1
|
Domínguez-Luis MJ, Castro-Hernández J, Santos-Concepción S, Díaz-Martín A, Arce-Franco M, Pérez-González N, Díaz M, Castrillo A, Salido E, Machado JD, Gumá M, Corr M, Díaz-González F. Modulation of the K/BxN arthritis mouse model and the effector functions of human fibroblast-like synoviocytes by liver X receptors. Eur J Immunol 2024; 54:e2451136. [PMID: 39148175 DOI: 10.1002/eji.202451136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The role of liver X receptors (LXR) in rheumatoid arthritis (RA) remains controversial. We studied the effect of LXR agonists on fibroblast-like synoviocytes (FLS) from RA patients and the K/BxN arthritis model in LXRα and β double-deficient (Nr1h2/3-/-) mice. Two synthetic LXR agonists, GW3965 and T0901317, were used to activate LXRs and investigate their effects on cell growth, proliferation and matrix metalloproteinases, and chemokine production in cultured FLS from RA patients. The murine model K/BxN serum transfer of inflammatory arthritis in Nr1h2/3-/- animals was used to investigate the role of LXRs on joint inflammation in vivo. LXR agonists inhibited the FLS proliferative capacity in response to TNF, the chemokine-induced migration, the collagenase activity in FLS supernatant and FLS CXCL12 production. In the K/BxN mouse model, Nr1h2/3-/- animals showed aggravated arthritis, histological inflammation, and joint destruction, as well as an increase in synovial metalloproteases and expression of proinflammatory mediators such as IL-1β and CCL2 in joints compared with wild type animals. Taken together, these data underscore the importance of LXRs in modulating the joint inflammatory response and highlight them as potential therapeutic targets in RA.
Collapse
MESH Headings
- Animals
- Humans
- Liver X Receptors/metabolism
- Liver X Receptors/genetics
- Mice
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Fibroblasts/metabolism
- Mice, Knockout
- Disease Models, Animal
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Cells, Cultured
- Male
- Cell Proliferation
- Female
- Mice, Inbred C57BL
- Benzylamines/pharmacology
Collapse
Affiliation(s)
| | - Javier Castro-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | - Ana Díaz-Martín
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | - Mayte Arce-Franco
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Mercedes Díaz
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Salido
- Departamento de Anatomía Patológica, Universidad de La Laguna, La Laguna, Spain
| | - José David Machado
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Mónica Gumá
- Department of Medicine, University of California, San Diego, California, USA
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, California, USA
| | - Federico Díaz-González
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
- Departamento de Medicina Interna, Dermatología, Universidad de La Laguna, La Laguna, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
2
|
Yin X, Yan Y, Li J, Cao Z, Shen S, Chang Q, Zhao Y, Wang X, Wang P. Nuclear receptors for epidermal lipid barrier: Advances in mechanisms and applications. Exp Dermatol 2024; 33:e15107. [PMID: 38840418 DOI: 10.1111/exd.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.
Collapse
Affiliation(s)
- Xidie Yin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Bousquet D, Nader E, Connes P, Guillot N. Liver X receptor agonist upregulates LPCAT3 in human aortic endothelial cells. Front Physiol 2024; 15:1388404. [PMID: 38694208 PMCID: PMC11061552 DOI: 10.3389/fphys.2024.1388404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Endothelial cells (ECs) play an important role in tissue homeostasis. Recently, EC lipid metabolism has emerged as a regulator of EC function. The liver X receptors (LXRs) are involved in the transcriptional regulation of genes involved in lipid metabolism and have been identified as a potential target in cardiovascular disease. We aimed to decipher the role of LXRs in the regulation of lipid metabolism in human aortic endothelial cells. Approach and Results Lipid composition analysis of endothelial cells treated with the LXR agonist T0901317 revealed that LXR activation increased the proportion of polyunsaturated fatty acids (PUFAs) and decreased the proportion of saturated fatty acids. The LXR agonist decreased the uptake of fatty acids (FAs) by ECs. This effect was abolished by LXRα silencing. LXR activation increased the activity and the expression of lysophosphatidylcholine acyltransferase, LPCAT3, which is involved in the turnover of FAs at the sn-2 position of phospholipids. Transcriptomic analysis also revealed that LXRs increased the expression of key genes involved in the synthesis of PUFAs, including FA desaturase one and 2, FA elongase 5 and fatty acid synthase. Subsequently, the LXR agonist increased PUFA synthesis and enhanced arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid content in the EC phospholipids. Modification of the FA composition of ECs by LXRs led to a decrease of arachidonate and linoleate derived prostaglandins synthesis and release. No change on markers of inflammation induced by plasma from sickle cell patient were observed in presence of LXR agonist. Conclusion These results identify LXR as a key regulator of lipid metabolism in human aortic endothelial cells and a direct effect of LXR agonist on lysophosphatidylacyl transferase (LPCAT3).
Collapse
Affiliation(s)
- Delphine Bousquet
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Elie Nader
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Philippe Connes
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Nicolas Guillot
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
- INSA Lyon, Villeurbanne, France
| |
Collapse
|
4
|
Hou X, Zhang R, Yang M, Niu N, Zong W, Yang L, Li H, Hou R, Wang X, Wang L, Liu X, Shi L, Zhao F, Wang L, Zhang L. Characteristics of Transcriptome and Metabolome Concerning Intramuscular Fat Content in Beijing Black Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15874-15883. [PMID: 37847170 DOI: 10.1021/acs.jafc.3c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
To study the characteristics of genes and metabolites related to intramuscular fat (IMF) content with less influence by breed background and individual differences, the skeletal muscle samples from 40 Beijing black pigs with either high or low IMF content were used to perform transcriptome and metabolome analyses. About 99 genes (twofold-change) were differentially expressed. Up-regulated genes in the high IMF pigs were mainly related to fat metabolism. The key genes in charge of IMF deposition are ADIPOQ, CIDEC, CYP4B1, DGAT2, LEP, OPRL1, PLIN1, SCD, and THRSP. KLHL40, TRAFD1, and HSPA6 were novel candidate genes for the IMF trait due to their high abundances. In the low IMF pigs, the differentially expressed genes involved in virus resistance were up-regulated. About 16 and 18 differential metabolites (1.5 fold-change) were obtained in the positive and negative modes, respectively. Pigs with low IMF had weaker fatty acid oxidation due to the down-regulation of various carnitines. Differentially expressed genes were more important in determining IMF deposition than differential metabolites because relatively few differential metabolites were obtained, and they were merely the products under the physiological status of diverged IMF content. This study provided valuable information for further studies on IMF deposition.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Run Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Man Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Naiqi Niu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Wencheng Zong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Liyu Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Huihui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Renda Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoqing Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ligang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fuping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lixian Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Longchao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
5
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Atluri K, Manne S, Nalamothu V, Mantel A, Sharma PK, Babu RJ. Advances in Current Drugs and Formulations for the Management of Atopic Dermatitis. Crit Rev Ther Drug Carrier Syst 2023; 40:1-87. [PMID: 37585309 DOI: 10.1615/critrevtherdrugcarriersyst.2023042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with a complex pathophysiology. Treatment of AD remains challenging owing to the presence of a wide spectrum of clinical phenotypes and limited response to existing therapies. However, recent genetic, immunological, and pathophysiological insights into the disease mechanism resulted in the invention of novel therapeutic drug candidates. This review provides a comprehensive overview of current therapies and assesses various novel drug delivery strategies currently under clinical investigation. Further, this review majorly emphasizes on various topical treatments including emollient therapies, barrier repair agents, topical corticosteroids (TCS), phosphodiesterase 4 (PDE4) inhibitors, calcineurin inhibitors, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors. It also discusses biological and systemic therapies, upcoming treatments based on ongoing clinical trials. Additionally, this review scrutinized the use of pharmaceutical inactive ingredients in the approved topical dosage forms for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Ishikawa S, Nikaido M, Otani T, Ogata K, Iida H, Inai Y, Tamaoki S, Inai T. Inhibition of Retinoid X Receptor Improved the Morphology, Localization of Desmosomal Proteins, and Paracellular Permeability in Three-Dimensional Cultures of Mouse Keratinocytes. Microscopy (Oxf) 2022; 71:152-160. [PMID: 35289919 PMCID: PMC9169536 DOI: 10.1093/jmicro/dfac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Retinoic acid (RA) plays an important role in epithelial homeostasis and influences the morphology, proliferation, differentiation and permeability of epithelial cells. Mouse keratinocytes, K38, reconstituted non-keratinized stratified epithelium in three-dimensional (3D) cultures with serum, which contains retinol (a source of RA), but the morphology was different from in vivo epithelium. The formed epithelium was thick, with loosened cell–cell contacts. Here, we investigated whether the inhibition of RA receptor (RAR)/retinoid X receptor (RXR)-mediated signaling by an RXR antagonist, HX 531, improved K38 3D cultures in terms of morphology and intercellular junctions. The epithelium formed by 0.5 μM HX531 was thin, and the intercellular space was narrowed because of the restoration of the layer-specific distribution of desmoglein (DSG)-1, DSG3 and plakoglobin (PG). Moreover, the levels of desmosomal proteins and tight junction proteins, including DSG1, DSG2, DSG3, PG, claudin (CLDN)-1 and CLDN4 increased, but the adherens junction protein, E-cadherin, did not show any change. Furthermore, CLDN1 was recruited to occludin-positive cell–cell contacts in the superficial cells and transepithelial electrical resistance was increased. Therefore, K38 3D cultures treated with 0.5 μM HX531 provides a useful in vitro model to study intercellular junctions in the non-keratinized epithelium.
Collapse
Affiliation(s)
- Shoko Ishikawa
- Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Misaki Nikaido
- Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Takahito Otani
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Kayoko Ogata
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuko Inai
- Division of General Dentistry, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sachio Tamaoki
- Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| |
Collapse
|
8
|
Dreno B, Chavda R, Julia V, Khammari A, Blanchet-Réthoré S, Krishnaswamy JK. Transcriptomics Analysis Indicates Trifarotene Reverses Acne-Related Gene Expression Changes. Front Med (Lausanne) 2021; 8:745822. [PMID: 34746181 PMCID: PMC8569320 DOI: 10.3389/fmed.2021.745822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Trifarotene is a topical retinoid selective for retinoic acid receptor gamma that was recently approved for treatment of acne vulgaris. We performed a gene expression analysis to identify the molecular and cellular impact of trifarotene treatment on acne papules. Methods: In this open-label prospective study, subjects with moderate inflammatory acne of the back were treated with trifarotene 0.005% or vehicle cream on dedicated areas for 27 days, and 4 biopsies were collected from each subject (1 from skin without a visible acne lesion and three at the site of an acne papule: one baseline, one after vehicle treatment, and one after trifarotene treatment). Large scale gene expression profiling of the biopsies was performed using Affymetrix technology, treatment-specific gene expression profiles were generated using statistical modeling, and pathway analysis was performed. Using single-cell RNAseq data, in silico deconvolution of transcriptomics data was performed to identify cellular signatures. Results: We discovered a unique set of 67 genes modulated by trifarotene that are primarily involved in cellular migration, inflammation, and extracellular matrix reorganization. Changes in cellular expression were similar in both trifarotene-treated and spontaneously-resolving lesions. However, only trifarotene treatment impacted SPP1+ macrophages, a subset of highly proliferative macrophages recently identified in fibrotic tissue. Conclusions: These results show that trifarotene has a novel action in acne treatment by affecting epidermal and immune components of acne pathogenesis.
Collapse
|
9
|
Judd J, Sanderson H, Feschotte C. Evolution of mouse circadian enhancers from transposable elements. Genome Biol 2021; 22:193. [PMID: 34187518 PMCID: PMC8240256 DOI: 10.1186/s13059-021-02409-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transposable elements are increasingly recognized as a source of cis-regulatory variation. Previous studies have revealed that transposons are often bound by transcription factors and some have been co-opted into functional enhancers regulating host gene expression. However, the process by which transposons mature into complex regulatory elements, like enhancers, remains poorly understood. To investigate this process, we examined the contribution of transposons to the cis-regulatory network controlling circadian gene expression in the mouse liver, a well-characterized network serving an important physiological function. RESULTS ChIP-seq analyses reveal that transposons and other repeats contribute ~ 14% of the binding sites for core circadian regulators (CRs) including BMAL1, CLOCK, PER1/2, and CRY1/2, in the mouse liver. RSINE1, an abundant murine-specific SINE, is the only transposon family enriched for CR binding sites across all datasets. Sequence analyses and reporter assays reveal that the circadian regulatory activity of RSINE1 stems from the presence of imperfect CR binding motifs in the ancestral RSINE1 sequence. These motifs matured into canonical motifs through point mutations after transposition. Furthermore, maturation occurred preferentially within elements inserted in the proximity of ancestral CR binding sites. RSINE1 also acquired motifs that recruit nuclear receptors known to cooperate with CRs to regulate circadian gene expression specifically in the liver. CONCLUSIONS Our results suggest that the birth of enhancers from transposons is predicated both by the sequence of the transposon and by the cis-regulatory landscape surrounding their genomic integration site.
Collapse
Affiliation(s)
- Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Hayley Sanderson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Identifying selective agonists targeting LXRβ from terpene compounds of alismatis rhizoma. J Mol Model 2021; 27:91. [PMID: 33616795 DOI: 10.1007/s00894-021-04699-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Hyperlipidemia is thought of as an important contributor to coronary disease, diabetes, and fatty liver. Liver X receptor β (LXRβ) was considered as a validated target for hyperlipidemia therapy due to its role in regulating cholesterol homeostasis and immunity. However, many current drugs applied in clinics are not selectively targeting LXRβ, and they can also activate LXRα which activates SREBP-1c that worked as an activator of lipogenic genes. Therefore, exploiting agonists selectively targeting LXRβ is urgent. Here, computational tools were used to screen potential agonists selectively targeting LXRβ from 112 terpenes of alismatis rhizoma. Firstly, a structural analysis between selective and nonselective agonists was used to explore key residues of selective binding with LXRβ. Our data indicated that Phe271, Ser278, Met312, His435, and Trp457 were important to compounds binding with LXRβ, suggesting that engaging ligand interaction with these residues may provide directions for the development of ligands with improved selective profiles. Then, ADMET analysis, molecular docking, MD simulations, and calculation of binding free energy and its decomposition were executed to screen the agonists whose bioactivity was favorable from 112 terpenes of alismatis rhizoma. We found that two triterpenes 16-hydroxy-alisol B 23-acetate and alisol M 23-acetate showed favorable ADMET properties and high binding affinity against LXRβ. These compounds could be considered as promising selective agonists targeting LXRβ. Our work provides an alternative strategy for screening agonists selectively targeting LXRβ from alismatis rhizoma for hyperlipidemia disease treatment.
Collapse
|
11
|
Li Z, Zhang C, Qiu B, Niu Y, Leng L, Cai S, Tian Y, Zhang TJ, Qiu G, Wu N, Wu Z, Wang Y. Comparative proteomics analysis for identifying the lipid metabolism related pathways in patients with Klippel-Feil syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:255. [PMID: 33708882 PMCID: PMC7940892 DOI: 10.21037/atm-20-5155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Klippel-Feil syndrome (KFS) represents the rare and complex deformity characterized by congenital defects in the formation or segmentation of the cervical vertebrae. There is a wide gap in understanding the detailed mechanisms of KFS because of its rarity, heterogeneity, small pedigrees, and the broad spectrum of anomalies. Methods We recruited eight patients of Chinese Han ethnicity with KFS, five patients with congenital scoliosis (CS) who presented with congenital fusion of the thoracic or lumbar spine and without known syndrome or cervical deformity, and seven healthy controls. Proteomic analysis by data-independent acquisition (DIA) was performed to identify the differential proteome among the three matched groups and the data were analyzed by bioinformatics tools including Gene Ontology (GO) categories and Ingenuity Pathway Analysis (IPA) database, to explore differentially abundant proteins (DAPs) and canonical pathways involved in the pathogenesis of KFS. Results A total of 49 DAPs were detected between KFS patients and the controls, and moreover, 192 DAPs were identified between patients with KFS and patients with CS. Fifteen DAPs that were common in both comparisons were considered as candidate biomarkers for KFS, including membrane primary amine oxidase, noelin, galectin-3-binding protein, cadherin-5, glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin-1, CD109 antigen, and eight immunoglobulins. Furthermore, the same significant canonical pathways of LXR/RXR activation and FXR/RXR activation were observed in both comparisons. Seven of DAPs were apolipoproteins related to these pathways that are involved in lipid metabolism. Conclusions This study provides the first proteomic profile for understanding the pathogenesis and identifying predictive biomarkers of KFS. We detected 15 DAPs that were common in both comparisons as candidate predictive biomarkers of KFS. The lipid metabolism-related canonical pathways of LXR/RXR and FXR/RXR activation together with seven differentially abundant apolipoproteins may play significant roles in the etiology of KFS and provide possible pathogenesis correlation between KFS and CS.
Collapse
Affiliation(s)
- Ziquan Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Cong Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Bintao Qiu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchen Niu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Leng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Siyi Cai
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Sun MMG, Beier F. Liver X Receptor activation regulates genes involved in lipid homeostasis in developing chondrocytes. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100030. [DOI: 10.1016/j.ocarto.2020.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
|
13
|
Hashimoto S, Takanari H, Compe E, Egly JM. Dysregulation of LXR responsive genes contribute to ichthyosis in trichothiodystrophy. J Dermatol Sci 2020; 97:201-207. [PMID: 32037099 DOI: 10.1016/j.jdermsci.2020.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/29/2019] [Accepted: 01/21/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterised by brittle hairs and various systemic symptoms, including photosensitivity and ichthyosis. While photosensitivity could result from DNA repair defects, other TTD clinical features might be due to deficiencies in certain molecular processes. OBJECTIVES The aim of this study was to understand the pathophysiological mechanism of ichthyosis in TTD, focused on the transcriptional dysregulation. METHODS TTD mouse skin tissue and keratinocytes were pathologically and physiologically examined to identify the alteration of lipid homeostasis in TTD with ichtyosis. Gene expression of certain lipid transporter was assessed in fibroblasts derived from TTD patients and TTD mouse keratinocytes. RESULTS Histopathology and electron microscopy revealed abnormal lipid composition in TTD mice skin. In addition to abnormal cholesterol dynamics, TTD mouse keratinocytes exhibit impaired expression of Liver X receptor (LXR) responsive genes, including Abca12, a key regulator of Harlequin ichthyosis, and Abcg1 that is involved in the cholesterol transport process in the epidermis. Strikingly, dysregulation of LXR responsive genes has been only observed in cells isolated from TTD patients who developed ichthyosis. CONCLUSIONS Our results suggest that the altered expression of the LXR-responsive genes contribute to the pathophysiology of ichthyosis in TTD. These findings provide a new drug discovery target for TTD.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Strasbourg, France; Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Hiroki Takanari
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, Japan
| | - Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Strasbourg, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Chen L, Wu L, Zhu L, Zhao Y. Overview of the structure-based non-genomic effects of the nuclear receptor RXRα. Cell Mol Biol Lett 2018; 23:36. [PMID: 30093910 PMCID: PMC6080560 DOI: 10.1186/s11658-018-0103-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor RXRα (retinoid X receptor-α) is a transcription factor that regulates the expression of multiple genes. Its non-genomic function is largely related to its structure, polymeric forms and modification. Previous research revealed that some non-genomic activity of RXRα occurs via formation of heterodimers with Nur77. RXRα-Nur77 heterodimers translocate from the nucleus to the mitochondria in response to certain apoptotic stimuli and this activity correlates with cell apoptosis. More recent studies revealed a significant role for truncated RXRα (tRXRα), which interacts with the p85α subunit of the PI3K/AKT signaling pathway, leading to enhanced activation of AKT and promoting cell growth in vitro and in animals. We recently reported on a series of NSAID sulindac analogs that can bind to tRXRα through a unique binding mechanism. We also identified one analog, K-80003, which can inhibit cancer cell growth by inducing tRXRα to form a tetramer, thus disrupting p85α-tRXRα interaction. This review analyzes the non-genomic effects of RXRα in normal and tumor cells, and discusses the functional differences based on RXRα protein structure (structure source: the RCSB Protein Data Bank).
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Linyan Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Yiyi Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| |
Collapse
|
15
|
Bakry OA, Shoeib MAEM, El Kady N, Attalla S. Re-appraisal of Keratinocytes' Role in Vitiligo Pathogenesis. Indian J Dermatol 2018; 63:231-240. [PMID: 29937560 PMCID: PMC5996628 DOI: 10.4103/ijd.ijd_520_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Vitiligo is a common pigmentary disorder. Studies on its pathogenesis extensively investigated melanocytes' abnormalities and few studies searched for keratinocytes' role in disease development. Liver X receptor-α (LXR-α) is a member of nuclear hormone receptors that acts as a transcription factor. Its target genes are the main regulators of melanocyte functions. Aim The aim of this study is to investigate keratinocytes' role in vitiligo pathogenesis through immunohistochemical expression of LXR-α in lesional, perilesional, and distant nonlesional vitiligo skin. Materials and Methods This case-control study was carried out on 44 participants. These included 24 patients with vitiligo and 20 age- and sex-matched normal individuals as a control group. Biopsies, from cases, were taken from lesional, perilesional, and distant nonlesional areas. Evaluation was done using immunohistochemical technique. Results Keratinocyte LXR-α expression was upregulated in the lesional and perilesional skin (follicular and interfollicular epidermis) compared with control skin (P <0.001 for all). There was significant association between higher histoscore (H-score) in lesional epidermis (P <0.001) and in hair follicle (P =0.001) and the presence of angiogenesis. There was significant association between higher H-score in lesional epidermis and suprabasal vacuolization (P =0.02). No significant association was found between H-score or expression percentage and clinical data of selected cases. Conclusion LXR-α upregulation is associated with keratinocyte damage in vitiligo lesional skin that leads to decreased keratinocyte-derived mediators and growth factors supporting the growth and/or melanization of surrounding melanocytes. Therefore, melanocyte function and survival are affected.
Collapse
Affiliation(s)
- Ola Ahmed Bakry
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| | | | - Noha El Kady
- Department of Pathology, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| | - Shereen Attalla
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| |
Collapse
|
16
|
Yang S, Xing Z, Liu T, Zhou J, Liang Q, Tang T, Cui H, Peng W, Xiong X, Wang Y. Synovial tissue quantitative proteomics analysis reveals paeoniflorin decreases LIFR and ASPN proteins in experimental rheumatoid arthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:463-473. [PMID: 29551890 PMCID: PMC5844255 DOI: 10.2147/dddt.s153927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Rheumatoid arthritis (RA) is a common worldwide public health problem, which causes a chronic, systemic inflammatory disorder of synovial joints. Paeoniflorin (PA) has achieved positive results to some extent for the treatment of RA. Purpose This study aimed to reveal the potential druggable targets of PA in an experimental RA model using quantitative proteomics analysis. Study design and methods Thirty Sprague-Dawley rats were randomly divided into a normal group, model group and PA group. PA (1 mg/kg) was used to treat collagen-induced arthritis (CIA) rats for 42 days. We used isobaric tags for relative and absolute quantitation-based quantitative proteomics to analyze the synovial tissue of rats. Ingenuity pathway analysis (IPA) software was applied to process the data. The proteins that were targeted via IPA software were verified by Western blots. Results We found that PA caused 86 differentially expressed proteins (≥1.2-fold or ≤0.84-fold) compared with the CIA group. Of these varied proteins, 20 significantly changed (p<0.05) proteins referred to 41 CIA-relative top pathways after IPA pathway analysis. Thirteen of the PA-regulated pathways were anchored, which intervened in 24 biological functions. Next, network analysis revealed that leukemia inhibitory factor receptor (LIFR) and asporin (ASPN), which participate in two significant networks, contributed the most to the efficacy of PA treatment. Additionally, Western blots confirmed the aforementioned druggable targets of PA for the treatment of RA. Conclusion The results reveal that PA may treat RA by decreasing two key proteins, LIFR and ASPN. Our research helps to identify potential agents for RA treatment.
Collapse
Affiliation(s)
- Shu Yang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jing Zhou
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qinghua Liang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hanjin Cui
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Weijun Peng
- Department of Traditional Chinese Medicine, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xingui Xiong
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
17
|
He H, Sinha I, Fan R, Haldosen LA, Yan F, Zhao C, Dahlman-Wright K. c-Jun/AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer. Oncogene 2018; 37:2586-2600. [DOI: 10.1038/s41388-018-0165-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
|
18
|
Bajpai A, Ishii T, Miyauchi K, Gupta V, Nishio-Masaike Y, Shimizu-Yoshida Y, Kubo M, Kitano H. Insights into gene expression profiles induced by Socs3 depletion in keratinocytes. Sci Rep 2017; 7:15830. [PMID: 29158586 PMCID: PMC5696538 DOI: 10.1038/s41598-017-16155-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Specific deletion of suppressor of cytokine signaling 3 (Socs3) in keratinocytes can cause severe skin inflammation with infiltration of immune cells. The molecular mechanisms and key regulatory pathways involved in these processes remain elusive. To investigate the role of Socs3 in keratinocytes, we generated and analyzed global RNA-Seq profiles from Socs3 conditional knockout (cKO) mice of two different ages (2 and 10 weeks). Over 400 genes were significantly regulated at both time points. Samples from 2-week-old mice exhibited down-regulation of genes involved in keratin-related functions and up-regulation of genes involved in lipid metabolism. At week 10, multiple chemokine and cytokine genes were up-regulated. Functional annotation revealed that the genes differentially expressed in the 2-week-old mice play roles in keratinization, keratinocyte differentiation, and epidermal cell differentiation. By contrast, differentially expressed genes in the 10-week-old animals are involved in acute immune-related functions. A group of activator protein-1-related genes were highly up-regulated in Socs3 cKO mice of both ages. This observation was validated using qRT-PCR by SOCS3-depleted human keratinocyte-derived HaCaT cells. Our results suggest that, in addition to participating in immune-mediated pathways, SOCS3 also plays important roles in skin barrier homeostasis.
Collapse
Affiliation(s)
- Archana Bajpai
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
| | - Takashi Ishii
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
| | - Kosuke Miyauchi
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
| | - Vipul Gupta
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- The Systems Biology Institute, Tokyo, Japan
| | | | - Yuki Shimizu-Yoshida
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- Sony Computer Science Laboratories, Inc, Tokyo, Japan
| | - Masato Kubo
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Tokyo, Japan
| | - Hiroaki Kitano
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
- The Systems Biology Institute, Tokyo, Japan.
- Sony Computer Science Laboratories, Inc, Tokyo, Japan.
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| |
Collapse
|
19
|
Wang Y, Ma C, Sun Y, Li Y, Kang L, Jiang Y. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs. BMC Genomics 2017; 18:780. [PMID: 29025412 PMCID: PMC5639760 DOI: 10.1186/s12864-017-4201-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/08/2017] [Indexed: 01/12/2023] Open
Abstract
Background The intramuscular fat content (IMF) refers to the amount of fat within muscles, including the sum of phospholipids mainly found in cell membranes, triglycerides and cholesterol, and is determined both by hyperplasia and hypertrophy of adipocyte during the development of pigs. The IMF content is an important economic trait that is genetically controlled by multiple genes. The Laiwu pig is an indigenous fatty pig breed distributed in North China, characterized by excessively higher level of IMF content (9%~12%), therefore, is suitable for the identification of genes controlling IMF variations. To identify genes underlying IMF deposition, we performed genome-wide transcriptome and methylome analyses on longissimus dorsi (LD) muscle in Laiwu pigs across four developmental stages. Results A total of 22,524 expressed genes were detected and 1158 differentially expressed genes (DEGs) were hierarchically clustered in the LD muscle over four developmental stages from 60 d to 400 d. These genes were significantly clustered into four temporal expression profiles, and genes participating in fat cell differentiation and lipid biosynthesis processes were identified. From 120 d to 240 d, the period with the maximum IMF deposition rate, the lipid biosynthesis related genes (FOSL1, FAM213B and G0S2), transcription factors (TFs) (EGR1, KLF5, SREBF2, TP53 and TWIST1) and enriched pathways (steroid biosynthesis and fatty acid biosynthesis) were revealed; and fat biosynthesis relevant genes showing differences in DNA methylation in gene body or intergenic region were detected, such as FASN, PVALB, ID2, SH3PXD2B and EGR1. Conclusions This study provides a comprehensive landscape of transcriptome of the LD muscle in Laiwu pigs ranging from 60 to 400 days old, and methylome of the LD muscle in 120 d and 240 d Laiwu pigs. A set of candidate genes and TFs involved in fat biosynthesis process were identified, which were probably responsible for IMF deposition. The results from this study would provide a reference for the identification of genes controlling IMF variation, and for exploring molecular mechanisms underlying IMF deposition in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4201-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuding Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Li
- Central Hospital of Taian, Taian, 271018, People's Republic of China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.
| |
Collapse
|
20
|
The trisaccharide raffinose modulates epidermal differentiation through activation of liver X receptor. Sci Rep 2017; 7:43823. [PMID: 28266648 PMCID: PMC5339792 DOI: 10.1038/srep43823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
The epidermal barrier function requires optimal keratinocyte differentiation and epidermal lipid synthesis. Liver X receptor (LXR) α and β, are important transcriptional regulators of the epidermal gene expression. Here, we show that raffinose, a ubiquitously present trisaccharide in plants, activated the transcriptional activity of LXRα/β, which led to the induction of genes required for keratinocyte differentiation such as involucrin and filaggrin, and genes involved in lipid metabolism and transport including SCD1 and ABCA1 in both HaCaT and normal human epidermal keratinocytes. Raffinose induced the expression of JunD and Fra1, and their DNA binding in the AP1 motif in the promoters of involucrin and loricrin. Interestingly, LXR bound the AP1 motif upon raffinose treatment, and conversely, JunD and Fra1 bound the LXR response element in promoters of LXR target genes, which indicates the presence of a postive cross-talk between LXR and AP1 in the regualtion of these genes. Finally, the effect of raffinose in epidermal barrier function was confirmed by applying raffinose in an ointment formulation to the skin of hairless mice. These findings suggest that raffinose could be examined as an ingredient in functional cosmetics and therapeutic agents for the treatment of cutaneous disorders associated with abnormal epidermal barrier function.
Collapse
|
21
|
Yu SX, Chen W, Hu XZ, Feng SY, Li KY, Qi S, Lei QQ, Hu GQ, Li N, Zhou FH, Ma CY, Du CT, Yang YJ. Liver X receptors agonists suppress NLRP3 inflammasome activation. Cytokine 2016; 91:30-37. [PMID: 27987394 DOI: 10.1016/j.cyto.2016.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 11/15/2022]
Abstract
Inflammasomes are multiprotein complexes that control the production of IL-1β and IL-18. NLRP3 inflammasome, the most characterized inflammasome, plays prominent roles in defense against infection, however aberrant activation is deleterious and leads to diseases. Therefore, its tight control offers therapeutic promise. Liver X receptors (LXRs) have significant anti-inflammatory properties. Whether LXRs regulate inflammasome remains unresolved. We thus tested the hypothesis that LXR's anti-inflammatory properties may result from its ability to suppress inflammasome activation. In this study, LXRs agonists inhibited the induction of IL-1β production, caspase-1 cleavage and ASC oligomerization by NLRP3 inflammasome. The agonists also inhibited inflammasome-associated mtROS production. Importantly, the agonists inhibited the priming of inflammasome activation. In vivo data also showed that LXRs agonist prevented NLRP3-dependent peritonitis. In conclusion, LXRs agonists are identified to potently suppress NLRP3 inflammasome and the regulation of LXRs signaling is a potential therapeutic for inflammasome-driven diseases.
Collapse
Affiliation(s)
- Shui-Xing Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wei Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiao-Zhu Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shi-Yuan Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kun-Yu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuai Qi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qian-Qian Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Gui-Qiu Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ning Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng-Hua Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chao-Ying Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chong-Tao Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
22
|
Lee HJ, Ryu JM, Jung YH, Lee SJ, Kim JY, Lee SH, Hwang IK, Seong JK, Han HJ. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells. Sci Rep 2016; 6:36746. [PMID: 27829662 PMCID: PMC5103190 DOI: 10.1038/srep36746] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/20/2016] [Indexed: 01/07/2023] Open
Abstract
There is an accumulation of evidence indicating that the risk of Alzheimer’s disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Sei-Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Jeong Yeon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea.,Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, 330-930, Republic of Korea
| | - In Koo Hwang
- BK21 PLUS Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science; Seoul National University and Korea Mouse Phenotyping Center (KMPC), Seoul, Korea.,Department of Anatomy and Cell Biology; Korea Mouse Phenotyping Center (KMPC); College of Veterinary Medicine; Seoul National University, Seoul, Korea
| | - Je Kyung Seong
- BK21 PLUS Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science; Seoul National University and Korea Mouse Phenotyping Center (KMPC), Seoul, Korea.,Department of Anatomy and Cell Biology; Korea Mouse Phenotyping Center (KMPC); College of Veterinary Medicine; Seoul National University, Seoul, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Fierro-Macías AE, Floriano-Sánchez E, Mena-Burciaga VM, Gutiérrez-Leonard H, Lara-Padilla E, Abarca-Rojano E, Fierro-Almanzán AE. [Association between IGF system and PAPP-A in coronary atherosclerosis]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 86:148-56. [PMID: 26906607 DOI: 10.1016/j.acmx.2015.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is a condition that involves multiple pathophysiological mechanisms and whose knowledge has not been fully elucidated. Often, scientific advances on the atherogenic pathophysiology generate that molecules not previously considered in the scene of this disease, were attributed actions on the onset or progression of it. A representative example is the study of a new mechanism involved in the atherogenic process, consisting of the association between the insulin-like growth factor (IGF) system and pregnancy-associated plasma protein-A (PAPP-A). Insulin-like growth factor system is a family of peptides that include 3 peptide hormones, 4 transmembrane receptors and 6 binding proteins. Insulin-like growth factor-1 (IGF-1) is the main ligand of the IGF system involved in coronary atherosclerosis. IGF-1 exerts its effects via activation of the IGF-1R receptor on vascular smooth muscle cells or macrophages. In vascular smooth muscle cells promotes migration and prevents apoptosis which increases plaque stability while in macrophages reduces reverse cholesterol transport leading to the formation of foam cells. Regulation of IGF-1 endothelial bioavailability is carried out by IGFBP proteases, mainly by PAPP-A. In this review, we address the mechanisms between IGF system and PAPP-A in atherosclerosis with emphasis on molecular effects on vascular smooth muscle cells and macrophages.
Collapse
Affiliation(s)
- Alfonso Eduardo Fierro-Macías
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México.
| | - Esaú Floriano-Sánchez
- Laboratorio Multidisciplinario de Investigación, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional (SEDENA), México, DF, México
| | - Victoria Michelle Mena-Burciaga
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - Hugo Gutiérrez-Leonard
- Departamento de Hemodinamia, Hospital Central Militar, Secretaría de la Defensa Nacional (SEDENA), México, DF, México
| | - Eleazar Lara-Padilla
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - Edgar Abarca-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - Alfonso Edmundo Fierro-Almanzán
- Departamento de Cirugía, Hospital General Regional N.(o) 66, Instituto Mexicano del Seguro Social (IMSS), Ciudad Juárez, Chihuahua, México
| |
Collapse
|
24
|
Peptidylarginine Deiminase 3 (PAD3) Is Upregulated by Prolactin Stimulation of CID-9 Cells and Expressed in the Lactating Mouse Mammary Gland. PLoS One 2016; 11:e0147503. [PMID: 26799659 PMCID: PMC4723263 DOI: 10.1371/journal.pone.0147503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 μg/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation.
Collapse
|
25
|
Huwait EA, Singh NN, Michael DR, Davies TS, Moss JW, Ramji DP. Protein Kinase C Is Involved in the Induction of ATP-Binding Cassette Transporter A1 Expression by Liver X Receptor/Retinoid X Receptor Agonist in Human Macrophages. J Cell Biochem 2015; 116:2032-8. [DOI: 10.1002/jcb.25157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/03/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Etimad A. Huwait
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Nishi N. Singh
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Daryn R. Michael
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Thomas S. Davies
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Joe W.E. Moss
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Dipak P. Ramji
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| |
Collapse
|
26
|
Soodgupta D, Kaul D, Kanwar AJ, Parsad D. Modulation of LXR-α and the effector genes by Ascorbic acid and Statins in psoriatic keratinocytes. Mol Cell Biochem 2014; 397:1-6. [DOI: 10.1007/s11010-014-2063-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/11/2014] [Indexed: 11/30/2022]
|
27
|
28-Homobrassinolide: a novel oxysterol transactivating LXR gene expression. Mol Biol Rep 2014; 41:7447-61. [PMID: 25091941 DOI: 10.1007/s11033-014-3632-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022]
Abstract
Cholesterol is the template for steroid hormone biosynthesis. Cholesterol homeostasis is regulated by Cyt-P450 oxygenated cholesterols acting as ligands on LXR-α and LXR-β transcription factors that are now emerging as drug targets. Heterodimerization of LXRs with retinoic acid receptor is considered a prerequisite for target gene activation. Dietary plant oxysterol 28-homobrassinolide (28-HB) is a proven antihyperglycemic and a pro-steroidogenic agent in the rat. Whether 28-HB has a role in LXR gene expression was therefore investigated using oral gavage (15 days) of 28-HB (333 µg/kg b w) to normal and diabetic rat. PCR amplified LXR-α and β mRNA transcripts from treated rat liver and testis exhibited quantitative differences in their expression. Conformational differences in 28-HB docking to LXR-α and β binding domains were also noted through in silico studies, LXR-β adopting lesser specificity. We report that 28-HB transactivates LXR genes in the rat tissues.
Collapse
|
28
|
Slominski AT, Manna PR, Tuckey RC. Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp Dermatol 2014; 23:369-374. [PMID: 24888781 PMCID: PMC4046116 DOI: 10.1111/exd.12376] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/15/2022]
Abstract
Human skin has the ability to synthesize glucocorticoids de novo from cholesterol or from steroid intermediates of systemic origin. By interacting with glucocorticoid receptors, they regulate skin immune functions as well as functions and phenotype of the epidermal, dermal and adnexal compartments. Most of the biochemical (enzyme and transporter activities) and regulatory (neuropeptides mediated activation of cAMP and protein kinase A dependent pathways) principles of steroidogenesis in the skin are similar to those operating in classical steroidogenic organs. However, there are also significant differences determined by the close proximity of synthesis and action (even within the same cells) allowing para-, auto- or intracrine modes of regulation. We also propose that ultraviolet light B (UVB) can regulate the availability of 7-dehydrocholesterol for transformation to cholesterol with its further metabolism to steroids, oxysterols or ∆7 steroids, because of its transformation to vitamin D3. In addition, UVB can rearrange locally produced ∆7 steroids to the corresponding secosteroids with a short- or no-side chain. Thus, different mechanisms of regulation occur in the skin that can be either stochastic or structuralized. We propose that local glucocorticosteroidogenic systems and their regulators, in concert with cognate receptors operate to stabilize skin homeostasis and prevent or attenuate skin pathology.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Health Science Center, Memphis, TN, USA
- Department of Medicine, Division of Rheumatology and Connective Tissue Diseases, University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
29
|
Zhao C, Qiao Y, Jonsson P, Wang J, Xu L, Rouhi P, Sinha I, Cao Y, Williams C, Dahlman-Wright K. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer. Cancer Res 2014; 74:3983-94. [PMID: 24830720 DOI: 10.1158/0008-5472.can-13-3396] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive phenotypes of TNBC cells in vitro. Similarly, RNAi-mediated attenuation of Fra-1 or c-Jun reduced cellular invasion in vivo in a zebrafish tumor xenograft model. Exploring the AP-1 cistrome and the AP-1-regulated transcriptome, we obtained insights into the transcriptional regulatory networks of AP-1 in TNBC cells. Among the direct targets identified for Fra-1/c-Jun involved in proliferation, adhesion, and cell-cell contact, we found that AP-1 repressed the expression of E-cadherin by transcriptional upregulation of ZEB2 to stimulate cell invasion. Overall, this work illuminates the pathways through which TNBC cells acquire invasive and proliferative properties.
Collapse
Affiliation(s)
- Chunyan Zhao
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge;
| | - Yichun Qiao
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge
| | - Philip Jonsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas; and
| | - Jian Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm
| | - Li Xu
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge
| | - Pegah Rouhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm
| | - Indranil Sinha
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm; Department of Medicine and Health Sciences, Linköping University, Linköping; Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas; and
| | - Karin Dahlman-Wright
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge; Science for Life Laboratory, Karolinska Institute, Solna, Sweden;
| |
Collapse
|
30
|
Qu XA, Freudenberg JM, Sanseau P, Rajpal DK. Integrative clinical transcriptomics analyses for new therapeutic intervention strategies: a psoriasis case study. Drug Discov Today 2014; 19:1364-71. [PMID: 24662034 DOI: 10.1016/j.drudis.2014.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 03/14/2014] [Indexed: 01/28/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease with complex pathological features and unmet pharmacotherapy needs. Here, we present a framework for developing new therapeutic intervention strategies for psoriasis by utilizing publicly available clinical transcriptomics data sets. By exploring the underlying molecular mechanisms of psoriasis, the effects of subsequent perturbation of these mechanisms by drugs and an integrative analysis, we propose a psoriasis disease signature, identify potential drug repurposing opportunities and present novel target selection methodologies. We anticipate that the outlined methodology or similar approaches will further support biomarker discovery and the development of new drugs for psoriasis.
Collapse
Affiliation(s)
- Xiaoyan A Qu
- Computational Biology, Quantitative Sciences, GlaxoSmithKline R&D, RTP, NC, USA
| | | | - Philippe Sanseau
- Computational Biology, Quantitative Sciences, GlaxoSmithKline R&D, Stevenage, UK
| | - Deepak K Rajpal
- Computational Biology, Quantitative Sciences, GlaxoSmithKline R&D, RTP, NC, USA.
| |
Collapse
|
31
|
Abstract
Retinoid X Receptors (RXR) were initially identified as nuclear receptors binding with stereo-selectivity the vitamin A derivative 9-cis retinoic acid, although the relevance of this molecule as endogenous activator of RXRs is still elusive. Importantly, within the nuclear receptor superfamily, RXRs occupy a peculiar place, as they are obligatory partners for a number of other nuclear receptors, thus integrating the corresponding signaling pathways. In this chapter, we describe the structural features allowing RXR to form homo- and heterodimers, and the functional consequences of this unique ability. Furthermore, we discuss the importance of studying RXR activity at a genome-wide level in order to comprehensively address the biological implications of their action that is fundamental to understand to what extent RXRs could be exploited as new therapeutic targets.
Collapse
Affiliation(s)
- Federica Gilardi
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland,
| | | |
Collapse
|
32
|
Schmuth M, Moosbrugger-Martinz V, Blunder S, Dubrac S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:463-73. [PMID: 24315978 DOI: 10.1016/j.bbalip.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/19/2022]
Abstract
Epidermal lipid synthesis and metabolism are regulated by nuclear hormone receptors (NHR) and in turn epidermal lipid metabolites can serve as ligands to NHR. NHR form a large superfamily of receptors modulating gene transcription through DNA binding. A subgroup of these receptors is ligand-activated and heterodimerizes with the retinoid X receptor including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR) and pregnane X receptor (PXR). Several isotypes of these receptors exist, all of which are expressed in skin. In keratinocytes, ligand activation of PPARs and LXRs stimulates differentiation, induces lipid accumulation, and accelerates epidermal barrier regeneration. In the cutaneous immune system, ligand activation of all three receptors, PPAR, LXR, and PXR, has inhibitory properties, partially mediated by downregulation of the NF-kappaB pathway. PXR also has antifibrotic effects in the skin correlating with TGF-beta inhibition. In summary, ligands of PPAR, LXR and PXR exert beneficial therapeutic effects in skin disease and represent promising targets for future therapeutic approaches in dermatology. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | - Stefan Blunder
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
33
|
Spann NJ, Glass CK. Sterols and oxysterols in immune cell function. Nat Immunol 2013; 14:893-900. [PMID: 23959186 DOI: 10.1038/ni.2681] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Intermediates in the cholesterol-biosynthetic pathway and oxysterol derivatives of cholesterol regulate diverse cellular processes. Recent studies have expanded the appreciation of their roles in controlling the functions of cells of the innate and adaptive immune systems. Here we review recent literature reporting on the biological functions of sterol intermediates and oxysterols, acting through transcription factors such as the liver X receptors (LXRs), sterol regulatory element-binding proteins (SREBPs) and the G protein-coupled receptor EBI2, in regulating the differentiation and population expansion of cells of the innate and adaptive immune systems, their responses to inflammatory mediators, their effects on the phagocytic functions of macrophages and their effects on antiviral activities and the migration of immune cells. Such findings have raised many new questions about the production of endogenous bioactive sterols and oxysterols and their mechanisms of action in the immune system.
Collapse
Affiliation(s)
- Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
34
|
Ishikawa T, Yuhanna IS, Umetani J, Lee WR, Korach KS, Shaul PW, Umetani M. LXRβ/estrogen receptor-α signaling in lipid rafts preserves endothelial integrity. J Clin Invest 2013; 123:3488-97. [PMID: 23867501 DOI: 10.1172/jci66533] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 05/09/2013] [Indexed: 11/17/2022] Open
Abstract
Liver X receptors (LXR) are stimulated by cholesterol-derived oxysterols and serve as transcription factors to regulate gene expression in response to alterations in cholesterol. In the present study, we investigated the role of LXRs in vascular endothelial cells (ECs) and discovered that LXRβ has nonnuclear function and stimulates EC migration by activating endothelial NOS (eNOS). This process is mediated by estrogen receptor-α (ERα). LXR activation promoted the direct binding of LXRβ to the ligand-binding domain of ERα and initiated an extranuclear signaling cascade that requires ERα Ser118 phosphorylation by PI3K/AKT. Further studies revealed that LXRβ and ERα are colocalized and functionally coupled in EC plasma membrane caveolae/lipid rafts. In isolated aortic rings, LXR activation of NOS caused relaxation, while in mice, LXR activation stimulated carotid artery reendothelialization via LXRβ- and ERα-dependent processes. These studies demonstrate that LXRβ has nonnuclear function in EC caveolae/lipid rafts that entails crosstalk with ERα, which promotes NO production and maintains endothelial monolayer integrity in vivo.
Collapse
Affiliation(s)
- Tomonori Ishikawa
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Hyter S, Indra AK. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis. FEBS Lett 2013; 587:529-41. [PMID: 23395795 PMCID: PMC3670764 DOI: 10.1016/j.febslet.2013.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/12/2012] [Accepted: 01/18/2013] [Indexed: 12/19/2022]
Abstract
Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management.
Collapse
Affiliation(s)
- Stephen Hyter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
- Environmental Health Science Center, Oregon State University, Corvallis, Oregon, USA
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
37
|
Biddie SC, John S. Minireview: Conversing with chromatin: the language of nuclear receptors. Mol Endocrinol 2013; 28:3-15. [PMID: 24196351 DOI: 10.1210/me.2013-1247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptors are transcription factors that are activated by physiological stimuli to bind DNA in the context of chromatin and regulate complex biological pathways. Major advances in nuclear receptor biology have been aided by genome scale examinations of receptor interactions with chromatin. In this review, we summarize the roles of the chromatin landscape in regulating nuclear receptor function. Chromatin acts as a central integrator in the nuclear receptor-signaling axis, operating in distinct temporal modalities. Chromatin effects nuclear receptor action by specifying its genomic localization and interactions with regulatory elements. On receptor binding, changes in chromatin operate as an effector of receptor signaling to modulate transcriptional events. Chromatin is therefore an integral component of the pathways that guide nuclear receptor action in cell-type-specific and cell state-dependent manners.
Collapse
Affiliation(s)
- Simon C Biddie
- Addenbrooke's Hospital (S.C.B.), Cambridge University Hospitals National Health Service Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom; and National Institutes of Health (S.J.), National Cancer Institute, Laboratory for Genome Integrity, Bethesda, Maryland 20892
| | | |
Collapse
|
38
|
Dahlman-Wright K, Qiao Y, Jonsson P, Gustafsson JÅ, Williams C, Zhao C. Interplay between AP-1 and estrogen receptor α in regulating gene expression and proliferation networks in breast cancer cells. Carcinogenesis 2012; 33:1684-91. [PMID: 22791811 DOI: 10.1093/carcin/bgs223] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Estrogen receptor α (ERα) is a ligand-dependent transcription factor that plays an important role in breast cancer. Estrogen-dependent gene regulation by ERα can be mediated by interaction with other DNA-binding proteins, such as activator protein-1 (AP-1). The nature of such interactions in mediating the estrogen response in breast cancer cells remains unclear. Here we show that knockdown of c-Fos, a component of the transcription factor AP-1, attenuates the expression of 37% of all estrogen-regulated genes, suggesting that c-Fos is a fundamental factor for ERα-mediated transcription. Additionally, knockdown of c-Fos affected the expression of a number of genes that were not regulated by estrogen. Pathway analysis reveals that silencing of c-Fos downregulates an E2F1-dependent proproliferative gene network. Thus, modulation of the E2F1 pathway by c-Fos represents a novel mechanism by which c-Fos enhances breast cancer cell proliferation. Furthermore, we show that c-Fos and ERα can cooperate in regulating E2F1 gene expression by binding to regulatory elements in the E2F1 promoter. To start to dissect the molecular details of the cross talk between AP-1 and estrogen signaling, we identify a novel ERα/AP-1 target, PKIB (cAMP-dependent protein kinase inhibitor-β), which is overexpressed in ERα-positive breast cancer tissues. Knockdown of PKIB results in robust growth suppression of breast cancer cells. Collectively, our findings support c-Fos as a critical factor that governs estrogen-dependent gene expression and breast cancer proliferation programs.
Collapse
Affiliation(s)
- Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, S-141 83 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRα through the IGF-I-mediated signaling pathway. Atherosclerosis 2012; 222:344-54. [DOI: 10.1016/j.atherosclerosis.2012.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/16/2012] [Accepted: 03/06/2012] [Indexed: 01/14/2023]
|
40
|
Pehkonen P, Welter-Stahl L, Diwo J, Ryynänen J, Wienecke-Baldacchino A, Heikkinen S, Treuter E, Steffensen KR, Carlberg C. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics 2012; 13:50. [PMID: 22292898 PMCID: PMC3295715 DOI: 10.1186/1471-2164-13-50] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/31/2012] [Indexed: 12/15/2022] Open
Abstract
Background The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided. Results We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions. Conclusions This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis. The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo under accession number GSE28319.
Collapse
Affiliation(s)
- Petri Pehkonen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FIN-70210 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhu R, Ou Z, Ruan X, Gong J. Role of liver X receptors in cholesterol efflux and inflammatory signaling (review). Mol Med Rep 2012; 5:895-900. [PMID: 22267249 PMCID: PMC3493071 DOI: 10.3892/mmr.2012.758] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/27/2011] [Indexed: 01/10/2023] Open
Abstract
Liver X receptors (LXRs) are nuclear receptors that play a central role in cholesterol metabolism. When activated, LXRs induce a series of genes that are involved in cholesterol efflux, absorption, transport and excretion. In recent studies, LXRs have also been shown to play an important role in inflammatory signaling. LXR agonists show promise as potential therapeutics, given their anti-atherogenic and anti-inflammatory properties. The function of LXRs in cholesterol efflux and inflammatory signaling make them attractive as therapies for cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Rongtao Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | | | | | | |
Collapse
|
42
|
Wu Q, Jiang D, Smith S, Thaikoottathil J, Martin RJ, Bowler RP, Chu HW. IL-13 dampens human airway epithelial innate immunity through induction of IL-1 receptor-associated kinase M. J Allergy Clin Immunol 2011; 129:825-833.e2. [PMID: 22154382 DOI: 10.1016/j.jaci.2011.10.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/26/2011] [Accepted: 10/31/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Impaired airway mucosal immunity can contribute to increased respiratory tract infections in asthmatic patients, but the involved molecular mechanisms have not been fully clarified. Airway epithelial cells serve as the first line of respiratory mucosal defense to eliminate inhaled pathogens through various mechanisms, including Toll-like receptor (TLR) pathways. Our previous studies suggest that impaired TLR2 function in T(H)2 cytokine-exposed airways might decrease immune responses to pathogens and subsequently exacerbate allergic inflammation. IL-1 receptor-associated kinase M (IRAK-M) negatively regulates TLR signaling. However, IRAK-M expression in airway epithelium from asthmatic patients and its functions under a T(H)2 cytokine milieu remain unclear. OBJECTIVES We sought to evaluate the role of IRAK-M in IL-13-inhibited TLR2 signaling in human airway epithelial cells. METHODS We examined IRAK-M protein expression in epithelia from asthmatic patients versus that in normal airway epithelia. Moreover, IRAK-M regulation and function in modulating innate immunity (eg, TLR2 signaling) were investigated in cultured human airway epithelial cells with or without IL-13 stimulation. RESULTS IRAK-M protein levels were increased in asthmatic airway epithelium. Furthermore, in primary human airway epithelial cells, IL-13 consistently upregulated IRAK-M expression, largely through activation of phosphoinositide 3-kinase pathway. Specifically, phosphoinositide 3-kinase activation led to c-Jun binding to human IRAK-M gene promoter and IRAK-M upregulation. Functionally, IL-13-induced IRAK-M suppressed airway epithelial TLR2 signaling activation (eg, TLR2 and human β-defensin 2), partly through inhibiting activation of nuclear factor κB. CONCLUSIONS Our data indicate that epithelial IRAK-M overexpression in T(H)2 cytokine-exposed airways inhibits TLR2 signaling, providing a novel mechanism for the increased susceptibility of infections in asthmatic patients.
Collapse
Affiliation(s)
- Qun Wu
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|