1
|
Cao H, Huang Z, Hu X, Zhang X, Makunga NP, Zhao H, Du L, Guo L, Ren Y. Structural insight into the unexploited allosteric binding site of fructose 1, 6-bisphosphate aldolase from C. albicans with α-lipoic acid. Int J Biol Macromol 2025; 309:143096. [PMID: 40222520 DOI: 10.1016/j.ijbiomac.2025.143096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The rising incidence of drug-resistant fungal infections underscores the urgent need for innovative therapeutic strategies. However, developing selective treatments remains a formidable challenge due to the similarities between humans and fungal cells. Class II fructose 1,6-bisphosphate aldolase (FBA) represents an attractive pharmacological target for the development of antifungal agents due to its crucial role in microbial survival and its absence in human. In this work, we identified α-lipoic acid (ALA), a naturally occurring compound, as a novel inhibitor of C. albicans FBA (CaFBA). The co-crystallography, enzyme inhibition assays, and site-directed mutagenesis revealed that ALA acts as a non-covalent inhibitor, binding to an unexploited allosteric site on CaFBA, distinct from the previously reported substrate-binding pocket or C292 covalent binding site. Notably, ALA selectively inhibits CaFBA, likely due to the non-conservation of the allosteric binding site, particularly S268, across species. The synergistic inhibition of C. albicans by ALA and amphotericin B highlights its therapeutic potential as part of a combined antifungal strategy. In summary, this study provides a structural basis for the design and optimization of novel CaFBA inhibitors, enhancing our understanding of FBA's role in fungal growth and establishing a foundation for developing effective antifungal therapeutics against C. albicans.
Collapse
Affiliation(s)
- Hongxuan Cao
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zeyue Huang
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiuqi Hu
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao Zhang
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nokwanda P Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Hui Zhao
- Anhui Academy of Science and Technology, Wanshui Road, Hefei 230031, China
| | - Liji Du
- Anhui Academy of Science and Technology, Wanshui Road, Hefei 230031, China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China.
| | - Yanliang Ren
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Raju S, Murugan K, Nand M, Mathpal S, Chandra S, Ramakrishnan MA, Maiti P. Identification of novel fructose 1,6-bisphosphate aldolase inhibitors against tuberculosis: QSAR, molecular docking, and molecular dynamics simulation-based analysis of DrugBank compounds. J Biomol Struct Dyn 2024:1-14. [PMID: 39661778 DOI: 10.1080/07391102.2024.2436552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/10/2024] [Indexed: 12/13/2024]
Abstract
Global initiatives aim to curb tuberculosis (TB) by developing efficient vaccines and drugs against Mycobacterium tuberculosis (M. tb). The pressing need for innovative and swift anti-TB drug screening methods, due to the drawbacks of traditional approaches, is met by employing Structure-based virtual screening (SBVS) and machine learning (ML) in drug discovery. The present study utilizes these methods to repurpose compounds from the DrugBank database (DBD) as anti-TB drugs, explicitly targeting the enzyme fructose-1,6-bisphosphate aldolase (FBA) in glycolysis and gluconeogenesis pathways.Five classifiers, including REPTree, Decision Stump, Random Tree, Random Forest, and J48evaluate training data against M. tbFBA. AdmetSAR 2.0 assesses drug-like properties and toxicity of ML-identified compounds using four filters. Out of 9213 DBD compounds, 5280 were predicted as TB-active. REPTree, chosen for further screening, led to the identification of four promising preclinical anti-TB drug candidates from DrugBank-Serdemetan, Parecoxib, N, N-Diethyl-2-[(2-Thienylcarbonyl) amino], and Visnadine.All screened ligands show stable binding behaviour during a 200-ns molecular dynamics simulation. Density functional theory (DFT) analysis was also employed for the analysis HOMO (highest occupied molecular orbital)/LUMO (lowest unoccupied molecular orbital) gap, and both screened hits showed efficient results. This study presents a potential avenue for effective TB therapeutics development from compounds with proven druggability in other contexts.
Collapse
Affiliation(s)
- Subathra Raju
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Kasi Murugan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Mahesha Nand
- G. B. Pant National Institute of Himalayan Environment, Almora, India
| | - Shalini Mathpal
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | | | - Priyanka Maiti
- G. B. Pant National Institute of Himalayan Environment, Almora, India
| |
Collapse
|
3
|
Liu Y, Murphy K, Fernandes N, Moore RET, Pennisi I, Williams R, Rehkämper M, Larrouy-Maumus G. Transition metal homoeostasis is key to metabolism and drug tolerance of Mycobacterium abscessus. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:25. [PMID: 39359892 PMCID: PMC11442307 DOI: 10.1038/s44259-024-00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Antimicrobial resistance (AMR) is one of the major challenges humans are facing this century. Understanding the mechanisms behind the rise of AMR is therefore crucial to tackling this global threat. The presence of transition metals is one of the growth-limiting factors for both environmental and pathogenic bacteria, and the mechanisms that bacteria use to adapt to and survive under transition metal toxicity resemble those correlated with the rise of AMR. A deeper understanding of transition metal toxicity and its potential as an antimicrobial agent will expand our knowledge of AMR and assist the development of therapeutic strategies. In this study, we investigate the antimicrobial effect of two transition metal ions, namely cobalt (Co2+) and nickel (Ni2+), on the non-tuberculous environmental mycobacterium and the opportunistic human pathogen Mycobacterium abscessus. The minimum inhibitory concentrations of Co2+ and Ni2+ on M. abscessus were first quantified and their impact on the bacterial intracellular metallome was investigated. A multi-omics strategy that combines transcriptomics, bioenergetics, metabolomics, and phenotypic assays was designed to further investigate the mechanisms behind the effects of transition metals. We show that transition metals induced growth defect and changes in transcriptome and carbon metabolism in M. abscessus, while the induction of the glyoxylate shunt and the WhiB7 regulon in response to metal stresses could be the key response that led to higher AMR levels. Meanwhile, transition metal treatment alters the bacterial response to clinically relevant antibiotics and enhances the uptake of clarithromycin into bacterial cells, leading to increased efficacy. This work provides insights into the tolerance mechanisms of M. abscessus to transition metal toxicity and demonstrates the possibility of using transition metals to adjuvant the efficacy of currently using antimicrobials against M. abscessus infections.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Katy Murphy
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Nadia Fernandes
- Imperial BRC Genomics Faculty, Imperial College London, London, UK
| | - Rebekah E T Moore
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Ivana Pennisi
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Richard Williams
- Imperial BRC Genomics Faculty, Imperial College London, London, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Sharma A, Bansal S, Kumari N, Vashistt J, Shrivastava R. Comparative proteomic investigation unravels the pathobiology of Mycobacterium fortuitum biofilm. Appl Microbiol Biotechnol 2023; 107:6029-6046. [PMID: 37542577 DOI: 10.1007/s00253-023-12705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023]
Abstract
Biofilm formation by Mycobacterium fortuitum causes serious threats to human health due to its increased contribution to nosocomial infections. In this study, the first comprehensive global proteome analysis of M. fortuitum was reported under planktonic and biofilm growth states. A label-free Q Exactive Quadrupole-Orbitrap tandem mass spectrometry analysis was performed on the protein lysates. The differentially abundant proteins were functionally characterized and re-annotated using Blast2GO and CELLO2GO. Comparative analysis of the proteins among two growth states provided insights into the phenotypic switch, and fundamental pathways associated with pathobiology of M. fortuitum biofilm, such as lipid biosynthesis and quorum-sensing. Interaction network generated by the STRING database revealed associations between proteins that endure M. fortuitum during biofilm growth state. Hypothetical proteins were also studied to determine their functional alliance with the biofilm phenotype. CARD, VFDB, and PATRIC analysis further showed that the proteins upregulated in M. fortuitum biofilm exhibited antibiotic resistance, pathogenesis, and virulence. Heatmap and correlation analysis provided the biomarkers associated with the planktonic and biofilm growth of M. fortuitum. Proteome data was validated by qPCR analysis. Overall, the study provides insights into previously unexplored biochemical pathways that can be targeted by novel inhibitors, either for shortened treatment duration or for eliminating biofilm of M. fortuitum and related nontuberculous mycobacterial pathogens. KEY POINTS: • Proteomic analyses of M. fortuitum reveals novel biofilm markers. • Acetyl-CoA acetyltransferase acts as the phenotype transition switch. • The study offers drug targets to combat M. fortuitum biofilm infections.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India.
| |
Collapse
|
5
|
Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022; 236:106676. [PMID: 36113567 DOI: 10.1016/j.actatropica.2022.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms. Prominent among cercarial excretions/secretions (ES) is a ∼ 30 kDa serine protease called cercarial elastase (SmCE in Schistosoma mansoni), likely important in host invasion. Also prominent is a 117 amino acid non-glycosylated polypeptide (Sm16) that can impact several host cell-types to impinge on immunological outcomes. Similarly, components of the egg secretome (notably the 134 amino acid homodimeric glycoprotein "IL-4 inducing principle of schistosome eggs", IPSE, and the 225-amino acid monomeric T2 ribonuclease - omega-1) are capable of driving Th2-biased immune responses. A ∼36kDa chemokine binding glycoprotein SmCKBP, secreted by eggs, can negate the impact of several cytokines and can impede neutrophil migration. Of special interest is a disparate collection of classically cytosolic proteins that are surprisingly often identified in schistosome ES across life stages. These proteins, perhaps released as components of extracellular vesicles (EVs), include glycolytic enzymes, redox proteins, proteases and protease inhibitors, heat shock proteins, proteins involved in translation/turnover, histones, and others. Some such proteins may display "moonlighting" functions and, for example, impede blood clot formation around the worms. More prosaically, since several are particularly abundant soluble proteins, their appearance in the ES fraction may be indicative of worm damage ex vivo leading to protein leakage. Some bioactive schistosome ES proteins are in development as novel therapeutics against autoimmune, inflammatory, and other, non-parasitic, diseases.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
6
|
Tandon R, Reyaz E, Roshanara, Jadhav M, Gandhi M, Dey R, Salotra P, Nakhasi HL, Selvapandiyan A. Identification of protein biomarkers of attenuation and immunogenicity of centrin or p27 gene deleted live vaccine candidates of Leishmania against visceral leishmaniasis. Parasitol Int 2022; 92:102661. [PMID: 36049661 DOI: 10.1016/j.parint.2022.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/08/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Currently, no licensed vaccine is available for human visceral leishmaniasis (VL), a fatal disease caused by the protozoan parasite Leishmania donovani. Two of our live attenuated L. donovani vaccine candidates, either deleted for Centrin1 (LdCen1-/-) or p27 gene (Ldp27-/-), that display reduced growth in macrophages were studied to be safe, immunogenic and protective against VL in various animal models. This report involves the identification of differentially expressed proteins, their related pathways and its underlying mechanism in the intracellular stage of these parasites, using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) methods. Out of 50-60 proteins, found to be differentially expressed in these mutant parasites, 36 were found to be common in both the parasites. Such proteins mainly belong to the functional categories viz. metabolic enzymes, chaperones and stress proteins, proteins involved in translation, processing and transport and proteins involved in nucleic acid processing. Proteins known to be host protective, like Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cytochrome c, calreticulin and those responsible for inducing immune response, namely tubulins, DEAD box RNA helicases, HSP70 and tryparedoxin, have been detected to be modulated in these parasites. Such proteins could be predicted as biomarkers, with further scope of study for their role in growth attenuation. SIGNIFICANCE: This study aims at predicting proteomic biomarkers of Leishmania parasite growth attenuation, that have immunomodulatory role in the disease leishmaniasis. Advanced studies could be helpful in establishing the role of these identified proteins in parasitic virulence and to predict the host interaction at molecular level. Also, these proteins could be exploited as attenuation markers during the development of genetically modified live attenuated parasites as vaccine candidates. These could be cross validated in varied species of Leishmania and other tyrpanosomatids for similar response towards identifying them as universal biomarkers of attenuation.
Collapse
Affiliation(s)
- Rati Tandon
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Enam Reyaz
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Roshanara
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Manali Jadhav
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mayuri Gandhi
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Poonam Salotra
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi 110029, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Angamuthu Selvapandiyan
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
8
|
Joaquim AR, Gionbelli MP, Gosmann G, Fuentefria AM, Lopes MS, Fernandes de Andrade S. Novel Antimicrobial 8-Hydroxyquinoline-Based Agents: Current Development, Structure-Activity Relationships, and Perspectives. J Med Chem 2021; 64:16349-16379. [PMID: 34779640 DOI: 10.1021/acs.jmedchem.1c01318] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The search for new antimicrobials is imperative due to the emergent resistance of new microorganism strains. In this context, revisiting known classes like 8-hydroxyquinolines could be an interesting strategy to discover new agents. The 8-hydroxyquinoline derivatives nitroxoline and clioquinol are used to treat microbial infections; however, these drugs are underused, being available in few countries or limited to topical use. After years of few advances, in the last two decades, the potent activity of clioquinol and nitroxoline against several targets and the privileged structure of 8-hydroxyquinoline nucleus have prompted an increased interest in the design of novel antimicrobial, anticancer, and anti-Alzheimer agents based on this class. Herein, we discuss the current development and antimicrobial structure-activity relationships of this class in the perspective of using the 8-hydroxyquinoline nucleus for the search for novel antimicrobial agents. Furthermore, the most investigated molecular targets concerning 8-hydroxyquinoline derivatives are explored in the final section.
Collapse
Affiliation(s)
- Angélica Rocha Joaquim
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil
| | - Mariana Pies Gionbelli
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil
| | - Grace Gosmann
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Farroupilha, Porto Alegre, RS 90050-170, Brazil
| | - Marcela Silva Lopes
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil
| | - Saulo Fernandes de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Farroupilha, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
9
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
10
|
Serek P, Lewandowski Ł, Dudek B, Pietkiewicz J, Jermakow K, Kapczyńska K, Krzyżewska E, Bednarz-Misa I. Klebsiella pneumoniae enolase-like membrane protein interacts with human plasminogen. Int J Med Microbiol 2021; 311:151518. [PMID: 34237624 DOI: 10.1016/j.ijmm.2021.151518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
Many models assessing the risk of sepsis utilize the knowledge of the constituents of the plasminogen system, as it is proven that some species of bacteria can activate plasminogen, as a result of interactions with bacterial outer membrane proteins. However, much is yet to be discovered about this interaction since there is little information regarding some bacterial species. This study is aimed to check if Klebsiella pneumoniae, one of the major factors of nosocomial pneumonia and a factor for severe sepsis, has the ability to bind to human plasminogen. The strain used in this study, PCM 2713, acted as a typical representative of the species. With use of various methods, including: electron microscopy, 2-dimensional electrophoresis, immunoblotting and peptide fragmentation fingerprinting, it is shown that Klebsiella pneumoniae binds to human plasminogen, among others, due to plasminogen-bacterial enolase-like protein interaction, occurring on the outer membrane of the bacterium. Moreover, the study reveals, that other proteins, such as: phosphoglucomutase, and phosphoenolpyruvate carboxykinase act as putative plasminogen-binding factors. These information may virtually act as a foundation for future studies investigating: the: pathogenicity of Klebsiella pneumoniae and means for prevention from the outcomes of Klebsiella-derived sepsis.
Collapse
Affiliation(s)
- Paweł Serek
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148, Wroclaw, Poland
| | - Jadwiga Pietkiewicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Katarzyna Jermakow
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368, Wrocław, Poland
| | - Katarzyna Kapczyńska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Eva Krzyżewska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Iwona Bednarz-Misa
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland.
| |
Collapse
|
11
|
Surface-Shaving Proteomics of Mycobacterium marinum Identifies Biofilm Subtype-Specific Changes Affecting Virulence, Tolerance, and Persistence. mSystems 2021; 6:e0050021. [PMID: 34156290 PMCID: PMC8269238 DOI: 10.1128/msystems.00500-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complex cell wall and biofilm matrix (ECM) act as key barriers to antibiotics in mycobacteria. Here, the ECM and envelope proteins of Mycobacterium marinum ATCC 927, a nontuberculous mycobacterial model, were monitored over 3 months by label-free proteomics and compared with cell surface proteins on planktonic cells to uncover pathways leading to virulence, tolerance, and persistence. We show that ATCC 927 forms pellicle-type and submerged-type biofilms (PBFs and SBFs, respectively) after 2 weeks and 2 days of growth, respectively, and that the increased CelA1 synthesis in this strain prevents biofilm formation and leads to reduced rifampicin tolerance. The proteomic data suggest that specific changes in mycolic acid synthesis (cord factor), Esx1 secretion, and cell wall adhesins explain the appearance of PBFs as ribbon-like cords and SBFs as lichen-like structures. A subpopulation of cells resisting 64× MIC rifampicin (persisters) was detected in both biofilm subtypes and already in 1-week-old SBFs. The key forces boosting their development could include subtype-dependent changes in asymmetric cell division, cell wall biogenesis, tricarboxylic acid/glyoxylate cycle activities, and energy/redox/iron metabolisms. The effect of various ambient oxygen tensions on each cell type and nonclassical protein secretion are likely factors explaining the majority of the subtype-specific changes. The proteomic findings also imply that Esx1-type protein secretion is more efficient in planktonic (PL) and PBF cells, while SBF may prefer both the Esx5 and nonclassical pathways to control virulence and prolonged viability/persistence. In conclusion, this study reports the first proteomic insight into aging mycobacterial biofilm ECMs and indicates biofilm subtype-dependent mechanisms conferring increased adaptive potential and virulence of nontuberculous mycobacteria. IMPORTANCE Mycobacteria are naturally resilient, and mycobacterial infections are notoriously difficult to treat with antibiotics, with biofilm formation being the main factor complicating the successful treatment of tuberculosis (TB). The present study shows that nontuberculous Mycobacterium marinum ATCC 927 forms submerged- and pellicle-type biofilms with lichen- and ribbon-like structures, respectively, as well as persister cells under the same conditions. We show that both biofilm subtypes differ in terms of virulence-, tolerance-, and persistence-conferring activities, highlighting the fact that both subtypes should be targeted to maximize the power of antimycobacterial treatment therapies.
Collapse
|
12
|
Schultenkämper K, Gütle DD, López MG, Keller LB, Zhang L, Einsle O, Jacquot JP, Wendisch VF. Interrogating the Role of the Two Distinct Fructose-Bisphosphate Aldolases of Bacillus methanolicus by Site-Directed Mutagenesis of Key Amino Acids and Gene Repression by CRISPR Interference. Front Microbiol 2021; 12:669220. [PMID: 33995334 PMCID: PMC8119897 DOI: 10.3389/fmicb.2021.669220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
The Gram-positive Bacillus methanolicus shows plasmid-dependent methylotrophy. This facultative ribulose monophosphate (RuMP) cycle methylotroph possesses two fructose bisphosphate aldolases (FBA) with distinct kinetic properties. The chromosomally encoded FBAC is the major glycolytic aldolase. The gene for the major gluconeogenic aldolase FBAP is found on the natural plasmid pBM19 and is induced during methylotrophic growth. The crystal structures of both enzymes were solved at 2.2 Å and 2.0 Å, respectively, and they suggested amino acid residue 51 to be crucial for binding fructose-1,6-bisphosphate (FBP) as substrate and amino acid residue 140 for active site zinc atom coordination. As FBAC and FBAP differed at these positions, site-directed mutagenesis (SDM) was performed to exchange one or both amino acid residues of the respective proteins. The aldol cleavage reaction was negatively affected by the amino acid exchanges that led to a complete loss of glycolytic activity of FBAP. However, both FBAC and FBAP maintained gluconeogenic aldol condensation activity, and the amino acid exchanges improved the catalytic efficiency of the major glycolytic aldolase FBAC in gluconeogenic direction at least 3-fold. These results confirmed the importance of the structural differences between FBAC and FBAP concerning their distinct enzymatic properties. In order to investigate the physiological roles of both aldolases, the expression of their genes was repressed individually by CRISPR interference (CRISPRi). The fba C RNA levels were reduced by CRISPRi, but concomitantly the fba P RNA levels were increased. Vice versa, a similar compensatory increase of the fba C RNA levels was observed when fba P was repressed by CRISPRi. In addition, targeting fba P decreased tkt P RNA levels since both genes are cotranscribed in a bicistronic operon. However, reduced tkt P RNA levels were not compensated for by increased RNA levels of the chromosomal transketolase gene tkt C.
Collapse
Affiliation(s)
- Kerstin Schultenkämper
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Marina Gil López
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Laura B Keller
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Lin Zhang
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Choi S, Chung JH, Nam MH, Bang E, Hong KS, Kim YH, Seo JB, Chi SG. Elevated aldolase 1A, retrogene 1 expression induces cardiac apoptosis in rat experimental autoimmune myocarditis model. Can J Physiol Pharmacol 2020; 98:373-382. [PMID: 31999472 DOI: 10.1139/cjpp-2019-0539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute myocarditis is an unpredictable heart disease that is caused by inflammation-associated cell death. Although viral infection and drug exposure are known to induce acute myocarditis, the molecular basis for its development remains undefined. Using proteomics and molecular analyses in myosin-induced rat experimental autoimmune myocarditis (EAM), we identified that elevated expression of aldolase 1A, retrogene 1 (Aldoart1) is critical to induce mitochondrial dysfunction and acute myocarditis development. Here, we demonstrate that cardiac cell death is associated with increased expressions of proapoptotic genes in addition to high levels of glucose, lactate, and triglyceride in metabolite profiling. The functional protein association network analysis also suggests that Aldoart1 upregulation correlates with high levels of dihydroxyacetone kinase and triglyceride. In H9c2 cardiac cells, lipopolysaccharides (LPS) or high glucose exposure significantly increases the cytochrome c release and the conversion of pro-caspase 3 into the cleaved form of caspase 3. We also found that LPS- or glucose-induced toxicities are almost completely reversed by siRNA-mediated knockdown of Aldoartl, which consequently increases cell viability. Together, our study strongly suggests that Aldoart1 may be involved in inducing mitochondrial apoptotic processes and can be a novel therapeutic target to prevent the onset of acute myocarditis or cardiac apoptosis.
Collapse
Affiliation(s)
- Seungmin Choi
- Department of Life Sciences, Korea University, Seoul 02841, Korea.,Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Joo Hee Chung
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Myung-Hee Nam
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Eunjung Bang
- Korea Basic Science Institute, Western Seoul Center, Seoul 03759, Korea
| | - Kwan Soo Hong
- Korea Basic Science Institute, Bioimaging Research Team, Cheongju 28123, Korea
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
| | - Jong Bok Seo
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
14
|
Roche-Hakansson H, Vansarla G, Marks LR, Hakansson AP. The human milk protein-lipid complex HAMLET disrupts glycolysis and induces death in Streptococcus pneumoniae. J Biol Chem 2019; 294:19511-19522. [PMID: 31694917 DOI: 10.1074/jbc.ra119.009930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
HAMLET is a complex of human α-lactalbumin (ALA) and oleic acid and kills several Gram-positive bacteria by a mechanism that bears resemblance to apoptosis in eukaryotic cells. To identify HAMLET's bacterial targets, here we used Streptococcus pneumoniae as a model organism and employed a proteomic approach that identified several potential candidates. Two of these targets were the glycolytic enzymes fructose bisphosphate aldolase (FBPA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Treatment of pneumococci with HAMLET immediately inhibited their ATP and lactate production, suggesting that HAMLET inhibits glycolysis. This observation was supported by experiments with recombinant bacterial enzymes, along with biochemical and bacterial viability assays, indicating that HAMLET's activity is partially inhibited by high glucose-mediated stimulation of glycolysis but enhanced in the presence of the glycolysis inhibitor 2-deoxyglucose. Both HAMLET and ALA bound directly to each glycolytic enzyme in solution and solid-phase assays and effectively inhibited their enzymatic activities. In contrast, oleic acid alone had little to no inhibitory activity. However, ALA alone also exhibited no bactericidal activity and did not block glycolysis in whole cells, suggesting a role for the lipid moiety in the internalization of HAMLET into the bacterial cells to reach its target(s). This was verified by inhibition of enzyme activity in whole cells after HAMLET but not ALA exposure. The results of this study suggest that part of HAMLET's antibacterial activity relates to its ability to target and inhibit glycolytic enzymes, providing an example of a natural antimicrobial agent that specifically targets glycolysis.
Collapse
Affiliation(s)
- Hazeline Roche-Hakansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Goutham Vansarla
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, SE-21428 Malmö, Sweden
| | - Laura R Marks
- Department of Medicine, Barnes-Jewish Hospital, Washington University, St. Louis, Missouri 63110
| | - Anders P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, SE-21428 Malmö, Sweden
| |
Collapse
|
15
|
Elhag M, Alaagib RM, Haroun EM, Ahmed NM, Albagi SOA, Hassan MA. Immunoinformatics Prediction of Epitope Based Peptide Vaccine Against Schistosoma Mansoni Fructose Bisphosphate Aldolase Protein.. [DOI: 10.1101/755959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractSchistosoma Mansonirepresents an important tropical disease that can cause schistosomiasis mostly in Africa and Middle East with high mortality rates. Moreover, no vaccine against it exists. This study predicts an effective epitope-based vaccine against Fructose 1,6 Bisphosphate Aldolase (FBA) enzyme of Schistosoma Mansoni using immunoinformatics approaches. FBA is important for production of energy required for different schistosome activities and survival. The sequences were retrieved from NCBI and several prediction tests were conducted to analyze possible epitopes for B-cell, T-cell MHC class I and II. Tertiary structure of the most promising epitopes was obtained. Two epitopes showed high binding affinity for B-cells, while four epitopes showed high binding affinity for MHCI and MHCII. The results were promising to formulate a vaccine with more than 99.5% population coverage. We hope that these promising epitopes serves as a preventive measure for the disease in the future and recommend invivo and invitro studies.
Collapse
|
16
|
Echeverría-Valencia G, Silva-Miranda M, Ekaza E, Vallecillo AJ, Parada C, Sada-Ovalle I, Altare F, Espitia C. Interaction of mycobacteria with Plasmin(ogen) affects phagocytosis and granuloma development. Tuberculosis (Edinb) 2019; 117:36-44. [DOI: 10.1016/j.tube.2019.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
|
17
|
Elhag M, Abubaker M, Ahmad NM, Haroon EM, Alaagib RM, Abd albagi SO, Hassan MA. Immunoinformatics Prediction of Epitope Based Peptide Vaccine Against Listeria Monocytogenes Fructose Bisphosphate Aldolase Protein.. [DOI: 10.1101/649111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractListeria Monocytogenesrepresents an important food-borne pathogen worldwide that can cause life-threatening listeriosis disease especially in pregnant women, fetuses, elderly people, and immuno-compromised individuals with high mortality rates. Moreover, no vaccine against it exists. This study predicts an effective epitope-based vaccine against Fructose 1,6 Bisphosphate Aldolase (FBA) enzyme of Listeria Monocytogenes using immunoinformatics approaches. The sequences were retrieved from NCBI and several prediction tests were conducted to analyze possible epitopes for B-cell, T-cell MHC class I and II. 3D structure of the promising epitopes was obtained. Two epitopes showed high binding affinity for B-cells, while four epitopes showed high binding affinity for MHCI and MHCII. The results were promising to formulate a vaccine with more than 98% population coverage. We hope that these promising epitopes serves as a preventive measure for the disease in the future and recommend invivo and invitro studies.
Collapse
|
18
|
Osterman AL, Rodionova I, Li X, Sergienko E, Ma CT, Catanzaro A, Pettigrove ME, Reed RW, Gupta R, Rohde KH, Korotkov KV, Sorci L. Novel Antimycobacterial Compounds Suppress NAD Biogenesis by Targeting a Unique Pocket of NaMN Adenylyltransferase. ACS Chem Biol 2019; 14:949-958. [PMID: 30969758 DOI: 10.1021/acschembio.9b00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conventional treatments to combat the tuberculosis (TB) epidemic are falling short, thus encouraging the search for novel antitubercular drugs acting on unexplored molecular targets. Several whole-cell phenotypic screenings have delivered bioactive compounds with potent antitubercular activity. However, their cellular target and mechanism of action remain largely unknown. Further evaluation of these compounds may include their screening in search for known antitubercular drug targets hits. Here, a collection of nearly 1400 mycobactericidal compounds was screened against Mycobacterium tuberculosis NaMN adenylyltransferase ( MtNadD), a key enzyme in the biogenesis of NAD cofactor that was recently validated as a new drug target for dormant and active tuberculosis. We found three chemotypes that efficiently inhibit MtNadD in the low micromolar range in vitro. SAR and cheminformatics studies of commercially available analogues point to a series of benzimidazolium derivatives, here named N2, with bactericidal activity on different mycobacteria, including M. abscessus, multidrug-resistant M. tuberculosis, and dormant M. smegmatis. The on-target activity was supported by the increased resistance of an M. smegmatis strain overexpressing the target and by a rapid decline in NAD(H) levels. A cocrystal structure of MtNadD with N2-8 inhibitor reveals that the binding of the inhibitor induced the formation of a new quaternary structure, a dimer-of-dimers where two copies of the inhibitor occupy symmetrical positions in the dimer interface, thus paving the way for the development of a new generation of selective MtNadD bioactive inhibitors. All these results strongly suggest that pharmacological inhibition of MtNadD is an effective strategy to combat dormant and resistant Mtb strains.
Collapse
Affiliation(s)
- Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Irina Rodionova
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Xiaoqing Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Eduard Sergienko
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Chen-Ting Ma
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Antonino Catanzaro
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Mark E. Pettigrove
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Robert W. Reed
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Rashmi Gupta
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy
| |
Collapse
|
19
|
Pagani TD, Guimarães ACR, Waghabi MC, Corrêa PR, Kalume DE, Berrêdo-Pinho M, Degrave WM, Mendonça-Lima L. Exploring the Potential Role of Moonlighting Function of the Surface-Associated Proteins From Mycobacterium bovis BCG Moreau and Pasteur by Comparative Proteomic. Front Immunol 2019; 10:716. [PMID: 31080447 PMCID: PMC6497762 DOI: 10.3389/fimmu.2019.00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Surface-associated proteins from Mycobacterium bovis BCG Moreau RDJ are important components of the live Brazilian vaccine against tuberculosis. They are important targets during initial BCG vaccine stimulation and modulation of the host's immune response, especially in the bacterial-host interaction. These proteins might also be involved in cellular communication, chemical response to the environment, pathogenesis processes through mobility, colonization, and adherence to the host cell, therefore performing multiple functions. In this study, the proteomic profile of the surface-associated proteins from M. bovis BCG Moreau was compared to the BCG Pasteur reference strain. The methodology used was 2DE gel electrophoresis combined with mass spectrometry techniques (MALDI-TOF/TOF), leading to the identification of 115 proteins. Of these, 24 proteins showed differential expression between the two BCG strains. Furthermore, 27 proteins previously described as displaying moonlighting function were identified, 8 of these proteins showed variation in abundance comparing BCG Moreau to Pasteur and 2 of them presented two different domain hits. Moonlighting proteins are multifunctional proteins in which two or more biological functions are fulfilled by a single polypeptide chain. Therefore, the identification of such proteins with moonlighting predicted functions can contribute to a better understanding of the molecular mechanisms unleashed by live BCG Moreau RDJ vaccine components.
Collapse
Affiliation(s)
- Talita Duarte Pagani
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Carolina R Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mariana C Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paloma Rezende Corrêa
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Dário Eluan Kalume
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil.,Unidade de Espectrometria de Massas e Proteômica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wim Maurits Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Yang Y, Bai X, Li C, Tong M, Zhang P, Cai W, Liu X, Liu M. Molecular Characterization of Fructose-1,6-bisphosphate Aldolase From Trichinella spiralis and Its Potential in Inducing Immune Protection. Front Cell Infect Microbiol 2019; 9:122. [PMID: 31069178 PMCID: PMC6491450 DOI: 10.3389/fcimb.2019.00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Trichinella spiralis is a major food-borne parasite worldwide. Trichinellosis caused by T. spiralis is not only a public health problem, but also an economic hazard in food safety. The development of effective vaccines to prevent Trichinella infection in domestic animals and humans is urgently needed for controlling of this zoonosis. Fructose-1, 6-bisphosphate aldolase (FBPA) is involved in energy production in glycolysis and is also associated with many non-glycolysis functions in the parasite, such as adhesion to host cells, plasminogen binding, and invasion. FBPA has been considered as a potential vaccine candidate or as a target for chemotherapeutic treatment. Here, we report for the first time the characterization of FBPA of T. spiralis and an evaluation of its potential as a vaccine candidate antigen against T. spiralis infection in mice. The results of qPCR and western blot analysis showed that the Ts-FBPA gene was expressed at various developmental stages of T. spiralis and was also detected in excretory–secretory products (ES) of T. spiralis muscle larvae (ML). Immunostaining with anti-Ts-FBPA mouse sera indicated that it localized principally to the surface and embryos of this parasitic nematode. Vaccination of mice with recombinant Ts-FBPA (rTs-FBPA) resulted in a Th1/Th2 mixed humoral and cellular immune response with Th2 predominant, as well as remarkably elevated IgE levels. Moreover, mice vaccinated with rTs-FBPA displayed a 48.7% reduction in adult worm burden and 52.5% reduction in muscle larval burden. These studies indicated that Ts-FBPA is a promising target for developing an effective vaccine to prevent and control Trichinella infection.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Wu Xi Medical School, Jiangnan University, Wuxi, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Peihao Zhang
- Wu Xi Medical School, Jiangnan University, Wuxi, China
| | - Wei Cai
- Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Wuxi, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
21
|
Fabino Carr A, Patel DC, Lopez D, Armstrong DW, Ryzhov V. Comparison of reversed-phase, anion-exchange, and hydrophilic interaction HPLC for the analysis of nucleotides involved in biological enzymatic pathways. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1587622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Allison Fabino Carr
- Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
| | - Darshan C. Patel
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
- Process Research & Development, AbbVie Inc, North Chicago, IL, USA
| | - Diego Lopez
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
- AZYP LLC, Arlington, TX, USA
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
| |
Collapse
|
22
|
Identification and characterization of Paracoccidioides lutzii proteins interacting with macrophages. Microbes Infect 2019; 21:401-411. [PMID: 30951888 DOI: 10.1016/j.micinf.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
Paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a systemic disorder that involves the lungs and other organs. The adherence of pathogenic microorganisms to host tissues is an essential event in the onset of colonization and spread. The host-pathogen interaction is a complex interplay between the defense mechanisms of the host and the efforts of pathogenic microorganisms to colonize it. Therefore, the identification of fungi proteins interacting with host proteins is an important step understanding the survival strategies of the fungus within the host. In this paper, we used affinity chromatography based on surface proteomics (ACSP) to investigate the interactions of pathogen proteins with host surface molecules. Paracoccidioides lutzii extracts enriched of surface proteins were captured by chromatographic resin, which was immobilized with macrophage cell surface proteins, and identified by mass spectrometry. A total of 215 proteins of P. lutzii were identified interacting with macrophage proteins. In silico analysis classified those proteins according to the presence of sites for N- and O-glycosylation and secretion by classical and non-classical pathways. Serine proteinase (SP) and fructose-1,6-bisphosphate aldolase (FBA) were identified in our proteomics analysis. Immunolocalization assay and flow cytometry both showed an increase in the expression of these two proteins during host-pathogen interaction.
Collapse
|
23
|
Semenyuta IV, Kobzar OL, Hodyna DM, Brovarets VS, Metelytsia LO. In silico study of 4-phosphorylated derivatives of 1,3-oxazole as inhibitors of Candida albicans fructose-1,6-bisphosphate aldolase II. Heliyon 2019; 5:e01462. [PMID: 31011642 PMCID: PMC6460381 DOI: 10.1016/j.heliyon.2019.e01462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/16/2019] [Accepted: 03/27/2019] [Indexed: 02/08/2023] Open
Abstract
In this study, the synthesis, in vitro anti-Candida activity and molecular modeling of 4-phosphorylated derivatives of 1,3-oxazole as inhibitors of Candida albicans fructose-1,6-bisphosphate aldolase (FBA-II) are demonstrated and discussed. Significant similarity of the primary and secondary structure, binding sites and active sites of FBA-II C. albicans and Mycobacterium tuberculosis are established. FBA-II C. albicans inhibitors contained 1,3-oxazole-4-phosphonates moiety are created by analogy to inhibitors FBA-II M. tuberculosis. The experimental studies of the anti-Candida activity of the designed and synthesized compounds have shown their high activity against standard strain and its C. albicans fluconazole resistant clinical isolate. It was hypothesized that the growth suppression of fluconazole-resistant С. albicans strain may be due to the inhibition of aldolase fructose-1,6-bisphosphate. A qualitative homology 3D model of the C. albicans FBA-II was created using SWISS-MODEL server. The probable mechanism of FBA-II inhibition by studied 4-phosphorylated derivatives was shown using molecular docking. The main role of amino acid residues His110, His226, Gly227, Leu248, Val238, Asp144, Lys230, Glu147, Gly227, Ala112, Leu145 and catalytic zinc atom in the formation of stable ligand-protein complexes with ΔG = -6.89, -7.2, -7.16, -7.5, -8.0, -7.9 kcal/mol was shown. Thus, the positive results obtained in the work were demonstrated the promise of using the proposed homology 3D model of the C. albicans FBA-II as the target for the search and development of new anti-Candida agents against azole-resistant fungal pathogens. Designed and studied 4-phosphorylated derivatives of 1,3-oxazole having a direct inhibiting FBA-II molecular mechanism of action can be used as perspective drug-candidates against resistant C. albicans strains.
Collapse
Affiliation(s)
- Ivan V. Semenyuta
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oleksandr L. Kobzar
- Department of Bioorganic Mechanisms, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Diana M. Hodyna
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr S. Brovarets
- Department of Chemistry of Bioactive Nitrogen Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Larysa O. Metelytsia
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
24
|
González-Miguel J, Valero MA, Reguera-Gomez M, Mas-Bargues C, Bargues MD, Simón F, Mas-Coma S. Numerous Fasciola plasminogen-binding proteins may underlie blood-brain barrier leakage and explain neurological disorder complexity and heterogeneity in the acute and chronic phases of human fascioliasis. Parasitology 2019; 146:284-298. [PMID: 30246668 PMCID: PMC6402360 DOI: 10.1017/s0031182018001464] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
Abstract
Human fascioliasis is a worldwide, pathogenic food-borne trematodiasis. Impressive clinical pictures comprising puzzling polymorphisms, manifestation multifocality, disease evolution changes, sequelae and mortality, have been reported in patients presenting with neurological, meningeal, neuropsychic and ocular disorders caused at distance by flukes infecting the liver. Proteomic and mass spectrometry analyses of the Fasciola hepatica excretome/secretome identified numerous, several new, plasminogen-binding proteins enhancing plasmin generation. This may underlie blood-brain barrier leakage whether by many simultaneously migrating, small-sized juvenile flukes in the acute phase, or by breakage of encapsulating formations triggered by single worm tracks in the chronic phase. Blood-brain barrier leakages may subsequently occur due to a fibrinolytic system-dependent mechanism involving plasmin-dependent generation of the proinflammatory peptide bradykinin and activation of bradykinin B2 receptors, after different plasminogen-binding protein agglomeration waves. Interactions between diverse parasitic situations and non-imbalancing fibrinolysis system alterations are for the first time proposed that explain the complexity, heterogeneity and timely variations of neurological disorders. Additionally, inflammation and dilation of blood vessels may be due to contact system-dependent generation bradykinin. This baseline allows for search of indicators to detect neurological risk in fascioliasis patients and experimental work on antifibrinolytic treatments or B2 receptor antagonists for preventing blood-brain barrier leakage.
Collapse
Affiliation(s)
- J. González-Miguel
- Laboratorio de Parasitología, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M. A. Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - M. Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - C. Mas-Bargues
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibáñez No. 15, 46010 Valencia, Spain
| | - M. D. Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - F. Simón
- Área de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Av. Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain
| | - S. Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
25
|
Huang J, Zhu H, Wang J, Guo Y, Zhi Y, Wei H, Li H, Guo A, Liu D, Chen X. Fructose-1,6-bisphosphate aldolase is involved in Mycoplasma bovis colonization as a fibronectin-binding adhesin. Res Vet Sci 2019; 124:70-78. [PMID: 30852357 DOI: 10.1016/j.rvsc.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Mycoplasma bovis is a common pathogenic microorganism of cattle and represents an important hazard on the cattle industry. Adherence to host cells is a significant component of mycoplasma-pathogenesis research. Fibronectin (Fn), an extracellular matrix protein, is a common host cell factor that can interact with the adhesions of pathogens. The aims of this study were to investigate the Fn-binding properties of M. bovis fructose-1,6-bisphosphate aldolase (FBA) and evaluate its role as a cell adhesion factor during mycoplasma colonization. The fba (MBOV_RS00435) gene of M. bovis was cloned and expressed, with the resulting recombinant protein used to prepare rabbit polyclonal antibodies. The purified recombinant FBA (rFBA) was shown to have fructose bisphosphate aldolase activity. Western blot indicated that FBA was an antigenically conserved protein in several M. bovis strains. Western blot combined with immunofluorescent assay (IFA) revealed that FBA was dual-localized to both cytoplasm and membrane in M. bovis. IFA showed that rFBA was able to adhere to embryonic bovine lung (EBL) cells. Meanwhile, an adhesion inhibition assay demonstrated that anti-rFBA antibodies could significantly block the adhesion of M. bovis to EBL cells. Moreover, a dose-dependent binding of rFBA to Fn was found by dot blotting and enzyme-linked immunosorbent assays. Together these results provided evidence that FBA is a surface-localized and antigenic protein of M. bovis, suggesting that it may function as a virulence determinant through interacting with host Fn.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayao Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongpeng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Zhi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haohua Wei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxiong Li
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongming Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Plasminogen-binding proteins as an evasion mechanism of the host's innate immunity in infectious diseases. Biosci Rep 2018; 38:BSR20180705. [PMID: 30166455 PMCID: PMC6167496 DOI: 10.1042/bsr20180705] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/27/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Pathogens have developed particular strategies to infect and invade their hosts. Amongst these strategies’ figures the modulation of several components of the innate immune system participating in early host defenses, such as the coagulation and complement cascades, as well as the fibrinolytic system. The components of the coagulation cascade and the fibrinolytic system have been proposed to be interfered during host invasion and tissue migration of bacteria, fungi, protozoa, and more recently, helminths. One of the components that has been proposed to facilitate pathogen migration is plasminogen (Plg), a protein found in the host’s plasma, which is activated into plasmin (Plm), a serine protease that degrades fibrin networks and promotes degradation of extracellular matrix (ECM), aiding maintenance of homeostasis. However, pathogens possess Plg-binding proteins that can activate it, therefore taking advantage of the fibrin degradation to facilitate establishment in their hosts. Emergence of Plg-binding proteins appears to have occurred in diverse infectious agents along evolutionary history of host–pathogen relationships. The goal of the present review is to list, summarize, and analyze different examples of Plg-binding proteins used by infectious agents to invade and establish in their hosts. Emphasis was placed on mechanisms used by helminth parasites, particularly taeniid cestodes, where enolase has been identified as a major Plg-binding and activating protein. A new picture is starting to arise about how this glycolytic enzyme could acquire an entirely new role as modulator of the innate immune system in the context of the host–parasite relationship.
Collapse
|
27
|
Gao X, Bao S, Xing X, Fu X, Zhang Y, Xue H, Wen F, Wei Y. Fructose-1,6-bisphosphate aldolase of Mycoplasma bovis is a plasminogen-binding adhesin. Microb Pathog 2018; 124:230-237. [PMID: 30142464 DOI: 10.1016/j.micpath.2018.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 01/24/2023]
Abstract
Mycoplasma bovis is an extremely small cell wall-deficient pathogenic bacterium in the genus Mycoplasma that causes serious economic losses to the cattle industry worldwide. Fructose-1,6-bisphosphate aldolase (FBA), a key enzyme in the glycolytic pathway, is a multifunctional protein in several pathogenic bacterial species, but its role in M. bovis remains unknown. Herein, the FBA gene of the M. bovis was amplified by PCR, and subcloned into the prokaryotic expression vector pET28a (+) to generate the pET28a-FBA plasmid for recombinant expression in Escherichia coli Transetta. Expression of the 34 kDa recombinant rMbFBA protein was confirmed by electrophoresis, and enzymatic activity assays based on conversion of NADH to NAD+ revealed Km and Vmax values of 48 μM and 43.8 μmoL/L/min, respectively. Rabbit anti-rMbFBA and anti-M. bovis serum were generated by inoculation with rMbFBA and M. bovis, and antigenicity and immunofluorescence assay demonstrated that FBA is an immunogenic protein expressed on the cell membrane in M. bovis cells. Enzyme-linked immunosorbent assays revealed equal distribution of FBA in the cell membrane and cytoplasm. Complement-dependent mycoplasmacidal assays showed that rabbit anti-rMbFBA serum killed 44.1% of M. bovis cells in the presence of complement. Binding and ELISA assays demonstrated that rMbFBA binds native bovine plasminogen and in a dose-dependent manner. Fluorescent microscopy revealed that pre-treatment with antibodies against rMbFBA decreased the adhesion of M. bovis to embryonic bovine lung (EBL) cells. Furthermore, adherence inhibition assays revealed 34.4% inhibition of M. bovis infection of EBL cells following treatment with rabbit anti-rMbFBA serum, suggesting rMbFBA participates in bacterial adhesion to EBL cells.
Collapse
Affiliation(s)
- Xiang Gao
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China.
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Xiaoping Fu
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Yi Zhang
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Huiwen Xue
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Fengqin Wen
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| |
Collapse
|
28
|
Li D, Luong TTM, Dan WJ, Ren Y, Nien HX, Zhang AL, Gao JM. Natural products as sources of new fungicides (IV): Synthesis and biological evaluation of isobutyrophenone analogs as potential inhibitors of class-II fructose-1,6-bisphosphate aldolase. Bioorg Med Chem 2017; 26:386-393. [PMID: 29248352 DOI: 10.1016/j.bmc.2017.10.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022]
Abstract
Several recently identified antifungal compounds share the backbone structure of acetophenones. The aim of the present study was to develop new isobutyrophenone analogs as new antifungal agents. A series of new 2,4-dihydroxy-5-methyl isobutyrophenone derivatives were prepared and characterized by 1H, 13C NMR and MS spectroscopic data. These products were evaluated for in vitro antifungal activities against seven plant fungal pathogens by the mycelial growth inhibitory rate assay. Compounds 3, 4a, 5a, 5b, 5e, 5f and 5g showed a broad-spectrum high antifungal activity. On the other hand, for the first time, these compounds were also assayed as potential inhibitors against Class II fructose-1,6-bisphosphate aldolase (Fba) from the rice blast fungus, Magnaporthe grisea. Compounds 5e and 5g were found to exhibit the inhibition constants (Ki) for 15.12 and 14.27 μM, respectively, as the strongest competitive inhibitors against Fba activity. The possible binding-modes of compounds 5e and 5g were further analyzed by molecular docking algorithms. The results strongly suggested that compound 5g could be a promising lead for the discovery of new fungicides via targeting Class II Fba.
Collapse
Affiliation(s)
- Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Tuong Thi Mai Luong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; Institute of Scientific Research and Technological Development, Thu Dau Mot University, Binh Duong, Viet Nam
| | - Wen-Jia Dan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Hoang Xuan Nien
- Institute of Scientific Research and Technological Development, Thu Dau Mot University, Binh Duong, Viet Nam
| | - An-Ling Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
29
|
Ramos S, Silva N, Hébraud M, Santos HM, Nunes-Miranda JD, Pinto L, Pereira JE, Capelo JL, Poeta P, Igrejas G. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:362-74. [PMID: 27310477 DOI: 10.1089/omi.2016.0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress.
Collapse
Affiliation(s)
- Sónia Ramos
- 1 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,3 Centre for Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - Nuno Silva
- 3 Centre for Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - Michel Hébraud
- 5 INRA (Institut National de la Recherche Agronomique), Centre Auvergne-Rhône-Alpes , UR454 Microbiologie, Saint-Genès Champanelle, France .,6 Plate-Forme d'Exploration du Métabolisme Composante Protéomique, UR370 QuaPA, Institut National de la Recherche Agronomique (INRA) , Centre Auvergne-Rhône-Alpes, Saint-Genès Champanelle, France
| | - Hugo M Santos
- 7 UCIBIO-REQUIMTE, Faculty of Technology and Science, University Nova de Lisboa , Caparica, Portugal
| | - Júlio Dinis Nunes-Miranda
- 1 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - Luís Pinto
- 1 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,3 Centre for Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - José E Pereira
- 4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - José-Luis Capelo
- 8 ProteoMass Scientific Society , Faculty of Sciences and Technology, Caparica, Portugal
| | - Patrícia Poeta
- 4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,7 UCIBIO-REQUIMTE, Faculty of Technology and Science, University Nova de Lisboa , Caparica, Portugal
| | - Gilberto Igrejas
- 1 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,7 UCIBIO-REQUIMTE, Faculty of Technology and Science, University Nova de Lisboa , Caparica, Portugal
| |
Collapse
|
30
|
The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella. Nat Commun 2017; 8:853. [PMID: 29021545 PMCID: PMC5636795 DOI: 10.1038/s41467-017-00889-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022] Open
Abstract
The enzyme fructose-bisphosphate aldolase occupies a central position in glycolysis and gluconeogenesis pathways. Beyond its housekeeping role in metabolism, fructose-bisphosphate aldolase has been involved in additional functions and is considered as a potential target for drug development against pathogenic bacteria. Here, we address the role of fructose-bisphosphate aldolase in the bacterial pathogen Francisella novicida. We demonstrate that fructose-bisphosphate aldolase is important for bacterial multiplication in macrophages in the presence of gluconeogenic substrates. In addition, we unravel a direct role of this metabolic enzyme in transcription regulation of genes katG and rpoA, encoding catalase and an RNA polymerase subunit, respectively. We propose a model in which fructose-bisphosphate aldolase participates in the control of host redox homeostasis and the inflammatory immune response.The enzyme fructose-bisphosphate aldolase (FBA) plays central roles in glycolysis and gluconeogenesis. Here, Ziveri et al. show that FBA of the pathogen Francisella novicida acts, in addition, as a transcriptional regulator and is important for bacterial multiplication in macrophages.
Collapse
|
31
|
Han X, Zhu X, Hong Z, Wei L, Ren Y, Wan F, Zhu S, Peng H, Guo L, Rao L, Feng L, Wan J. Structure-Based Rational Design of Novel Inhibitors Against Fructose-1,6-Bisphosphate Aldolase from Candida albicans. J Chem Inf Model 2017; 57:1426-1438. [DOI: 10.1021/acs.jcim.6b00763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xinya Han
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiuyun Zhu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zongqin Hong
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Fen Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuaihua Zhu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hao Peng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Guo
- Hubei Environmental
Monitoring Central Station, Wuhan 430072, Hubei China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
32
|
Sharma D, Lata M, Singh R, Deo N, Venkatesan K, Bisht D. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS. Front Microbiol 2016; 7:1816. [PMID: 27895634 PMCID: PMC5108770 DOI: 10.3389/fmicb.2016.01816] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial DiseasesAgra, India
| |
Collapse
|
33
|
Vargas-Romero F, Mendoza-Hernández G, Suárez-Güemes F, Hernández-Pando R, Castañón-Arreola M. Secretome profiling of highly virulent Mycobacterium bovis 04-303 strain reveals higher abundance of virulence-associated proteins. Microb Pathog 2016; 100:305-311. [PMID: 27769937 DOI: 10.1016/j.micpath.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/28/2016] [Accepted: 10/17/2016] [Indexed: 02/02/2023]
Abstract
Mycobacterium bovis is the causative agent of tuberculosis in farms, wildlife and causes sporadic disease in humans. Despite the high similitude in genome sequence between M. bovis strains, some strains like the wild boar 04-303 isolate show a highly virulent phenotype in animal models. Comparative studies will contribute to link protein expression with the virulence phenotype. In vitro, the 04-303 strain was more phagocytized by J774A.1 macrophages in comparison with 444 strain (a cow isolate with the same genotype) and BCG. The secretome of these strains showed a significant proportion of shared proteins (368 spots). Among the proteins only visualized in the secretome of the 04-303 strain, we identify the nine most abundant proteins by LC-MS/MS. The most relevant were EsxA and EsxB proteins, which are encoded in the RD1 region, deleted in BCG strains. These proteins are the major virulence factor of M. tuberculosis. The other proteins identified belong to functional categories of virulence, detoxification, and adaptation; lipid metabolism; and cell wall and cell processes. The relatively high proportion of proteins involved in the cell wall and cell process is consistent with the previously described variation among M. bovis genomes.
Collapse
Affiliation(s)
- Fernando Vargas-Romero
- Genomic Sciences Program, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle, Delegación Benito Juárez, CP 03100, Ciudad de México, Mexico
| | - Guillermo Mendoza-Hernández
- School of Medicine, Universidad Nacional Autónoma de México, Av Universidad 3000, Coyoacán, Copilco Universidad, 04510 Ciudad de México, Mexico
| | - Francisco Suárez-Güemes
- School of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Coyoacán, Copilco Universidad, 04510 Ciudad de México, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Av. Vasco de Quiroga 15, Tlalpan, Belisario Domínguez Sección XVI, 14080 Ciudad de México, Mexico
| | - Mauricio Castañón-Arreola
- Genomic Sciences Program, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle, Delegación Benito Juárez, CP 03100, Ciudad de México, Mexico.
| |
Collapse
|
34
|
Rahi A, Matta SK, Dhiman A, Garhyan J, Gopalani M, Chandra S, Bhatnagar R. Enolase of Mycobacterium tuberculosis is a surface exposed plasminogen binding protein. Biochim Biophys Acta Gen Subj 2016; 1861:3355-3364. [PMID: 27569900 DOI: 10.1016/j.bbagen.2016.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/12/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Enolase, a glycolytic enzyme, has long been studied as an anchorless protein present on the surface of many pathogenic bacteria that aids in tissue remodeling and invasion by binding to host plasminogen. METHODS Anti-Mtb enolase antibodies in human sera were detected using ELISA. Immunoelectron microscopy, immunofluorescence microscopy and flow cytometry were used to show surface localization of Mtb enolase. SPR was used to determine the affinity of enolase-plasminogen interaction. Plasmin formation upon plasminogen binding to enolase and Mtb surface was measured by ELISA. Mice challenge and histopathological studies were undertaken to determine the protective efficacy of enolase immunization. RESULTS Enolase of Mtb is present on its surface and binds human plasminogen with high affinity. There was an average of 2-fold increase in antibody mediated recognition of Mtb enolase in human sera from TB patients with an active disease over control individuals. Substitution of C-terminal lysine to alanine in rEno decreased its binding affinity with human plasminogen by >2-folds. Enolase bound plasminogen showed urokinase mediated conversion into plasmin. Binding of plasminogen to the surface of Mtb and its conversion into fibrinolytic plasmin was significantly reduced in the presence of anti-rEno antibodies. Immunization with rEno also led to a significant decrease in lung CFU counts of mice upon infection with Mtb H37Rv. CONCLUSIONS Mtb enolase is a surface exposed plasminogen binding protein which upon immunization confers significant protection against Mtb challenge. GENERAL SIGNIFICANCE Plasminogen binding has been recognized for Mtb, however, proteins involved have not been characterized. We show here that Mtb enolase is a moonlighting plasminogen binding protein.
Collapse
Affiliation(s)
- Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Sumit Kumar Matta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Jaishree Garhyan
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Subhash Chandra
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
35
|
Mendonça M, Moreira GMSG, Conceição FR, Hust M, Mendonça KS, Moreira ÂN, França RC, da Silva WP, Bhunia AK, Aleixo JAG. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species. PLoS One 2016; 11:e0160544. [PMID: 27489951 PMCID: PMC4973958 DOI: 10.1371/journal.pone.0160544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.
Collapse
Affiliation(s)
- Marcelo Mendonça
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United Sates of America
| | - Gustavo Marçal Schmidt Garcia Moreira
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr, Braunschweig, Germany
| | - Fabricio Rochedo Conceição
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr, Braunschweig, Germany
| | - Karla Sequeira Mendonça
- Laboratório de Microbiologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Correa França
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Laboratório de Microbiologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United Sates of America
| | - José Antonio G. Aleixo
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
36
|
Tong J, Meng L, Wang X, Liu L, Lyu L, Wang C, Li Y, Gao Q, Yang C, Niu C. The FBPase Encoding Gene glpX Is Required for Gluconeogenesis, Bacterial Proliferation and Division In Vivo of Mycobacterium marinum. PLoS One 2016; 11:e0156663. [PMID: 27233038 PMCID: PMC4883791 DOI: 10.1371/journal.pone.0156663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
Lipids have been identified as important carbon sources for Mycobacterium tuberculosis (Mtb) to utilize in vivo. Thus gluconeogenesis bears a key role for Mtb to survive and replicate in host. A rate-limiting enzyme of gluconeogenesis, fructose 1, 6-bisphosphatase (FBPase) is encoded by the gene glpX. The functions of glpX were studied in M. marinum, a closely related species to Mtb. The glpX deletion strain (ΔglpX) displayed altered gluconeogenesis, attenuated virulence, and altered bacterial proliferation. Metabolic profiles indicate an accumulation of the FBPase substrate, fructose 1, 6-bisphosphate (FBP) and altered gluconeogenic flux when ΔglpX is cultivated in a gluconeogenic carbon substrate, acetate. In both macrophages and zebrafish, the proliferation of ΔglpX was halted, resulting in dramatically attenuated virulence. Intracellular ΔglpX exhibited an elongated morphology, which was also observed when ΔglpX was grown in a gluconeogenic carbon source. This elongated morphology is also supported by the observation of unseparated multi-nucleoid cell, indicating that a complete mycobacterial division in vivo is correlated with intact gluconeogenesis. Together, our results indicate that glpX has essential functions in gluconeogenesis, and plays an indispensable role in bacterial proliferation in vivo and virulence of M. marinum.
Collapse
Affiliation(s)
- Jingfeng Tong
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Meng
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Xinwei Wang
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lixia Liu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liangdong Lyu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chuan Wang
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Li
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Gao
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (CY); (CN)
| | - Chen Niu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail: (CY); (CN)
| |
Collapse
|
37
|
Shams F, Oldfield NJ, Lai SK, Tunio SA, Wooldridge KG, Turner DPJ. Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue. Microbiologyopen 2016; 5:340-50. [PMID: 26732512 PMCID: PMC4831477 DOI: 10.1002/mbo3.331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/10/2015] [Accepted: 11/24/2015] [Indexed: 11/23/2022] Open
Abstract
Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence‐related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose‐1,6‐bisphosphate aldolase (FBA) was previously shown to be surface‐exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu‐plasminogen in a dose‐dependent manner. Site‐directed mutagenesis demonstrated that the C‐terminal lysine residue of FBA was required for this interaction, whereas subterminal lysine residues were not involved.
Collapse
Affiliation(s)
- Fariza Shams
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Neil J Oldfield
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Si Kei Lai
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sarfraz A Tunio
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Karl G Wooldridge
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - David P J Turner
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
38
|
Ye Y, Jiao R, Gao J, Li H, Ling N, Wu Q, Zhang J, Xu X. Proteins involved in responses to biofilm and planktonic modes in Cronobacter sakazakii. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Han X, Zhu X, Zhu S, Wei L, Hong Z, Guo L, Chen H, Chi B, Liu Y, Feng L, Ren Y, Wan J. A Rational Design, Synthesis, Biological Evaluation and Structure--Activity Relationship Study of Novel Inhibitors against Cyanobacterial Fructose-1,6-bisphosphate Aldolase. J Chem Inf Model 2015; 56:73-81. [PMID: 26669534 DOI: 10.1021/acs.jcim.5b00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, a series of novel maleimide derivatives were rationally designed and optimized, and their inhibitory activities against cyanobacteria class-II fructose-1,6-bisphosphate aldolase (Cy-FBA-II) and Synechocystis sp. PCC 6803 were further evaluated. The experimental results showed that the introduction of a bigger group (Br, Cl, CH3, or C6H3-o-F) on the pyrrole-2',5'-dione ring resulted in a decrease in the Cy-FBA-II inhibitory activity of the hit compounds. Generally, most of the hit compounds with high Cy-FBA-II inhibitory activities could also exhibit high in vivo activities against Synechocystis sp. PCC 6803. Especially, compound 10 not only shows a high Cy-FBA-II activity (IC50 = 1.7 μM) but also has the highest in vivo activity against Synechocystis sp. PCC 6803 (EC50 = 0.6 ppm). Thus, compound 10 was selected as a representative molecule, and its probable interactions with the surrounding important residues in the active site of Cy-FBA-II were elucidated by the joint use of molecular docking, molecular dynamics simulations, ONIOM calculations, and enzymatic assays to provide new insight into the binding mode of the inhibitors and Cy-FBA-II. The positive results indicate that the design strategy used in the present study is very likely to be a promising way to find novel lead compounds with high inhibitory activities against Cy-FBA-II in the future. The enzymatic and algal inhibition assays suggest that Cy-FBA-II is very likely to be a promising target for the design, synthesis, and development of novel specific algicides to solve cyanobacterial harmful algal blooms.
Collapse
Affiliation(s)
- Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Xiuyun Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Shuaihua Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Lin Wei
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Zongqin Hong
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Li Guo
- Hubei Environmental Monitoring Central Station , Wuhan, Hubei 430072, China
| | - Haifeng Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Bo Chi
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Yan Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| |
Collapse
|
40
|
Network of Surface-Displayed Glycolytic Enzymes in Mycoplasma pneumoniae and Their Interactions with Human Plasminogen. Infect Immun 2015; 84:666-76. [PMID: 26667841 DOI: 10.1128/iai.01071-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/11/2015] [Indexed: 12/30/2022] Open
Abstract
In different bacteria, primarily cytosolic and metabolic proteins are characterized as surface localized and interacting with different host factors. These moonlighting proteins include glycolytic enzymes, and it has been hypothesized that they influence the virulence of pathogenic species. The presence of surface-displayed glycolytic enzymes and their interaction with human plasminogen as an important host factor were investigated in the genome-reduced and cell wall-less microorganism Mycoplasma pneumoniae, a common agent of respiratory tract infections of humans. After successful expression of 19 glycolytic enzymes and production of polyclonal antisera, the localization of proteins in the mycoplasma cell was characterized using fractionation of total proteins, colony blot, mild proteolysis and immunofluorescence of M. pneumoniae cells. Eight glycolytic enzymes, pyruvate dehydrogenases A to C (PdhA-C), glyceraldehyde-3-phosphate dehydrogenase (GapA), lactate dehydrogenase (Ldh), phosphoglycerate mutase (Pgm), pyruvate kinase (Pyk), and transketolase (Tkt), were confirmed as surface expressed and all are able to interact with plasminogen. Plasminogen bound to recombinant proteins PdhB, GapA, and Pyk was converted to plasmin in the presence of urokinase plasminogen activator and plasmin-specific substrate d-valyl-leucyl-lysine-p-nitroanilide dihydrochloride. Furthermore, human fibrinogen was degraded by the complex of plasminogen and recombinant protein PdhB or Pgm. In addition, surface-displayed proteins (except PdhC) bind to human lung epithelial cells, and the interaction was reduced significantly by preincubation of cells with antiplasminogen. Our results suggest that plasminogen binding and activation by different surface-localized glycolytic enzymes of M. pneumoniae may play a role in successful and long-term colonization of the human respiratory tract.
Collapse
|
41
|
Sun Z, Shen B, Wu H, Zhou X, Wang Q, Xiao J, Zhang Y. The secreted fructose 1,6-bisphosphate aldolase as a broad spectrum vaccine candidate against pathogenic bacteria in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2015; 46:638-647. [PMID: 26256425 DOI: 10.1016/j.fsi.2015.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
The development of aquaculture has been hampered by different aquatic pathogens that can cause edwardsiellosis, vibriosis, or other diseases. Therefore, developing a broad spectrum vaccine against different fish diseases is necessary. In this study, fructose 1,6-bisphosphate aldolase (FBA), a conserved enzyme in the glycolytic pathway, was demonstrated to be located in the non-cytoplasmic components of five aquatic pathogenic bacteria and exhibited remarkable protection and cross-protection against these pathogens in turbot and zebrafish. Further analysis revealed that sera sampled from vaccinated turbot had a high level of specific antibody and bactericidal activity against these pathogens. Meanwhile, the increased expressions of immune response-related genes associated with antigen recognition and presentation indicated that the adaptive immune response was effectively aroused. Taken together, our results suggest that FBA can be utilized as a broad-spectrum vaccine against various pathogenic bacteria of aquaculture in the future.
Collapse
Affiliation(s)
- Zhongyang Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Binbing Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xiangyu Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Mariculture Animal Vaccines, Shanghai 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Mariculture Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Mariculture Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
42
|
Ganapathy U, Marrero J, Calhoun S, Eoh H, de Carvalho LPS, Rhee K, Ehrt S. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nat Commun 2015; 6:7912. [PMID: 26258286 PMCID: PMC4535450 DOI: 10.1038/ncomms8912] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/25/2015] [Indexed: 01/23/2023] Open
Abstract
The human pathogen Mycobacterium tuberculosis (Mtb) likely utilizes host fatty acids as a carbon source during infection. Gluconeogenesis is essential for the conversion of fatty acids into biomass. A rate-limiting step in gluconeogenesis is the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate by a fructose bisphosphatase (FBPase). The Mtb genome contains only one annotated FBPase gene, glpX. Here we show that, unexpectedly, an Mtb mutant lacking GLPX grows on gluconeogenic carbon sources and has detectable FBPase activity. We demonstrate that the Mtb genome encodes an alternative FBPase (GPM2, Rv3214) that can maintain gluconeogenesis in the absence of GLPX. Consequently, deletion of both GLPX and GPM2 is required for disruption of gluconeogenesis and attenuation of Mtb in a mouse model of infection. Our work affirms a role for gluconeogenesis in Mtb virulence and reveals previously unidentified metabolic redundancy at the FBPase-catalysed reaction step of the pathway. Mycobacterium tuberculosis feeds on host fatty acids during infection, a process that requires a fructose bisphosphatase (FBPase) enzyme for gluconeogenesis. Here, Ganapathy et al. show that the bacterium has two different FBPases and that this enzymatic activity is required for full virulence.
Collapse
Affiliation(s)
- Uday Ganapathy
- Department of Microbiology and Immunology, Weill Cornell Medical College, 413 East 69th Street, New York, New York 10021, USA
| | - Joeli Marrero
- Department of Microbiology and Immunology, Weill Cornell Medical College, 413 East 69th Street, New York, New York 10021, USA
| | - Susannah Calhoun
- Department of Microbiology and Immunology, Weill Cornell Medical College, 413 East 69th Street, New York, New York 10021, USA
| | - Hyungjin Eoh
- Department of Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | | | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, 413 East 69th Street, New York, New York 10021, USA
| |
Collapse
|
43
|
Fructose-1,6-bisphosphate aldolase (FBA)-a conserved glycolytic enzyme with virulence functions in bacteria: 'ill met by moonlight'. Biochem Soc Trans 2015; 42:1792-5. [PMID: 25399608 DOI: 10.1042/bst20140203] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Moonlighting proteins constitute an intriguing class of multifunctional proteins. Metabolic enzymes and chaperones, which are often highly conserved proteins in bacteria, archaea and eukaryotic organisms, are among the most commonly recognized examples of moonlighting proteins. Fructose-1,6-bisphosphate aldolase (FBA) is an enzyme involved in the Embden-Meyerhof-Parnas (EMP) glycolytic pathway and in gluconeogenesis. Increasingly, it is also recognized that FBA has additional functions beyond its housekeeping role in central metabolism. In the present review, we summarize the current knowledge of the moonlighting functions of FBA in bacteria.
Collapse
|
44
|
González-Miguel J, Morchón R, Siles-Lucas M, Simón F. Fibrinolysis and proliferative endarteritis: two related processes in chronic infections? The model of the blood-borne pathogen Dirofilaria immitis. PLoS One 2015; 10:e0124445. [PMID: 25875022 PMCID: PMC4395379 DOI: 10.1371/journal.pone.0124445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/14/2015] [Indexed: 12/24/2022] Open
Abstract
The interaction between blood-borne pathogens and fibrinolysis is one of the most important mechanisms that mediate invasion and the establishment of infectious agents in their hosts. However, overproduction of plasmin (final product of the route) has been related in other contexts to proliferation and migration of the arterial wall cells and degradation of the extracellular matrix. We have recently identified fibrinolysis-activating antigens from Dirofilaria immitis, a blood-borne parasite whose key pathological event (proliferative endarteritis) is produced by similar mechanisms to those indicated above. The objective of this work is to study how two of this antigens [actin (ACT) and fructose-bisphosphate aldolase (FBAL)] highly conserved in pathogens, activate fibrinolysis and to establish a relationship between this activation and the development of proliferative endarteritis during cardiopulmonary dirofilariasis. We demonstrate that both proteins bind plasminogen, enhance plasmin generation, stimulate the expression of the fibrinolytic activators tPA and uPA in endothelial cell cultures and are located on the surface of the worm in contact with the host’s blood. ELISA, western blot and immunofluorescence techniques were employed for this purpose. Additionally, the implication of lysine residues in this interaction was analyzed by bioinformatics. The involvement of plasmin generated by the ACT/FBAL and plasminogen binding in cell proliferation and migration, and degradation of the extracellular matrix were shown in an “in vitro” model of endothelial and smooth muscle cells in culture. The obtained results indicate that ACT and FBAL from D. immitis activate fibrinolysis, which could be used by the parasite like a survival mechanism to avoid the clot formation. However, long-term overproduction of plasmin can trigger pathological events similar to those described in the emergence of proliferative endarteritis. Due to the high degree of evolutionary conservation of these antigens, similar processes may occur in other blood-borne pathogens.
Collapse
Affiliation(s)
- Javier González-Miguel
- Laboratory of Parasitology, Faculty of Pharmacy, Institute of Biomedical Research of Salamanca (IBSAL) and University of Salamanca, Salamanca, Spain
- * E-mail:
| | - Rodrigo Morchón
- Laboratory of Parasitology, Faculty of Pharmacy, Institute of Biomedical Research of Salamanca (IBSAL) and University of Salamanca, Salamanca, Spain
| | | | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, Institute of Biomedical Research of Salamanca (IBSAL) and University of Salamanca, Salamanca, Spain
| |
Collapse
|
45
|
Chaves EGA, Weber SS, Báo SN, Pereira LA, Bailão AM, Borges CL, Soares CMDA. Analysis of Paracoccidioides secreted proteins reveals fructose 1,6-bisphosphate aldolase as a plasminogen-binding protein. BMC Microbiol 2015; 15:53. [PMID: 25888027 PMCID: PMC4357084 DOI: 10.1186/s12866-015-0393-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/18/2015] [Indexed: 12/26/2022] Open
Abstract
Background Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to plasminogen. Results In the present study, we employed proteomic analysis of the secretome, in order to identify plasminogen-binding proteins of Paracoccidioides, Pb01. Fifteen proteins were present in the fungal secretome, presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA. These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/dissemination of Paracoccidioides. Conclusions These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might be involved somehow in the processes of invasion and spread of the fungus during infection.
Collapse
Affiliation(s)
- Edilânia Gomes Araújo Chaves
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Simone Schneider Weber
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Sonia Nair Báo
- Laboratório de Microscopia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil.
| | - Luiz Augusto Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
46
|
García E, Bianco MV, Gravisaco MJ, Rocha RV, Blanco FC, Bigi F. Evaluation of Mycobacterium bovis double knockout mce2-phoP as candidate vaccine against bovine tuberculosis. Tuberculosis (Edinb) 2015; 95:186-9. [PMID: 25620706 DOI: 10.1016/j.tube.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/03/2015] [Indexed: 11/16/2022]
Abstract
In this study, a Mycobacterium bovis knockout strain in phoP-phoR and mce2 operons was tested as an antituberculosis experimental vaccine in animal models. The double mutant strain was significantly more attenuated than the wild type strain in inmunocompetent and inmunodeficient mice. Vaccination with the double mutant protected mice against challenge with a virulent M. bovis strain.
Collapse
Affiliation(s)
- Elizabeth García
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto and De los Reseros, 1686 Hurlingham, Argentina
| | - María V Bianco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto and De los Reseros, 1686 Hurlingham, Argentina
| | - María José Gravisaco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto and De los Reseros, 1686 Hurlingham, Argentina
| | - Rosana V Rocha
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto and De los Reseros, 1686 Hurlingham, Argentina
| | - Federico C Blanco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto and De los Reseros, 1686 Hurlingham, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto and De los Reseros, 1686 Hurlingham, Argentina.
| |
Collapse
|
47
|
Capodagli GC, Lee SA, Boehm KJ, Brady KM, Pegan SD. Structural and functional characterization of methicillin-resistant Staphylococcus aureus's class IIb fructose 1,6-bisphosphate aldolase. Biochemistry 2014; 53:7604-14. [PMID: 25390935 PMCID: PMC4263427 DOI: 10.1021/bi501141t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Staphylococcus aureus is one of the most common
nosocomial sources of soft-tissue and skin infections and has more
recently become prevalent in the community setting as well. Since
the use of penicillins to combat S. aureus infections
in the 1940s, the bacterium has been notorious for developing resistances
to antibiotics, such as methicillin-resistant Staphylococcus
aureus (MRSA). With the persistence of MRSA as well as many
other drug resistant bacteria and parasites, there is a growing need
to focus on new pharmacological targets. Recently, class II fructose
1,6-bisphosphate aldolases (FBAs) have garnered attention to fill
this role. Regrettably, scarce biochemical data and no structural
data are currently available for the class II FBA found in MRSA (SaFBA).
With the recent finding of a flexible active site zinc-binding loop
(Z-Loop) in class IIa FBAs and its potential for broad spectrum class
II FBA inhibition, the lack of information regarding this feature
of class IIb FBAs, such as SaFBA, has been limiting for further Z-loop
inhibitor development. Therefore, we elucidated the crystal structure
of SaFBA to 2.1 Å allowing for a more direct structural analysis
of SaFBA. Furthermore, we determined the KM for one of SaFBA’s substrates, fructose 1,6-bisphosphate,
as well as performed mode of inhibition studies for an inhibitor that
takes advantage of the Z-loop’s flexibility. Together the data
offers insight into a class IIb FBA from a pervasively drug resistant
bacterium and a comparison of Z-loops and other features between the
different subtypes of class II FBAs.
Collapse
Affiliation(s)
- Glenn C Capodagli
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | | | | | | | | |
Collapse
|
48
|
Cieśla M, Mierzejewska J, Adamczyk M, Farrants AKÖ, Boguta M. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1103-10. [DOI: 10.1016/j.bbamcr.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
49
|
Puckett S, Trujillo C, Eoh H, Marrero J, Spencer J, Jackson M, Schnappinger D, Rhee K, Ehrt S. Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis. PLoS Pathog 2014; 10:e1004144. [PMID: 24851864 PMCID: PMC4031216 DOI: 10.1371/journal.ppat.1004144] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Metabolic pathways used by Mycobacterium tuberculosis (Mtb) to establish and maintain infections are important for our understanding of pathogenesis and the development of new chemotherapies. To investigate the role of fructose-1,6-bisphosphate aldolase (FBA), we engineered an Mtb strain in which FBA levels were regulated by anhydrotetracycline. Depletion of FBA resulted in clearance of Mtb in both the acute and chronic phases of infection in vivo, and loss of viability in vitro when cultured on single carbon sources. Consistent with prior reports of Mtb's ability to co-catabolize multiple carbon sources, this in vitro essentiality could be overcome when cultured on mixtures of glycolytic and gluconeogenic carbon sources, enabling generation of an fba knockout (Δfba). In vitro studies of Δfba however revealed that lack of FBA could only be compensated for by a specific balance of glucose and butyrate in which growth and metabolism of butyrate were determined by Mtb's ability to co-catabolize glucose. These data thus not only evaluate FBA as a potential drug target in both replicating and persistent Mtb, but also expand our understanding of the multiplicity of in vitro conditions that define the essentiality of Mtb's FBA in vivo. The development of new chemotherapies targeting Mycobacterium tuberculosis (Mtb) will benefit from genetic evaluation of potential drug targets and a better understanding of the pathways required by Mtb to establish and maintain chronic infections. We employed a genetic approach to investigate the essentiality of fructose-1,6-bisphosphate aldolase (FBA) for growth and survival of Mtb in vitro and in mice. A conditional fba mutant revealed that Mtb requires FBA for growth in the acute phase and for survival in the chronic phase of mouse infections. In vitro essentiality of fba was strictly condition-dependent. An FBA deletion mutant (Δfba) required a balanced combination of carbon substrates entering metabolism above and below the FBA-catalyzed reaction for growth and died in media with single carbon sources and in mouse lungs. Death of Δfba in vitro was associated with the perturbation of intracellular metabolites. These studies highlight how a conditional fba mutant helped identify conditions in which FBA is dispensable for growth of Mtb, evaluate FBA as a potential target for eliminating persistent bacilli and offer insight into metabolic regulation of carbon co-catabolism in Mtb.
Collapse
Affiliation(s)
- Susan Puckett
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Hyungjin Eoh
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Joeli Marrero
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - John Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Balhara V, Deshmukh SS, Kálmán L, Kornblatt JA. The interaction of streptococcal enolase with canine plasminogen: the role of surfaces in complex formation. PLoS One 2014; 9:e88395. [PMID: 24520380 PMCID: PMC3919783 DOI: 10.1371/journal.pone.0088395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/05/2014] [Indexed: 11/18/2022] Open
Abstract
The enolase from Streptococcus pyogenes (Str enolase F137L/E363G) is a homo-octamer shaped like a donut. Plasminogen (Pgn) is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI) experiments coupled with atomic force microscopy (AFM), isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase.
Collapse
Affiliation(s)
- Vinod Balhara
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | | | - László Kálmán
- Department of Physics, Concordia University, Montréal, Quebec, Canada
| | - Jack A. Kornblatt
- Department of Biology and the Centre for Structural and Functional Genomics, Concordia University, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|