecular mechanism of MST1-regulated neutrophil mobilization, we found reduced STAT3 phosphorylation and impaired upregulation of CXCR2 in Mst1 -/- bone marrow neutrophils compared to wild type cells, while JAK2 phosphorylation was not altered. Taken together, we identify MST1 as a critical modulator of neutrophil homeostasis and neutrophil mobilization from the bone marrow, which adds another important aspect to the complex role of MST1 in regulating innate immunity.
Collapse
Affiliation(s)
- Sergi Masgrau-Alsina
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Lou Martha Wackerbarth
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Dae-sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany,*Correspondence: Markus Sperandio,
| |
Collapse
|
10
|
Mookherjee T, Bagchi A, Ghosh R. In-silico studies to analyse the possible interactions of CircPPP1R12A translated peptide with Mst proteins. Biochem Biophys Res Commun 2022; 635:108-113. [DOI: 10.1016/j.bbrc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022]
|
11
|
Zhou T, Cheng X, He Y, Xie Y, Xu F, Xu Y, Huang W. Function and mechanism of histone β-hydroxybutyrylation in health and disease. Front Immunol 2022; 13:981285. [PMID: 36172354 PMCID: PMC9511043 DOI: 10.3389/fimmu.2022.981285] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Histone post-translational modifications (HPTMs) are essential epigenetic mechanisms that affect chromatin-associated nuclear processes without altering the DNA sequence. With the application of mass spectrometry-based proteomics, novel histone lysine acylation, such as propionylation, butyrylation, crotonylation, malonylation, succinylation, glutarylation, and lactoylation have been successively discovered. The emerging diversity of the lysine acylation landscape prompted us to investigate the function and mechanism of these novel HPTMs in health and disease. Recently, it has been reported that β-hydroxybutyrate (BHB), the main component of the ketone body, has various protective roles beyond alternative fuel provision during starvation. Histone lysine β-hydroxybutyrylation (Kbhb) is a novel HPTMs identified by mass spectrometry, which regulates gene transcription in response to carbohydrate restriction or elevated BHB levels in vivo and vitro. Recent studies have shown that histone Kbhb is strongly associated with the pathogenesis of metabolic cardiovascular diseases, kidney diseases, tumors, neuropsychiatric disorders, and metabolic diseases suggesting it has different functions from histone acetylation and methylation. This review focuses on the writers, erasers, sites, and underlying functions of histone Kbhb, providing a glimpse into their complex regulation mechanism.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xi Cheng
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yanqiu He
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yumei Xie
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Fangyuan Xu
- Department of Rehabilitation, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Xu
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- *Correspondence: Wei Huang, ; Yong Xu,
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- *Correspondence: Wei Huang, ; Yong Xu,
| |
Collapse
|
12
|
Ho HY, Chen PJ, Chuang YC, Lo YS, Lin CC, Hsieh MJ, Chen MK. Picrasidine I Triggers Heme Oxygenase-1-Induced Apoptosis in Nasopharyngeal Carcinoma Cells via ERK and Akt Signaling Pathways. Int J Mol Sci 2022; 23:ijms23116103. [PMID: 35682782 PMCID: PMC9181417 DOI: 10.3390/ijms23116103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has a higher incidence in Taiwan than worldwide. Although it is a radiosensitive malignancy, cancer recurrence is still high in the advanced stages because of its ability to induce lymph node metastasis. Picrasidine I from Picrasma quassioides has been reported as a potential drug for targeting multiple signaling pathways. The present study aimed to explore the role of picrasidine I in the apoptosis of NPC cells. Our results show that picrasidine I induced cytotoxic effects in NPC cells and caused cell cycle arrest in the sub-G1, S, and G2/M phases. Western blot analysis further demonstrated that the modulation of apoptosis through the extrinsic and intrinsic pathways was involved in picrasidine I-induced cell death. Downregulation of the ERK1/2 and Akt signaling pathways was also found in picrasidine I-induced apoptosis. Additionally, the apoptosis array showed that picrasidine I significantly increased heme oxygenase-1 (HO-1) expression, which could act as a critical molecule in picrasidine I-induced apoptosis in NPC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets also revealed that the HMOX1 mRNA level (HO-1) is lower in patients with head and neck squamous carcinoma (HNSCC) and NPC than in patients without cancer. Our study indicated that picrasidine I exerts anticancer effects in NPC by modulating HO-1 via the ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Ping-Ju Chen
- Department of Dentistry, Changhua Christian Hospital, Changhua 500, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Correspondence: (M.-J.H.); (M.-K.C.); Tel.: +886-4-7238595 (M.-J.H. & M.-K.C.); Fax: +886-4-7232942 (M.-J.H. & M.-K.C.)
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
- Correspondence: (M.-J.H.); (M.-K.C.); Tel.: +886-4-7238595 (M.-J.H. & M.-K.C.); Fax: +886-4-7232942 (M.-J.H. & M.-K.C.)
| |
Collapse
|
13
|
An L, Cao Z, Nie P, Zhang H, Tong Z, Chen F, Tang Y, Han Y, Wang W, Zhao Z, Zhao Q, Yang Y, Xu Y, Fang G, Shi L, Xu H, Ma H, Jiao S, Zhou Z. Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. J Clin Invest 2022; 132:e155468. [PMID: 35290241 PMCID: PMC9057599 DOI: 10.1172/jci155468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complexes integrate extracellular stimuli that result in intracellular activities. Previously, we discovered that STRIPAK is a key machinery responsible for loss of the Hippo tumor suppressor signal in cancer. Here, we identified the Hippo-STRIPAK complex as an essential player in the control of DNA double-stranded break (DSB) repair and genomic stability. Specifically, we found that the mammalian STE20-like protein kinases 1 and 2 (MST1/2), independent of classical Hippo signaling, directly phosphorylated zinc finger MYND type-containing 8 (ZMYND8) and hence resulted in the suppression of DNA repair in the nucleus. In response to genotoxic stress, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway was determined to relay nuclear DNA damage signals to the dynamic assembly of Hippo-STRIPAK via TANK-binding kinase 1-induced (TBK1-induced) structural stabilization of the suppressor of IKBKE 1- sarcolemma membrane-associated protein (SIKE1-SLMAP) arm. As such, we found that STRIPAK-mediated MST1/2 inactivation increased the DSB repair capacity of cancer cells and endowed these cells with resistance to radio- and chemotherapy and poly(ADP-ribose)polymerase (PARP) inhibition. Importantly, targeting the STRIPAK assembly with each of 3 distinct peptide inhibitors efficiently recovered the kinase activity of MST1/2 to suppress DNA repair and resensitize cancer cells to PARP inhibitors in both animal- and patient-derived tumor models. Overall, our findings not only uncover what we believe to be a previously unrecognized role for STRIPAK in modulating DSB repair but also provide translational implications of cotargeting STRIPAK and PARP for a new type of synthetic lethality anticancer therapy.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhenzhu Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Yi Han
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhangting Zhao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingya Zhao
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haiqing Ma
- Department of Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Wimmers F, Donato M, Kuo A, Ashuach T, Gupta S, Li C, Dvorak M, Foecke MH, Chang SE, Hagan T, De Jong SE, Maecker HT, van der Most R, Cheung P, Cortese M, Bosinger SE, Davis M, Rouphael N, Subramaniam S, Yosef N, Utz PJ, Khatri P, Pulendran B. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 2021; 184:3915-3935.e21. [PMID: 34174187 PMCID: PMC8316438 DOI: 10.1016/j.cell.2021.05.039] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.
Collapse
Affiliation(s)
- Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex Kuo
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mariko Hinton Foecke
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Hagan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanne E De Jong
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Peggie Cheung
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven E Bosinger
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Treatment with Mammalian Ste-20-like Kinase 1/2 (MST1/2) Inhibitor XMU-MP-1 Improves Glucose Tolerance in Streptozotocin-Induced Diabetes Mice. Molecules 2020; 25:molecules25194381. [PMID: 32987643 PMCID: PMC7582334 DOI: 10.3390/molecules25194381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/14/2023] Open
Abstract
Diabetes mellitus (DM) is one of the major causes of death in the world. There are two types of DM—type 1 DM and type 2 DM. Type 1 DM can only be treated by insulin injection whereas type 2 DM is commonly treated using anti-hyperglycemic agents. Despite its effectiveness in controlling blood glucose level, this therapeutic approach is not able to reduce the decline in the number of functional pancreatic β cells. MST1 is a strong pro-apoptotic kinase that is expressed in pancreatic β cells. It induces β cell death and impairs insulin secretion. Recently, a potent and specific inhibitor for MST1, called XMU-MP-1, was identified and characterized. We hypothesized that treatment with XMU-MP-1 would produce beneficial effects by improving the survival and function of the pancreatic β cells. We used INS-1 cells and STZ-induced diabetic mice as in vitro and in vivo models to test the effect of XMU-MP-1 treatment. We found that XMU-MP-1 inhibited MST1/2 activity in INS-1 cells. Moreover, treatment with XMU-MP-1 produced a beneficial effect in improving glucose tolerance in the STZ-induced diabetic mouse model. Histological analysis indicated that XMU-MP-1 increased the number of pancreatic β cells and enhanced Langerhans islet area in the severe diabetic mice. Overall, this study showed that MST1 could become a promising therapeutic target for diabetes mellitus.
Collapse
|
16
|
MicroRNA-18a targeting of the STK4/MST1 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS Pathog 2020; 16:e1008624. [PMID: 32555725 PMCID: PMC7326282 DOI: 10.1371/journal.ppat.1008624] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/30/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy worldwide. They are the aetiological agents of almost all cervical cancers as well as a sub-set of other anogenital and head and neck cancers. Hijacking of host cellular pathways is essential for virus pathogenesis; however, a major challenge remains to identify key host targets and to define their contribution to HPV-driven malignancy. The Hippo pathway regulates epithelial homeostasis by down-regulating the function of the transcription factor YAP. Increased YAP expression has been observed in cervical cancer but the mechanisms driving this increase remain unclear. We found significant down-regulation of the master Hippo regulatory kinase STK4 (also termed MST1) in cervical disease samples and cervical cancer cell lines compared with healthy controls. Re-introduction of STK4 inhibited the proliferation of HPV positive cervical cells and this corresponded with decreased YAP nuclear localization and decreased YAP-dependent gene expression. The HPV E6 and E7 oncoproteins maintained low STK4 expression in cervical cancer cells by upregulating the oncomiR miR-18a, which directly targeted the STK4 mRNA 3’UTR. Interestingly, miR-18a knockdown increased STK4 expression and activated the Hippo pathway, significantly reducing cervical cancer cell proliferation. Our results identify STK4 as a key cervical cancer tumour suppressor, which is targeted via miR-18a in HPV positive tumours. Our study indicates that activation of the Hippo pathway may offer a therapeutically beneficial option for cervical cancer treatment. HPVs are the causative agents of ~5% of human cancers. Better understanding of the mechanisms by which these viruses deregulate cellular signalling pathways may offer therapeutic options for HPV-associated malignancies. The transcription factor YAP is active in cervical cancer but the mechanisms controlling its activation remain unclear. YAP is negatively regulated and sequestered in the cytoplasm through activation of the Hippo pathway. We discovered that expression of the master Hippo kinase, STK4 (also termed MST1), is reduced in HPV positive cervical cell lines and cervical disease samples. Low STK4 levels were maintained by the HPV oncogenes through up-regulation of miR-18a, which targeted the STK4 mRNA 3’UTR. Re-introduction of STK4 or bypassing miR-18a-dependent regulation de-activated YAP-driven transcription and reduced cell proliferation. Thus, our study identifies a novel interplay between HPV oncogenes and the STK4 tumour suppressor and identifies the Hippo pathway as a target for therapeutic intervention in HPV-associated malignancies.
Collapse
|
17
|
Zimmermann A, Tadic J, Kainz K, Hofer SJ, Bauer MA, Carmona-Gutierrez D, Madeo F. Transcriptional and epigenetic control of regulated cell death in yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:55-82. [PMID: 32334817 DOI: 10.1016/bs.ircmb.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unicellular organisms like yeast can undergo controlled demise in a manner that is partly reminiscent of mammalian cell death. This is true at the levels of both mechanistic and functional conservation. Yeast offers the combination of unparalleled genetic amenability and a comparatively simple biology to understand both the regulation and evolution of cell death. In this minireview, we address the capacity of the nucleus as a regulatory hub during yeast regulated cell death (RCD), which is becoming an increasingly central question in yeast RCD research. In particular, we explore and critically discuss the available data on stressors and signals that specifically impinge on the nucleus. Moreover, we also analyze the current knowledge on nuclear factors as well as on transcriptional control and epigenetic events that orchestrate yeast RCD. Altogether we conclude that the functional significance of the nucleus for yeast RCD in undisputable, but that further exploration beyond correlative work is necessary to disentangle the role of nuclear events in the regulatory network.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
18
|
Dubois F, Keller M, Hoflack J, Maille E, Antoine M, Westeel V, Bergot E, Quoix E, Lavolé A, Bigay-Game L, Pujol JL, Langlais A, Morin F, Zalcman G, Levallet G. Role of the YAP-1 Transcriptional Target cIAP2 in the Differential Susceptibility to Chemotherapy of Non-Small-Cell Lung Cancer (NSCLC) Patients with Tumor RASSF1A Gene Methylation from the Phase 3 IFCT-0002 Trial. Cancers (Basel) 2019; 11:cancers11121835. [PMID: 31766357 PMCID: PMC6966477 DOI: 10.3390/cancers11121835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
RASSF1 gene methylation predicts longer disease-free survival (DFS) and overall survival (OS) in patients with early-stage non-small-cell lung cancer treated using paclitaxel-based neo-adjuvant chemotherapy compared to patients receiving a gemcitabine-based regimen, according to the randomized Phase 3 IFCT (Intergroupe Francophone de Cancérologie Thoracique)-0002 trial. To better understand these results, this study used four human bronchial epithelial cell (HBEC) models (HBEC-3, HBEC-3-RasV12, A549, and H1299) and modulated the expression of RASSF1A or YAP-1. Wound-healing, invasion, proliferation and apoptosis assays were then carried out and the expression of YAP-1 transcriptional targets was quantified using a quantitative polymerase chain reaction. This study reports herein that gemcitabine synergizes with RASSF1A, silencing to increase the IAP-2 expression, which in turn not only interferes with cell proliferation but also promotes cell migration. This contributes to the aggressive behavior of RASSF1A-depleted cells, as confirmed by a combined knockdown of IAP-2 and RASSF1A. Conversely, paclitaxel does not increase the IAP-2 expression but limits the invasiveness of RASSF1A-depleted cells, presumably by rescuing microtubule stabilization. Overall, these data provide a functional insight that supports the prognostic value of RASSF1 gene methylation on survival of early-stage lung cancer patients receiving perioperative paclitaxel-based treatment compared to gemcitabine-based treatment, identifying IAP-2 as a novel biomarker indicative of YAP-1-mediated modulation of chemo-sensitivity in lung cancer.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pathology, CHU de Caen, 14033 Caen, France
| | - Maureen Keller
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Normandie Université, UNICAEN, UPRES-EA2608, 14032 Caen, France
| | - Julien Hoflack
- Normandie Université, UNICAEN, UPRES-EA2608, 14032 Caen, France
| | - Elodie Maille
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Normandie Université, UNICAEN, INSERM UMR 1086 ANTICIPE, 14032 Caen, France
| | - Martine Antoine
- Department of Pathology, Hôpital Tenon, AP-HP, 75020 Paris, France;
| | - Virginie Westeel
- Department of Pneumology, University Hospital of Besançon, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Emmanuel Bergot
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, 14033 Caen, France
| | - Elisabeth Quoix
- Department of Pneumology, University Hospital, 67000 Strasbourg, France;
| | - Armelle Lavolé
- Sorbonne Université, GRC n 04, Theranoscan, AP-HP, Service de Pneumologie, Hôpital Tenon, 75020 Paris, France;
| | - Laurence Bigay-Game
- Pneumology Department, Toulouse-Purpan, University Hospital Toulouse, 31300 Toulouse, France;
| | - Jean-Louis Pujol
- Département d’Oncologie Thoracique, CHU Montpellier, Univ. Montpellier, 34595 Montpellier, France;
| | - Alexandra Langlais
- Intergroupe Francophone de Cancérologie Thoracique (IFCT), 75009 Paris, France; (A.L.); (F.M.)
| | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique (IFCT), 75009 Paris, France; (A.L.); (F.M.)
| | - Gérard Zalcman
- U830 INSERM “Genetics and Biology of Cancers, A.R.T Group”, Curie Institute, 75005 Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, 75018 Paris, France
- Correspondence: (G.Z.); (G.L.); Tel.: +33-(0)140-257-502 (G.Z.); +33-(0)231-063-134 (G.L.)
| | - Guénaëlle Levallet
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pathology, CHU de Caen, 14033 Caen, France
- Correspondence: (G.Z.); (G.L.); Tel.: +33-(0)140-257-502 (G.Z.); +33-(0)231-063-134 (G.L.)
| |
Collapse
|
19
|
MST1 Regulates Neuronal Cell Death via JNK/Casp3 Signaling Pathway in HFD Mouse Brain and HT22 Cells. Int J Mol Sci 2019; 20:ijms20102504. [PMID: 31117242 PMCID: PMC6566356 DOI: 10.3390/ijms20102504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been considered as the main mediator in neurodegenerative diseases. A high-fat diet (HFD) and metabolic diseases result in oxidative stress generation, leading to various neurodegenerative diseases via molecular mechanisms that remain largely unknown. Protein kinases play an important role in the homeostasis between cell survival and cell apoptosis. The mammalian sterile 20-like kinase-1 (MST1) protein kinase plays an important role in cellular apoptosis in different organ systems, including the central nervous system. In this study, we evaluated the MST1/c-Jun N-terminal kinase (JNK) dependent oxidative damage mediated cognitive dysfunction in HFD-fed mice and stress-induced hippocampal HT22 (mice hippocampal) cells. Our Western blot and immunofluorescence results indicate that HFD and stress-induced hippocampal HT22 cells activate MST1/JNK/Caspase-3 (Casp-3) signaling, which regulates neuronal cell apoptosis and beta-amyloid-cleaving enzyme (BACE1) expression and leads to impaired cognition. Moreover, MST1 expression inhibition by shRNA significantly reduced JNK/Casp-3 signaling. Our in vivo and in vitro experiments mimicking metabolic stress, such as a high-fat diet, hyperglycemia, and an inflammatory response, determined that MST1 plays a key regulatory role in neuronal cell death and cognition, suggesting that MST1 could be a potential therapeutic target for numerous neurodegenerative diseases.
Collapse
|
20
|
El Husseini N, Hales BF. The Roles of P53 and Its Family Proteins, P63 and P73, in the DNA Damage Stress Response in Organogenesis-Stage Mouse Embryos. Toxicol Sci 2019; 162:439-449. [PMID: 29228353 DOI: 10.1093/toxsci/kfx270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Members of the P53 transcription factor family, P53, P63, and P73, play important roles in normal development and in regulating the expression of genes that control apoptosis and cell cycle progression in response to genotoxic stress. P53 is involved in the DNA damage response pathway that is activated by hydroxyurea in organogenesis-stage murine embryos. The extent to which P63 and P73 contribute to this stress response is not known. To address this question, we examined the roles of P53, P63, and P73 in mediating the response of Trp53-positive and Trp53-deficient murine embryos to a single dose of hydroxyurea (400 mg/kg) on gestational day 9. Hydroxyurea treatment downregulated the expression of Trp63 and upregulated Trp73 in the absence of effects on the levels of Trp53 transcripts; Trp73 upregulation was P53-dependent. At the protein level, hydroxyurea treatment increased the levels and phosphorylation of P53 in the absence of effects on P63 and P73. Upregulation of the expression of genes that regulate cell cycle arrest and apoptosis, Cdkn1a, Rb1, Fas, Trp53inp1, and Pmaip1, was P53-dependent in hydroxyurea-treated embryos. The increase in cleaved caspase-3 and cleaved mammalian sterile-20-like-1 kinase levels induced by hydroxyurea was also P53-dependent; in contrast, the increase in phosphorylated H2AX, a marker of DNA double-strand breaks, in response to hydroxyurea treatment was only partially P53-dependent. Together, our data show that P53 is the principal P53 family member that is activated in the embryonic DNA damage response.
Collapse
Affiliation(s)
- Nazem El Husseini
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
21
|
Khan C, Muliyil S, Rao BJ. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:173-224. [PMID: 30904193 DOI: 10.1016/bs.ircmb.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA repair is a critical cellular process required for the maintenance of genomic integrity. It is now well appreciated that cells employ several DNA repair pathways to take care of distinct types of DNA damage. It is also well known that a cascade of signals namely DNA damage response or DDR is activated in response to DNA damage which comprise cellular responses, such as cell cycle arrest, DNA repair and cell death, if the damage is irreparable. There is also emerging literature suggesting a cross-talk between DNA damage signaling and several signaling networks within a cell. Moreover, cell death players themselves are also well known to engage in processes outside their canonical function of apoptosis. This chapter attempts to build a link between DNA damage, DDR and signaling from the studies mainly conducted in mammals and Drosophila model systems, with a special emphasis on their relevance in overall tissue homeostasis and development.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
22
|
Lee MG, Lee KS, Nam KS. The association of changes in RAD51 and survivin expression levels with the proton beam sensitivity of Capan‑1 and Panc‑1 human pancreatic cancer cells. Int J Oncol 2018; 54:744-752. [PMID: 30483758 DOI: 10.3892/ijo.2018.4642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/11/2018] [Indexed: 11/05/2022] Open
Abstract
Fewer than 20% of patients diagnosed with pancreatic cancer can be treated with surgical resection. The effects of proton beam irradiation were evaluated on the cell viabilities in Panc‑1 and Capan‑1 pancreatic cancer cells. The cells were irradiated with proton beams at the center of Bragg peaks with a 6‑cm width using a proton accelerator. Cell proliferation was assessed with the MTT assay, gene expression was analyzed with semi‑quantitative or quantitative reverse transcription‑polymerase chain reaction analyses and protein expression was evaluated by western blotting. The results demonstrated that Capan‑1 cells had lower cell viability than Panc‑1 cells at 72 h after proton beam irradiation. Furthermore, the cleaved poly (ADP‑ribose) polymerase protein level was increased by irradiation in Capan‑1 cells, but not in Panc‑1 cells. Additionally, it was determined that histone H2AX phosphorylation in the two cell lines was increased by irradiation. Although a 16 Gy proton beam was only slightly up‑regulated cyclin‑dependent kinase inhibitor 1 (p21) protein expression in Capan‑1 cells, p21 expression levels in Capan‑1 and Panc‑1 cells were significantly increased at 72 h after irradiation. Furthermore, it was observed that the expression of DNA repair protein RAD51 homolog 1 (RAD51), a homogenous repair enzyme, was decreased in what appeared to be a dose‑dependent manner by irradiation in Capan‑1 cells. Contrastingly, the transcription of survivin in Panc‑1 was significantly enhanced. The results suggest that RAD51 and survivin are potent markers that determine the therapeutic efficacy of proton beam therapy in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Min-Gu Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsanbuk-do 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsanbuk-do 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsanbuk-do 38066, Republic of Korea
| |
Collapse
|
23
|
Zhang X, Ni Q, Wang Y, Fan H, Li Y. Synergistic Anticancer Effects of Formononetin and Temozolomide on Glioma C6 Cells. Biol Pharm Bull 2018; 41:1194-1202. [DOI: 10.1248/bpb.b18-00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiong Zhang
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University
| | - Qi Ni
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University
| | - Ying Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
24
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Pfleger CM. The Hippo Pathway: A Master Regulatory Network Important in Development and Dysregulated in Disease. Curr Top Dev Biol 2017; 123:181-228. [PMID: 28236967 DOI: 10.1016/bs.ctdb.2016.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Hippo Pathway is a master regulatory network that regulates proliferation, cell growth, stemness, differentiation, and cell death. Coordination of these processes by the Hippo Pathway throughout development and in mature organisms in response to diverse external and internal cues plays a role in morphogenesis, in controlling organ size, and in maintaining organ homeostasis. Given the importance of these processes, the Hippo Pathway also plays an important role in organismal health and has been implicated in a variety of diseases including eye disease, cardiovascular disease, neurodegeneration, and cancer. This review will focus on Drosophila reports that identified the core components of the Hippo Pathway revealing specific downstream biological outputs of this complicated network. A brief description of mammalian reports will complement review of the Drosophila studies. This review will also survey upstream regulation of the core components with a focus on feedback mechanisms.
Collapse
Affiliation(s)
- Cathie M Pfleger
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
26
|
Khan C, Muliyil S, Ayyub C, Rao BJ. DNA damage signalling in D. melanogaster requires non-apoptotic function of initiator caspase Dronc. J Cell Sci 2017; 130:2984-2995. [DOI: 10.1242/jcs.200782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/24/2017] [Indexed: 01/31/2023] Open
Abstract
ϒH2Av response constitutes an important signalling event in DNA damage sensing ensuring effective repair by recruiting DNA repair machinery. In contrast, the occurrence of ϒH2Av response has also been reported in dying cells where it is shown to require activation of CAD (caspase activated DNase). Moreover, caspases are known to be required downstream of DNA damage for cell death execution. We show, for the first time, that initiator caspase Dronc, independent of executioner caspases, acts as an upstream regulator of DNA Damage Response (DDR) by facilitating ϒH2Av signalling perhaps involving non-apoptotic function. Such ϒH2Av response is mediated by ATM rather than ATR, suggesting that Dronc function is required upstream of ATM. In contrast, ϒH2Av appearance during cell death requires effector caspase and is associated with fragmented nuclei. Our study uncovers a novel function of Dronc in response to DNA damage aimed at promoting DDR via ϒH2Av signalling in intact nuclei. We propose that Dronc plays a dual role that can either initiate DDR or apoptosis depending upon the level and the required threshold of its activation in damaged cells.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Sonia Muliyil
- Current affiliation: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Champakali Ayyub
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - B. J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
27
|
Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol 2016; 429:1946-1957. [PMID: 27769718 DOI: 10.1016/j.jmb.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles. Here, we review the broad functions of histone modifications in initiating cell fate transitions, with particular focus on their contribution to the control of expression of key genes required for the differentiation programs and chromatin reorganization that accompanies these cell fates.
Collapse
|
28
|
Abstract
The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1-6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1's control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2's physiologic programs and contributions to pathophysiology remains to be elucidated.
Collapse
Affiliation(s)
- Jacob A. Galan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
29
|
Bhoopathi P, Lee N, Pradhan AK, Shen XN, Das SK, Sarkar D, Emdad L, Fisher PB. mda-7/IL-24 Induces Cell Death in Neuroblastoma through a Novel Mechanism Involving AIF and ATM. Cancer Res 2016; 76:3572-82. [PMID: 27197168 DOI: 10.1158/0008-5472.can-15-2959] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
Advanced stages of neuroblastoma, the most common extracranial malignant solid tumor of the central nervous system in infants and children, are refractive to therapy. Ectopic expression of melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) promotes broad-spectrum antitumor activity in vitro, in vivo in preclinical animal models, and in a phase I clinical trial in patients with advanced cancers without harming normal cells. mda-7/IL-24 exerts cancer-specific toxicity (apoptosis or toxic autophagy) by promoting endoplasmic reticulum stress and modulating multiple signal transduction pathways regulating cancer cell growth, invasion, metastasis, survival, and angiogenesis. To enhance cancer-selective expression and targeted anticancer activity of mda-7/IL-24, we created a tropism-modified cancer terminator virus (Ad.5/3-CTV), which selectively replicates in cancer cells producing robust expression of mda-7/IL-24 We now show that Ad.5/3-CTV induces profound neuroblastoma antiproliferative activity and apoptosis in a caspase-3/9-independent manner, both in vitro and in vivo in a tumor xenograft model. Ad.5/3-CTV promotes these effects through a unique pathway involving apoptosis-inducing factor (AIF) translocation into the nucleus. Inhibiting AIF rescued neuroblastoma cells from Ad.5/3-CTV-induced cell death, whereas pan-caspase inhibition failed to promote survival. Ad.5/3-CTV infection of neuroblastoma cells increased ATM phosphorylation instigating nuclear translocation and increased γ-H2AX, triggering nuclear translocation and intensified expression of AIF. These results were validated further using two ATM small-molecule inhibitors that attenuated PARP cleavage by inhibiting γ-H2AX, which in turn inhibited AIF changes in Ad.5/3-CTV-infected neuroblastoma cells. Taken together, we elucidate a novel pathway for mda-7/IL-24-induced caspase-independent apoptosis in neuroblastoma cells mediated through modulation of AIF, ATM, and γ-H2AX. Cancer Res; 76(12); 3572-82. ©2016 AACR.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Nathaniel Lee
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Health Systems, Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
30
|
Pefani DE, O'Neill E. Hippo pathway and protection of genome stability in response to DNA damage. FEBS J 2016; 283:1392-403. [PMID: 26607675 DOI: 10.1111/febs.13604] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/05/2015] [Accepted: 11/19/2015] [Indexed: 12/24/2022]
Abstract
The integrity of DNA is constantly challenged by exposure to the damaging effects of chemical and physical agents. Elucidating the cellular mechanisms that maintain genomic integrity via DNA repair and cell growth control is vital because errors in these processes lead to genomic damage and the development of cancer. By gaining a deep molecular understanding of the signaling pathways regulating genome integrity it is hoped to uncover new therapeutics and treatment designs to combat cancer. Components of the Hippo pathway, a tumor-suppressor cascade, have recently been defined to limit cancer transformation in response to DNA damage. In this review, we briefly introduce the Hippo signaling cascade in mammals and discuss in detail how the Hippo pathway has been established as part of the DNA damage response, activated by apical signaling kinases that recognize breaks in DNA. We also highlight the significance of the Hippo pathway activator RASSF1A tumor suppressor, a direct target of ataxia telangiectasia mutated and ataxia telangiectasia and Rad3 related ATR. Furthermore we discuss how Hippo pathway in response DNA lesions can induce cell death via Yes-associated protein (YAP) (the canonical Hippo pathway effector) or promote maintenance of genome integrity in a YAP-independent manner.
Collapse
Affiliation(s)
- Dafni E Pefani
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK
| | - Eric O'Neill
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK
| |
Collapse
|
31
|
Leroy C, Belkina NV, Long T, Deruy E, Dissous C, Shaw S, Tulasne D. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis. J Biol Chem 2016; 291:10148-61. [PMID: 26945071 DOI: 10.1074/jbc.m116.721365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 11/06/2022] Open
Abstract
The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK(-/-) and LOK(+/-) lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments.
Collapse
Affiliation(s)
- Catherine Leroy
- From the University of Lille, CNRS, Institut Pasteur de Lille, Unité Mixte de Recherche (UMR) 8161, Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France
| | | | - Thavy Long
- the University of Lille, CNRS, INSERM, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, U1019-UMR 8204, Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Emeric Deruy
- the University of Lille, CNRS, INSERM, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, U1019-UMR 8204, Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Colette Dissous
- the University of Lille, CNRS, INSERM, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, U1019-UMR 8204, Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Stephen Shaw
- Experimental Immunology Branch Branches, NCI/National Institutes of Health, Bethesda, Maryland 20892, and
| | - David Tulasne
- From the University of Lille, CNRS, Institut Pasteur de Lille, Unité Mixte de Recherche (UMR) 8161, Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France
| |
Collapse
|
32
|
Jacobs KM, Misri S, Meyer B, Raj S, Zobel CL, Sleckman BP, Hallahan DE, Sharma GG. Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses. Mol Biol Cell 2016; 27:1332-45. [PMID: 26941327 PMCID: PMC4831886 DOI: 10.1091/mbc.e16-01-0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 01/08/2023] Open
Abstract
Normal stem cells from tissues often exhibiting radiation injury are highly radiosensitive and exhibit a muted DNA damage response, in contrast to differentiated progeny. These radioresponses can be attributed to unique epigenetic regulation in stem cells, identifying potential therapeutic targets for radioprotection. Normal tissue injury resulting from cancer radiotherapy is often associated with diminished regenerative capacity. We examined the relative radiosensitivity of normal stem cell populations compared with non–stem cells within several radiosensitive tissue niches and culture models. We found that these stem cells are highly radiosensitive, in contrast to their isogenic differentiated progeny. Of interest, they also exhibited a uniquely attenuated DNA damage response (DDR) and muted DNA repair. Whereas stem cells exhibit reduced ATM activation and ionizing radiation–induced foci, they display apoptotic pannuclear H2AX-S139 phosphorylation (γH2AX), indicating unique radioresponses. We also observed persistent phosphorylation of H2AX-Y142 along the DNA breaks in stem cells, which promotes apoptosis while inhibiting DDR signaling. In addition, down-regulation of constitutively elevated histone-3 lysine-56 acetylation (H3K56ac) in stem cells significantly decreased their radiosensitivity, restored DDR function, and increased survival, signifying its role as a key contributor to stem cell radiosensitivity. These results establish that unique epigenetic landscapes affect cellular heterogeneity in radiosensitivity and demonstrate the nonubiquitous nature of radiation responses. We thus elucidate novel epigenetic rheostats that promote ionizing radiation hypersensitivity in various normal stem cell populations, identifying potential molecular targets for pharmacological radioprotection of stem cells and hopefully improving the efficacy of future cancer treatment.
Collapse
Affiliation(s)
- Keith M Jacobs
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Sandeep Misri
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Barbara Meyer
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Suyash Raj
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Cheri L Zobel
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Barry P Sleckman
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108 Department of Pathology, Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63108
| | - Dennis E Hallahan
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108 Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Girdhar G Sharma
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108 Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108
| |
Collapse
|
33
|
Marková E, Somsedíková A, Vasilyev S, Pobijaková M, Lacková A, Lukačko P, Belyaev I. DNA repair foci and late apoptosis/necrosis in peripheral blood lymphocytes of breast cancer patients undergoing radiotherapy. Int J Radiat Biol 2015; 91:934-45. [DOI: 10.3109/09553002.2015.1101498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Nguyen LK, Matallanas DG, Romano D, Kholodenko BN, Kolch W. Competing to coordinate cell fate decisions: the MST2-Raf-1 signaling device. Cell Cycle 2015; 14:189-99. [PMID: 25607644 PMCID: PMC4353221 DOI: 10.4161/15384101.2014.973743] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
How do biochemical signaling pathways generate biological specificity? This question is fundamental to modern biology, and its enigma has been accentuated by the discovery that most proteins in signaling networks serve multifunctional roles. An answer to this question may lie in analyzing network properties rather than individual traits of proteins in order to elucidate design principles of biochemical networks that enable biological decision-making. We discuss how this is achieved in the MST2/Hippo-Raf-1 signaling network with the help of mathematical modeling and model-based analysis, which showed that competing protein interactions with affinities controlled by dynamic protein modifications can function as Boolean computing devices that determine cell fate decisions. In addition, we discuss areas of interest for future research and highlight how systems approaches would be of benefit.
Collapse
Affiliation(s)
- Lan K Nguyen
- a Systems Biology Ireland ; University College Dublin ; Belfield , Dublin , Ireland
| | | | | | | | | |
Collapse
|
35
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Perez-Chacon G, Martinez-Laperche C, Rebolleda N, Somovilla-Crespo B, Muñoz-Calleja C, Buño I, Zapata JM. Indole-3-Carbinol Synergizes with and Restores Fludarabine Sensitivity in Chronic Lymphocytic Leukemia Cells Irrespective of p53 Activity and Treatment Resistances. Clin Cancer Res 2015; 22:134-45. [PMID: 26324744 DOI: 10.1158/1078-0432.ccr-15-0736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/23/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) still is lacking a cure. Relapse and development of refractoriness to current treatments are common. New therapies are needed to improve patient prognosis and survival. EXPERIMENTAL DESIGN Indole-3-carbinol (I3C) is a natural product with antitumor properties already clinically tested. The effect of I3C, F-ara-A, and combinations of both drugs on CLL cells from patients representing different Rai stages, IGHV mutation status, cytogenetic alterations, p53 functionality, and treatment resistances was tested, as well as the toxicity of these treatments in mice. RESULTS I3C induces cytotoxicity in CLL cells but not in normal lymphocytes. I3C strongly synergized with F-ara-A in all CLL cells tested, including those with p53 deficiency and/or F-ara-A resistance. The mechanism of cell death involved p53-dependent and -independent apoptosis. The combination of I3C + F-ara-A was equally effective in CLL cells irrespective of IGHV mutation stage and patient refractoriness. Moreover, CLL survival and treatment resistance induced by co-culturing CLL cells on stroma cells were overcome by the combinatory I3C + F-ara-A treatment. No toxicity was associated with the combined I3C + fludarabine treatment in mice. CONCLUSIONS I3C in combination with F-ara-A is highly cytotoxic in CLL cells from refractory patients and those with p53 deficiency. The striking dose reduction index for F-ara-A in combination with I3C would reduce fludarabine toxicity while having a similar or better anti-CLL effectiveness. Moreover, the low toxicity of I3C, already clinically tested, supports its use as adjuvant and combinatory therapy in CLL, particularly for patients with relapsed or refractory disease.
Collapse
Affiliation(s)
- Gema Perez-Chacon
- Instituto de Investigaciones Biomedicas "Alberto Sols," CSIC/UAM, Madrid, Spain. Instituto de Investigacion Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Carolina Martinez-Laperche
- Servicio de Hematologia, Hospital General Universitario Gregorio Marañon, Madrid, Spain. Instituto de Investigacion Sanitaria Gregorio Marañon (IiSGM), Madrid, Spain
| | - Nerea Rebolleda
- Instituto de Investigaciones Biomedicas "Alberto Sols," CSIC/UAM, Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Servicio de Inmunologia, Instituto de Investigacion Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunologia, Instituto de Investigacion Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Ismael Buño
- Servicio de Hematologia, Hospital General Universitario Gregorio Marañon, Madrid, Spain. Instituto de Investigacion Sanitaria Gregorio Marañon (IiSGM), Madrid, Spain
| | - Juan M Zapata
- Instituto de Investigaciones Biomedicas "Alberto Sols," CSIC/UAM, Madrid, Spain. Instituto de Investigacion Hospital Universitario La Paz (IDIPAZ), Madrid, Spain.
| |
Collapse
|
37
|
Yang Y, Zhao Y, Ai X, Cheng B, Lu S. Formononetin suppresses the proliferation of human non-small cell lung cancer through induction of cell cycle arrest and apoptosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8453-8461. [PMID: 25674209 PMCID: PMC4313991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human non-small cell lung cancer (NSCLC), and further elucidated the molecular mechanism underlying the anti-tumor property. MTT assay showed that formononetin treatment significantly inhibited the proliferation of two NSCLC cell lines including A549 and NCI-H23 in a time- and dose-dependent manner. Flow cytometric analysis demonstrated that formononetin induced G1-phase cell cycle arrest and promoted cell apoptosis in NSCLC cells. On the molecular level, we observed that exposure to formononetin altered the expression levels of cell cycle arrest-associated proteins p21, cyclin A and cyclin D1. Meanwhile, the apoptosis-related proteins cleaved caspase-3, bax and bcl-2 were also changed following treatment with formononetin. In addition, the expression level of p53 was dose-dependently upregulated after administration with formononetin. We also found that formononetin treatment increased the phosphorylation of p53 at Ser15 and Ser20 and enhances its transcriptional activity in a dose-dependent manner. Collectively, these results demonstrated that formononetin might be a potential chemopreventive drug for lung cancer therapy through induction of cell cycle arrest and apoptosis in NSCLC cells.
Collapse
Affiliation(s)
- Yi Yang
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai 200030, China
| | - Yi Zhao
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai 200030, China
| | - Xinghao Ai
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai 200030, China
| | - Baijun Cheng
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai 200030, China
| | - Shun Lu
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai 200030, China
| |
Collapse
|
38
|
Perez-Chacon G, de los Rios C, Zapata JM. Indole-3-carbinol induces cMYC and IAP-family downmodulation and promotes apoptosis of Epstein–Barr virus (EBV)-positive but not of EBV-negative Burkitt's lymphoma cell lines. Pharmacol Res 2014; 89:46-56. [DOI: 10.1016/j.phrs.2014.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
|
39
|
Magnitude of influenza virus replication and cell damage is associated with interleukin-6 production in primary cultures of human tracheal epithelium. Respir Physiol Neurobiol 2014; 202:16-23. [PMID: 25064661 DOI: 10.1016/j.resp.2014.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
Abstract
Primary cultures of human tracheal epithelium were infected with influenza viruses to examine the relationships between the magnitude of viral replication and infection-induced cell damage and cytokine production in airway epithelial cells. Infection with four strains of the type A influenza virus increased the detached cell number and lactate dehydrogenase (LDH) levels in the supernatants. The detached cell number and LDH levels were related to the viral titers and interleukin (IL)-6 levels and the nuclear factor kappa B (NF-κB) p65 activation. Treatment of the cells with an anti-IL-6 receptor antibody and an NF-κB inhibitor, caffeic acid phenethyl ester, reduced the detached cell number, viral titers and the LDH levels and improved cell viability after infection with the pandemic influenza virus [A/Sendai-H/N0633/2009 (H1N1) pdm09]. A caspase-3 inhibitor, benzyloxycarbonyl-DEVD-fluoromethyl ketone, reduced the detached cell number and viral titers. Influenza viral infection-induced cell damage may be partly related to the magnitude of viral replication, NF-κB-p65-mediated IL-6 production and caspase-3 activation.
Collapse
|
40
|
Tang F, Zhang L, Xue G, Hynx D, Wang Y, Cron PD, Hundsrucker C, Hergovich A, Frank S, Hemmings BA, Schmitz-Rohmer D. hMOB3 modulates MST1 apoptotic signaling and supports tumor growth in glioblastoma multiforme. Cancer Res 2014; 74:3779-89. [PMID: 24872389 PMCID: PMC4102567 DOI: 10.1158/0008-5472.can-13-3430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
New therapeutic targets are needed that circumvent inherent therapeutic resistance of glioblastoma multiforme (GBM). Here, we report such a candidate target in the uncharacterized adaptor protein hMOB3, which we show is upregulated in GBM. In a search for its biochemical function, we found that hMOB3 specifically interacts with MST1 kinase in response to apoptotic stimuli and cell-cell contact. Moreover, hMOB3 negatively regulated apoptotic signaling by MST1 in GBM cells by inhibiting the MST1 cleavage-based activation process. Physical interaction between hMOB3 and MST1 was essential for this process. In vivo investigations established that hMOB3 sustains GBM cell growth at high cell density and promotes tumorigenesis. Our results suggest hMOB3 as a candidate therapeutic target for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Fengyuan Tang
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research;
| | - Lei Zhang
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Gongda Xue
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Debby Hynx
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Yuhua Wang
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Peter D Cron
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Christian Hundsrucker
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research; Swiss Institute of Bioinformatics, Basel, Switzerland; and
| | | | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel
| | - Brian A Hemmings
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | | |
Collapse
|
41
|
Xu S, Wu H, Nie H, Yue L, Jiang H, Xiao S, Li Y. AIF downregulation and its interaction with STK3 in renal cell carcinoma. PLoS One 2014; 9:e100824. [PMID: 24992339 PMCID: PMC4081115 DOI: 10.1371/journal.pone.0100824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/30/2014] [Indexed: 01/06/2023] Open
Abstract
Apoptosis-inducing factor (AIF) plays a crucial role in caspase-independent programmed cell death by triggering chromatin condensation and DNA fragmentation. Therefore, it might be involved in cell homeostasis and tumor development. In this study, we report significant AIF downregulation in the majority of renal cell carcinomas (RCC). In a group of RCC specimens, 84% (43 out of 51) had AIF downregulation by immunohistochemistry stain. Additional 10 kidney tumors, including an oxyphilic adenoma, also had significant AIF downregulation by Northern blot analysis. The mechanisms of the AIF downregulation included both AIF deletion and its promoter methylation. Forced expression of AIF in RCC cell lines induced massive apoptosis. Further analysis revealed that AIF interacted with STK3, a known regulator of apoptosis, and enhanced its phosphorylation at Thr180. These results suggest that AIF downregulation is a common event in kidney tumor development. AIF loss may lead to decreased STK3 activity, defective apoptosis and malignant transformation.
Collapse
Affiliation(s)
- Shengqiang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hongjin Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huadong Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SZ) (SX); (YL) (YL)
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail: (SZ) (SX); (YL) (YL)
| |
Collapse
|
42
|
Takashima A, English B, Chen Z, Cao J, Cui R, Williams RM, Faller DV. Protein kinase Cδ is a therapeutic target in malignant melanoma with NRAS mutation. ACS Chem Biol 2014; 9:1003-14. [PMID: 24506253 DOI: 10.1021/cb400837t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NRAS is the second most frequently mutated gene in melanoma. Previous reports have demonstrated the sensitivity of cancer cell lines carrying KRAS mutations to apoptosis initiated by inhibition of protein kinase Cδ (PKCδ). Here, we report that PKCδ inhibition is cytotoxic in melanomas with primary NRAS mutations. Novel small-molecule inhibitors of PKCδ were designed as chimeric hybrids of two naturally occurring PKCδ inhibitors, staurosporine and rottlerin. The specific hypothesis interrogated and validated is that combining two domains of two naturally occurring PKCδ inhibitors into a chimeric or hybrid structure retains biochemical and biological activity and improves PKCδ isozyme selectivity. We have devised a potentially general synthetic protocol to make these chimeric species using Molander trifluorborate coupling chemistry. Inhibition of PKCδ, by siRNA or small molecule inhibitors, suppressed the growth of multiple melanoma cell lines carrying NRAS mutations, mediated via caspase-dependent apoptosis. Following PKCδ inhibition, the stress-responsive JNK pathway was activated, leading to the activation of H2AX. Consistent with recent reports on the apoptotic role of phospho-H2AX, knockdown of H2AX prior to PKCδ inhibition mitigated the induction of caspase-dependent apoptosis. Furthermore, PKCδ inhibition effectively induced cytotoxicity in BRAF mutant melanoma cell lines that had evolved resistance to a BRAF inhibitor, suggesting the potential clinical application of targeting PKCδ in patients who have relapsed following treatment with BRAF inhibitors. Taken together, the present work demonstrates that inhibition of PKCδ by novel small molecule inhibitors causes caspase-dependent apoptosis mediated via the JNK-H2AX pathway in melanomas with NRAS mutations or BRAF inhibitor resistance.
Collapse
Affiliation(s)
| | - Brandon English
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | | | | | - Robert M. Williams
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- University of Colorado Cancer Center, Aurora, Colorado 80045, United States
| | | |
Collapse
|
43
|
Mammalian sterile 20-like kinase 1/2 inhibits the Wnt/β-catenin signalling pathway by directly binding casein kinase 1ε. Biochem J 2014; 458:159-69. [PMID: 24180524 DOI: 10.1042/bj20130986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Hippo signalling pathway can suppress the Wnt/β-catenin signalling pathway through the last downstream effectors YAP (Yes-associated protein)/TAZ (tafazzin). MST (mammalian sterile 20-like kinase) 1 functions as the upstream kinase of the Hippo pathway, and CK1ε (casein kinase 1ε) plays roles in the up-stream signal transduction of the Wnt/β-catenin pathway. In the present study, using tandem affinity purification and MS analysis, CK1ε was identified as a novel partner of MST1. Further analysis showed that the interaction between MST1 and CK1ε was mediated by their kinase domains and enhanced by the activation of MST1. To exclude the interference of the phosphorylated YAP/TAZ, the transduction from MST1 to YAP/TAZ was blocked using anti-WW45 shRNA. In the sh-WW45 cells, MST1 still inhibited the Wnt3A-induced phosphorylation of DVL2 (dishevelled 2) and Wnt/β-catenin signalling by disturbing the interaction of DVL2 and CK1ε. The growth-suppressive effect of MST1 in the presence of Wnt3A was effectively relieved by the downstream activation of the Wnt/β-catenin pathway. Moreover, MST2, the close homologue of MST1, also displayed the similar function in suppressing the Wnt/β-catenin pathway. Therefore the results of the present study revealed that, in addition to the phosphorylated YAP/TAZ, the Hippo pathway can suppress the Wnt/β-catenin pathway directly through MST1/2.
Collapse
|
44
|
Gouraud A, Brazeau MA, Grégoire MC, Simard O, Massonneau J, Arguin M, Boissonneault G. "Breaking news" from spermatids. Basic Clin Androl 2013; 23:11. [PMID: 25780573 PMCID: PMC4349474 DOI: 10.1186/2051-4190-23-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/26/2013] [Indexed: 01/06/2023] Open
Abstract
During the haploid phase of spermatogenesis, spermatids undergo a complex remodeling of the paternal genome involving the finely orchestrated replacement of histones by the highly-basic protamines. The associated striking change in DNA topology is characterized by a transient surge of both single- and double-stranded DNA breaks in the whole population of spermatids which are repaired before spermiation. These transient DNA breaks are now considered part of the normal differentiation program of these cells. Despite an increasing interest in the study of spermiogenesis in the last decade and the potential threat to the haploid genome, the origin of these DNA breaks still remains elusive. This review briefly outlines the current hypotheses regarding possible mechanisms that may lead to such transient DNA fragmentation including torsional stress, enzyme-induced breaks, apoptosis-like processes or oxidative stress. A better understanding of the origin of these DNA breaks will lead to further investigations on the genetic instability and mutagenic potential induced by the chromatin remodeling.
Collapse
Affiliation(s)
- Anne Gouraud
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Marc-André Brazeau
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Marie-Chantal Grégoire
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Olivier Simard
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Julien Massonneau
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Mélina Arguin
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Guylain Boissonneault
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| |
Collapse
|
45
|
Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer's disease: implications for pathogenesis and therapy. Ageing Res Rev 2013; 12:1024-41. [PMID: 23688931 DOI: 10.1016/j.arr.2013.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) are late-onset forms (LOAD) likely due to the interplay of environmental influences and individual genetic susceptibility. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNAs, constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that epigenetic mechanisms play a pivotal role in aging the pathogenesis of AD. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and AD. Moreover, we also consider how aberrant epigenetic modifications may lead to AD pathogenesis, and we review the therapeutic potential of epigenetic treatments for AD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | | | | | | | | |
Collapse
|
46
|
Xu C, Liu C, Huang W, Tu S, Wan F. Effect of Mst1 overexpression on the growth of human hepatocellular carcinoma HepG2 cells and the sensitivity to cisplatin in vitro. Acta Biochim Biophys Sin (Shanghai) 2013; 45:268-79. [PMID: 23419720 DOI: 10.1093/abbs/gmt006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian STE20-like kinase 1 (Mst1) is the mammalian homologue of Drosophila Hippo, a major inhibitor of cell proliferation in Drosophila. It ubiquitously encodes serine threonine kinase that belongs to the family of protein kinases related to yeast STE20, and is involved in cell proliferation, apoptosis, oncogenesis, and organ growth. Recent studies have shown that Mst1 has tumor-suppressor function, and the deletion or mutation of Mst1 is reported to be associated with tumorigenesis. To investigate the effect of overexpression of Mst1 on the growth of human liver cancer cell line HepG2 cells and the sensitivity to cisplatin in vitro, here we constructed recombinant eukaryotic expression vector pEGFP-N1-Mst1 containing Mst1 gene, and transiently transfected into HepG2 cells. The effects of Mst1 overexpression on the cell proliferation and apoptosis, the phosphorylation status of Yes-associated protein, and the mRNA transcript levels of connective tissue growth factor (CTGF), amphiregulin (AREG), and birc5 (Survivin) were determined. Results showed that overexpression of Mst1 inhibited cell proliferation, induced apoptosis of HepG2 cells, promoted YAP (Ser127) phosphorylation, and downregulated the mRNA expression of CTGF, AREG, and Survivin. We also investigated the relationship between the expression and cleavage of Mst1 and cisplatin-induced cell death. We found that Mst1 overexpression could induce cisplatin chemosensitivity, and cisplatin could promote the cleavage of Mst1 without affecting the expression of Mst1. Overall, our results indicated that Mst1 might be a promising anticancer target.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang 330006, China
| | | | | | | | | |
Collapse
|
47
|
Rawat SJ, Creasy CL, Peterson JR, Chernoff J. The tumor suppressor Mst1 promotes changes in the cellular redox state by phosphorylation and inactivation of peroxiredoxin-1 protein. J Biol Chem 2013; 288:8762-8771. [PMID: 23386615 DOI: 10.1074/jbc.m112.414524] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The serine/threonine protein kinases Mst1 and Mst2 can be activated by cellular stressors including hydrogen peroxide. Using two independent protein interaction screens, we show that these kinases associate, in an oxidation-dependent manner, with Prdx1, an enzyme that regulates the cellular redox state by reducing hydrogen peroxide to water and oxygen. Mst1 inactivates Prdx1 by phosphorylating it at Thr-90 and Thr-183, leading to accumulation of hydrogen peroxide in cells. These results suggest that hydrogen peroxide-stimulated Mst1 activates a positive feedback loop to sustain an oxidizing cellular state.
Collapse
Affiliation(s)
- Sonali Jalan Rawat
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Caretha L Creasy
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111.
| |
Collapse
|
48
|
Rass E, Chandramouly G, Zha S, Alt FW, Xie A. Ataxia telangiectasia mutated (ATM) is dispensable for endonuclease I-SceI-induced homologous recombination in mouse embryonic stem cells. J Biol Chem 2013; 288:7086-95. [PMID: 23355489 DOI: 10.1074/jbc.m112.445825] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) is activated upon DNA double strand breaks (DSBs) and phosphorylates numerous DSB response proteins, including histone H2AX on serine 139 (Ser-139) to form γ-H2AX. Through interaction with MDC1, γ-H2AX promotes DSB repair by homologous recombination (HR). H2AX Ser-139 can also be phosphorylated by DNA-dependent protein kinase catalytic subunit and ataxia telangiectasia- and Rad3-related kinase. Thus, we tested whether ATM functions in HR, particularly that controlled by γ-H2AX, by comparing HR occurring at the euchromatic ROSA26 locus between mouse embryonic stem cells lacking either ATM, H2AX, or both. We show here that loss of ATM does not impair HR, including H2AX-dependent HR, but confers sensitivity to inhibition of poly(ADP-ribose) polymerases. Loss of ATM or H2AX has independent contributions to cellular sensitivity to ionizing radiation. The ATM-independent HR function of H2AX requires both Ser-139 phosphorylation and γ-H2AX/MDC1 interaction. Our data suggest that ATM is dispensable for HR, including that controlled by H2AX, in the context of euchromatin, excluding the implication of such an HR function in genomic instability, hypersensitivity to DNA damage, and poly(ADP-ribose) polymerase inhibition associated with ATM deficiency.
Collapse
Affiliation(s)
- Emilie Rass
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
49
|
Baritaud M, Cabon L, Delavallée L, Galán-Malo P, Gilles ME, Brunelle-Navas MN, Susin SA. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell Death Dis 2012; 3:e390. [PMID: 22972376 PMCID: PMC3461360 DOI: 10.1038/cddis.2012.120] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The alkylating DNA-damage agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) induces a form of caspase-independent necroptosis implicating the mitochondrial flavoprotein apoptosis-inducing factor (AIF). Following the activation of PARP-1 (poly(ADP-ribose) polymerase-1), calpains, BID (BH3 interacting domain death agonist), and BAX (Bcl-2-associated X protein), the apoptogenic form of AIF (tAIF) is translocated to the nucleus where, associated with Ser139-phosphorylated histone H2AX (γH2AX), it creates a DNA-degrading complex that provokes chromatinolysis and cell death by necroptosis. The generation of γH2AX is crucial for this form of cell death, as mutation of H2AX Ser139 to Ala or genetic ablation of H2AX abolish both chromatinolysis and necroptosis. On the contrary, reintroduction of H2AX-wt or the phosphomimetic H2AX mutant (H2AX-S139E) into H2AX−/− cells resensitizes to MNNG-triggered necroptosis. Employing a pharmacological approach and gene knockout cells, we also demonstrate in this paper that the phosphatidylinositol-3-OH kinase-related kinases (PIKKs) ATM (ataxia telangiectasia mutated) and DNA-dependent protein kinase (DNA-PK) mediate γH2AX generation and, consequently, MNNG-induced necroptosis. By contrast, H2AX phosphorylation is not regulated by ATR or other H2AX-related kinases, such as JNK. Interestingly, ATM and DNA-PK phosphorylate H2AX at Ser139 in a synergistic manner with different kinetics of activation. Early after MNNG treatment, ATM generates γH2AX. Further, DNA-PK contributes to H2AX Ser139 phosphorylation. In revealing the pivotal role of PIKKs in MNNG-induced cell death, our data uncover a milestone in the mechanisms regulating AIF-mediated caspase-independent necroptosis.
Collapse
Affiliation(s)
- M Baritaud
- INSERM U872, Programmed cell death and physiopathology of tumor cells. Team n° 19, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 2012; 7:1098-108. [PMID: 22948226 DOI: 10.4161/epi.21975] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes.
Collapse
Affiliation(s)
- Dorine Rossetto
- Laval University Cancer Research Center, Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | | | | |
Collapse
|