1
|
Yabe T, Mitsui Y, Ohnishi M, Tanigawa R, Tanizaki M, Sugiyama R, Kiriyama N, Otsuka A, Munekazu K. Social-defeat stress exposure during pregnancy induces abnormalities in spontaneous activity, sociality, and resilience to stress in offspring of mice. Behav Brain Res 2025; 480:115367. [PMID: 39631504 DOI: 10.1016/j.bbr.2024.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Environmental stress during prenatal periods can lead to neurodevelopmental disorders. Psychosocial stress can be studied using the social-defeat stress (SDS) animal model. However, the effects of prenatal exposure to SDS on the behavior of mature offspring mice have not been clarified. The present study assessed the spontaneous activity and social interaction of pups born to mothers exposed to SDS during gestation, as well as their post-maturity responses to environmental stimuli, focusing on changes in anxiety-like behavior following restraint stress exposure. METHODS Pregnant C57BL/6 J mice were subjected to SDS for 4 days, from E12.5-E15.5, using aggressive male ICR mice. We assessed the mature offspring (after 10 weeks of age) born to these mothers for spontaneous activity, anxiety-like behavior, and social interactions, and evaluated their activity levels post-maturity following restraint stress exposure. RESULTS The open field test (OF) indicated reduced travel distance and duration in the SDS group versus controls, whereas home-cage monitoring showed increased area traveled. In a novel environment, the SDS group showed a decrease in interest in stranger mice. In a multiple-animal rearing environment, the SDS group showed an increase in the frequency and number of contact with other individuals. Movement duration in the OF following restraint stress reduced significantly from 30 min to 4 h in the control versus SDS group. CONCLUSIONS Prenatal exposure to SDS can result in behavior resembling developmental disorders, impacting spontaneous activity and social interactions. Altered responses to stress suggest potential brain function abnormalities in offspring after maturation due to maternal SDS exposure.
Collapse
Affiliation(s)
- Tamaki Yabe
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Yuko Mitsui
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Momoka Ohnishi
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Rena Tanigawa
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Mizuki Tanizaki
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Rei Sugiyama
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Niina Kiriyama
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Airi Otsuka
- Laboratory of Nutrition and Health Science, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Komada Munekazu
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan.
| |
Collapse
|
2
|
Lyubashina OA, Sushkevich BM, Sivachenko IB. Postcolitis Alterations in Dose-Dependent Effects of 5-HT1A Agonist Buspirone on Nociceptive Activity of the Raphe Magnus and Dorsal Raphe Neurons in Rats. Eur J Neurosci 2025; 61:e16677. [PMID: 39831438 DOI: 10.1111/ejn.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/03/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone. In postcolitis animals, 5-HT1A autoreceptor- and heteroreceptor-activating high doses of buspirone (2 and 4 mg/kg) lost normally occurring ability to facilitate CRD- and TS-evoked activation of RMg neurons, causing inhibition of the local nociceptive signalling similar to 5-HT1A autoreceptor-activating low doses (0.1 and 0.5 mg/kg). Conversely, the normally inherent property of buspirone at all doses to reduce visceral and somatic pain-related neuronal excitation in the DR was weakened after colitis. These phenomena were associated with a loss of normally occurring inhibitory effect of the compound's high doses on hemodynamic reactions to CRD and TS, revealing deficient antinociceptive action at a systemic level. The data suggest postcolitis changes in buspirone-dependent 5-HT1A autoreceptor- and heteroreceptor-mediated signalling, which can directly or indirectly lead to reduced RMg pain-related activity and increased DR nociceptive excitation, impairing their functioning in the visceral and somatic pain control.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris M Sushkevich
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
3
|
Ahmadzadeh E, Dudink I, Walker DW, Sutherland AE, Pham Y, Stojanovska V, Polglase GR, Miller SL, Allison BJ. The medullary serotonergic centres involved in cardiorespiratory control are disrupted by fetal growth restriction. J Physiol 2024; 602:5923-5941. [PMID: 37641535 DOI: 10.1113/jp284971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Fetal growth restriction (FGR) is associated with cardiovascular and respiratory complications after birth and beyond. Despite research showing a range of neurological changes following FGR, little is known about how FGR affects the brainstem cardiorespiratory control centres. The primary neurons that release serotonin reside in the brainstem cardiorespiratory control centres and may be affected by FGR. At two time points in the last trimester of sheep brain development, 110 and 127 days of gestation (0.74 and 0.86 of gestation), we assessed histopathological alterations in the brainstem cardiorespiratory control centres of the pons and medulla in early-onset FGR versus control fetal sheep. The FGR cohort were hypoxaemic and asymmetrically growth restricted. Compared to the controls, the brainstem of FGR fetuses exhibited signs of neuropathology, including elevated cell death and reduced cell proliferation, grey and white matter deficits, and evidence of oxidative stress and neuroinflammation. FGR brainstem pathology was predominantly observed in the medullary raphé nuclei, hypoglossal nucleus, nucleus ambiguous, solitary tract and nucleus of the solitary tract. The FGR groups showed imbalanced brainstem serotonin and serotonin 1A receptor abundance in the medullary raphé nuclei, despite evidence of increased serotonin staining within vascular regions of placentomes collected from FGR fetuses. Our findings demonstrate both early and adaptive brainstem neuropathology in response to placental insufficiency. KEY POINTS: Early-onset fetal growth restriction (FGR) was induced in fetal sheep, resulting in chronic fetal hypoxaemia. Growth-restricted fetuses exhibit persistent neuropathology in brainstem nuclei, characterised by disrupted cell proliferation and reduced neuronal cell number within critical centres responsible for the regulation of cardiovascular and respiratory functions. Elevated brainstem inflammation and oxidative stress suggest potential mechanisms contributing to the observed neuropathological changes. Both placental and brainstem levels of 5-HT were found to be impaired following FGR.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Chan YL, Ho CSH, Tay GWN, Tan TWK, Tang TB. MicroRNA classification and discovery for major depressive disorder diagnosis: Towards a robust and interpretable machine learning approach. J Affect Disord 2024; 360:326-335. [PMID: 38788856 DOI: 10.1016/j.jad.2024.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is notably underdiagnosed and undertreated due to its complex nature and subjective diagnostic methods. Biomarker identification would help provide a clearer understanding of MDD aetiology. Although machine learning (ML) has been implemented in previous studies to study the alteration of microRNA (miRNA) levels in MDD cases, clinical translation has not been feasible due to the lack of interpretability (i.e. too many miRNAs for consideration) and stability. METHODS This study applied logistic regression (LR) model to the blood miRNA expression profile to differentiate patients with MDD (n = 60) from healthy controls (HCs, n = 60). Embedded (L1-regularised logistic regression) feature selector was utilised to extract clinically relevant miRNAs, and optimized for clinical application. RESULTS Patients with MDD could be differentiated from HCs with the area under the receiver operating characteristic curve (AUC) of 0.81 on testing data when all available miRNAs were considered (which served as a benchmark). Our LR model selected miRNAs up to 5 (known as LR-5 model) emerged as the best model because it achieved a moderate classification ability (AUC = 0.75), relatively high interpretability (feature number = 5) and stability (ϕ̂Z=0.55) compared to the benchmark. The top-ranking miRNAs identified by our model have demonstrated associations with MDD pathways involving cytokine signalling in the immune system, the reelin signalling pathway, programmed cell death and cellular responses to stress. CONCLUSION The LR-5 model, which is optimised based on ML design factors, may lead to a robust and clinically usable MDD diagnostic tool.
Collapse
Affiliation(s)
- Yee Ling Chan
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar 32610, Perak, Malaysia
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Gabrielle W N Tay
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Trevor W K Tan
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore 117456, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar 32610, Perak, Malaysia.
| |
Collapse
|
5
|
Boroń A, Suchanecka A, Chmielowiec K, Chmielowiec J, Lachowicz M, Strońska-Pluta A, Trybek G, Wach T, González Domenech PJ, Grzywacz A. Association Study of Serotonin 1A Receptor Gene, Personality, and Anxiety in Women with Alcohol Use Disorder. Int J Mol Sci 2024; 25:6563. [PMID: 38928270 PMCID: PMC11203476 DOI: 10.3390/ijms25126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol use disorder is considered a chronic and relapsing disorder affecting the central nervous system. The serotonergic system, mainly through its influence on the mesolimbic dopaminergic reward system, has been postulated to play a pivotal role in the underlying mechanism of alcohol dependence. The study aims to analyse the association of the rs6295 polymorphism of the 5HTR1A gene in women with alcohol use disorder and the association of personality traits with the development of alcohol dependence, as well as the interaction of the rs6295, personality traits, and anxiety with alcohol dependence in women. The study group consisted of 213 female volunteers: 101 with alcohol use disorder and 112 controls. NEO Five-Factor and State-Trait Anxiety Inventories were applied for psychometric testing. Genotyping of rs6295 was performed by real-time PCR. We did not observe significant differences in 5HTR1A rs6295 genotypes (p = 0.2709) or allele distribution (p = 0.4513). The AUD subjects scored higher on the anxiety trait (p < 0.0001) and anxiety state (p < 0.0001) scales, as well as on the neuroticism (p < 0.0001) and openness (p = 0134) scales. Significantly lower scores were obtained by the AUD subjects on the extraversion (p < 0.0001), agreeability (p < 0.0001), and conscientiousness (p < 0.0001) scales. Additionally, we observed a significant effect of 5HTR1A rs6295 genotype interaction and alcohol dependency, or lack thereof, on the openness scale (p = 0.0016). In summary, this study offers a comprehensive overview of alcohol dependence among women. It offers valuable insights into this complex topic, contributing to a more nuanced understanding of substance use among this specific demographic. Additionally, these findings may have implications for developing prevention and intervention strategies tailored to individual genetic and, most importantly, personality and anxiety differences.
Collapse
Affiliation(s)
- Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Str., 70-111 Szczecin, Poland;
| | - Aleksandra Suchanecka
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Str., 70-111 Szczecin, Poland; (A.S.); (A.S.-P.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty Str., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty Str., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Milena Lachowicz
- Department of Psychology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Str., 70-111 Szczecin, Poland; (A.S.); (A.S.-P.)
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
- Maxillofacial Surgery Clinic, 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland
| | - Tomasz Wach
- Department of Maxillofacial Surgery, Medical University of Lodz, 113 Żeromskiego Str., 90-549 Lodz, Poland;
| | | | - Anna Grzywacz
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Str., 70-111 Szczecin, Poland; (A.S.); (A.S.-P.)
| |
Collapse
|
6
|
Harkin EF, Nasrallah G, Le François B, Albert PR. Transcriptional Regulation of the Human 5-HT1A Receptor Gene by Lithium: Role of Deaf1 and GSK3β. Int J Mol Sci 2023; 24:15620. [PMID: 37958600 PMCID: PMC10647674 DOI: 10.3390/ijms242115620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3β (GSK3β)-a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations-we investigated the role of GSK3β in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3β site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3β activity as detected by the GSK3β-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3β regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior.
Collapse
Affiliation(s)
| | | | | | - Paul R. Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, ON K1H-8M5, Canada (B.L.F.)
| |
Collapse
|
7
|
Lyubashina OA, Sivachenko IB, Sushkevich BM, Busygina II. Opposing effects of 5-HT1A receptor agonist buspirone on supraspinal abdominal pain transmission in normal and visceral hypersensitive rats. J Neurosci Res 2023; 101:1555-1571. [PMID: 37331003 DOI: 10.1002/jnr.25222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
The serotonergic 5-HT1A receptors are implicated in the central mechanisms of visceral pain, but their role in these processes is controversial. Considering existing evidences for organic inflammation-triggered neuroplastic changes in the brain serotonergic circuitry, the ambiguous contribution of 5-HT1A receptors to supraspinal control of visceral pain in normal and post-inflammatory conditions can be assumed. In this study performed on male Wistar rats, we used microelectrode recording of the caudal ventrolateral medulla (CVLM) neuron responses to colorectal distension (CRD) and electromyography recording of CRD-evoked visceromotor reactions (VMRs) to evaluate post-colitis changes in the effects of 5-HT1A agonist buspirone on supraspinal visceral nociceptive transmission. In rats recovered from trinitrobenzene sulfonic acid colitis, the CRD-induced CVLM neuronal excitation and VMRs were increased compared with those in healthy animals, revealing post-inflammatory intestinal hypersensitivity. Intravenous buspirone (2 and 4 mg/kg) under urethane anesthesia dose-dependently suppressed CVLM excitatory neuron responses to noxious CRD in healthy rats, but caused dose-independent increase in the already enhanced nociceptive activation of CVLM neurons in post-colitis animals, losing also its normally occurring faciliatory effect on CRD-evoked inhibitory medullary neurotransmission and suppressive action on hemodynamic reactions to CRD. In line with this, subcutaneous injection of buspirone (2 mg/kg) in conscious rats, which attenuated CRD-induced VMRs in controls, further increased VMRs in hypersensitive animals. The data obtained indicate a shift from anti- to pronociceptive contribution of 5-HT1A-dependent mechanisms to supraspinal transmission of visceral nociception in intestinal hypersensitivity conditions, arguing for the disutility of buspirone and possibly other 5-HT1A agonists for relieving post-inflammatory abdominal pain.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris M Sushkevich
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Irina I Busygina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
8
|
Khani P, Ansari Dezfouli M, Nasri F, Rahemi M, Ahmadloo S, Afkhami H, Saeidi F, Tereshchenko S, Bigdeli MR, Modarressi MH. Genetic and epigenetic effects on couple adjustment in context of romantic relationship: A scoping systematic review. Front Genet 2023; 14:1002048. [PMID: 36816018 PMCID: PMC9937082 DOI: 10.3389/fgene.2023.1002048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction: Couples' relationships defined by a complex interaction between the two partners and their intrapersonal traits. Romantic; relationships and love are associated with marital satisfaction and stability, as well as couples' happiness and health. Personality traits influence romantic relationships and, personality influenced by genetical and non-genetically factors. The roles of non-genetically factors such as socioeconomic position and external appearance have revealed in determining the quality of romantic relationships. Methods: We; performed a scoping systematic review to assess the association between genetics and epigenetic factors and romantic relationship. Relevant articles were identified by PubMed, EMBASE, Web of Science, Scopus, and the APA PsycInfo searching between inception and 4 June 2022. Results: Different studies evaluated the associated polymorphisms in 15 different genes or chromosomal regions. In the first step; we classified them into four groups: (1) Oxytocin-related signaling pathway (OXTR, CD38, and AVPR1A); (2) Serotonin-related signaling pathway (SLC6A4, HTR1A, and HTR2A); (3) Dopamine and catecholamine-related signaling pathway (DRD1, DRD2, DRD4, ANKK1, and COMT); and (4) other genes (HLA, GABRA2, OPRM1, and Y-DNA haplogroup D-M55). Then, we evaluated and extracted significant polymorphisms that affect couple adjustment and romantic relationships. Discussion: Overall, the findings suggest that genetic and epigenetics variants play a key role in marital adjustment and romantic relationships over time.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mitra Ansari Dezfouli
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahemi
- Department of stem cell technology and tissue regeneration, Faculty of Science, Tehran University, Tehran, Iran
| | - Salma Ahmadloo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sergey Tereshchenko
- Research Institute of Medical Problems of the North, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Krasnoyarsk, Russia
| | - Mohammad Reza Bigdeli
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
9
|
Alcantara-Zapata DE, Lucero N, De Gregorio N, Astudillo Cornejo P, Ibarra Villanueva C, Baltodano-Calle MJ, Gonzales GF, Behn C. Women's mood at high altitude. sexual dimorphism in hypoxic stress modulation by the tryptophan-melatonin axis. Front Physiol 2023; 13:1099276. [PMID: 36733695 PMCID: PMC9887123 DOI: 10.3389/fphys.2022.1099276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Sexual (and gender)-dimorphism in tolerance to hypobaric hypoxia increasingly matters for a differential surveillance of human activities at high altitude (HA). At low altitudes, the prevalence of anxiety and depression in women has already been found to double when compared with men; it could be expected to even increase on exposure to HA. In purposefully caring for the health of women at HA, the present work explores the potential involvement of the tryptophan (Trp)-melatonin axis in mood changes on exposure to hypobaric hypoxia. The present work highlights some already known anxiogenic effects of HA exposure. Hypoxia and insomnia reduce serotonin (5-HT) availability; the latter defect being expressed as failure of brown adipose tissue (BAT) activation and mood disorders. Rapid eye movement (REM) sleep organization and synapsis restoration that are additionally affected by hypoxia impair memory consolidation. Affective complaints may thus surge, evolving into anxiety and depression. Sex-related differences in neural network organization and hormonal changes during the menstrual cycle, and certainly also during the life cycle, underscore the possibility of 5-HT-related mood alterations, particularly in women on HA exposure. The mean brain rate of 5-HT synthesis at sea level is already 1.5-fold higher in males than in females. sexual dimorphism also evidences the overexpression effects of SERT, a 5-HT transporter protein. Gonadal and thyroid hormones, as influenced by HA exposure, further modulate 5-HT availability and its effects in women. Besides caring for adequate oxygenation and maintenance of one's body core temperature, special precautions concerning women sojourning at HA should include close observations of hormonal cycles and, perhaps, also trials with targeted antidepressants.
Collapse
Affiliation(s)
- D. E. Alcantara-Zapata
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - N. Lucero
- Occupational Health Program, School of Public Health, University of Chile, Santiago, Chile
| | - N. De Gregorio
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - P. Astudillo Cornejo
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - C. Ibarra Villanueva
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - M. J. Baltodano-Calle
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - G. F. Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - C. Behn
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Faculty of Medicine, University of Atacama, Copiapó, Chile
| |
Collapse
|
10
|
McGee SR, Rajamanickam S, Adhikari S, Falayi OC, Wilson TA, Shayota BJ, Cooley Coleman JA, Skinner C, Caylor RC, Stevenson RE, Quaio CRDAC, Wilke BC, Bain JM, Anyane-Yeboa K, Brown K, Greally JM, Bijlsma EK, Ruivenkamp CAL, Politi K, Arbogast LA, Collard MW, Huggenvik JI, Elsea SH, Jensik PJ. Expansion and mechanistic insights into de novo DEAF1 variants in DEAF1-associated neurodevelopmental disorders. Hum Mol Genet 2023; 32:386-401. [PMID: 35981081 PMCID: PMC10310974 DOI: 10.1093/hmg/ddac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023] Open
Abstract
De novo deleterious and heritable biallelic mutations in the DNA binding domain (DBD) of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of disorders termed DEAF1-associated neurodevelopmental disorders (DAND). RNA-sequencing using hippocampal RNA from mice with conditional deletion of Deaf1 in the central nervous system indicate that loss of Deaf1 activity results in the altered expression of genes involved in neuronal function, dendritic spine maintenance, development, and activity, with reduced dendritic spines in hippocampal regions. Since DEAF1 is not a dosage-sensitive gene, we assessed the dominant negative activity of previously identified de novo variants and a heritable recessive DEAF1 variant on selected DEAF1-regulated genes in 2 different cell models. While no altered gene expression was observed in cells over-expressing the recessive heritable variant, the gene expression profiles of cells over-expressing de novo variants resulted in similar gene expression changes as observed in CRISPR-Cas9-mediated DEAF1-deleted cells. Altered expression of DEAF1-regulated genes was rescued by exogenous expression of WT-DEAF1 but not by de novo variants in cells lacking endogenous DEAF1. De novo heterozygous variants within the DBD of DEAF1 were identified in 10 individuals with a phenotypic spectrum including autism spectrum disorder, developmental delays, sleep disturbance, high pain tolerance, and mild dysmorphic features. Functional assays demonstrate these variants alter DEAF1 transcriptional activity. Taken together, this study expands the clinical phenotypic spectrum of individuals with DAND, furthers our understanding of potential roles of DEAF1 on neuronal function, and demonstrates dominant negative activity of identified de novo variants.
Collapse
Affiliation(s)
- Stacey R McGee
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Shivakumar Rajamanickam
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Sandeep Adhikari
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | | | - Theresa A Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Brian J Shayota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
- Department of Pediatrics, Division of Genetics, University of Utah, Salt Lake City, UT
| | | | | | | | | | - Caio Robledo D' Angioli Costa Quaio
- Instituto da Criança (Children’s Hospital), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório Clínico, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, USA
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, USA
| | - Kaitlyn Brown
- Departments of Pediatrics and Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - John M Greally
- Departments of Pediatrics and Genetics, Albert Einstein College of Medicine, Bronx, NY USA
- Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, PO box 9600, 2300 RC, Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, PO box 9600, 2300 RC, Leiden, The Netherlands
| | | | - Lydia A Arbogast
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Michael W Collard
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Jodi I Huggenvik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Philip J Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| |
Collapse
|
11
|
Chen RJ, Nabila A, Phalke S, Castro DF, Toth JG, Bergin P, Bastiaans J, Stuhlmann H, Pernis AB, Toth M. Serotonin-1A receptor, a psychiatric disease risk factor, influences offspring immunity via sex-dependent genetic nurture. iScience 2022; 25:105595. [PMID: 36458257 PMCID: PMC9706704 DOI: 10.1016/j.isci.2022.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Serotonin-1A receptor (5HT1AR) is highly expressed in corticolimbic regions and its deficit is associated with anxiety and depression. A similar reduction in 5HT1AR heterozygous knockout (Het) mice results in anxiety-like and increased stress-reactivity phenotypes. Here we describe immunological abnormalities in Het females, characterized by an activated state of innate and adaptive immune cells. Het males showed only limited immune dysregulation. Similar immune abnormalities were present in the genetically WT female (F1) but not male offspring of Het mothers, indicating sex-specific immune system abnormalities that are dependent on the mother's 5HT1AR deficit, known as maternal genetic effect or "genetic nurture". Expression profiling of the maternal-fetal interface revealed reduced immune cell invasion to decidua and accelerated trophoblast migration. These data suggest that 5HT1AR deficit, by altering the maternal immune system and midgestational in utero environment, leads to sex-biased outcomes, predominantly immune dysregulation in the female and anxiety-like behavior in the male offspring.
Collapse
Affiliation(s)
- Rosa J. Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anika Nabila
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Swati Phalke
- Center for Genomic Research at Hospital for Special Surgery, New York, NY 10065, USA
| | - Danny Flores Castro
- Center for Genomic Research at Hospital for Special Surgery, New York, NY 10065, USA
| | - Judit Gal Toth
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul Bergin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jeroen Bastiaans
- Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heidi Stuhlmann
- Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alessandra B. Pernis
- Center for Genomic Research at Hospital for Special Surgery, New York, NY 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
12
|
Tour J, Sandström A, Kadetoff D, Schalling M, Kosek E. The OPRM1 gene and interactions with the 5-HT1a gene regulate conditioned pain modulation in fibromyalgia patients and healthy controls. PLoS One 2022; 17:e0277427. [PMID: 36342939 PMCID: PMC9639841 DOI: 10.1371/journal.pone.0277427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Fibromyalgia (FM) patients have dysfunctional endogenous pain modulation, where opioid and serotonergic signaling is implicated. The aim of this study was to investigate whether genetic variants in the genes coding for major structures in the opioid and serotonergic systems can affect pain modulation in FM patients and healthy controls (HC). Conditioned pain modulation (CPM), evaluating the effects of ischemic pain on pressure pain sensitivity, was performed in 82 FM patients and 43 HC. All subjects were genotyped for relevant functional polymorphisms in the genes coding for the μ-opioid receptor (OPRM1, rs1799971), the serotonin transporter (5-HTT, 5-HTTLPR/rs25531) and the serotonin 1a receptor (5-HT1a, rs6295). Results showed the OPRM1 G-allele was associated with decreased CPM. A significant gene-to-gene interaction was found between the OPRM1 and the 5-HT1a gene. Reduced CPM scores were seen particularly in individuals with the OPRM1 G*/5-HT1a CC genotype, indicating that the 5-HT1a CC genotype seems to have an inhibiting effect on CPM if an individual has the OPRM1 G-genotype. Thus, regardless of pain phenotype, the OPRM1 G-allele independently as well as with an interaction with the 5-HT1a gene influenced pain modulation. FM patients had lower CPM than HC but no group differences were found regarding the genetic effects on CPM, indicating that the results reflect more general mechanisms influencing pain modulatory processes rather than underlying the dysfunction of CPM in FM. In conclusion, a genetic variant known to alter the expression of, and binding to, the my-opioid receptor reduced a subject’s ability to activate descending pain inhibition. Also, the results suggest a genetically inferred gene-to-gene interaction between the main opioid receptor and a serotonergic structure essential for 5-HT transmission to modulate pain inhibition. The results in this study highlight the importance of studying joint synergistic and antagonistic effects of neurotransmittor systems in regard to pain modulation.
Collapse
Affiliation(s)
- Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology, Blekinge Hospital, Karlskrona, Sweden
- * E-mail:
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Miyagishi H, Tsuji M, Miyagawa K, Kurokawa K, Mochida-Saito A, Takahashi K, Kosuge Y, Ishige K, Takeda H. Possible role of transcriptional regulation of 5-HT 1A receptor in the midbrain on unadaptation to stress in mice. Brain Res 2022; 1783:147859. [PMID: 35245487 DOI: 10.1016/j.brainres.2022.147859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
The ability to adapt to stress is an essential defensive function of a living body, and disturbance of this ability in the brain may contribute to the development of affective illness. Previously, we reported that mice exposed to unadaptable restraint stress show emotional abnormality. Moreover, this emotional abnormality was alleviated by chronic treatment with flesinoxan, a serotonin (5-HT)1A receptor agonist. 5-HT1A receptor expression is regulated by several transcription factors such as nuclear deformed epidermal autoregulatory factor (NUDR/Deaf-1) and five prime repressors under dual repression binding protein 1 (Freud-1). The present study was designed to investigate the expression levels of 5-HT1A receptor and its transcription factors in the midbrain and hippocampus of stress-adaptive and -unadaptive mice. Mice were exposed to 14 days of repeated adaptable (1 h/day) or repeated unadaptable (4 h/day) restraint stress, or were left in their home cage (non-stressed groups). In a western blot analysis, a significant increase in the expression levels of 5HT1A receptor protein were observed in the hippocampal membrane fraction in stress-adaptive mice. In contrast, the expression levels of 5-HT1A receptor protein in stress-unadaptive mice were significantly increased in both cytoplasmic and membrane fraction of the midbrain. Furthermore, real-time PCR analysis revealed that, in the midbrain of stress-unadaptive mice, the expression levels of 5-HT1A receptor mRNA and Freud-1 or NUDR mRNA were significantly increased and decreased, respectively. These results suggest that increased expression of 5-HT1A receptor due to decrease in the expression of Freud-1 and NUDR in the midbrain may play a pivotal role in the emotional abnormality of stress-unadaptive mice.
Collapse
Affiliation(s)
- Hiroko Miyagishi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Kumiko Ishige
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| |
Collapse
|
14
|
Erkoreka L, Zumarraga M, Arrue A, Zamalloa MI, Arnaiz A, Olivas O, Moreno-Calle T, Saez E, Garcia J, Marin E, Varela N, Gonzalez-Pinto A, Basterreche N. Genetics of adult attachment: An updated review of the literature. World J Psychiatry 2021; 11:530-542. [PMID: 34631458 PMCID: PMC8474999 DOI: 10.5498/wjp.v11.i9.530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Attachment style, which has been theorized to be rooted in childhood bonding experiences, influences adult cognitive, emotional and interpersonal functioning. Despite its relationship with early experiences, research indicates that the continuity of attachment style across childhood and adulthood is only partial, being a malleable tendency that is shaped throughout development, with an increasing influence of genetics, as it occurs in other cognitive and behavioral phenotypes. Genetic research indicates that up to 45% of the variability in anxious and 39% in avoidant adult attachment style could be explained by genetic causes, but the precise mechanisms remain unclear. A narrative review is conducted analyzing the existing literature regarding the implication of candidate genes related to oxytocin, dopaminergic pathways, serotonergic pathways and brain-derived neurotrophic factor in adult attachment, with both vulnerability and differential susceptibility approaches, yielding mixed results. We highlight the lack of genome-wide studies and the scarcity of epigenetic investigation. Based on the existing data, we conclude that the genetics of adult attachment is an area that requires further research to clarify its etiological role and that it should be preferably approached as an interaction between nature and nurture.
Collapse
Affiliation(s)
- Leire Erkoreka
- Department of Psychiatry, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Galdakao 48960, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Mercedes Zumarraga
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurochemical Research, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Barakaldo 48903, Spain
| | - Aurora Arrue
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurochemical Research, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Barakaldo 48903, Spain
| | - M Isabel Zamalloa
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurochemical Research, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Barakaldo 48903, Spain
| | - Ainara Arnaiz
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Erandio Mental Health Center, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Erandio 48950, Spain
| | - Olga Olivas
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Zaldibar Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Zaldibar 48250, Spain
| | - Teresa Moreno-Calle
- Department of Psychiatry, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Galdakao 48960, Spain
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Estela Saez
- Department of Psychiatry, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Galdakao 48960, Spain
| | - Jon Garcia
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Zamudio 48170, Spain
| | - Elena Marin
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Bermeo Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Bermeo 48370, Spain
| | - Noemi Varela
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Zamudio 48170, Spain
| | - Ana Gonzalez-Pinto
- Department of Psychiatry, BioAraba Research Institute, Araba University Hospital, University of the Basque Country (UPV/EHU), CIBERSAM, Vitoria-Gasteiz 01004, Spain
| | - Nieves Basterreche
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Zamudio 48170, Spain
- Grupo de investigación integradora en Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| |
Collapse
|
15
|
Serotonergic receptor gene polymorphism and response to selective serotonin reuptake inhibitors in ethnic Malay patients with first episode of major depressive disorder. THE PHARMACOGENOMICS JOURNAL 2021; 21:498-509. [PMID: 33731884 DOI: 10.1038/s41397-021-00228-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
The polymorphisms of the 5HTR1A and 5HTR2A receptor genes (rs6295C/G and rs6311G/A) have been evaluated for association with SSRI treatment outcome in various populations with different results. The present study was carried out to determine the association between genotypes of HTR1A-rs6295 and HTR2A-rs6311 with SSRI treatment outcome among the ethnic Malay patients diagnosed with first-episode major depressive disorder (MDD). The patients were recruited from four tertiary hospitals in the Klang Valley region of Malaysia. Predefined efficacy phenotypes based on 25% (partial early response) and 50% (clinical efficacy response) reduction in Montgomery Asberg Depression Rating Scale-self Rated score (MADRS-S) were adopted for assessment of treatment efficacy in this study. Self-reporting for adverse effects (AE) was documented using the Patient Rated Inventory of Side Effect (PRISE) after treatment with SSRI for up to 6 weeks. Adjusted binary logistic regression between genotypes of the polymorphism obtained using sequencing technique with the treatment outcome phenotypes was performed. The 142 patients recruited were made up of 96 females (67.6%) and 46 males (32.4%). Clinical efficacy and Partial early response phenotypes were not significantly associated with genotypes of HTR1A and HTR2A polymorphism. The GG genotype of HTR2A polymorphism has decreased odds for dizziness (CNS) and increased odds for poor concentration. The GA genotype increases the odd for excessive sweating, diarrhoea, constipation and blurred vision. The CC genotype of HTR1A-rs6295 decreases the odd for nausea/vomiting and increases the odd for anxiety. Thus, some genotypes of HTR1A and HTR2A polymorphism were associated with SSRI treatment outcomes in ethnic Malay MDD patients.
Collapse
|
16
|
Ellerbrock I, Sandström A, Tour J, Fanton S, Kadetoff D, Schalling M, Jensen KB, Sitnikov R, Kosek E. Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol Brain 2021; 14:81. [PMID: 33980291 PMCID: PMC8117625 DOI: 10.1186/s13041-021-00789-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
The neurotransmitter serotonin, involved in the regulation of pain and emotion, is critically regulated by the 5‐HT1A autoreceptor and the serotonin transporter (5-HTT). Polymorphisms of these genes affect mood and endogenous pain modulation, both demonstrated to be altered in fibromyalgia subjects (FMS). Here, we tested the effects of genetic variants of the 5‐HT1A receptor (CC/G-carriers) and 5-HTT (high/intermediate/low expression) on mood, pain sensitivity, cerebral processing of evoked pain (functional MRI) and concentrations of GABA and glutamate (MR spectroscopy) in rostral anterior cingulate cortex (rACC) and thalamus in FMS and healthy controls (HC). Interactions between serotonin-relevant genes were found in affective characteristics, with genetically inferred high serotonergic signalling (5-HT1A CC/5-HTThigh genotypes) being more favourable across groups. Additionally, 5‐HT1A CC homozygotes displayed higher pain thresholds than G-carriers in HC but not in FMS. Cerebral processing of evoked pressure pain differed between groups in thalamus with HC showing more deactivation than FMS, but was not influenced by serotonin-relevant genotypes. In thalamus, we observed a 5‐HT1A-by-5-HTT and group-by-5-HTT interaction in GABA concentrations, with the 5-HTT high expressing genotype differing between groups and 5‐HT1A genotypes. No significant effects were seen for glutamate or in rACC. To our knowledge, this is the first report of this serotonergic gene-to-gene interaction associated with mood, both among FMS (depression) and across groups (anxiety). Additionally, our findings provide evidence of an association between the serotonergic system and thalamic GABA concentrations, with individuals possessing genetically inferred high serotonergic signalling exhibiting the highest GABA concentrations, possibly enhancing GABAergic inhibitory effects via 5-HT.
Collapse
Affiliation(s)
- Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden. .,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology, Blekinge Hospital, Karlskrona, Sweden
| | - Silvia Fanton
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Rouslan Sitnikov
- MRI Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Martin V, Mathieu L, Diaz J, Salman H, Alterio J, Chevarin C, Lanfumey L, Hamon M, Austin MC, Darmon M, Stockmeier CA, Masson J. Key role of the 5-HT1A receptor addressing protein Yif1B in serotonin neurotransmission and SSRI treatment. J Psychiatry Neurosci 2020; 45:344-355. [PMID: 32459080 PMCID: PMC7850149 DOI: 10.1503/jpn.190134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Altered function of serotonin receptor 1A (5-HT1AR) has been consistently implicated in anxiety, major depressive disorder and resistance to antidepressants. Mechanisms by which the function of 5-HT1AR (expressed as an autoreceptor in serotonergic raphe neurons and as a heteroreceptor in serotonin [5-HT] projection areas) is altered include regulation of its expression, but 5-HT1AR trafficking may also be involved. METHODS We investigated the consequences of the lack of Yif1B (the 5-HT1AR trafficking protein) on 5-HT neurotransmission in mice, and whether Yif1B expression might be affected under conditions known to alter 5-HT neurotransmission, such as anxious or depressive states or following treatment with fluoxetine (a selective serotonin reuptake inhibitor) in humans, monkeys and mice. RESULTS Compared with wild-type mice, Yif1B-knockout mice showed a significant decrease in the forebrain density of 5-HT projection fibres and a hypofunctionality of 5-HT1A autoreceptors expressed on raphe 5-HT neurons. In addition, social interaction was less in Yif1B-knockout mice, which did not respond to the antidepressant-like effect of acute fluoxetine injection. In wild-type mice, social defeat was associated with downregulated Yif1B mRNA in the prefrontal cortex, and chronic fluoxetine treatment increased Yif1B expression. The expression of Yif1B was also downregulated in the postmortem prefrontal cortex of people with major depressive disorder and upregulated after chronic treatment with a selective serotonin reuptake inhibitor in monkeys. LIMITATIONS We found sex differences in Yif1B expression in humans and monkeys, but not in mice under the tested conditions. CONCLUSION These data support the concept that Yif1B plays a critical role in 5-HT1AR functioning and brain 5-HT homeostasis. The opposite changes in its expression observed in anxious or depressive states and after therapeutic fluoxetine treatment suggest that Yif1B might be involved in vulnerability to anxiety and depression, and fluoxetine efficacy.
Collapse
Affiliation(s)
- Vincent Martin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Lionel Mathieu
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Jorge Diaz
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Haysam Salman
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Jeanine Alterio
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Caroline Chevarin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Laurence Lanfumey
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Michel Hamon
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Mark C Austin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Michèle Darmon
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Craig A Stockmeier
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Justine Masson
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| |
Collapse
|
18
|
Haleem DJ. Targeting Serotonin1A Receptors for Treating Chronic Pain and Depression. Curr Neuropharmacol 2020; 17:1098-1108. [PMID: 31418663 PMCID: PMC7057205 DOI: 10.2174/1570159x17666190811161807] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
The association of chronic pain with depression is becoming increasingly recognized. Treating both the conditions together is essential for an effective treatment outcome. In this regard, it is important to identify a shared mechanism involved in the association of chronic pain with depression. Central serotonin (5-hydroxytryptamine; 5-HT) neurotransmission has long been known to participate in the processing of signals related to pain. It also plays a key role in the pathogenesis and treatment of depression. Although functional responses to serotonin are mediated via the activation of multiple receptor types and subtypes, the 5-HT1A subtype is involved in the processing of nociception as well as the pathogenesis and treatment of depression. This receptor is located presynaptically, as an autoreceptor, on the perikaryon and dendritic spines of serotonin-containing neurons. It is also expressed as a heteroreceptor on neurons receiving input from serotonergic neurons. This arti-cle targets the 5-HT1A receptors to show that indiscriminate activation of pre and postsynaptic 5-HT1A receptors is likely to produce no therapeutic benefits; biased activation of the 5-HT heteroreceptors may be a useful strategy for treating chronic pain and depression individually as well as in a comorbid condition.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
19
|
Picardi A, Giuliani E, Gigantesco A. Genes and environment in attachment. Neurosci Biobehav Rev 2020; 112:254-269. [PMID: 32014527 DOI: 10.1016/j.neubiorev.2020.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
In the last two decades, there has been increasing research interest in disentangling the contribution of genetic and environmental factors to individual differences in attachment, and in identifying the genes involved in shaping attachment. Twin studies suggest that as attachment changes during the course of development, genetic factors may play a progressively more important role, while shared environmental effects might decrease. However, most of this literature is limited by low power, measurement issues, and cross-sectional design. The findings of molecular genetic studies are, overall, inconclusive. The literature on main genetic effects and gene-by-environment interactions on attachment is filled with inconsistent and unreplicated findings. Also, most studies are underpowered. Challenges for future research are to identify the unshared environmental mechanisms involved in shaping attachment, and to better elucidate the genes involved and their interaction with the environment. Some pioneer studies suggested that the incorporation of epigenetic processes into G × E interaction models might represent a promising future way for investigating the complex, dynamic interplay between genes, environment, and attachment.
Collapse
Affiliation(s)
- Angelo Picardi
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eugenia Giuliani
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 291-293, 00161 Rome, Italy
| | - Antonella Gigantesco
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
20
|
Impaired memory and marble burying activity in deformed epidermal autoregulatory factor 1 (Deaf1) conditional knockout mice. Behav Brain Res 2019; 380:112383. [PMID: 31783086 DOI: 10.1016/j.bbr.2019.112383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/24/2022]
Abstract
Deleterious mutations within the DNA binding domain of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. While whole animal deletion of Deaf1 in mice is lethal, mice with conditional disruption of the gene in neuronal precursor cells can display memory deficits and increased anxiety-like behavior. This study aimed to further characterize learning and memory alterations and assess changes in marble burying activity and hippocampal size in mice with conditional deletion of Deaf1. Mice lacking DEAF1 in the CNS (NKO) displayed reduced memory in both contextual fear conditioning and a 3-day massed trials Morris water maze paradigm. NKO mice had reduced marble burying activity in full cage marble burying tests. Using a half-cage marble test, NKO mice again buried fewer marbles and spent significantly more time on the side of the cage away from the marbles compared to control animals. The area of the dorsal hippocampus of NKO mice was decreased compared to control and animals with a single Deaf1 allele. These results continue to establish the importance of DEAF1 in cognitive behavior and provide new evidence that DEAF1 regulates hippocampal morphology.
Collapse
|
21
|
Cunningham AM, Santos TL, Gutzeit VA, Hamilton H, Hen R, Donaldson ZR. Functional Interrogation of a Depression-Related Serotonergic Single Nucleotide Polymorphism, rs6295, Using a Humanized Mouse Model. ACS Chem Neurosci 2019; 10:3197-3206. [PMID: 30694044 DOI: 10.1021/acschemneuro.8b00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The serotonin 1A receptor (5-HT1A) system has been extensively implicated in modulating mood and behavior. Notably, 5-HT1A levels in humans display remarkable variation, and differences in receptor levels have been linked with a variety of psychiatric disorders. Further, reduction of receptor levels by 30-50% in mice suggests that changes in receptor levels that model existing human variation are sufficient to drive behavioral alterations. As a result, genetic mechanisms that modulate human 5-HT1A levels may be important for explaining individual differences in mood and behavior, representing a potential source of psychiatric disease risk. One common genetic variant implicated in differential 5-HT1A levels is the G/C single nucleotide polymorphism (SNP) rs6295, located upstream of the human 5-HT1A gene. This SNP differentially binds the transcription factor, NUDR/Deaf1, leading to cell-type specific effects on transcription in vitro. To investigate the direct effects of this SNP in the heterogeneous cellular context of the brain, we generated humanized transgenic mice using a design that maximized the local transcriptional landscape of the human HTR1A gene while also controlling for effects of genomic insertion location. We integrated a 180 kb human bacteria artificial chromosome (BAC) transgene containing G- and C-alleles of rs6295 flanked by FRT or loxP sites. Subsequent deletion of each allele by Cre- or Flp-recombinase resulted in rs6295G and C alleles in the same genomic location. These alleles were bred onto a 5-HT1A null mouse such that the human BAC was the sole source of 5-HT1A in these mice. We generated three separate lines, two of which had detectable human 5-HT1A levels in the brain, although none displayed expression in the raphe. Of these, one line exhibited rs6295-dependent differences in 5-HT1A levels and differences in behavior, even though the overall levels were considerably lower than native expression levels. The line-dependent effect of rs6295 on protein levels and behavior may depend upon differences in background genetic factors or different insertion sites across each line. This work confirms that relatively subtle differences in 5-HT1A levels can contribute to differences in behavior and highlights the challenges of modeling human noncoding genetic variation in mice.
Collapse
Affiliation(s)
- Ashley M. Cunningham
- Division of Integrative Neuroscience, New York State Psychiatric Institute and Columbia University, New York, New York 10032, United States
- Departments of Molecular, Cellular, and Developmental Biology and Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Tabia L. Santos
- Division of Integrative Neuroscience, New York State Psychiatric Institute and Columbia University, New York, New York 10032, United States
| | - Vanessa A. Gutzeit
- Division of Integrative Neuroscience, New York State Psychiatric Institute and Columbia University, New York, New York 10032, United States
| | - Heather Hamilton
- Departments of Molecular, Cellular, and Developmental Biology and Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - René Hen
- Division of Integrative Neuroscience, New York State Psychiatric Institute and Columbia University, New York, New York 10032, United States
| | - Zoe R. Donaldson
- Departments of Molecular, Cellular, and Developmental Biology and Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Albert PR, Vahid-Ansari F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019; 161:34-45. [DOI: 10.1016/j.biochi.2018.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
|
23
|
The Transcription Factor Deaf1 Modulates Engrailed-1 Expression to Regulate Skin Appendage Fate. J Invest Dermatol 2019; 139:2378-2381.e4. [PMID: 31145909 DOI: 10.1016/j.jid.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/23/2022]
|
24
|
Albert PR, Le François B, Vahid-Ansari F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: the 5-HT1A receptor gene as a paradigm. J Psychiatry Neurosci 2019; 44:164-176. [PMID: 30807072 PMCID: PMC6488484 DOI: 10.1503/jpn.180209] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Major depression and anxiety are highly prevalent and involve chronic dysregulation of serotonin, but they remain poorly understood. Here, we review novel transcriptional (genetic, epigenetic) and posttranscriptional (microRNA, alternative splicing) mechanisms implicated in mental illness, focusing on a key serotonin-related regulator, the serotonin 1A (5-HT1A) receptor. Functional single-nucleotide polymorphisms and stress-induced DNA methylation of the 5-HT1A promoter converge to differentially alter pre- and postsynaptic 5-HT1A receptor expression associated with major depression and reduced therapeutic response to serotonergic antidepressants. Major depression is also associated with altered levels of splice factors and microRNA, posttranscriptional mechanisms that regulate RNA stability. The human 5-HT1A 3′-untranslated region is alternatively spliced, removing microRNA sites and increasing 5-HT1A expression, which is reduced in major depression and may be genotype-dependent. Thus, the 5-HT1A receptor gene illustrates the convergence of genetic, epigenetic and posttranscriptional mechanisms in gene expression, neurodevelopment and neuroplasticity, and major depression. Understanding gene regulatory mechanisms could enhance the detection, categorization and personalized treatment of major depression.
Collapse
Affiliation(s)
- Paul R. Albert
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| | - Brice Le François
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| | - Faranak Vahid-Ansari
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| |
Collapse
|
25
|
Kautzky A, James GM, Philippe C, Baldinger-Melich P, Kraus C, Kranz GS, Vanicek T, Gryglewski G, Hartmann AM, Hahn A, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. Epistasis of HTR1A and BDNF risk genes alters cortical 5-HT1A receptor binding: PET results link genotype to molecular phenotype in depression. Transl Psychiatry 2019; 9:5. [PMID: 30664620 PMCID: PMC6341100 DOI: 10.1038/s41398-018-0308-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Alterations of the 5-HT1A receptor and BDNF have consistently been associated with affective disorders. Two functional single nucleotide polymorphisms (SNPs), rs6295 of the serotonin 1A receptor gene (HTR1A) and rs6265 of brain-derived neurotrophic factor gene (BDNF), may impact transcriptional regulation and expression of the 5-HT1A receptor. Here we investigated interaction effects of rs6295 and rs6265 on 5-HT1A receptor binding. Forty-six healthy subjects were scanned with PET using the radioligand [carbonyl-11C]WAY-100635. Genotyping was performed for rs6265 and rs6295. Subjects showing a genotype with at least three risk alleles (G of rs6295 or A of rs6265) were compared to control genotypes. Cortical surface binding potential (BPND) was computed for 32 cortical regions of interest (ROI). Mixed model was applied to study main and interaction effects of ROI and genotype. ANOVA was used for post hoc analyses. Individuals with the risk genotypes exhibited an increase in 5-HT1A receptor binding by an average of 17% (mean BPND 3.56 ± 0.74 vs. 2.96 ± 0.88). Mixed model produced an interaction effect of ROI and genotype on BPND and differences could be demonstrated in 10 ROI post hoc. The combination of disadvantageous allelic expression of rs6295 and rs6265 may result in a 5-HT1A receptor profile comparable to affective disorders as increased 5-HT1A receptor binding is a well published phenotype of depression. Thus, epistasis between BDNF and HTR1A may contribute to the multifactorial risk for affective disorders and our results strongly advocate further research on this genetic signature in affective disorders.
Collapse
Affiliation(s)
- Alexander Kautzky
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Gregory M. James
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Cecile Philippe
- 0000 0000 9259 8492grid.22937.3dDivision of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Austria
| | - Pia Baldinger-Melich
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Christoph Kraus
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Georg S. Kranz
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Thomas Vanicek
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Gregor Gryglewski
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Annette M. Hartmann
- 0000 0001 0679 2801grid.9018.0University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andreas Hahn
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Wolfgang Wadsak
- 0000 0000 9259 8492grid.22937.3dDivision of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Austria ,grid.499898.dCenter for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Markus Mitterhauser
- 0000 0000 9259 8492grid.22937.3dDivision of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Austria ,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Dan Rujescu
- 0000 0001 0679 2801grid.9018.0University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Siegfried Kasper
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria.
| |
Collapse
|
26
|
Loss of Adult 5-HT1A Autoreceptors Results in a Paradoxical Anxiogenic Response to Antidepressant Treatment. J Neurosci 2018; 39:1334-1346. [PMID: 30552180 DOI: 10.1523/jneurosci.0352-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are first-line antidepressants but require several weeks to elicit their actions. Chronic SSRI treatment induces desensitization of 5-HT1A autoreceptors to enhance 5-HT neurotransmission. Mice (both sexes) with gene deletion of 5-HT1A autoreceptors in adult 5-HT neurons (1AcKO) were tested for response to SSRIs. Tamoxifen-induced recombination in adult 1AcKO mice specifically reduced 5-HT1A autoreceptor levels. The 1AcKO mice showed a loss of 5-HT1A autoreceptor-mediated hypothermia and electrophysiological responses, but no changes in anxiety- or depression-like behavior. Subchronic fluoxetine (FLX) treatment induced an unexpected anxiogenic effect in 1AcKO mice in the novelty suppressed feeding and elevated plus maze tests, as did escitalopram in the novelty suppressed feeding test. No effect was seen in wild-type (WT) mice. Subchronic FLX increased 5-HT metabolism in prefrontal cortex, hippocampus, and raphe of 1AcKO but not WT mice, suggesting hyperactivation of 5-HT release. To detect chronic cellular activation, FosB+ cells were quantified. FosB+ cells were reduced in entorhinal cortex and hippocampus (CA2/3) and increased in dorsal raphe 5-HT cells of 1AcKO mice, suggesting increased raphe activation. In WT but not 1AcKO mice, FLX reduced FosB+ cells in the median raphe, hippocampus, entorhinal cortex, and median septum, which receive rich 5-HT projections. Thus, in the absence of 5-HT1A autoreceptors, SSRIs induce a paradoxical anxiogenic response. This may involve imbalance in activation of dorsal and median raphe to regulate septohippocampal or fimbria-fornix pathways. These results suggest that markedly reduced 5-HT1A autoreceptors may provide a marker for aberrant response to SSRI treatment.SIGNIFICANCE STATEMENT Serotonin-selective reuptake inhibitors (SSRIs) are effective in treating anxiety and depression in humans and mouse models. However, in some cases, SSRIs can increase anxiety, but the mechanisms involved are unclear. Here we show that, rather than enhancing SSRI benefits, adulthood knockout (KO) of the 5-HT1A autoreceptor, a critical negative regulator of 5-HT activity, results in an SSRI-induced anxiety effect that appears to involve a hyperactivation of the 5-HT system in certain brain areas. Thus, subjects with very low levels of 5-HT1A autoreceptors, such as during childhood or adolescence, may be at risk for an SSRI-induced anxiety response.
Collapse
|
27
|
Dose related effects of buspirone on pain, learning / memory and food intake. Regul Toxicol Pharmacol 2018; 99:182-190. [PMID: 30244043 DOI: 10.1016/j.yrtph.2018.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/17/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022]
Abstract
The present study concerned extending the therapeutic use of buspirone for treating pain and improving cognition. Effects of single and repeated administration of buspirone were therefore monitored on pain threshold in the hot plate test and on spatial memory in the water maze test in rats. Effects on cumulative food intake were also monitored. The drug was administered intraperitoneally in doses of 0.1, 0.3, 1.0 and 2.0 mg/kg. We found that single and repeated administration of buspirone in doses of 0.1 mg/kg decreased pain threshold in the hot plate test, while doses of 1.0 and 2.0 mg/kg increased it. Effects of single and repeated administration were not different. A dose of 0.3 mg/kg had no effect. Food intake increased following single as well as repeated administration of 0.1 mg/kg buspirone; higher doses had no effect. Low doses (0.1 and 0.3 mg/kg) improved acquisition and retention of memory in the water maze test, while memory extinction was reduced. Higher doses had either no effect (1.0 mg/kg) or impaired (2.0 mg/kg) performance in this test. The results suggest potential therapeutic use of selected doses of buspirone as an analgesic and nootropic drug.
Collapse
|
28
|
A Novel Alternative Splicing Mechanism That Enhances Human 5-HT1A Receptor RNA Stability Is Altered in Major Depression. J Neurosci 2018; 38:8200-8210. [PMID: 30093565 DOI: 10.1523/jneurosci.0902-18.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is a key regulator of serotonergic activity and is implicated in mood and emotion. However, its post-transcriptional regulation has never been studied in humans. In the present study, we show that the "intronless" human 5-HT1A gene (HTR1A) is alternatively spliced in its 3'-UTR, yielding two novel splice variants. These variants lack a ∼1.6 kb intron, which contains an microRNA-135 (miR135) target site. Unlike the human HTR1A, the mouse HTR1A lacks the splice donor/accepter sites. Thus, in the mouse HTR1A, splicing was not detected. The two spliced mRNAs are extremely stable, are resistant to miR135-induced downregulation, and have greater translational output than the unspliced variant. Moreover, alternative HTR1A RNA splicing is oppositely regulated by the splice factors PTBP1 and nSR100, which inhibit or enhance its splicing, respectively. In postmortem human brain tissue from both sexes, HTR1A mRNA splicing was prevalent and region-specific. Unspliced HTR1A was expressed more strongly in the hippocampus and midbrain versus the prefrontal cortex (PFC), and correlated with reduced levels of nSR100. Importantly, HTR1A RNA splicing and nSR100 levels were reduced in the PFC of individuals with major depression compared with controls. Our unexpected findings uncover a novel mechanism to regulate HTR1A gene expression through alternative splicing of microRNA sites. Altered levels of splice factors could contribute to changes in regional and depression-related gene expression through alternative splicing.SIGNIFICANCE STATEMENT Alternative splicing, which is prevalent in brain tissue, increases gene diversity. The serotonin-1A receptor gene (HTR1A) is a regulator of serotonin, which is implicated in mood and emotion. Here we show that human HTR1A RNA is alternately spliced. Splicing removes a microRNA site to generate ultrastable RNA and increase HTR1A expression. This splicing varies in different brain regions and is reduced in major depression. We also identify specific splice factors for HTR1A RNA, showing they are also reduced in depression. Thus, we describe a novel mechanism to regulate gene expression through splicing. Altered levels of splice factors could contribute to depression by changing gene expression.
Collapse
|
29
|
Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain. Pharmacol Res 2018; 134:212-219. [DOI: 10.1016/j.phrs.2018.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
|
30
|
Philippe TJ, Vahid-Ansari F, Donaldson ZR, Le François B, Zahrai A, Turcotte-Cardin V, Daigle M, James J, Hen R, Merali Z, Albert PR. Loss of MeCP2 in adult 5-HT neurons induces 5-HT1A autoreceptors, with opposite sex-dependent anxiety and depression phenotypes. Sci Rep 2018; 8:5788. [PMID: 29636529 PMCID: PMC5893553 DOI: 10.1038/s41598-018-24167-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
The 5-HT1A autoreceptor mediates feedback inhibition of serotonin (5-HT) neurons, and is implicated in major depression. The human 5-HT1A gene (HTR1A) rs6295 risk allele prevents Deaf1 binding to HTR1A, resulting in increased 5-HT1A autoreceptor transcription. Since chronic stress alters HTR1A methylation and expression, we addressed whether recruitment of methyl-binding protein MeCP2 may alter Deaf1 regulation at the HTR1A locus. We show that MeCP2 enhances Deaf1 binding to its HTR1A site and co-immunoprecipitates with Deaf1 in cells and brain tissue. Chromatin immunoprecipitation assays showed Deaf1-dependent recruitment of MeCP2 to the mouse HTR1A promoter, and MeCP2 modulated human and mouse HTR1A gene transcription in a Deaf1-dependent fashion, enhancing Deaf1-induced repression at the Deaf1 site. To address the role of MeCP2 in HTR1A regulation in vivo, mice with conditional knockout of MeCP2 in adult 5-HT neurons (MeCP2 cKO) were generated. These mice exhibited increased 5-HT1A autoreceptor levels and function, consistent with MeCP2 enhancement of Deaf1 repression in 5-HT neurons. Interestingly, female MeCP2-cKO mice displayed reduced anxiety, while males showed increased anxiety and reduced depression-like behaviors. These data uncover a novel role for MeCP2 in 5-HT neurons to repress HTR1A expression and drive adult anxiety- and depression-like behaviors in a sex-specific manner.
Collapse
Affiliation(s)
- Tristan J Philippe
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology and Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Brice Le François
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Amin Zahrai
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Valérie Turcotte-Cardin
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Mireille Daigle
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Jonathan James
- The Royal's Institute of Mental Health, affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - René Hen
- New York State Psychiatric Institute, Columbia University Medical Center and Research Foundation for Mental Hygiene, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Zul Merali
- The Royal's Institute of Mental Health, affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
31
|
Huang JH, Chang HA, Fang WH, Ho PS, Liu YP, Wan FJ, Tzeng NS, Shyu JF, Chang CC. Serotonin receptor 1A promoter polymorphism, rs6295, modulates human anxiety levels via altering parasympathetic nervous activity. Acta Psychiatr Scand 2018; 137:263-272. [PMID: 29363117 DOI: 10.1111/acps.12853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The G-allele of the -1019C/G (rs6295) promoter polymorphism of the serotonin receptor 1A (HTR1A) gene has been implicated in anxiety; however, the underlying neurophysiological processes are still not fully understood. Recent evidence indicates that low parasympathetic (vagal) tone is predictive of anxiety. We thus conducted a structural equation model (SEM) to examine whether the HTR1A rs6295 variant can affect anxiety by altering parasympathetic nervous activity. METHOD A sample of 1141 drug-free healthy Han Chinese was recruited for HTR1A genotyping. Autonomic nervous function was assessed by short-term spectral analysis of heart rate variability (HRV). Anxiety and stress levels were evaluated by the Beck Anxiety Inventory (BAI) and the Perceived Stress Scale (PSS) respectively. RESULTS The number of the HTR1A G allele was inversely correlated with high-frequency power (HF), a parasympathetic index of HRV. The HF index was negatively associated with BAI scores. Furthermore, the good-fitting SEM, adjusting for confounding variables (e.g., age and PSS levels), revealed a significant pathway linking rs6295 variant to BAI scores via HF index modulation. CONCLUSION These results are the first to show that HTR1A -1019C/G polymorphism influences anxiety levels by modulating parasympathetic tone, providing a neurophysiological insight into the role of HTR1A in human anxiety.
Collapse
Affiliation(s)
- J-H Huang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - H-A Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - W-H Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - P-S Ho
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Y-P Liu
- Laboratory of Cognitive Neuroscience, Departments of Physiology and Psychiatry, National Defense Medical Center, Taipei, Taiwan
| | - F-J Wan
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - N-S Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - J-F Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - C-C Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
32
|
Chen L, Jensik PJ, Alaimo JT, Walkiewicz M, Berger S, Roeder E, Faqeih EA, Bernstein JA, Smith ACM, Mullegama SV, Saffen DW, Elsea SH. Functional analysis of novel DEAF1 variants identified through clinical exome sequencing expands DEAF1-associated neurodevelopmental disorder (DAND) phenotype. Hum Mutat 2017; 38:1774-1785. [PMID: 28940898 PMCID: PMC5679464 DOI: 10.1002/humu.23339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 11/06/2022]
Abstract
Deformed epidermal autoregulatory factor-1 (DEAF1), a transcription factor essential for central nervous system and early embryonic development, has recently been implicated in a series of intellectual disability-related neurodevelopmental anomalies termed, in this study, as DEAF1-associated neurodevelopmental disorder (DAND). We identified six potentially deleterious DEAF1 variants in a cohort of individuals with DAND via clinical exome sequencing (CES) and in silico analysis, including two novel de novo variants: missense variant c.634G > A p.Gly212Ser in the SAND domain and deletion variant c.913_915del p.Lys305del in the NLS domain, as well as c.676C > T p.Arg226Trp, c.700T > A p.Trp234Arg, c.737G > C p.Arg246Thr, and c.791A > C p.Gln264Pro. Luciferase reporter, immunofluorescence staining, and electrophoretic mobility shift assays revealed that these variants had decreased transcriptional repression activity at the DEAF1 promoter and reduced affinity to consensus DEAF1 DNA binding sequences. In addition, c.913_915del p.K305del localized primarily to the cytoplasm and interacted with wild-type DEAF1. Our results demonstrate that variants located within the SAND or NLS domains significantly reduce DEAF1 transcriptional regulatory activities and are thus, likely to contribute to the underlying clinical concerns in DAND patients. These findings illustrate the importance of experimental characterization of variants with uncertain significance identified by CES to assess their potential clinical significance and possible use in diagnosis.
Collapse
Affiliation(s)
- Li Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Joseph T. Alaimo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Seth Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Departments of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
| | - Eissa A. Faqeih
- Department of Pediatrics Subspecialty, Children’s Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Ann C. M. Smith
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sureni V. Mullegama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David W. Saffen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institutes of Brain Science, Fudan University, Shanghai, China
- State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, China
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| |
Collapse
|
33
|
Abrogated Freud-1/Cc2d1a Repression of 5-HT1A Autoreceptors Induces Fluoxetine-Resistant Anxiety/Depression-Like Behavior. J Neurosci 2017; 37:11967-11978. [PMID: 29101244 DOI: 10.1523/jneurosci.1668-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 11/21/2022] Open
Abstract
Freud-1/Cc2d1a represses the gene transcription of serotonin-1A (5-HT1A) autoreceptors, which negatively regulate 5-HT tone. To test the role of Freud-1 in vivo, we generated mice with adulthood conditional knock-out of Freud-1 in 5-HT neurons (cF1ko). In cF1ko mice, 5-HT1A autoreceptor protein, binding and hypothermia response were increased, with reduced 5-HT content and neuronal activity in the dorsal raphe. The cF1ko mice displayed increased anxiety- and depression-like behavior that was resistant to chronic antidepressant (fluoxetine) treatment. Using conditional Freud-1/5-HT1A double knock-out (cF1/1A dko) to disrupt both Freud-1 and 5-HT1A genes in 5-HT neurons, no increase in anxiety- or depression-like behavior was seen upon knock-out of Freud-1 on the 5-HT1A autoreceptor-negative background; rather, a reduction in depression-like behavior emerged. These studies implicate transcriptional dysregulation of 5-HT1A autoreceptors by the repressor Freud-1 in anxiety and depression and provide a clinically relevant genetic model of antidepressant resistance. Targeting specific transcription factors, such as Freud-1, to restore transcriptional balance may augment response to antidepressant treatment.SIGNIFICANCE STATEMENT Altered regulation of the 5-HT1A autoreceptor has been implicated in human anxiety, major depression, suicide, and resistance to antidepressants. This study uniquely identifies a single transcription factor, Freud-1, as crucial for 5-HT1A autoreceptor expression in vivo Disruption of Freud-1 in serotonin neurons in mice links upregulation of 5-HT1A autoreceptors to anxiety/depression-like behavior and provides a new model of antidepressant resistance. Treatment strategies to reestablish transcriptional regulation of 5-HT1A autoreceptors could provide a more robust and sustained antidepressant response.
Collapse
|
34
|
Zheng H, Onoda K, Wada Y, Mitaki S, Nabika T, Yamaguchi S. Serotonin-1A receptor C-1019G polymorphism affects brain functional networks. Sci Rep 2017; 7:12536. [PMID: 28970569 PMCID: PMC5624925 DOI: 10.1038/s41598-017-12913-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is strongly implicated in major depression and other affective disorders due to its negative regulation of serotonin neurone firing rates. Behavioural and clinical studies have repeatedly reported that the −1019G allele carries a high susceptibility for affective disorders. However, the underlying pathophysiology remains unknown. Here, we employed a genetic neuroimaging strategy in 99 healthy human subjects to explore the effect of serotonin-1A receptor polymorphism on brain resting-state functional connectivity (FC). We used functional magnetic resonance imaging, along with a seed-based approach, to identify three main brain networks: the default mode network (DMN), the salience network (SN) and the central executive network. We observed a significant decrease in the FC of the DMN within the dorsolateral and ventromedial prefrontal cortices in G-carriers. Furthermore, compared with the C-homozygote group, we observed decreased FC of the SN within the ventromedial prefrontal cortex and subgenual anterior cingulate cortex in the G-carrier group. Our results indicate that 5-HT1A receptor genetic polymorphism modulates the activity of resting-state FC within brain networks including the DMN and SN. These genotype-related alterations in brain networks and FC may provide novel insights into the neural mechanism underlying the predisposition for affective disorders in G allele carriers.
Collapse
Affiliation(s)
- Haixia Zheng
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Keiichi Onoda
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yasuko Wada
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Shingo Mitaki
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Toru Nabika
- Department of Functional Pathology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shuhei Yamaguchi
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
35
|
Abstract
Depression is a polygenic and highly complex psychiatric disorder that remains a major burden on society. Antidepressants, such as selective serotonin reuptake inhibitors (SSRIs), are some of the most commonly prescribed drugs worldwide. In this review, we will discuss the evidence that links serotonin and serotonin receptors to the etiology of depression and the mechanisms underlying response to antidepressant treatment. We will then revisit the role of serotonin in three distinct hypotheses that have been proposed over the last several decades to explain the pathophysiology of depression: the monoamine, neurotrophic, and neurogenic hypotheses. Finally, we will discuss how recent studies into serotonin receptors have implicated specific neural circuitry in mediating the antidepressant response, with a focus being placed on the hippocampus.
Collapse
Affiliation(s)
- Christine N Yohn
- Department of Psychology, Behavioral & Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd., Room 215, Piscataway, NJ, 08816, USA
| | - Mark M Gergues
- Department of Psychology, Behavioral & Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd., Room 215, Piscataway, NJ, 08816, USA
| | - Benjamin Adam Samuels
- Department of Psychology, Behavioral & Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd., Room 215, Piscataway, NJ, 08816, USA.
| |
Collapse
|
36
|
Kautzky A, James GM, Philippe C, Baldinger-Melich P, Kraus C, Kranz GS, Vanicek T, Gryglewski G, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. The influence of the rs6295 gene polymorphism on serotonin-1A receptor distribution investigated with PET in patients with major depression applying machine learning. Transl Psychiatry 2017; 7:e1150. [PMID: 28608854 PMCID: PMC5537636 DOI: 10.1038/tp.2017.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/08/2017] [Accepted: 04/20/2017] [Indexed: 12/25/2022] Open
Abstract
Major depressive disorder (MDD) is the most common neuropsychiatric disease and despite extensive research, its genetic substrate is still not sufficiently understood. The common polymorphism rs6295 of the serotonin-1A receptor gene (HTR1A) is affecting the transcriptional regulation of the 5-HT1A receptor and has been closely linked to MDD. Here, we used positron emission tomography (PET) exploiting advances in data mining and statistics by using machine learning in 62 healthy subjects and 19 patients with MDD, which were scanned with PET using the radioligand [carbonyl-11C]WAY-100635. All the subjects were genotyped for rs6295 and genotype was grouped in GG vs C allele carriers. Mixed model was applied in a ROI-based (region of interest) approach. ROI binding potential (BPND) was divided by dorsal raphe BPND as a specific measure to highlight rs6295 effects (BPDiv). Mixed model produced an interaction effect of ROI and genotype in the patients' group but no effects in healthy controls. Differences of BPDiv was demonstrated in seven ROIs; parahippocampus, hippocampus, fusiform gyrus, gyrus rectus, supplementary motor area, inferior frontal occipital gyrus and lingual gyrus. For classification of genotype, 'RandomForest' and Support Vector Machines were used, however, no model with sufficient predictive capability could be computed. Our results are in line with preclinical data, mouse model knockout studies as well as previous clinical analyses, demonstrating the two-pronged effect of the G allele on 5-HT1A BPND for, we believe, the first time. Future endeavors should address epigenetic effects and allosteric heteroreceptor complexes. Replication in larger samples of MDD patients is necessary to substantiate our findings.
Collapse
Affiliation(s)
- A Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G M James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - C Philippe
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - P Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - C Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - W Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - M Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria,Ludwig Boltzmann Institute for Applied Diagnostics, Vienna, Austria
| | - D Rujescu
- University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - S Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria. E-mail:
| |
Collapse
|
37
|
Abstract
Although serotonin neurotransmission has been implicated in several neurodevelopmental and psychological disorders, the factors that drive dysfunction of the serotonin system are poorly understood. Current research regarding the serotonin system revolves around its dysfunction in neuropsychiatric disorders, but there is no database collating genetic mutations that result in serotonin abnormalities. To bridge this gap, we developed a list of genes in mice that, when perturbed, result in altered levels of serotonin either in brain or blood. Due to the intrinsic limitations of search, the current list should be considered a preliminary subset of all relevant cases. Nevertheless, it offered an opportunity to gain insight into what types of genes have the potential to impact serotonin by using gene ontology (GO). This analysis found that genes associated with monoamine metabolism were more often associated with increases in brain serotonin than decreases. Speculatively, this could be because several pathways (and therefore many genes) are responsible for the clearance and metabolism of serotonin whereas only one pathway (and therefore fewer genes) is directly involved in the synthesis of serotonin. Another contributor could be cross talk between monoamine systems such as dopamine. In contrast, genes that were associated with decreases in brain serotonin were more likely linked to a developmental process. Sensitivity of serotonin neurons to developmental perturbations could be due to their complicated neuroanatomy or possibly they may be negatively regulated by dysfunction of their innervation targets. Thus, these observations suggest hypotheses regarding the mechanisms underlying the vulnerability of brain serotonin neurotransmission.
Collapse
Affiliation(s)
- Richard C. Tenpenny
- Department of Anesthesiology, Perioperative, and Pain
Medicine, Boston Children’s Hospital and Department of Anesthesia,
Harvard Medical School, 300 Longwood
Avenue, Boston, Massachusetts 02115, United States
| | - Kathryn G. Commons
- Department of Anesthesiology, Perioperative, and Pain
Medicine, Boston Children’s Hospital and Department of Anesthesia,
Harvard Medical School, 300 Longwood
Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
38
|
Meunier CNJ, Chameau P, Fossier PM. Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players. Front Synaptic Neurosci 2017; 9:2. [PMID: 28203201 PMCID: PMC5285384 DOI: 10.3389/fnsyn.2017.00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex (PFC) is involved in cognitive tasks such as working memory, decision making, risk assessment and regulation of attention. These functions performed by the PFC are supposed to rely on rhythmic electrical activity generated by neuronal network oscillations determined by a precise balance between excitation and inhibition balance (E/I balance) resulting from the coordinated activities of recurrent excitation and feedback and feedforward inhibition. Functional alterations in PFC functions have been associated with cognitive deficits in several pathologies such as major depression, anxiety and schizophrenia. These pathological situations are correlated with alterations of different neurotransmitter systems (i.e., serotonin (5-HT), dopamine (DA), acetylcholine…) that result in alterations of the E/I balance. The aim of this review article is to cover the basic aspects of the regulation of the E/I balance as well as to highlight the importance of the complementarity role of several neurotransmitters in the modulation of the plasticity of excitatory and inhibitory synapses. We illustrate our purpose by recent findings that demonstrate that 5-HT and DA cooperate to regulate the plasticity of excitatory and inhibitory synapses targeting layer 5 pyramidal neurons (L5PyNs) of the PFC and to fine tune the E/I balance. Using a method based on the decomposition of the synaptic conductance into its excitatory and inhibitory components, we show that concomitant activation of D1-like receptors (D1Rs) and 5-HT1ARs, through a modulation of NMDA receptors, favors long term potentiation (LTP) of both excitation and inhibition and consequently does not modify the E/I balance. We also demonstrate that activation of D2-receptors requires functional 5-HT1ARs to shift the E-I balance towards more inhibition and to favor long term depression (LTD) of excitatory synapses through the activation of glycogen synthase kinase 3β (GSK3β). This cooperation between different neurotransmitters is particularly relevant in view of pathological situations in which alterations of one neurotransmitter system will also have consequences on the regulation of synaptic efficacy by other neurotransmitters. This opens up new perspectives in the development of therapeutic strategies for the pharmacological treatment of neuronal disorders.
Collapse
Affiliation(s)
- Claire N J Meunier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| | - Pascal Chameau
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam Amsterdam, Netherlands
| | - Philippe M Fossier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| |
Collapse
|
39
|
Macedo D, Filho AJMC, Soares de Sousa CN, Quevedo J, Barichello T, Júnior HVN, Freitas de Lucena D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord 2017; 208:22-32. [PMID: 27744123 DOI: 10.1016/j.jad.2016.09.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The first drug repurposed for the treatment of depression was the tuberculostatic iproniazid. At present, drugs belonging to new classes of antidepressants still have antimicrobial effects. Dysbiosis of gut microbiota was implicated in the development or exacerbation of mental disorders, such as major depressive disorder (MDD). Based on the current interest in the gut-brain axis, the focus of this narrative review is to compile the available studies regarding the influences of gut microbiota in behavior and depression and to show the antimicrobial effect of antidepressant drugs. A discussion regarding the possible contribution of the antimicrobial effect of antidepressant drugs to its effectiveness/resistance is included. METHODS The search included relevant articles from PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge. RESULTS MDD is associated with changes in gut permeability and microbiota composition. In this respect, antidepressant drugs present antimicrobial effects that could also be related to the effectiveness of these drugs for MDD treatment. Conversely, some antimicrobials present antidepressant effects. CONCLUSION Both antidepressants and antimicrobials present neuroprotective/antidepressant and antimicrobial effects. Further studies are needed to evaluate the participation of antimicrobial mechanisms of antidepressants in MDD treatment as well as to determine the contribution of this effect to antidepressant resistance.
Collapse
Affiliation(s)
- Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| | - Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caren Nádia Soares de Sousa
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Hélio Vitoriano Nobre Júnior
- Laboratory of Bioprospection and Experiments in Yeast (LABEL), Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
40
|
Wu X, Yao J, Ding M, Shi ZS, Xu FL, Zhang JJ, Wang BJ. 5-HT1A receptor (HTR1A) 5' region haplotypes significantly affect protein expression in vitro. Neurosci Lett 2016; 638:51-54. [PMID: 27939355 DOI: 10.1016/j.neulet.2016.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/13/2023]
Abstract
The aim of this study was to explore the role of two SNPs (rs6295 & rs113195492) in the HTR1A gene promoter region that regulates the expression of the 5-HT1A receptor. A fragment spanning from -551 to +672 of HTR1A (Transcription start site +1) was cloned into the pGL-3 Basic Vector and three haplotype plasmids composed of two SNPs were constructed. HEK-293 cells and the SK-N-SH cells were transfected with the three plasmids, and the relative fluorescence intensity was measured. In HEK-293 cells, there was a significant difference when the relative fluorescence intensity of plasmid 1-1 was compared to that of plasmid 2-1. However, no significant difference was observed when the luciferase expression of plasmid 2-1 and plasmid 3-1 was analyzed. We also found that the expression trend of the SK-N-SH cells was similar to the HEK-293 cells, but the overall relative fluorescence intensity of the SK-N-SH cells was lower than that of the HEK-293 cells. Our finding showed that the rs6295 SNP, as a suspected variant that indicates susceptibility to schizophrenia, exhibited a higher transcriptional activity. The influence of the rs113195492 locus on schizophrenia needs to be explored further.
Collapse
Affiliation(s)
- Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Zhang-Sen Shi
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Jing-Jing Zhang
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
41
|
Luckhart C, Philippe TJ, Le François B, Vahid-Ansari F, Geddes SD, Béïque JC, Lagace DC, Daigle M, Albert PR. Sex-dependent adaptive changes in serotonin-1A autoreceptor function and anxiety in Deaf1-deficient mice. Mol Brain 2016; 9:77. [PMID: 27488351 PMCID: PMC4973060 DOI: 10.1186/s13041-016-0254-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/23/2016] [Indexed: 12/20/2022] Open
Abstract
The C (-1019) G rs6295 promoter polymorphism of the serotonin-1A (5-HT1A) receptor gene is associated with major depression in several but not all studies, suggesting that compensatory mechanisms mediate resilience. The rs6295 risk allele prevents binding of the repressor Deaf1 increasing 5-HT1A receptor gene transcription, and the Deaf1-/- mouse model shows an increase in 5-HT1A autoreceptor expression. In this study, Deaf1-/- mice bred on a mixed C57BL6-BALB/c background were compared to wild-type littermates for 5-HT1A autoreceptor function and behavior in males and females. Despite a sustained increase in 5-HT1A autoreceptor binding levels, the amplitude of the 5-HT1A autoreceptor-mediated current in 5-HT neurons was unaltered in Deaf1-/- mice, suggesting compensatory changes in receptor function. Consistent with increased 5-HT1A autoreceptor function in vivo, hypothermia induced by the 5-HT1A agonist DPAT was augmented in early generation male but not female Deaf1-/- mice, but was reduced with succeeding generations. Loss of Deaf1 resulted in a mild anxiety phenotype that was sex-and test-dependent, with no change in depression-like behavior. Male Deaf1 knockout mice displayed anxiety-like behavior in the open field and light-dark tests, while female Deaf1-/- mice showed increased anxiety only in the elevated plus maze. These data show that altered 5-HT1A autoreceptor regulation in male Deaf1-/- mice can be compensated for by generational adaptation of receptor response that may help to normalize behavior. The sex dependence of Deaf1 function in mice is consistent with a greater role for 5-HT1A autoreceptors in sensitivity to depression in men.
Collapse
Affiliation(s)
- Christine Luckhart
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Tristan J Philippe
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Brice Le François
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Sean D Geddes
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Mireille Daigle
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada.
| |
Collapse
|
42
|
Kaufman J, DeLorenzo C, Choudhury S, Parsey RV. The 5-HT1A receptor in Major Depressive Disorder. Eur Neuropsychopharmacol 2016; 26:397-410. [PMID: 26851834 PMCID: PMC5192019 DOI: 10.1016/j.euroneuro.2015.12.039] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023]
Abstract
Major Depressive Disorder (MDD) is a highly prevalent psychiatric diagnosis that is associated with a high degree of morbidity and mortality. This debilitating disorder is currently one of the leading causes of disability nationwide and is predicted to be the leading cause of disease burden by the year 2030. A large body of previous research has theorized that serotonergic dysfunction, specifically of the serotonin (5-HT) 1A receptor, plays a key role in the development of MDD. The purpose of this review is to describe the evolution of our current understanding of the serotonin 1A (5-HT1A) receptor and its role in the pathophysiology MDD through the discussion of animal, post-mortem, positron emission tomography (PET), pharmacologic and genetic studies.
Collapse
Affiliation(s)
- Joshua Kaufman
- Stony Brook University, Stony Brook, NY 11794, United States.
| | | | - Sunia Choudhury
- Stony Brook University, Stony Brook, NY 11794, United States
| | - Ramin V Parsey
- Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
43
|
Electroacupuncture regulate hypothalamic–pituitary–adrenal axis and enhance hippocampal serotonin system in a rat model of depression. Neurosci Lett 2016; 615:66-71. [DOI: 10.1016/j.neulet.2016.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/26/2015] [Accepted: 01/05/2016] [Indexed: 02/01/2023]
|
44
|
Evidence for genetic regulation of mRNA expression of the dosage-sensitive gene retinoic acid induced-1 (RAI1) in human brain. Sci Rep 2016; 6:19010. [PMID: 26743651 PMCID: PMC4705554 DOI: 10.1038/srep19010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022] Open
Abstract
RAI1 (retinoic acid induced-1) is a dosage-sensitive gene that causes Smith-Magenis syndrome (SMS) when mutated or deleted and Potocki-Lupski Syndrome (PTLS) when duplicated, with psychiatric features commonly observed in both syndromes. How common genetic variants regulate this gene, however, is unknown. In this study, we found that RAI1 mRNA expression in Chinese prefrontal and temporal cortex correlate with genotypes of common single nucleotide polymorphisms (SNPs) located in the RAI1 5′-upstream region. Using genotype imputation, “R2-Δ2” analysis, and data from the RegulomeDB database, we identified SNPs rs4925102 and rs9907986 as possible regulatory variants, accounting for approximately 30–40% of the variance in RAI1 mRNA expression in both brain regions. Specifically, rs4925102 and rs9907986 are predicted to disrupt the binding of retinoic acid RXR-RAR receptors and the transcription factor DEAF1 (Deformed epidermal autoregulatory factor-1), respectively. Consistent with these predictions, we observed binding of RXRα and RARα to the predicted RAI1 target in chromatin immunoprecipitation assays. Retinoic acid is crucial for early development of the central neural system, and DEAF1 is associated with intellectual disability. The observation that a significant portion of RAI1 mRNA expression is genetically controlled raises the possibility that common RAI1 5′-region regulatory variants contribute more generally to psychiatric disorders.
Collapse
|
45
|
Takekita Y, Fabbri C, Kato M, Koshikawa Y, Tajika A, Kinoshita T, Serretti A. HTR1A Polymorphisms and Clinical Efficacy of Antipsychotic Drug Treatment in Schizophrenia: A Meta-Analysis. Int J Neuropsychopharmacol 2015; 19:pyv125. [PMID: 26568455 PMCID: PMC4886666 DOI: 10.1093/ijnp/pyv125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND This meta-analysis was conducted to evaluate whether HTR1A gene polymorphisms impact the efficacy of antipsychotic drugs in patients with schizophrenia. METHODS Candidate gene studies that were published in English up to August 6, 2015 were identified by a literature search of PubMed, Web of Science, and Google scholar. Data were pooled from individual clinical trials considering overall symptoms, positive symptoms and negative symptoms, and standard mean differences were calculated by applying a random-effects model. RESULTS The present meta-analysis included a total of 1281 patients from 10 studies. Three polymorphisms of HTR1A (rs6295, rs878567, and rs1423691) were selected for the analysis. In the pooled data from all studies, none of these HTR1A polymorphisms correlated significantly with either overall symptoms or positive symptoms. However, C allele carriers of the rs6295 polymorphism showed a significantly greater negative symptoms improvement than G allele carriers (P=.04, standardized mean difference =-0.14, 95%CI = 0.01 to 0.28). CONCLUSIONS The results of our present analysis indicate that the HTR1A rs6295 polymorphism may impact negative symptoms improvement but not on either overall symptoms or positive symptoms improvement. However, this meta-analysis was based on a small number of studies and patients, and the effect size on negative symptoms was small. Given this limitation, the results should be confirmed by further investigations.
Collapse
Affiliation(s)
- Yoshiteru Takekita
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Drs Takekita, Fabbri, and Serretti); Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan (Drs Takekita, Kato, Koshikawa, and Kinoshita); Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan (Dr Tajika).
| | | | | | | | | | | | | |
Collapse
|
46
|
Le François B, Soo J, Millar AM, Daigle M, Le Guisquet AM, Leman S, Minier F, Belzung C, Albert PR. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiol Dis 2015; 82:332-341. [PMID: 26188176 DOI: 10.1016/j.nbd.2015.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/27/2015] [Accepted: 07/04/2015] [Indexed: 12/23/2022] Open
Abstract
The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of a conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways.
Collapse
MESH Headings
- Animals
- Antidepressive Agents, Tricyclic/pharmacology
- Chronic Disease
- Conserved Sequence
- CpG Islands
- DNA Methylation/drug effects
- DNA Methylation/physiology
- Depressive Disorder/drug therapy
- Depressive Disorder/genetics
- Depressive Disorder/metabolism
- Disease Models, Animal
- Dorsal Raphe Nucleus/drug effects
- Dorsal Raphe Nucleus/metabolism
- Imipramine/pharmacology
- Male
- Mice, Inbred BALB C
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Stress, Psychological/drug therapy
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Brice Le François
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jeremy Soo
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Anne M Millar
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Daigle
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | - Samuel Leman
- Inserm U 930, Université François Rabelais, 37200 Tours, France
| | - Frédéric Minier
- Inserm U 930, Université François Rabelais, 37200 Tours, France
| | | | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
47
|
Genetic Variations in the Serotonergic System Mediate a Combined, Weakened Response to SSRI Treatment: A Proposed Model. eNeuro 2015; 2:eN-TNC-0032-14. [PMID: 26464988 PMCID: PMC4586934 DOI: 10.1523/eneuro.0032-14.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2022] Open
Abstract
Individuals with the short (S) allele in the promoter region of the serotonin transporter gene (5-HTTLPR) show a less favorable response to selective serotonin reuptake inhibitor (SSRI) treatment than individuals with the long (L) allele. Similarly, individuals with the C(-1019)G allele for the mutation found in the promoter region of the serotonin 1A receptor gene (5-HTR1A) have shown blunted responses to SSRI treatment when compared with individuals lacking this polymorphism. While these findings have been replicated across multiple studies, only two studies to date have reported data for a gene-gene interaction associated with response to SSRI treatment. Both of these studies reported a combined effect for these genotypes, with individuals homozygous for the L allele and the C allele (5-HTT(L/L)-1A(C/C)) reporting the most favorable response to SSRI treatment, and individuals homozygous for the S allele and the G allele (5-HTT(S/S)-1A(G/G)) reporting the least favorable response to SSRI treatment. Additionally, no neural mechanisms have been proposed to explain why this gene-gene interaction has been observed. To that end, this article provides a review of the relevant literature associated with these polymorphisms and proposes a feasible model that describes a genotype-dependent modulation of postsynaptic serotonin signaling associated with the 5-HTT and 5-HTR1A genes.
Collapse
|
48
|
HTR1A Gene Polymorphisms and 5-HT1A Receptor Partial Agonist Antipsychotics Efficacy in Schizophrenia. J Clin Psychopharmacol 2015; 35:220-7. [PMID: 25822479 DOI: 10.1097/jcp.0000000000000304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Individual differences in serotonin 1A (5-HT1A) receptor may result in variable response to antipsychotics with 5-HT1A receptor partial agonism. We investigated the relationship between 5-HT1A receptor gene (HTR1A) single nucleotide polymorphisms (SNPs) and efficacy of antipsychotics with 5-HT1A receptor partial agonism in Japanese patients with schizophrenia. Perospirone or aripiprazole was administered to 100 patients with schizophrenia in a randomized controlled study. Candidate SNPs were rs6295 (which affects HTR1A expression and function), rs1364043, rs878567, and rs10042486. Efficacy at week 12 of treatment was evaluated using the Positive and Negative Syndrome Scale (PANSS) 5-factor subscales (excitement/hostility, depression/anxiety, cognition, positive, and negative). Rs1364043 T allele was correlated with the percent change in the PANSS 5-factor negative score (P < 0.01). Haplotype analysis showed that the rs10042486-rs6295-rs1364043 T-C-G haplotype was correlated with worse negative score improvement (haplotype frequency, 0.675; P = 0.014), and the relatively rare T-G-T haplotype correlated with better efficacy (haplotype frequency, 0.05; P = 0.031). This is the first study to show that rs10042486-rs6295-rs1364043 HTR1A variants may be correlated with the improvement of the PANSS 5-factor negative score during treatment with 5-HT1A partial agonist antipsychotics. Studies with larger sample sizes and in different ethnic groups are warranted.
Collapse
|
49
|
Albert PR, Fiori LM. Transcriptional dys-regulation in anxiety and major depression: 5-HT1A gene promoter architecture as a therapeutic opportunity. Curr Pharm Des 2015; 20:3738-50. [PMID: 24180393 DOI: 10.2174/13816128113196660740] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
Abstract
The etiology of major depression remains unclear, but reduced activity of the serotonin (5-HT) system remains implicated and treatments that increase 5-HT neurotransmission can ameliorate depressive symptoms. 5-HT1A receptors are critical regulators of the 5- HT system. They are expressed as both presynaptic autoreceptors that negatively regulate 5-HT neurons, and as post-synaptic heteroreceptors on non-serotonergic neurons in the hippocampus, cortex, and limbic system that are critical to mediate the antidepressant actions of 5-HT. Thus, 5-HT1A auto- and heteroreceptors have opposite actions on serotonergic neurotransmission. Because most 5-HT1A ligands target both auto- and heteroreceptors their efficacy has been limited, resulting in weak or unclear responses. We propose that by understanding the transcriptional regulation of the 5-HT1A receptor it may be possible to regulate its expression differentially in raphe and projection regions. Here we review the transcriptional architecture of the 5-HT1A gene (HTR1A) with a focus on specific DNA elements and transcription factors that have been shown to regulate 5-HT1A receptor expression in the brain. Association studies with the functional HTR1A promoter polymorphism rs6295 suggest a new model for the role of the 5-HT1A receptor in susceptibility to depression involving early deficits in cognitive, fear and stress reactivity as stressors that may ultimately lead to depression. We present evidence that by targeting specific transcription factors it may be possible to oppositely regulate 5-HT1A auto- and heteroreceptor expression, synergistically increasing serotonergic neurotransmission for the treatment of depression.
Collapse
Affiliation(s)
| | - Laura M Fiori
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H-8M5.
| |
Collapse
|
50
|
Jensik PJ, Vargas JD, Reardon SN, Rajamanickam S, Huggenvik JI, Collard MW. DEAF1 binds unmethylated and variably spaced CpG dinucleotide motifs. PLoS One 2014; 9:e115908. [PMID: 25531106 PMCID: PMC4274154 DOI: 10.1371/journal.pone.0115908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
DEAF1 is a transcriptional regulator associated with autoimmune and neurological disorders and is known to bind TTCG motifs. To further ascertain preferred DEAF1 DNA ligands, we screened a random oligonucleotide library containing an "anchored" CpG motif. We identified a binding consensus that generally conformed to a repeated TTCGGG motif, with the two invariant CpG dinucleotides separated by 6-11 nucleotides. Alteration of the consensus surrounding the dual CpG dinucleotides, or cytosine methylation of a single CpG half-site, eliminated DEAF1 binding. A sequence within the Htr1a promoter that resembles the binding consensus but contains a single CpG motif was confirmed to have low affinity binding with DEAF1. A DEAF1 binding consensus was identified in the EIF4G3 promoter and ChIP assay showed endogenous DEAF1 was bound to the region. We conclude that DEAF1 preferentially binds variably spaced and unmethylated CpG-containing half-sites when they occur within an appropriate consensus.
Collapse
Affiliation(s)
- Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail:
| | - Jesse D. Vargas
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Sara N. Reardon
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Shivakumar Rajamanickam
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Jodi I. Huggenvik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Michael W. Collard
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| |
Collapse
|