1
|
Dvoriashyna M, Bentley-Ford M, Yu J, Chatterjee S, Pardue MT, Kane MA, Repetto R, Ethier CR. All- trans retinoic acid and fluid transport in myopigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636685. [PMID: 39975307 PMCID: PMC11839105 DOI: 10.1101/2025.02.05.636685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Myopia, or near-sightedness, is rapidly growing in prevalence, with significant long-term implications for ocular health. There is thus great impetus to better understand molecular signaling pathways leading to myopia. We and others have reported that all-trans retinoic acid (atRA) is involved in myopigenic signaling, yet the understanding of how atRA is transported and exerts a myopigenic influence is poor. Here we measured the concentrations of atRA in the serum in wild-type C57BL/6 mice under control conditions and after atRA feeding, previously shown to induce myopia. We also developed a mathematical model that describes fluid fluxes and the advective-diffusive transport of atRA in choroid and sclera, including atRA synthesis in the choriocapillaris, atRA degradation by scleral cells, and binding of atRA to the carrier protein serum albumin. This model, developed for both mice and humans, showed that atRA produced in the choriocapillaris was able to permeate well into the sclera in both mice and humans at biologically-relevant concentrations, and that atRA feeding greatly increased tissue levels of atRA across both the choroid and sclera. We were also able to identify which parameters most influence atRA concentration in ocular tissues, guiding future experimental work. Our findings support atRA's role in myopigenic signaling.
Collapse
Affiliation(s)
- Mariia Dvoriashyna
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, UK
| | - Melissa Bentley-Ford
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Saptarshi Chatterjee
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Machelle T. Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Rodolfo Repetto
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - C. Ross Ethier
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Kim DG, Choi EY, Ahn HM, Kim YJ. GRPR Drives Metastasis via CRABP2 and FNDC4 Pathways in Lung Adenocarcinoma. Cells 2024; 13:2128. [PMID: 39768218 PMCID: PMC11674891 DOI: 10.3390/cells13242128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Metastasis is a leading cause of lung adenocarcinoma (LUAD)-related mortality and presents significant challenges for treatment. The gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptor (GPCR) family, has an unclear role in LUAD progression. This study aimed to investigate the function and underlying mechanisms of GRPR in LUAD metastasis. Our findings revealed that GRPR levels were significantly elevated in tumor tissues, and higher GRPR expression was associated with worse overall survival outcomes. Functional assays demonstrated that GRPR overexpression enhanced LUAD cell invasion, while GRPR knockdown inhibited invasion both in vitro and in vivo. RNA sequencing and gene set enrichment analysis (GSEA) identified an enrichment of metastasis-promoting genes in GRPR-overexpressing cells, with CRABP2 and FNDC4 emerging as key targets. Clinical analyses further confirmed a positive correlation between GRPR expression and the levels of CRABP2 and FNDC4 in LUAD patients. These results suggest that GRPR could serve as both a prognostic marker and a therapeutic target to inhibit metastasis in LUAD.
Collapse
Affiliation(s)
| | | | | | - Youn-Jae Kim
- Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (D.-G.K.); (E.-Y.C.); (H.-M.A.)
| |
Collapse
|
3
|
Pastok MW, Tomlinson CWE, Turberville S, Butler AM, Baslé A, Noble MEM, Endicott JA, Pohl E, Tatum NJ. Structural requirements for the specific binding of CRABP2 to cyclin D3. Structure 2024; 32:2301-2315.e6. [PMID: 39419021 DOI: 10.1016/j.str.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Cellular retinoic acid binding protein 2 (CRABP2) transports retinoic acid from the cytoplasm to the nucleus where it then transfers its cargo to retinoic acid receptor-containing complexes leading to activation of gene transcription. We demonstrate using purified proteins that CRABP2 is also a cyclin D3-specific binding protein and that the CRABP2 cyclin D3 binding site and the proposed CRABP2 nuclear localization sequence overlap. Both sequences are within the helix-loop-helix motif that forms a lid to the retinoic acid binding pocket. Mutations within this sequence that block both cyclin D3 and retinoic acid binding promote formation of a CRABP2 structure in which the retinoic acid binding pocket is occupied by an alternative lid conformation. Structural and functional analysis of CRABP2 and cyclin D3 mutants combined with AlphaFold models of the ternary CDK4/6-cyclin D3-CRABP2 complex supports the identification of an α-helical protein binding site on the cyclin D3 C-terminal cyclin box fold.
Collapse
Affiliation(s)
- Martyna W Pastok
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Charles W E Tomlinson
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Shannon Turberville
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Abbey M Butler
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin E M Noble
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Natalie J Tatum
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
4
|
Isoherranen N, Wen YW. The interplay between retinoic acid binding proteins and retinoic acid degrading enzymes in modulating retinoic acid concentrations. Curr Top Dev Biol 2024; 161:167-200. [PMID: 39870433 DOI: 10.1016/bs.ctdb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells. As a consequence, free atRA concentrations in cells are expected to be exceedingly low. As such mechanisms must exist that allow sufficiently high atRA concentrations to occur for binding to retinoic acid receptor (RARs) and for RAR mediated signaling. Kinetic simulations suggest that cellular retinoic acid binding proteins (CRABPs) provide a cytosolic reservoir for atRA to allow high enough cytosolic concentrations that enable RAR signaling. Yet, the different CRABP family members CRABP1 and CRABP2 may serve different functions in this context. CRABP1 may reside in the cytosol as a member of a cytosolic signalosome and CRABP2 may bind atRA in the cytosol and localize to the nucleus. Both CRABPs appear to interact with the atRA-degrading cytochrome P450 (CYP) family 26 enzymes in the endoplasmic reticulum. These interactions, together with the expression levels of the CRABPs and CYP26s, likely modulate cellular atRA concentration gradients and tissue atRA concentrations in a tightly coordinated manner. This review provides a summary of the current knowledge of atRA distribution, metabolism and protein binding and how these characteristics may alter tissue atRA concentrations.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington.
| | - Yue Winnie Wen
- Department of Pharmaceutics, School of Pharmacy, University of Washington
| |
Collapse
|
5
|
Wang R, Liao Z, Liu C, Yu S, Xiang K, Wu T, Feng J, Ding S, Yu T, Cheng G, Li S. CRABP2 promotes cell migration and invasion by activating PI3K/AKT and MAPK signalling pathways via upregulating LAMB3 in prostate cancer. J Biochem 2024; 176:313-324. [PMID: 39038078 DOI: 10.1093/jb/mvae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Prostate cancer (PCa) has become a worldwide health burden among men. Previous studies have suggested that cellular retinoic acid binding protein 2 (CRABP2) significantly affects the regulation of cell proliferation, motility and apoptosis in multiple cancers; however, the effect of CRABP2 on PCa is poorly reported. CRABP2 expression in different PCa cell lines and its effect on different cellular functions varied. While CRABP2 promotes cell migration and invasion, it appears to inhibit cell proliferation specifically in PC-3 cells. However, the proliferation of DU145 and 22RV1 cells did not appear to be significantly affected by CRABP2. Additionally, CRABP2 had no influence on the cell cycle distribution of PCa cells. The RNA-seq assay showed that overexpressing CRABP2 upregulated laminin subunit beta-3 (LAMB3) mRNA expression, and the enrichment analyses revealed that the differentially expressed genes were enriched in the phosphoinositide 3-kinase (PI3K)/activated protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signalling pathways. The following western blot experiments also confirmed the upregulated LAMB3 protein level and the activation of the PI3K/AKT and MAPK signalling pathways. Moreover, overexpressing CRABP2 significantly inhibited tumour growth in vivo. In conclusion, CRABP2 facilitates cell migration and invasion by activating PI3K/AKT and MAPK signalling pathways through upregulating LAMB3 in PCa.
Collapse
Affiliation(s)
- Rui Wang
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Zhaoping Liao
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Chunhua Liu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Shifang Yu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Kaihua Xiang
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Ting Wu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Jie Feng
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Senjuan Ding
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Tingao Yu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Gang Cheng
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Sanlian Li
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
6
|
Choi WS, Liu RZ, Mak C, Maadi H, Godbout R. Overcoming retinoic acid resistance in HER2-enriched breast cancers: role of MYC. FEBS J 2024; 291:3521-3538. [PMID: 38708519 DOI: 10.1111/febs.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
HER2-enriched (HER2+) breast cancers express high levels of the growth-promoting HER2 protein. Although these cancers are treated with the HER2-targeted drug, trastuzumab, resistance to treatment is common. Retinoic acid (RA) is an anti-cancer agent that has been successfully used for the treatment of leukemia and holds promise for the treatment of solid cancers, including breast cancer. The HER2 gene is frequently co-amplified with RARA, a key determinant of RA sensitivity in breast cancers. It seems surprising, therefore, that HER2+ breast cancers are refractory to RA treatment. Here, we show that MYC mediates RA resistance by suppressing the expression of cellular retinoic acid binding protein 2 (CRABP2), resulting in RARα inactivation. CRABP2 is an intracellular RA transporter that delivers RA to the nuclear receptor RARα for its activation. Our results indicate that response to RA is enhanced by MYC depletion in HER2+ breast cancer cells and that RA treatment enhances trastuzumab responsiveness. Our findings support the use of RA and trastuzumab for the treatment of subsets of patients with breast cancers that are HER2-RARα co-amplified and have low levels of MYC.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Caitlin Mak
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Hamid Maadi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Fu X, Zhang Q, Wang Z, Xu Y, Dong Q. CRABP2 affects chemotherapy resistance of ovarian cancer by regulating the expression of HIF1α. Cell Death Dis 2024; 15:21. [PMID: 38195606 PMCID: PMC10776574 DOI: 10.1038/s41419-023-06398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Ovarian cancer is the most lethal malignancy among gynecologic cancers, and primary and secondary chemotherapy resistance is one of the important reasons for poor prognosis of ovarian cancer patients. However, the specifics of resistance to chemotherapy in ovarian cancer remain unclear. Herein, we find that the expression level of cellular retinoic acid binding protein 2 (CRABP2) is up-regulated in drug-resistant ovarian cancer tissues and cell lines, and the expression levels of CRABP2 in epithelial ovarian cancer tissues are closely related to tumor clinical stage and patients' prognosis, suggesting that CRABP2 plays an important role in the progression of ovarian cancer and the corresponding ability of tumor to chemotherapy. With the in-depth study, we demonstrates that CRABP2 is related to the high metabolic activity in drug-resistant cells, and all-trans retinoic acid exacerbates this activity. Further molecular mechanism exploration experiments show that CRABP2 not only up-regulates the expression level of HIF1α, but also increases the localization of HIF1α in the nucleus. In drug-resistant ovarian cancer cells, knocking down HIF1α can block the resistance of CRABP2 to chemotherapy drugs in ovarian cancer cells. Taken together, our findings suggest for the first time that CRABP2 affects chemotherapy resistance of ovarian cancer by regulating the expression of HIF1α. This study provides a possible molecular mechanism for drug resistance and a possible molecular target for clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Fu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Qian Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Medical Affairs Office, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300060, China
| | - Zhaosong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qiuping Dong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
8
|
Chen S, Cao R, Xiang L, Li Z, Chen H, Zhang J, Feng X. Research progress in nucleus-targeted tumor therapy. Biomater Sci 2023; 11:6436-6456. [PMID: 37609783 DOI: 10.1039/d3bm01116j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nucleus is considered the most important organelle in the cell as it plays a central role in controlling cell reproduction, metabolism, and the cell cycle. The successful delivery of drugs into the nucleus can achieve excellent therapeutic effects, which reveals the potential of nucleus-targeted therapy in precision medicine. However, the transportation of therapeutics into the nucleus remains a significant challenge due to various biological barriers. Herein, we summarize the recent progress in the nucleus-targeted drug delivery system (NDDS). The structures of the nucleus and nuclear envelope are first described in order to understand the mechanisms by which drugs cross the nuclear envelope. Then, various drug delivery strategies based on the mechanisms and their applications are discussed. Finally, the challenges and solutions in the field of nucleus-targeted drug delivery are raised for developing a more efficient NDDS and promoting its clinical transformation.
Collapse
Affiliation(s)
- Shaofeng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Rumeng Cao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ling Xiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ziyi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Jiumeng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
9
|
Yabut KCB, Isoherranen N. Impact of Intracellular Lipid Binding Proteins on Endogenous and Xenobiotic Ligand Metabolism and Disposition. Drug Metab Dispos 2023; 51:700-717. [PMID: 37012074 PMCID: PMC10197203 DOI: 10.1124/dmd.122.001010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/16/2023] [Accepted: 02/10/2023] [Indexed: 04/05/2023] Open
Abstract
The family of intracellular lipid binding proteins (iLBPs) is comprised of 16 members of structurally related binding proteins that have ubiquitous tissue expression in humans. iLBPs collectively bind diverse essential endogenous lipids and xenobiotics. iLBPs solubilize and traffic lipophilic ligands through the aqueous milieu of the cell. Their expression is correlated with increased rates of ligand uptake into tissues and altered ligand metabolism. The importance of iLBPs in maintaining lipid homeostasis is well established. Fatty acid binding proteins (FABPs) make up the majority of iLBPs and are expressed in major organs relevant to xenobiotic absorption, distribution, and metabolism. FABPs bind a variety of xenobiotics including nonsteroidal anti-inflammatory drugs, psychoactive cannabinoids, benzodiazepines, antinociceptives, and peroxisome proliferators. FABP function is also associated with metabolic disease, making FABPs currently a target for drug development. Yet the potential contribution of FABP binding to distribution of xenobiotics into tissues and the mechanistic impact iLBPs may have on xenobiotic metabolism are largely undefined. This review examines the tissue-specific expression and functions of iLBPs, the ligand binding characteristics of iLBPs, their known endogenous and xenobiotic ligands, methods for measuring ligand binding, and mechanisms of ligand delivery from iLBPs to membranes and enzymes. Current knowledge of the importance of iLBPs in affecting disposition of xenobiotics is collectively described. SIGNIFICANCE STATEMENT: The data reviewed here show that FABPs bind many drugs and suggest that binding of drugs to FABPs in various tissues will affect drug distribution into tissues. The extensive work and findings with endogenous ligands suggest that FABPs may also alter the metabolism and transport of drugs. This review illustrates the potential significance of this understudied area.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Zlotnik D, Rabinski T, Halfon A, Anzi S, Plaschkes I, Benyamini H, Nevo Y, Gershoni OY, Rosental B, Hershkovitz E, Ben-Zvi A, Vatine GD. P450 oxidoreductase regulates barrier maturation by mediating retinoic acid metabolism in a model of the human BBB. Stem Cell Reports 2022; 17:2050-2063. [PMID: 35961311 PMCID: PMC9481905 DOI: 10.1016/j.stemcr.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The blood-brain barrier (BBB) selectively regulates the entry of molecules into the central nervous system (CNS). A crosstalk between brain microvascular endothelial cells (BMECs) and resident CNS cells promotes the acquisition of functional tight junctions (TJs). Retinoic acid (RA), a key signaling molecule during embryonic development, is used to enhance in vitro BBB models’ functional barrier properties. However, its physiological relevance and affected pathways are not fully understood. P450 oxidoreductase (POR) regulates the enzymatic activity of microsomal cytochromes. POR-deficient (PORD) patients display impaired steroid homeostasis and cognitive disabilities. Here, we used both patient-specific POR-deficient and CRISPR-Cas9-mediated POR-depleted induced pluripotent stem cell (iPSC)-derived BMECs (iBMECs) to study the role of POR in the acquisition of functional barrier properties. We demonstrate that POR regulates cellular RA homeostasis and that POR deficiency leads to the accumulation of RA within iBMECs, resulting in the impaired acquisition of TJs and, consequently, to dysfunctional development of barrier properties. Retinoic acid (RA) promotes functional barrier properties POR-deficient iPS-brain endothelial-like cells display impaired barrier development POR mediates CYP26-dependent cellular RA catabolism RA accumulation induces a pro-inflammatory response
Collapse
Affiliation(s)
- Dor Zlotnik
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tatiana Rabinski
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Aviv Halfon
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shira Anzi
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Inbar Plaschkes
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Hadar Benyamini
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Orly Yahalom Gershoni
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Benyamin Rosental
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Eli Hershkovitz
- Israel Pediatric Endocrinology and Diabetes Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
11
|
Yabut KCB, Isoherranen N. CRABPs Alter all-trans-Retinoic Acid Metabolism by CYP26A1 via Protein-Protein Interactions. Nutrients 2022; 14:1784. [PMID: 35565751 PMCID: PMC9105409 DOI: 10.3390/nu14091784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Cellular retinoic acid binding proteins (CRABP1 and CRABP2) bind all-trans-retinoic acid (atRA), the active metabolite of vitamin A, with high affinity. CRABP1 and CRABP2 have been shown to interact with the atRA-clearing cytochrome P450 enzymes CYP26B1 and CYP26C1 and with nuclear retinoic acid receptors (RARs). We hypothesized that CRABP1 and CRABP2 also alter atRA metabolism and clearance by CYP26A1, the third key atRA-metabolizing enzyme in the CYP26 family. Based on stopped-flow experiments, atRA bound CRABP1 and CRABP2 with Kd values of 4.7 nM and 7.6 nM, respectively. The unbound atRA Km values for 4-OH-atRA formation by CYP26A1 were 4.7 ± 0.8 nM with atRA, 6.8 ± 1.7 nM with holo-CRABP1 and 6.1 ± 2.7 nM with holo-CRABP2 as a substrate. In comparison, the apparent kcat value was about 30% lower (0.71 ± 0.07 min-1 for holo-CRABP1 and 0.75 ± 0.09 min-1 for holo-CRABP2) in the presence of CRABPs than with free atRA (1.07 ± 0.08 min-1). In addition, increasing concentrations in apo-CRABPs decreased the 4-OH-atRA formation rates by CYP26A1. Kinetic analyses suggest that apo-CRABP1 and apo-CRABP2 inhibit CYP26A1 (Ki = 0.39 nM and 0.53 nM, respectively) and holo-CRABPs channel atRA for metabolism by CYP26A1. These data suggest that CRABPs play a critical role in modulating atRA metabolism and cellular atRA concentrations.
Collapse
Affiliation(s)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
12
|
Nhieu J, Lin YL, Wei LN. CRABP1 in Non-Canonical Activities of Retinoic Acid in Health and Diseases. Nutrients 2022; 14:nu14071528. [PMID: 35406141 PMCID: PMC9003107 DOI: 10.3390/nu14071528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022] Open
Abstract
In this review, we discuss the emerging role of Cellular Retinoic Acid Binding Protein 1 (CRABP1) as a mediator of non-canonical activities of retinoic acid (RA) and relevance to human diseases. We first discuss the role of CRABP1 in regulating MAPK activities and its implication in stem cell proliferation, cancers, adipocyte health, and neuro-immune regulation. We then discuss an additional role of CRABP1 in regulating CaMKII activities, and its implication in heart and motor neuron diseases. Through molecular and genetic studies of Crabp1 knockout (CKO) mouse and culture models, it is established that CRABP1 forms complexes with specific signaling molecules to function as RA-regulated signalsomes in a cell context-dependent manner. Gene expression data and CRABP1 gene single nucleotide polymorphisms (SNPs) of human cancer, neurodegeneration, and immune disease patients implicate the potential association of abnormality in CRABP1 with human diseases. Finally, therapeutic strategies for managing certain human diseases by targeting CRABP1 are discussed.
Collapse
Affiliation(s)
| | | | - Li-Na Wei
- Correspondence: ; Tel.: +1-612-6259-402
| |
Collapse
|
13
|
Hu T, Qin Z, Shen C, Gong HL, He ZY. Multifunctional Mitochondria-Targeting Nanosystems for Enhanced Anticancer Efficacy. Front Bioeng Biotechnol 2021; 9:786621. [PMID: 34900973 PMCID: PMC8652136 DOI: 10.3389/fbioe.2021.786621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria, a kind of subcellular organelle, play crucial roles in cancer cells as an energy source and as a generator of reactive substrates, which concern the generation, proliferation, drug resistance, and other functions of cancer. Therefore, precise delivery of anticancer agents to mitochondria can be a novel strategy for enhanced cancer treatment. Mitochondria have a four-layer structure with a high negative potential, which thereby prevents many molecules from reaching the mitochondria. Luckily, the advances in nanosystems have provided enormous hope to overcome this challenge. These nanosystems include liposomes, nanoparticles, and nanomicelles. Here, we summarize the very latest developments in mitochondria-targeting nanomedicines in cancer treatment as well as focus on designing multifunctional mitochondria-targeting nanosystems based on the latest nanotechnology.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Han-Lin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Cellular retinoid-binding proteins transfer retinoids to human cytochrome P450 27C1 for desaturation. J Biol Chem 2021; 297:101142. [PMID: 34480899 PMCID: PMC8511960 DOI: 10.1016/j.jbc.2021.101142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Cytochrome P450 27C1 (P450 27C1) is a retinoid desaturase expressed in the skin that catalyzes the formation of 3,4-dehydroretinoids from all-trans retinoids. Within the skin, retinoids are important regulators of proliferation and differentiation. In vivo, retinoids are bound to cellular retinol-binding proteins (CRBPs) and cellular retinoic acid–binding proteins (CRABPs). Interaction with these binding proteins is a defining characteristic of physiologically relevant enzymes in retinoid metabolism. Previous studies that characterized the catalytic activity of human P450 27C1 utilized a reconstituted in vitro system with free retinoids. However, it was unknown whether P450 27C1 could directly interact with holo-retinoid-binding proteins to receive all-trans retinoid substrates. To assess this, steady-state kinetic assays were conducted with free all-trans retinoids and holo-CRBP-1, holo-CRABP-1, and holo-CRABP-2. For holo-CRBP-1 and holo-CRABP-2, the kcat/Km values either decreased 5-fold or were equal to the respective free retinoid values. The kcat/Km value for holo-CRABP-1, however, decreased ∼65-fold in comparison with reactions with free all-trans retinoic acid. These results suggest that P450 27C1 directly accepts all-trans retinol and retinaldehyde from CRBP-1 and all-trans retinoic acid from CRABP-2, but not from CRABP-1. A difference in substrate channeling between CRABP-1 and CRABP-2 was also supported by isotope dilution experiments. Analysis of retinoid transfer from holo-CRABPs to P450 27C1 suggests that the decrease in kcat observed in steady-state kinetic assays is due to retinoid transfer becoming rate-limiting in the P450 27C1 catalytic cycle. Overall, these results illustrate that, like the CYP26 enzymes involved in retinoic acid metabolism, P450 27C1 interacts with cellular retinoid-binding proteins.
Collapse
|
15
|
He Z, Zhang Y, Khan AR, Ji J, Yu A, Zhai G. A novel progress of drug delivery system for organelle targeting in tumour cells. J Drug Target 2020; 29:12-28. [PMID: 32698651 DOI: 10.1080/1061186x.2020.1797051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At present, malignant tumours have become one of the most serious diseases that endanger human health. According to a survey on causes of death in Chinese population in early 1990s, the malignant tumours were the second leading cause of death. In the treatment of tumours, the ideal situation is that drugs should target and accumulate at tumour sites and destroy tumour cells specifically, without affecting normal cells and stem cells with regenerative capacity. This requires drugs to be specifically transported to the target organs, tissues, cells, and even specific organelles, like mitochondria, nuclei, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus (GA). The nano drug delivery system can not only protect drugs from degradation but also facilitate functional modification and targeted drug delivery to the tumour site. This article mainly reviews the targeting of nano drug delivery systems to tumour cytoplasmic matrix, nucleus, mitochondria, ER, and lysosomes. Organelle-specific drug delivery system will be a major mean of targeting drug delivery with lower toxicity, less dosage and higher drug concentration in tumour cells.
Collapse
Affiliation(s)
- Zhijing He
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yanan Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Aihua Yu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
16
|
Abstract
This chapter has been conceived as an introductory text to aid in the understanding of the key design strategies for the development of synthetic analogs of endogenous retinoids as ligands for the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). The structure and binding characteristics of the endogenous retinoids are first explained to put the main chemical design challenges in context. Existing biochemical and structural data is then used to describe the guiding principles used to develop agonists and antagonists of the RARs and RXRs. In light of the increasing proliferation of biophysical methods that employ fluorescence measurements or molecular tags, we also examine the application of retinoids as probes and the chemical principles required to develop these tools.
Collapse
Affiliation(s)
| | - Andrew Whiting
- Department of Chemistry, Durham University, Lower Mountjoy, Durham, United Kingdom
| |
Collapse
|
17
|
Napoli JL, Yoo HS. Retinoid metabolism and functions mediated by retinoid binding-proteins. Methods Enzymol 2020; 637:55-75. [PMID: 32359659 DOI: 10.1016/bs.mie.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular retinoid-binding proteins (BP) chaperone retinol through esterification, conversion of retinol into retinal, reduction of retinal, conversion of retinal into all-trans-retinoic acid (ATRA), and ATRA to catabolism. They also deliver ATRA to nuclear receptors and mediate non-genomic ATRA actions. These retinoid-specific binding-proteins include: cellular retinol binding-protein, type 1 (Crbp1), cellular retinol binding-protein type 2 (Crbp2), cellular retinol binding-protein type 3 (Crbp3), cellular retinoic acid binding-protein type 1 (Crabp1); cellular retinoic acid binding-protein type 2 (Crabp2). Retinoid BP bind their ligands specifically and with high-affinity. These BP seemingly evolved to solubilize the lipophilic retinoids in the aqueous cellular medium, and allow retinoid access only to enzymes that recognize both the BP and the retinoid. By chaperoning retinoids through cells, retinoid BP provide specificity to retinoids' metabolism and protect the scarce resource from dispersing into cell membranes and/or undergoing catabolism as xenobiotics. Other functions include non-genomic actions of Crabp1, delivery of ATRA to RAR by holo-Crabp2, and stabilization of HuR by apo-Crabp2. In addition to the retinoid-specific BP, Fabp5 also binds ATRA and delivers it to Pparδ. This article describes these BP and their functions, with a focus on experimental protocols to distinguish protein-protein interactions from diffusion-mediated transfer of ligand from BP to enzymes or receptors, and methods for quantifying retinoids.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States.
| | - Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States
| |
Collapse
|
18
|
Lixa C, Clarkson MW, Iqbal A, Moon TM, Almeida FCL, Peti W, Pinheiro AS. Retinoic Acid Binding Leads to CRABP2 Rigidification and Dimerization. Biochemistry 2019; 58:4183-4194. [DOI: 10.1021/acs.biochem.9b00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carolina Lixa
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| | - Michael W. Clarkson
- Department of Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Anwar Iqbal
- National Center for Nuclear Magnetic Resonance Jiri Jonas, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Thomas M. Moon
- Department of Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Fabio C. L. Almeida
- National Center for Nuclear Magnetic Resonance Jiri Jonas, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Anderson S. Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| |
Collapse
|
19
|
Zhao X, Yang X. Retinoic Acid Promotes Retinoic Acid Signaling by Suppression of Pitx1 In Tendon Cells: A Possible Mechanism of a Clubfoot-Like Phenotype Induced by Retinoic Acid. Med Sci Monit 2019; 25:6980-6989. [PMID: 31527569 PMCID: PMC6761847 DOI: 10.12659/msm.917740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The pathogenesis of idiopathic congenital clubfoot (CCF) is unknown. Although some familial patients have Pitx1 mutations, and the Pitx1+/− genotype causes a clubfoot-like phenotype in mice, the mechanism of Pitx1-induced CCF is unknown. Material/Methods We used tibialis anterior tendon samples to detect the expression of Pitx1 in idiopathic and neurogenic clubfoot patients. After obtaining Sprague-Dawley (SD) rat Achilles tendon cells, the expression of Pitx1 was knocked down by SiRNA. After 48 h of culture, mass spectrometry was used to quantitatively analyze proteins. Then, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to assess the downstream pathway of PITX1. The relationship between Pitx1 and the promoter region of deacetylase 1 (Sirtuin-1 and Sirt1) was examined by luciferase and ChIP assays. Results We found that Pitx1 expression in the tendon samples of idiopathic CCF patients was downregulated. Mass spectrometry analysis revealed that the inhibition of Pitx1 induced the downregulation of Sirt1 expression in tendon cells. Luciferase and ChIP assays confirmed that Pitx1 binds to the promoter region of SIRT1 and promotes Sirt1 gene transcription. Further results showed that, after the inhibition of Pitx1 in tendon cells, CRABP2 acetylation increased, the nuclear import of CRABP2 was enhanced, and the expression of RARβ2 increased. After the inhibition of Pitx1, RARβ2 expression was further increased by RA treatment in tendon cells. In the presence of retinoic acid, the expression of Pitx1 was inhibited in tendon cells. Conclusions Pitx1 binds to the promoter region of SIRT1 and promotes the transcription of SIRT1. Positive feedback occurs between RA signaling and Pitx1.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Xuan Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
20
|
Nedelec B, Rozet JM, Fares Taie L. Genetic architecture of retinoic-acid signaling-associated ocular developmental defects. Hum Genet 2019; 138:937-955. [DOI: 10.1007/s00439-019-02052-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
|
21
|
Chisholm DR, Tomlinson CWE, Zhou GL, Holden C, Affleck V, Lamb R, Newling K, Ashton P, Valentine R, Redfern C, Erostyák J, Makkai G, Ambler CA, Whiting A, Pohl E. Fluorescent Retinoic Acid Analogues as Probes for Biochemical and Intracellular Characterization of Retinoid Signaling Pathways. ACS Chem Biol 2019; 14:369-377. [PMID: 30707838 DOI: 10.1021/acschembio.8b00916] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinoids, such as all- trans-retinoic acid (ATRA), are endogenous signaling molecules derived from vitamin A that influence a variety of cellular processes through mediation of transcription events in the cell nucleus. Because of these wide-ranging and powerful biological activities, retinoids have emerged as therapeutic candidates of enormous potential. However, their use has been limited, to date, due to a lack of understanding of the complex and intricate signaling pathways that they control. We have designed and synthesized a family of synthetic retinoids that exhibit strong, intrinsic, solvatochromatic fluorescence as multifunctional tools to interrogate these important biological activities. We utilized the unique photophysical characteristics of these fluorescent retinoids to develop a novel in vitro fluorometric binding assay to characterize and quantify their binding to their cellular targets, including cellular retinoid binding protein II (CRABPII). The dihydroquinoline retinoid, DC360, exhibited particularly strong binding ( Kd = 34.0 ± 2.5 nM), and we further used X-ray crystallography to determine the structure of the DC360-CRABPII complex to 1.8 Å, which showed that DC360 occupies the known hydrophobic retinoid binding pocket. Finally, we used confocal fluorescence microscopy to image the cellular behavior of the compounds in cultured human epithelial cells, highlighting a fascinating nuclear localization, and used RNA sequencing to confirm that the compounds regulate cellular processes similar to those of ATRA. We anticipate that the unique properties of these fluorescent retinoids can now be used to cast new light on the vital and highly complex retinoid signaling pathway.
Collapse
Affiliation(s)
- David R. Chisholm
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Charles W. E. Tomlinson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| | - Garr-Layy Zhou
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Claire Holden
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| | - Valerie Affleck
- LightOx Limited, Wynyard Park House, Wynyard Avenue, Wynyard, Billingham TS22 5TB, U.K
| | - Rebecca Lamb
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| | - Katherine Newling
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, York YO10 5DD, U.K
| | - Peter Ashton
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, York YO10 5DD, U.K
| | - Roy Valentine
- High Force Research Limited, Bowburn North Industrial Estate, Bowburn, Durham DH6 5PF, U.K
| | - Christopher Redfern
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - János Erostyák
- University of Pecs, Szentagothai Research Centre, Spectroscopy Research Group, Ifjusag u. 20, H-7624 Pecs, Hungary
- University of Pecs, Faculty of Sciences, Ifjusag u. 6, H-7624 Pecs, Hungary
| | - Geza Makkai
- University of Pecs, Szentagothai Research Centre, Spectroscopy Research Group, Ifjusag u. 20, H-7624 Pecs, Hungary
- University of Pecs, Faculty of Sciences, Ifjusag u. 6, H-7624 Pecs, Hungary
| | - Carrie A. Ambler
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| | - Andrew Whiting
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Ehmke Pohl
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
22
|
Ghaffari H, Petzold LR. Identification of influential proteins in the classical retinoic acid signaling pathway. Theor Biol Med Model 2018; 15:16. [PMID: 30322383 PMCID: PMC6190658 DOI: 10.1186/s12976-018-0088-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022] Open
Abstract
Background In the classical pathway of retinoic acid (RA) mediated gene transcription, RA binds to a nuclear hormone receptor dimer composed of retinoic acid receptor (RAR) and retinoid X receptor (RXR), to induce the expression of its downstream target genes. In addition to nuclear receptors, there are other intracellular RA binding proteins such as cellular retinoic acid binding proteins (CRABP1 and CRABP2) and cytochrome P450 (CYP) enzymes, whose contributions to the RA signaling pathway have not been fully understood. The objective of this study was to compare the significance of various RA binding receptors, i.e. CRABP1, CRABP2, CYP and RAR in the RA signaling pathway. In this regard, we developed a mathematical model of the RA pathway, which is one of the few models, if not the only one, that includes all main intracellular RA binding receptors. We then performed a global sensitivity analysis (GSA) to investigate the contribution of the RA receptors to RA-induced mRNA production, when the cells were treated with a wide range of RA levels, from physiological to pharmacological concentrations. Results Our results show that CRABP2 and RAR are the most and the least important proteins, respectively, in controlling the model performance at physiological concentrations of RA (1–10 nM). However, at higher concentrations of RA, CYP and RAR are the most sensitive parameters of the system. Furthermore, we found that depending on the concentrations of all RA binding proteins, the rate of metabolism of RA can either change or remain constant following RA therapy. The cellular levels of CRABP1 are more important than that of CRABP2 in controlling RA metabolite formation at pharmacological conditions (RA = 0.1–1 μM). Finally, our results indicate a significant negative correlation between total mRNA production and total RA metabolite formation at pharmacological levels of RA. Conclusions Our simulations indicate that the significance of the RA binding proteins in the RA pathway of gene expression strongly depends on intracellular concentration of RA. This study not only can explain why various cell types respond to RA therapy differently, but also can potentially help develop pharmacological methods to increase the efficacy of the drug. Electronic supplementary material The online version of this article (10.1186/s12976-018-0088-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamed Ghaffari
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Linda R Petzold
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
23
|
Wu P, Chen H, Jin R, Weng T, Ho JK, You C, Zhang L, Wang X, Han C. Non-viral gene delivery systems for tissue repair and regeneration. J Transl Med 2018; 16:29. [PMID: 29448962 PMCID: PMC5815227 DOI: 10.1186/s12967-018-1402-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Critical tissue defects frequently result from trauma, burns, chronic wounds and/or surgery. The ideal treatment for such tissue loss is autografting, but donor sites are often limited. Tissue engineering (TE) is an inspiring alternative for tissue repair and regeneration (TRR). One of the current state-of-the-art methods for TRR is gene therapy. Non-viral gene delivery systems (nVGDS) have great potential for TE and have several advantages over viral delivery including lower immunogenicity and toxicity, better cell specificity, better modifiability, and higher productivity. However, there is no ideal nVGDS for TRR, hence, there is widespread research to improve their properties. This review introduces the basic principles and key aspects of commonly-used nVGDSs. We focus on recent advances in their applications, current challenges, and future directions.
Collapse
Affiliation(s)
- Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Jon Kee Ho
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Liping Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China.
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
24
|
You CQ, Wu HS, Gao ZG, Sun K, Chen FH, Tao WA, Sun BW. Subcellular co-delivery of two different site-oriented payloads based on multistage targeted polymeric nanoparticles for enhanced cancer therapy. J Mater Chem B 2018; 6:6752-6766. [PMID: 32254692 DOI: 10.1039/c8tb02230e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Smart nanoparticles which encapsulated two different site-oriented therapeutic agents for multistage targeted delivery and enhanced antitumor therapy.
Collapse
Affiliation(s)
- Chao-Qun You
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
- College of Chemical Engineering
| | - Hong-Shuai Wu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Zhi-Guo Gao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Kai Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Fang-Hui Chen
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - W. Andy Tao
- Department of Biochemistry
- Purdue University
- West Lafayette
- USA
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| |
Collapse
|
25
|
Jiang R, Ding L, Zhou J, Huang C, Zhang Q, Jiang Y, Liu J, Yan Q, Zhen X, Sun J, Yan G, Sun H. Enhanced HOXA10 sumoylation inhibits embryo implantation in women with recurrent implantation failure. Cell Death Discov 2017; 3:17057. [PMID: 29018572 PMCID: PMC5632741 DOI: 10.1038/cddiscovery.2017.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023] Open
Abstract
HOXA10 has emerged as an important molecular marker of endometrial receptivity. Recurrent implantation failure (RIF) after in vitro fertilization-embryo transplantation (IVF-ET) treatment is associated with impaired endometrial receptivity, but the exact underlying mechanism of this phenomenon remains elusive. Here we found that HOXA10 was modified by small ubiquitin like-modifier 1 (SUMO1) at the evolutionarily conserved lysine 164 residue. Sumoylation inhibited HOXA10 protein stability and transcriptional activity without affecting its subcellular localization. SUMO1-modified HOXA10 expression was decreased in estradiol- and progesterone-treated Ishikawa cells. Sumoylation inhibited the accelerant role of HOXA10 in BeWo spheroid and mouse embryo attachment to Ishikawa cells. Importantly, aberrantly high SUMO1-HOXA10 expression was detected in mid-secretory endometria of women with RIF compared with that of the control fertile women. Together, our results suggest that HOXA10 sumoylation impairs the process of embryo implantation in vitro and takes part in the development of RIF.
Collapse
Affiliation(s)
- Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianjun Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qiang Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 2017; 173:19-33. [PMID: 28132904 DOI: 10.1016/j.pharmthera.2017.01.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
Collapse
Affiliation(s)
- Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
27
|
Yang Q, Wu L, Li L, Zhou Z, Huang Y. Subcellular co-delivery of two different site-oriented payloads for tumor therapy. NANOSCALE 2017; 9:1547-1558. [PMID: 28067924 DOI: 10.1039/c6nr08200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Co-delivery of multiple agents via nanocarriers is of great interest in cancer therapy, but subcellular delivery to the corresponding site of action remains challenging. Here we report a smart nanovehicle which enables two different site-oriented payloads to reach their targeted organelles based on stimulus-responsive release and nucleus-targeted modification. First, all trans retinoic acid (RA) conjugated camptothecin (RA-CPT) was loaded in a polyhedral oligomericsilsesquioxane (POSS)-based core; docetaxel (DTX) was grafted on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers. The POSS core grafted with semitelechelic HPMA copolymers then self-assembled into micelles. Once internalized into the cell, the two drugs were unleashed environment-responsively, and nuclear targeted RA remarkably facilitated the nuclear transport of CPT. Compared with single drug-loaded micelles, the dual drug-loaded platform showed superior synergic cytotoxicity, which was further strengthened by the involvement of RA. The ability to induce DNA damage and apoptosis was also enhanced by nucleus-targeted modification. Finally, dual drug-loaded micelles exhibited much better in vivo tumor inhibition (87.1%) and less systemic toxicity than the combination of single drug-loaded systems or the dual drug-loaded micelles without RA. Therefore, our study provides a novel "one platform, two targets" strategy in combinatory anti-cancer therapy.
Collapse
Affiliation(s)
- Qingqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| | - Lei Wu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| | - Lian Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| | - Zhou Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
28
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
29
|
Zhang W, Vreeland AC, Noy N. RNA-binding protein HuR regulates nuclear import of protein. J Cell Sci 2016; 129:4025-4033. [PMID: 27609837 PMCID: PMC5117209 DOI: 10.1242/jcs.192096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022] Open
Abstract
The RNA-binding protein HuR binds to elements rich in adenylate and uridylate (AU-rich elements) in target mRNAs and stabilizes them against degradation. The complete spectrum of genes whose expression is regulated by HuR and are the basis for the broad range of cellular functions of the protein is incompletely understood. We show that HuR controls the expression of multiple components of the nuclear import machinery. Consequently, HuR is crucial for the nuclear import of cellular retinoic acid-binding protein 2 (CRABP2), which delivers RA to the nuclear retinoic acid receptor (RAR) and whose mobilization to the nucleus is mediated by a 'classical-like' nuclear localization signal (NLS). HuR is also required for heregulin-induced nuclear translocation of the NFκB subunit p65, which contains both classical and non-canonical NLSs. HuR thus regulates the transcriptional activities of both RAR and NFκB. The observations reveal that HuR plays a central role in regulating nuclear import of proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Amanda C Vreeland
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Noa Noy
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Nelson CH, Peng CC, Lutz JD, Yeung CK, Zelter A, Isoherranen N. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1. FEBS Lett 2016; 590:2527-35. [PMID: 27416800 DOI: 10.1002/1873-3468.12303] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2016] [Accepted: 06/29/2016] [Indexed: 11/11/2022]
Abstract
Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.
Collapse
Affiliation(s)
- Cara H Nelson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Chi-Chi Peng
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Justin D Lutz
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Catherine K Yeung
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Wei LN. Cellular Retinoic Acid Binding Proteins: Genomic and Non-genomic Functions and their Regulation. Subcell Biochem 2016; 81:163-178. [PMID: 27830504 DOI: 10.1007/978-94-024-0945-1_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cellular retinoic acid binding proteins (CRABPs) are high-affinity retinoic acid (RA) binding proteins that mainly reside in the cytoplasm. In mammals, this family has two members, CRABPI and II, both highly conserved during evolution. The two proteins share a very similar structure that is characteristic of a "β-clam" motif built up from10-strands. The proteins are encoded by two different genes that share a very similar genomic structure. CRABPI is widely distributed and CRABPII has restricted expression in only certain tissues. The CrabpI gene is driven by a housekeeping promoter, but can be regulated by numerous factors, including thyroid hormones and RA, which engage a specific chromatin-remodeling complex containing either TRAP220 or RIP140 as coactivator and corepressor, respectively. The chromatin-remodeling complex binds the DR4 element in the CrabpI gene promoter to activate or repress this gene in different cellular backgrounds. The CrabpII gene promoter contains a TATA-box and is rapidly activated by RA through an RA response element. Biochemical and cell culture studies carried out in vitro show the two proteins have distinct biological functions. CRABPII mainly functions to deliver RA to the nuclear RA receptors for gene regulation, although recent studies suggest that CRABPII may also be involved in other cellular events, such as RNA stability. In contrast, biochemical and cell culture studies suggest that CRABPI functions mainly in the cytoplasm to modulate intracellular RA availability/concentration and to engage other signaling components such as ERK activity. However, these functional studies remain inconclusive because knocking out one or both genes in mice does not produce definitive phenotypes. Further studies are needed to unambiguously decipher the exact physiological activities of these two proteins.
Collapse
Affiliation(s)
- Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, 55455, Minneapolis, MN, USA.
| |
Collapse
|
32
|
McIntyre JC, Joiner AM, Zhang L, Iñiguez-Lluhí J, Martens JR. SUMOylation regulates ciliary localization of olfactory signaling proteins. J Cell Sci 2015; 128:1934-45. [PMID: 25908845 PMCID: PMC4457158 DOI: 10.1242/jcs.164673] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/24/2015] [Indexed: 11/20/2022] Open
Abstract
Cilia are evolutionarily conserved organelles found on many mammalian cell types, including neuronal populations. Although neuronal cilia, including those on olfactory sensory neurons (OSNs), are often delineated by localization of adenylyl cyclase 3 (AC3, also known as ADCY3), the mechanisms responsible for targeting integral membrane proteins are largely unknown. Post-translational modification by small ubiquitin-like modifier (SUMO) proteins plays an important role in protein localization processes such as nuclear-cytosolic transport. Here, we identified through bioinformatic analysis that adenylyl cyclases harbor conserved SUMOylation motifs, and show that AC3 is a substrate for SUMO modification. Functionally, overexpression of the SUMO protease SENP2 prevented ciliary localization of AC3, without affecting ciliation or cilia maintenance. Furthermore, AC3-SUMO mutants did not localize to cilia. To test whether SUMOylation is sufficient for cilia entry, we compared localization of ANO2, which possesses a SUMO motif, and ANO1, which lacks SUMOylation sites and does not localize to cilia. Introduction of SUMOylation sites into ANO1 was not sufficient for ciliary entry. These data suggest that SUMOylation is necessary but not sufficient for ciliary trafficking of select constituents, further establishing the link between ciliary and nuclear import.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, USA
| | - Ariell M Joiner
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, USA
| | - Jorge Iñiguez-Lluhí
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Bi H, Li S, Wang M, Jia Z, Chang AK, Pang P, Wu H. SUMOylation of GPS2 protein regulates its transcription-suppressing function. Mol Biol Cell 2014; 25:2499-508. [PMID: 24943844 PMCID: PMC4142620 DOI: 10.1091/mbc.e13-12-0733] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
GPS2 can be modified by SUMO-1. SUMOylation stabilizes GPS2 protein and enhances its ability to suppress transcription, as well as promoting its ability to inhibit ERα-mediated transcription by increasing its association with SMRT, as demonstrated in MCF-7 and T47D cells. G-protein pathway suppressor 2 (GPS2) is a human suppressor of G protein–activated mitogen-activated protein kinase signaling. It is involved in many physiological processes, including DNA repair, cell proliferation, apoptosis, and brain development. In this study, we show that GPS2 can be modified by the small ubiquitin-like modifier (SUMO) SUMO-1 but not SUMO-2 or -3. Two SUMOylation sites (K45 and K71) are identified in the N-terminal coiled-coil domain of GPS2. Substitution of K45 with arginine reduces SUMOylation, whereas substitution of K71 or both K45 and K71 with arginine abolishes SUMOylation, with more of the double mutant GPS2 appearing in the cytosol than in the nucleus compared with wild type and the two-single-mutant GPS2. SUMOylation stabilizes GPS2 protein by promoting its interaction with TBL1 and reducing its ubiquitination. SUMOylation also enhances the ability of GPS2 to suppress transcription and promotes its ability to inhibit estrogen receptor α–mediated transcription by increasing its association with SMRT, as demonstrated in MCF-7 and T47D cells. Moreover, SUMOylation of GPS2 also represses the proliferation of MCF-7 and T47D cells. These findings suggest that posttranslational modification of GPS2 by SUMOylation may serve as a key factor that regulates the function of GPS2 in vivo.
Collapse
Affiliation(s)
- Hailian Bi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Zhaojun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Alan K Chang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Pengsha Pang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, ChinaSchool of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
34
|
Armstrong EH, Goswami D, Griffin PR, Noy N, Ortlund EA. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. J Biol Chem 2014; 289:14941-54. [PMID: 24692551 DOI: 10.1074/jbc.m113.514646] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain "activating" fatty acids induce the protein's cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5's translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling.
Collapse
Affiliation(s)
- Eric H Armstrong
- From the Department of Biochemistry, Discovery and Developmental Therapeutics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Devrishi Goswami
- the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Patrick R Griffin
- the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Noa Noy
- the Departments of Pharmacology and Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Eric A Ortlund
- From the Department of Biochemistry, Discovery and Developmental Therapeutics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322,
| |
Collapse
|
35
|
Transcript stabilization by the RNA-binding protein HuR is regulated by cellular retinoic acid-binding protein 2. Mol Cell Biol 2014; 34:2135-46. [PMID: 24687854 DOI: 10.1128/mcb.00281-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The RNA-binding protein HuR binds at 3' untranslated regions (UTRs) of target transcripts, thereby protecting them against degradation. We show that HuR directly interacts with cellular retinoic acid-binding protein 2 (CRABP2), a protein known to transport RA from the cytosol to the nuclear retinoic acid receptor (RAR). Association with CRABP2 dramatically increases the affinity of HuR toward target mRNAs and enhances the stability of such transcripts, including that of Apaf-1, the major protein in the apoptosome. We show further that its cooperation with HuR contributes to the ability of CRABP2 to suppress carcinoma cell proliferation. The data show that CRABP2 displays antioncogenic activities both by cooperating with RAR and by stabilizing antiproliferative HuR target transcripts. The observation that CRABP2 controls mRNA stabilization by HuR reveals that in parallel to participating in transcriptional regulation, the protein is closely involved in posttranscriptional regulation of gene expression.
Collapse
|
36
|
Kim YS, Keyser SGL, Schneekloth JS. Synthesis of 2',3',4'-trihydroxyflavone (2-D08), an inhibitor of protein sumoylation. Bioorg Med Chem Lett 2014; 24:1094-7. [PMID: 24468414 DOI: 10.1016/j.bmcl.2014.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 01/22/2023]
Abstract
Protein sumoylation is a dynamic posttranslational modification involved in diverse biological processes during cellular homeostasis and development. Recently sumoylation has been shown to play a critical role in cancer, although to date there are few small molecule probes available to inhibit enzymes involved in the SUMO conjugation process. As part of a program to identify and study inhibitors of sumoylation we recently reported the discovery that 2',3',4'-trihydroxyflavone (2-D08) is a cell permeable, mechanistically unique inhibitor of protein sumoylation. The work reported herein describes an efficient synthesis of 2-D08 as well as a structurally related but inactive isomer. We also report an unanticipated Wessely-Moser rearrangement that occurs under vigorous methyl ether deprotection conditions. This rearrangement likely gave rise to 2-D08 during a deprotection step, resulting in 2-D08 appearing as a contaminant in a screening well from a commercial supplier.
Collapse
Affiliation(s)
- Yeong Sang Kim
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA
| | - Samantha G L Keyser
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA.
| |
Collapse
|
37
|
Tanaka H, Akita H, Ishiba R, Tange K, Arai M, Kubo K, Harashima H. Neutral biodegradable lipid-envelope-type nanoparticle using vitamin A-Scaffold for nuclear targeting of plasmid DNA. Biomaterials 2013; 35:1755-61. [PMID: 24290811 DOI: 10.1016/j.biomaterials.2013.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
Biomembranes and cytoplasm, a diffusion-limited region for nanoparticles are critical barriers to be overcome for the successful gene delivery. We herein report on a neutral, and intracellularly degradable lipid nanoparticle (LNP), containing encapsulated plasmid DNA (pDNA) that can be effectively delivered to the nucleus. A key material component in this particle is a vitamin A-scaffold SS-cleavable Proton-Activated Lipid-like Material ((SS)PalmA), which contains tertiary amine groups as proton sponge units that can respond to the acidic pH in endosomes, disulfide bonding for programmed collapse in the cytoplasm, and retinoic acid (RA) as a hydrophobic unit for assembly into LNP. LNP prepared using (SS)PalmA (LNP(PalmA)) exhibited a 15-fold higher gene expression activity compared to particles prepared with a simple acyl chain (myristoyl group)-scaffold one (LNPPalmM). Intracellular imaging studies revealed that LNP(PalmA) unexpectedly showed excessive endosome-disruptive characteristics. Furthermore, the decapsulation of pDNA slowly, but successively occurred in parallel with peri-nuclear accumulation. Nuclear targeting was blocked in the presence of native RA. Collectively, LNP(PalmA) is an intelligent particle that passes through the cytoplasm in particle form with the aid of the intrinsic nuclear transport system of RA, and thereafter releases its encapsulated pDNA for effective gene expression.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan.
| | - Ryohei Ishiba
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan
| | - Kota Tange
- NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Masaya Arai
- NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Kazuhiro Kubo
- NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan.
| |
Collapse
|
38
|
Li Q, Muma NA. Estradiol potentiates 8-OH-DPAT-induced sumoylation of 5-HT₁A receptor: characterization and subcellular distribution of sumoylated 5-HT₁A receptors. Psychoneuroendocrinology 2013; 38:2542-53. [PMID: 23786880 PMCID: PMC3797200 DOI: 10.1016/j.psyneuen.2013.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Sumoylation is a recently described post-translational modification and only a few sumoylated neurotransmitter receptors are known. Through the present studies, we discovered that serotonin1A receptors (5-HT1A-Rs) can be sumoylated by SUMO1 (small-ubiquitin-related modifier 1) protein. The SUMO1-5-HT1A-R is ∼55kDa, is located in the membrane fraction, but not the cytosol, and is distributed in all of the brain regions expressing 5-HT1A-Rs examined. Acute stimulation of 5-HT1A-Rs significantly increased SUMO1-5-HT1A-R in rat hypothalamus. Pre-treatment with estradiol for 2 days, which causes a partial desensitization of 5-HT1A-R signaling, potentiated agonist-induced increases in SUMO1-5-HT1A-Rs in the hypothalamus of ovariectomized rats. Using discontinuous gradient centrifugation followed by digitonin treatment, we found that the majority of SUMO1-5-HT1A-Rs is co-localized with endoplasmic-reticulum and trans-Golgi-network markers. Although a small proportion of SUMO1-5-HT1A-Rs are located in the detergent resistant microdomain (DRM) that contain active G-protein coupled receptors, their distribution was different from that of the Gαz protein that couples to the receptors. These data suggest that the SUMO1-5-HT1A-Rs are an inactive form of 5-HT1A-Rs, a finding further supported by results showing minimal 5-HT1A-R agonist binding to SUMO1-5-HT1A-Rs. Furthermore, SUMO1-5-HT1A-Rs in the DRM were increased by treatment with a 5-HT1A-R agonist, 8-OH-DPAT ((+)8-hydroxy-2-dipropylaminotetralin). Together, these data suggest that sumoylation of 5-HT1A-Rs may be related to 5-HT1A-R trafficking and internalization, which may contribute to 5-HT1A-R desensitization. Since 5-HT1A-Rs play an important role in mood regulation, the present results significantly impact on the understanding of the pathogenesis of affective disorders and development of better therapeutic approaches for these diseases.
Collapse
Affiliation(s)
| | - Nancy A. Muma
- Corresponding author: Nancy A. Muma, Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 5064 Malott Hall, Lawrence, Kansas 66045, , Phone: 785-864-4002, Fax: 785-864-5219
| |
Collapse
|
39
|
Kim YS, Nagy K, Keyser S, Schneekloth JS. An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation. ACTA ACUST UNITED AC 2013; 20:604-13. [PMID: 23601649 DOI: 10.1016/j.chembiol.2013.04.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
Abstract
The dynamic, posttranslational modification of proteins with a small ubiquitin-like modifier (SUMO) tag has been recognized as an important cellular regulatory mechanism relevant to a number of cancers as well as normal embryonic development. As part of a program aimed toward the identification of inhibitors of SUMO-conjugating enzymes, we developed a microfluidic electrophoretic mobility shift assay to monitor sumoylation events in real time. We disclose herein the use of this assay to identify a cell-permeable compound capable of blocking the transfer of SUMO-1 from the E2 enzyme Ubc9 to the substrate. We screened a small collection of compounds and identified an oxygenated flavonoid derivative that inhibits sumoylation in vitro. Next, we carried out an in-depth mechanistic analysis that ruled out many common false-positive mechanisms such as aggregation or alkylation. Furthermore, we report that this flavonoid inhibits a single step in the sumoylation cascade: the transfer of SUMO from the E2 enzyme (Ubc9) thioester conjugate to the substrate. In addition to having a unique mechanism of action, this inhibitor has a discrete structure-activity relationship uncharacteristic of a promiscuous inhibitor. Cell-based studies showed that the flavonoid inhibits the sumoylation of topoisomerase-I in response to camptothecin treatment in two different breast cancer cell lines, while isomeric analogs are inactive. Importantly, this compound blocks sumoylation while not affecting ubiquitylation in cells. This work identifies a point of entry for pharmacologic inhibition of the sumoylation cascade and may serve as the basis for continued study of additional pharmacophores that modulate SUMO-conjugating enzymes such as Ubc9.
Collapse
Affiliation(s)
- Yeong Sang Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
40
|
In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors. PLoS One 2012; 7:e51694. [PMID: 23284745 PMCID: PMC3524246 DOI: 10.1371/journal.pone.0051694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/05/2012] [Indexed: 01/22/2023] Open
Abstract
Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 µM all-trans Retinoic Acid (ATRA), 5 µM Phenyl Butyrate (PB), and 200 µM diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f) current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.
Collapse
|
41
|
Porfido JL, Alvite G, Silva V, Kennedy MW, Esteves A, Corsico B. Direct interaction between EgFABP1, a fatty acid binding protein from Echinococcus granulosus, and phospholipid membranes. PLoS Negl Trop Dis 2012; 6:e1893. [PMID: 23166848 PMCID: PMC3499409 DOI: 10.1371/journal.pntd.0001893] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/21/2012] [Indexed: 12/28/2022] Open
Abstract
Background Growth and maintenance of hydatid cysts produced by Echinococcus granulosus have a high requirement for host lipids for biosynthetic processes, membrane building and possibly cellular and developmental signalling. This requires a high degree of lipid trafficking facilitated by lipid transporter proteins. Members of the fatty acid binding protein (FABP) family have been identified in Echinococcus granulosus, one of which, EgFABP1 is expressed at the tegumental level in the protoscoleces, but it has also been described in both hydatid cyst fluid and secretions of protoscoleces. In spite of a considerable amount of structural and biophysical information on the FABPs in general, their specific functions remain mysterious. Methodology/Principal Findings We have investigated the way in which EgFABP1 may interact with membranes using a variety of fluorescence-based techniques and artificial small unilamellar vesicles. We first found that bacterial recombinant EgFABP1 is loaded with fatty acids from the synthesising bacteria, and that fatty acid binding increases its resistance to proteinases, possibly due to subtle conformational changes induced on EgFABP1. By manipulating the composition of lipid vesicles and the ionic environment, we found that EgFABP1 interacts with membranes in a direct contact, collisional, manner to exchange ligand, involving both ionic and hydrophobic interactions. Moreover, we observed that the protein can compete with cytochrome c for association with the surface of small unilamellar vesicles (SUVs). Conclusions/Significance This work constitutes a first approach to the understanding of protein-membrane interactions of EgFABP1. The results suggest that this protein may be actively involved in the exchange and transport of fatty acids between different membranes and cellular compartments within the parasite. Echinococcus granulosus is the causative agent of hydatidosis, a zoonotic infection that affects humans and livestock, representing a public health and economic burden in many countries. Since the parasites are unable to synthesise most of their lipids de novo, they must acquire them from the host and then deliver them by carrier proteins to specific destinations. E. granulosus produces in abundance proteins of the fatty acid binding protein (FABP) family, one of which, EgFABP1 has been characterised at the structural and ligand binding levels, but it has not been studied in terms of the mechanism of its interaction with membranes. We have investigated the lipid transport properties and protein-membrane interaction characteristics of EgFABP1 by applying biophysical techniques. We found that EgFABP1 interacts with membranes by a mechanism which involves direct contact with them to exchange their cargo. Given that the protein has been found in the secretions of the parasite, the implications of its direct interactions with host membranes should be considered.
Collapse
Affiliation(s)
- Jorge L. Porfido
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Alvite
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Valeria Silva
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Malcolm W. Kennedy
- Institute of Molecular, Cell and Systems Biology, and Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adriana Esteves
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
42
|
Amador AG, Esquifino AI, Bartke A, Chandrashekar V, Fernández-Ruiz JJ, Steger RW, Hodges SL. Effects of diethylstilboestrol on testicular function and luteinizing hormone receptors. REVISTA ESPANOLA DE FISIOLOGIA 1989; 55:843-855. [PMID: 2515561 DOI: 10.1016/j.molcel.2014.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/13/2014] [Accepted: 07/17/2014] [Indexed: 01/01/2023]
Abstract
Adult male Fisher-344 rats were implanted with DES-filled or empty Silastic capsules. After 14 weeks, capsules were removed and a second group of rats received DES capsules. Seven weeks later, all the rats were sacrificed. DES treatment decreased body, testes and seminal vesicle weights, and removal of the capsules partially restored the weight of these organs. The concentration of testicular LH receptors was increased by DES treatment. Circulating PRL levels were increased and gonadotropin levels were reduced in all animals having received DES at anytime. Plasma testosterone (T) levels were similar in all groups, but testicular T levels were reversibly decreased by DES. Similarly, whereas basal incubation media T levels were unchanged by DES treatment, the steroidogenic response in vitro to hCG was abolished by the presence of DES, and removal of the capsules restored this response. It appears that in this animal model DES and PRL exert opposing effects on testicular LH receptor.
Collapse
Affiliation(s)
- A G Amador
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale 62901-6512
| | | | | | | | | | | | | |
Collapse
|