1
|
Wheeler EA, Lenhart-Pendergrass PM, Rysavy NM, Poch KR, Caceres SM, Calhoun KM, Serban KA, Nick JA, Malcolm KC. Divergent host humoral innate immune response to the smooth-to-rough adaptation of Mycobacterium abscessus in chronic infection. Front Cell Infect Microbiol 2025; 15:1445660. [PMID: 40171164 PMCID: PMC11959001 DOI: 10.3389/fcimb.2025.1445660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/20/2025] [Indexed: 04/03/2025] Open
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium emerging as a significant pathogen in individuals with chronic lung diseases, including cystic fibrosis and chronic obstructive pulmonary disease. Current therapeutics have poor efficacy. Strategies of bacterial control based on host defenses are appealing; however, antimycobacterial immunity remains poorly understood and is further complicated by the appearance of smooth and rough morphotypes, which elicit distinct host responses. We investigated the role of serum components in neutrophil-mediated clearance of M. abscessus morphotypes. M. abscessus opsonization with complement enhanced bacterial killing compared to complement-deficient opsonization. Killing of rough isolates was less reliant on complement. Complement C3 and mannose-binding lectin 2 (MBL2) were deposited on M. abscessus morphotypes in distinct patterns, with a greater association of MBL2 on rough M. abscessus. Killing was dependent on C3; however, depletion and competition experiments indicate that canonical complement activation pathways are not involved. Complement-mediated killing relied on natural IgG and IgM for smooth morphotypes and on IgG for rough morphotypes. Both morphotypes were recognized by complement receptor 3 in a carbohydrate- and calcium-dependent manner. These findings indicate a role for noncanonical C3 activation pathways for M. abscessus clearance by neutrophils and link smooth-to-rough adaptation to complement activation.
Collapse
Affiliation(s)
- Emily A. Wheeler
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | | | - Noel M. Rysavy
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Katie R. Poch
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Silvia M. Caceres
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kara M. Calhoun
- Department of Medicine University of Colorado, Aurora, CO, United States
| | - Karina A. Serban
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine University of Colorado, Aurora, CO, United States
| | - Jerry A. Nick
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine University of Colorado, Aurora, CO, United States
| | - Kenneth C. Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine University of Colorado, Aurora, CO, United States
| |
Collapse
|
2
|
Zheng G, Wu L, Bouamar H, Cserhati M, Chiu YC, Hinck CS, Wieteska Ł, Zeballos Torrez CR, Hu R, Easley A, Chen Y, Hinck AP, Cigarroa FG, Sun LZ. Ficolin-3 induces apoptosis and suppresses malignant property of hepatocellular carcinoma cells via the complement pathway. Life Sci 2024; 357:123103. [PMID: 39357793 DOI: 10.1016/j.lfs.2024.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
AIMS Ficolin 3 (FCN3) has the highest complement-activating capacity through the lectin pathway and is synthesized mainly in the liver and lung. Yet, its potential molecular mechanism in hepatocarcinogenesis is not fully understood. MATERIALS AND METHODS The expression of FCN3 in hepatocellular carcinoma (HCC) tumor and non-tumor tissues was analyzed by RT-qPCR, Western blotting and immunofluorescence staining assays. Lentivector-mediated ectopic overexpression was performed to explore the role of FCN3 in vitro and in vivo. Whether FCN3 inhibited HCC cell growth and survival via complement pathway was determined with immunocytochemical staining for C3b, membrane attack complex (MAC) formation and complement killing assay using recombinant FCN3 (rFCN3) in combination with human serum with or without heat inactivation, and with C6 blocking antibody. KEY FINDINGS The transcript and protein of FCN3 were found to be remarkably down-regulated in HCC tumor tissues. FCN3 expression was found to be associated with better survival of HCC patients. Restoration of FCN3 expression significantly inhibited proliferation, migration and anchorage independent growth of HCC cell lines, and xenograft tumor growth. FCN3 expression induced apoptosis of HCC cells. C3 and MAC formation was stimulated by FCN3 overexpression or rFCN3 treatment. rFCN3 enhanced human serum-induced complement activation and cell death. C6 blocking antibody significantly attenuated complement-mediated cell death and restored the growth of FCN3-overexpressing HCC cells. SIGNIFICANCE FCN3 has a malignant suppressor role in HCC cells. Our study provides new insights into the molecular mechanisms that drive HCC progression and potential therapeutic targets for treating HCC.
Collapse
Affiliation(s)
- Guixi Zheng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America; Department of Clinical Laboratory, Qilu Hospital of Shandong University, China
| | - Lianqiu Wu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Hakim Bouamar
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Matyas Cserhati
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Cinthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, PA, United States of America
| | - Łukasz Wieteska
- Department of Structural Biology, University of Pittsburgh School of Medicine, PA, United States of America
| | - Carla R Zeballos Torrez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Ruolei Hu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Acarizia Easley
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Yidong Chen
- Department of Structural Biology, University of Pittsburgh School of Medicine, PA, United States of America; Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, TX, United States of America
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, PA, United States of America
| | - Francisco G Cigarroa
- Transplant Center, University of Texas Health Science Center at San Antonio, TX, United States of America.
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, United States of America.
| |
Collapse
|
3
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
4
|
Williams HM, Moeller JB, Burns I, Schlosser A, Sorensen GL, Greenhough TJ, Holmskov U, Shrive AK. Crystal structures of human immune protein FIBCD1 suggest an extended binding site compatible with recognition of pathogen-associated carbohydrate motifs. J Biol Chem 2024; 300:105552. [PMID: 38072065 PMCID: PMC10825690 DOI: 10.1016/j.jbc.2023.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024] Open
Abstract
Fibrinogen C domain-containing protein 1 (FIBCD1) is an immune protein proposed to be involved in host recognition of chitin on the surface of pathogens. As FIBCD1 readily binds acetylated molecules, we have determined the high-resolution crystal structures of a recombinant fragment of the FIBCD1 C-terminal domain complexed with small N-acetyl-containing ligands to determine the mode of recognition. All ligands bind at the conserved N-acetyl-binding site (S1) with galactose and glucose-derived ligands rotated 180° relative to each other. One subunit of a native structure derived from protein expressed in mammalian cells binds glycosylation from a neighboring subunit, in an extended binding site. Across the various structures, the primary S1 binding pocket is occupied by N-acetyl-containing ligands or acetate, with N-acetyl, acetate, or sulfate ion in an adjacent pocket S1(2). Inhibition binding studies of N-acetylglucosamine oligomers, (GlcNAc)n, n = 1, 2, 3, 5, 11, via ELISA along with microscale thermophoresis affinity assays indicate a strong preference of FIBCD1 for longer N-acetylchitooligosaccharides. Binding studies of mutant H396A, located beyond the S1(2) site, showed no significant difference from wildtype, but K381L, within the S1(2) pocket, blocked binding to the model ligand acetylated bovine serum albumin, suggesting that S1(2) may have functional importance in ligand binding. The binding studies, alongside structural definition of diverse N-acetyl monosaccharide binding in the primary S1 pocket and of additional, adjacent binding pockets, able to accommodate both carbohydrate and sulfate functional groups, suggest a versatility in FIBCD1 to recognize chitin oligomers and other pathogen-associated carbohydrate motifs across an extended surface.
Collapse
Affiliation(s)
- Harry M Williams
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Jesper B Moeller
- Cancer and Inflammation Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Ian Burns
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Anders Schlosser
- Cancer and Inflammation Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Cancer and Inflammation Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Uffe Holmskov
- Cancer and Inflammation Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Annette K Shrive
- School of Life Sciences, Keele University, Staffordshire, United Kingdom.
| |
Collapse
|
5
|
Isayeva G, Potlukova E, Rumora K, Lopez Ayala P, Kurun A, Leibfarth JP, Schäfer I, Michel E, Pesen K, Zellweger MJ, Trendelenburg M, Hejlesen TK, Hansen AG, Thiel S, Mueller C. Diagnostic and prognostic value of H-ficolin for functionally relevant coronary artery disease. Clin Chim Acta 2023; 551:117582. [PMID: 37802208 DOI: 10.1016/j.cca.2023.117582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND We aimed to test the diagnostic and prognostic ability of H-ficolin, an initiator of the lectin pathway of the complement system, for functionally relevant coronary artery disease (fCAD), and explore its determinants. METHODS The presence of fCAD was adjudicated using myocardial perfusion imaging single-photon emission tomography and coronary angiography. H-ficolin levels were measured by a sandwich-type immunoassay at rest, peak stress-test, and 2 h after stress-test. Cardiovascular death and non-fatal myocardial infarction were assessed during 5-year follow-up. RESULTS Among 1,571 patients (32.3 % women), fCAD was detected in 462 patients (29.4 %). H-ficolin concentration at rest was 18.6 (15.3-21.8) µg/ml in patients with fCAD versus 17.8 (15.4-21.5) µg/ml, p = 0.33, in patients without fCAD, resulting in an AUC of 0.53 (95 %CI 0.48-0.56). During follow-up, 107 patients (6.8 %) had non-fatal myocardial infarction and 99 patients (6.3 %) experienced cardiovascular death. In Cox regression analysis, H-ficolin was not a predictor of events in the overall cohort. Subgroup analysis suggested a potential link between H-ficolin and non-fatal myocardial infarction in patients without fCAD (adjusted HR 1.03, 95 % CI 1.02-1.15, p = 0.005). H-ficolin concentration showed a weak positive correlation with systolic (r = 0.069, p < 0.001) and diastolic blood pressure (r = 0.111, p < 0.001). CONCLUSION H-ficolin concentration did not have diagnostic and/or prognostic value in patients referred for fCAD work-up.
Collapse
Affiliation(s)
- Ganna Isayeva
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| | - Eliska Potlukova
- Department of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | - Klara Rumora
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Pedro Lopez Ayala
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Atakan Kurun
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Jan-Philipp Leibfarth
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Ibrahim Schäfer
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Evita Michel
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Kaan Pesen
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Michael J Zellweger
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Marten Trendelenburg
- Department of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| |
Collapse
|
6
|
Wheeler EA, Lenhart-Pendergrass PM, Rysavy NM, Poch K, Caceres S, Calhoun KM, Serban K, Nick JA, Malcolm KC. Divergent host innate immune response to the smooth-to-rough M. abscessus adaptation to chronic infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540822. [PMID: 37293112 PMCID: PMC10245581 DOI: 10.1101/2023.05.15.540822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium emerging as a significant pathogen for individuals with chronic lung disease, including cystic fibrosis and chronic obstructive pulmonary disease. Current therapeutics have poor efficacy. New strategies of bacterial control based on host defenses are appealing, but anti-mycobacterial immune mechanisms are poorly understood and are complicated by the appearance of smooth and rough morphotypes with distinct host responses. We explored the role of the complement system in the clearance of M. abscessus morphotypes by neutrophils, an abundant cell in these infections. M. abscessus opsonized with plasma from healthy individuals promoted greater killing by neutrophils compared to opsonization in heat-inactivated plasma. Rough clinical isolates were more resistant to complement but were still efficiently killed. Complement C3 associated strongly with the smooth morphotype while mannose-binding lectin 2 was associated with the rough morphotype. M. abscessus killing was dependent on C3, but not on C1q or Factor B; furthermore, competition of mannose-binding lectin 2 binding with mannan or N-acetyl-glucosamine during opsonization did not inhibit killing. These data suggest that M. abscessus does not canonically activate complement through the classical, alternative, or lectin pathways. Complement-mediated killing was dependent on IgG and IgM for smooth and on IgG for rough M. abscessus. Both morphotypes were recognized by Complement Receptor 3 (CD11b), but not CR1 (CD35), and in a carbohydrate- and calcium-dependent manner. These data suggest the smooth-to-rough adaptation changes complement recognition of M. abscessus and that complement is an important factor for M. abscessus infection.
Collapse
Affiliation(s)
| | | | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, CO
| | - Kara M Calhoun
- Department of Medicine University of Colorado, Aurora, CO
| | - Karina Serban
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| |
Collapse
|
7
|
Østergaard JA, Jansson Sigfrids F, Forsblom C, Dahlström EH, Thorn LM, Harjutsalo V, Flyvbjerg A, Thiel S, Hansen TK, Groop PH. The pattern-recognition molecule H-ficolin in relation to diabetic kidney disease, mortality, and cardiovascular events in type 1 diabetes. Sci Rep 2021; 11:8919. [PMID: 33903634 PMCID: PMC8076270 DOI: 10.1038/s41598-021-88352-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
H-ficolin recognizes patterns on microorganisms and stressed cells and can activate the lectin pathway of the complement system. We aimed to assess H-ficolin in relation to the progression of diabetic kidney disease (DKD), all-cause mortality, diabetes-related mortality, and cardiovascular events. Event rates per 10-unit H-ficolin-increase were compared in an observational follow-up of 2,410 individuals with type 1 diabetes from the FinnDiane Study. DKD progression occurred in 400 individuals. The unadjusted hazard ratio (HR) for progression was 1.29 (1.18–1.40) and 1.16 (1.05–1.29) after adjustment for diabetes duration, sex, HbA1c, systolic blood pressure, and smoking status. After adding triglycerides to the model, the HR decreased to 1.07 (0.97–1.18). In all, 486 individuals died, including 268 deaths of cardiovascular causes and 192 deaths of complications to diabetes. HRs for all-cause mortality and cardiovascular mortality were 1.13 (1.04–1.22) and 1.05 (0.93–1.17), respectively, in unadjusted analyses. These estimates lost statistical significance in adjusted models. However, the unadjusted HR for diabetes-related mortality was 1.19 (1.05–1.35) and 1.18 (1.02–1.37) with the most stringent adjustment level. Our results, therefore, indicate that H-ficolin predicts diabetes-related mortality, but neither all-cause mortality nor fatal/non-fatal cardiovascular events. Furthermore, H-ficolin is associated with DKD progression, however, not independently of the fully adjusted model.
Collapse
Affiliation(s)
- Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Fanny Jansson Sigfrids
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lena M Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Flyvbjerg
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark, Copenhagen, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland. .,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. .,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
8
|
Catarino SJ, Andrade FA, Bavia L, Guilherme L, Messias-Reason IJ. Ficolin-3 in rheumatic fever and rheumatic heart disease. Immunol Lett 2020; 229:27-31. [PMID: 33232720 DOI: 10.1016/j.imlet.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/03/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Rheumatic fever (RF) and chronic rheumatic heart disease (RHD) are complications of oropharyngeal infection caused by Streptococcus pyogenes. Despite the importance of the complement system against infections and autoimmunity diseases, studies on the role of the lectin pathway in RF and RHD are scarce. Thus, our aim was to evaluate the association of ficolin-3 serum levels, FCN3 polymorphisms and haplotypes with the susceptibility to RF and RHD. We investigated 179 patients with a history of RF (126 RHD and 53 RF only) and 170 healthy blood donors as control group. Ficolin-3 serum concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Three FCN3 single nucleotide polymorphisms (SNPs rs532781899, rs28362807 and rs4494157) were genotyped through the sequence-specific PCR method. Lower ficolin-3 serum levels were observed in RF patients when compared to controls (12.81 μg/mL vs. 18.14 μg/mL respectively, p < 0.0001, OR 1.22 [1.12-1.34]), and in RHD in comparison to RF only (RFo) (12.72 μg/mL vs. 14.29 μg/mL respectively, p = 0.016, OR 1.38 [1.06-1.80]). Low ficolin-3 levels (<10.7 μg/mL) were more common in patients (39.5 %, 30/76) than controls (20.6 %, 13/63, p = 0.018, OR = 2.51 [1.14-5.31]), and in RHD (44.4 %, 28/63) than RFo (15.4 %, 2/13, p = 0.007, OR = 3.08 [1.43-6.79]). On the other hand, FCN3 polymorphism/haplotypes were not associated with ficolin-3 serum levels or the disease. Low ficolin-3 levels might be associated with RF, being a potential marker of disease progression.
Collapse
Affiliation(s)
- Sandra Jeremias Catarino
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Bavia
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Iara Jose Messias-Reason
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
9
|
Ficolin-3 Deficiency Is Associated with Disease and an Increased Risk of Systemic Lupus Erythematosus. J Clin Immunol 2019; 39:421-429. [DOI: 10.1007/s10875-019-00627-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/07/2019] [Indexed: 01/06/2023]
|
10
|
Bidula S, Sexton DW, Schelenz S. Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms. J Immunol Res 2019; 2019:3205072. [PMID: 30868077 PMCID: PMC6379837 DOI: 10.1155/2019/3205072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
11
|
Eriksson O, Chiu J, Hogg PJ, Atkinson JP, Liszewski MK, Flaumenhaft R, Furie B. Thiol isomerase ERp57 targets and modulates the lectin pathway of complement activation. J Biol Chem 2019; 294:4878-4888. [PMID: 30670593 DOI: 10.1074/jbc.ra118.006792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/13/2019] [Indexed: 11/06/2022] Open
Abstract
ER protein 57 (ERp57), a thiol isomerase secreted from vascular cells, is essential for complete thrombus formation in vivo, but other extracellular ERp57 functions remain unexplored. Here, we employed a kinetic substrate-trapping approach to identify extracellular protein substrates of ERp57 in platelet-rich plasma. MS-based identification with immunochemical confirmation combined with gene ontology enrichment analysis revealed that ERp57 targets, among other substrates, components of the lectin pathway of complement activation: mannose-binding lectin, ficolin-2, ficolin-3, collectin-10, collectin-11, mannose-binding lectin-associated serine protease-1, and mannose-binding lectin-associated serine protease-2. Ficolin-3, the most abundant lectin pathway initiator in humans, circulates as disulfide-linked multimers of a monomer. ERp57 attenuated ficolin-3 ligand recognition and complement activation by cleaving intermolecular disulfide bonds in large ficolin-3 multimers, thereby reducing multimer size and ligand-binding affinity. We used MS to identify the disulfide-bonding pattern in ficolin-3 multimers and the disulfide bonds targeted by ERp57 and found that Cys6 and Cys23 in the N-terminal region of ficolin-3 form the intermolecular disulfide bonds in ficolin-3 multimers that are reduced by ERp57. Our results not only demonstrate that ERp57 can negatively regulate complement activation, but also identify a control mechanism for lectin pathway initiation in the vasculature. We conclude that extensive multimerization in large ficolin-3 multimers leads to a high affinity for ligands and strong complement-activating potential and that ERp57 suppresses complement activation by cleaving disulfide bonds in ficolin-3 and reducing its multimer size.
Collapse
Affiliation(s)
- Oskar Eriksson
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Joyce Chiu
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Philip J Hogg
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - John P Atkinson
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - M Kathryn Liszewski
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert Flaumenhaft
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Bruce Furie
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
12
|
Heybeli C, Oktan MA, Yıldız S, Ünlü M, Celik A, Sarıoglu S. Mesangial C4d deposition is independently associated with poor renal survival in patients with primary focal segmental glomerulosclerosis. Clin Exp Nephrol 2019; 23:650-660. [PMID: 30617839 DOI: 10.1007/s10157-018-01688-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND C4d deposition is defined as the footprint of immune injury and it is associated with unfavorable renal outcomes in patients with IgA nephropathy. We searched whether mesangial C4d deposition is associated with poor renal survival in patients with primary focal segmental glomerulosclerosis (FSGS). METHODS Biopsy specimens were stained with anti-C4d antibody. Patients were classified based on mesangial C4d deposition as C4d-negative and C4d-positive. Groups were compared according to baseline and follow-up clinical variables. Factors that predict renal progression and treatment failure were determined using Cox-regression and multivariate logistic regression models, respectively. RESULTS Forty-one FSGS patients were followed for a mean of 67.7 ± 40.8 months. C4d-positive group included 18 patients while remaining 23 patients were C4d-negative. Urinary protein excretion and serum creatinine levels at baseline were comparable between groups. Fifteen patients reached the composite primary endpoint which included serum creatinine increasing > 30% from the baseline and reaching > 1.5 mg/dl, and/or evolution to end-stage renal disease (36.6%). In multivariate regression analysis, baseline eGFR (OR 0.71, 95% CI 0.53-0.94; p = 0.016) and mesangial C4d deposition (OR 10.5, 95% CI 1.51-73.18; p = 0.018) were independently associated with treatment failure rates. Mesangial C4d deposition was independently associated with the progression to the primary endpoint (HR 6.54, 95% CI 1.49-28.7, p = 0.013). CONCLUSION We showed for the first time that mesangial C4d deposition is an independent predictor of disease progression and treatment failure in patients with primary FSGS.
Collapse
Affiliation(s)
- Cihan Heybeli
- School of Medicine, Department of Internal Medicine, Division of Nephrology, Dokuz Eylul University, Balcova, Izmir, Turkey.
| | - Mehmet Asi Oktan
- School of Medicine, Department of Internal Medicine, Division of Nephrology, Dokuz Eylul University, Balcova, Izmir, Turkey
| | - Serkan Yıldız
- School of Medicine, Department of Internal Medicine, Division of Nephrology, Dokuz Eylul University, Balcova, Izmir, Turkey
| | - Mehtat Ünlü
- Department of Pathology, Dokuz Eylul University, Izmir, Turkey
| | - Ali Celik
- School of Medicine, Department of Internal Medicine, Division of Nephrology, Dokuz Eylul University, Balcova, Izmir, Turkey
| | - Sülen Sarıoglu
- Department of Pathology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
13
|
Kjaer TR, Jensen L, Hansen A, Dani R, Jensenius JC, Dobó J, Gál P, Thiel S. Oligomerization of Mannan-binding Lectin Dictates Binding Properties and Complement Activation. Scand J Immunol 2017; 84:12-9. [PMID: 27104295 DOI: 10.1111/sji.12441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023]
Abstract
The complement system is a part of the innate immune system and is involved in recognition and clearance of pathogens and altered-self structures. The lectin pathway of the complement system is initiated when soluble pattern recognition molecules (PRMs) with collagen-like regions bind to foreign or altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to micro organisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37 °C, we found higher binding of tetrameric MBL to Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger with all of the MASPs and MAp44, compared to trimeric MBL. As a direct consequence of the weaker interaction with the MASPs, we found that trimeric rMBL was inferior to tetrameric rMBL in activating the complement system. Our data suggest that the oligomeric state of MBL is crucial both for the binding properties and the effector function of MBL.
Collapse
Affiliation(s)
- T R Kjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - L Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - A Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - R Dani
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - J C Jensenius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - J Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - P Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - S Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
White MR, Tripathi S, Verma A, Kingma P, Takahashi K, Jensenius J, Thiel S, Wang G, Crouch EC, Hartshorn KL. Collectins, H-ficolin and LL-37 reduce influence viral replication in human monocytes and modulate virus-induced cytokine production. Innate Immun 2016; 23:77-88. [PMID: 27856789 DOI: 10.1177/1753425916678470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Infiltrating activated monocytes are important mediators of damaging inflammation during influenza A virus (IAV) infection. We show that soluble respiratory proteins [collectins, surfactant proteins D (SP-D) and mannose binding lectin (MBL), H-ficolin and LL-37] inhibit replication of seasonal IAV in human monocytes. The collectins and H-ficolin also increased viral uptake by the cells, while LL-37 did not. H-ficolin was able to inhibit replication of the 2009 pandemic H1N1 strain (Cal09) in monocytes, but SP-D and LL-37 had significantly fewer inhibitory effects on this strain than on seasonal IAV. All of these proteins reduced IAV-induced TNF-α production, even in instances when viral replication was not reduced. We used modified recombinant versions of SP-D, MBL and ficolin to elucidate mechanisms through which these proteins alter monocyte interactions with IAV. We demonstrate the importance of the multimeric structure, and of binding properties of the lectin domain, in mediating antiviral and opsonic activity of the proteins. Hence, soluble inhibitors present in airway lining fluid may aid clearance of IAV by promoting monocyte uptake of the virus, while reducing viral replication and virus-induced TNF-α responses in these cells. However, SP-D and LL-37 have reduced ability to inhibit replication of pandemic IAV in monocytes.
Collapse
Affiliation(s)
- Mitchell R White
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Shweta Tripathi
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anamika Verma
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Paul Kingma
- 2 University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Kazue Takahashi
- 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Jensenius
- 4 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- 4 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Guangshun Wang
- 5 Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, NE, USA
| | - Erika C Crouch
- 6 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevan L Hartshorn
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Man-Kupisinska A, Michalski M, Maciejewska A, Swierzko AS, Cedzynski M, Lugowski C, Lukasiewicz J. A New Ligand-Based Method for Purifying Active Human Plasma-Derived Ficolin-3 Complexes Supports the Phenomenon of Crosstalk between Pattern-Recognition Molecules and Immunoglobulins. PLoS One 2016; 11:e0156691. [PMID: 27232184 PMCID: PMC4883783 DOI: 10.1371/journal.pone.0156691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Despite recombinant protein technology development, proteins isolated from natural sources remain important for structure and activity determination. Ficolins represent a class of proteins that are difficult to isolate. To date, three methods for purifying ficolin-3 from plasma/serum have been proposed, defined by most critical step: (i) hydroxyapatite absorption chromatography (ii) N-acetylated human serum albumin affinity chromatography and (iii) anti-ficolin-3 monoclonal antibody-based affinity chromatography. We present a new protocol for purifying ficolin-3 complexes from human plasma that is based on an exclusive ligand: the O-specific polysaccharide of Hafnia alvei PCM 1200 LPS (O-PS 1200). The protocol includes (i) poly(ethylene glycol) precipitation; (ii) yeast and l-fucose incubation, for depletion of mannose-binding lectin; (iii) affinity chromatography using O-PS 1200-Sepharose; (iv) size-exclusion chromatography. Application of this protocol yielded average 2.2 mg of ficolin-3 preparation free of mannose-binding lectin (MBL), ficolin-1 and -2 from 500 ml of plasma. The protein was complexed with MBL-associated serine proteases (MASPs) and was able to activate the complement in vitro. In-process monitoring of MBL, ficolins, and total protein content revealed the presence of difficult-to-remove immunoglobulin G, M and A, in some extent in agreement with recent findings suggesting crosstalk between IgG and ficolin-3. We demonstrated that recombinant ficolin-3 interacts with IgG and IgM in a concentration-dependent manner. Although this association does not appear to influence ficolin-3-ligand interactions in vitro, it may have numerous consequences in vivo. Thus our purification procedure provides Ig-ficolin-3/MASP complexes that might be useful for gaining further insight into the crosstalk and biological activity of ficolin-3.
Collapse
Affiliation(s)
- Aleksandra Man-Kupisinska
- Department of Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Microbiology, Immunology and Biotechnology, University of Lodz, Lodz, Poland
| | - Anna Maciejewska
- Department of Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna S. Swierzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Maciej Cedzynski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Czeslaw Lugowski
- Department of Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jolanta Lukasiewicz
- Department of Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
16
|
Sahagún-Ruiz A, Breda LCD, Valencia MMC, Elias WP, Munthe-Fog L, Garred P, Barbosa AS, Isaac L. Studies of the binding of ficolin-2 and ficolin-3 from the complement lectin pathway to Leptospira biflexa, Pasteurella pneumotropica and Diarrheagenic Escherichia coli. Immunobiology 2015; 220:1177-85. [PMID: 26074063 DOI: 10.1016/j.imbio.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
Ficolins recognize pathogen associated molecular patterns and activate the lectin pathway of complement system. However, our knowledge regarding pathogen recognition of human ficolins is still limited. We therefore set out to explore and investigate the possible interactions of the two main serum ficolins, ficolin-2 and ficolin-3 with different Gram-negative bacteria. We used recombinant ficolin molecules and normal human serum, which were detected with anti-ficolin monoclonal antibodies. In addition we investigated the capacity of these pathogens to activate the lectin pathway of complement system. We show for the first time that human ficolin-2 recognizes the nonpathogenic spirochete Leptospira biflexa serovar Patoc, but not the pathogenic Leptospira interrogans serovar Kennewicki strain Fromm. Additionally, human ficolin-2 and ficolin-3 recognize pathogenic Pasteurella pneumotropica, enteropathogenic Escherichia coli (EPEC) serotype O111ab:H2 and enteroaggregative E. coli (EAEC) serogroup O71 but not four enterohemorrhagic E. coli, three EPEC, three EAEC and two nonpathogenic E. coli strains (DH5α and HB101). The lectin pathway was activated by Pasteurella pneumotropica, EPEC O111ab:H2 and EAEC O71 after incubation with C1q depleted human serum. In conclusion, this study provide novel insight in the binding and complement activating capacity of the lectin pathway initiation molecules ficolin-2 and ficolin-3 towards relevant Gram-negative pathogens of pathophysiological relevance.
Collapse
Affiliation(s)
- Alfredo Sahagún-Ruiz
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico
| | | | | | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, Brazil
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lourdes Isaac
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| |
Collapse
|
17
|
Bidula S, Sexton DW, Yates M, Abdolrasouli A, Shah A, Wallis R, Reed A, Armstrong-James D, Schelenz S. H-ficolin binds Aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses. Immunology 2015; 146:281-91. [PMID: 26133042 DOI: 10.1111/imm.12501] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that typically infects the lungs of immunocompromised patients leading to a high mortality. H-Ficolin, an innate immune opsonin, is produced by type II alveolar epithelial cells and could participate in lung defences against infections. Here, we used the human type II alveolar epithelial cell line, A549, to determine the involvement of H-ficolin in fungal defence. Additionally, we investigated the presence of H-ficolin in bronchoalveolar lavage fluid from transplant patients during pneumonia. H-Ficolin exhibited demonstrable binding to A. fumigatus conidia via l-fucose, d-mannose and N-acetylglucosamine residues in a calcium- and pH-dependent manner. Moreover, recognition led to lectin complement pathway activation and enhanced fungal association with A549 cells. Following recognition, H-ficolin opsonization manifested an increase in interleukin-8 production from A549 cells, which involved activation of the intracellular signalling pathways mitogen-activated protein kinase MAPK kinase 1/2, p38 MAPK and c-Jun N-terminal kinase. Finally, H-ficolin concentrations were significantly higher in bronchoalveolar lavage fluid of patients with lung infections compared with control subjects (n = 16; P = 0·00726). Receiver operating characteristics curve analysis further highlighted the potential of H-ficolin as a diagnostic marker for lung infection (area under the curve = 0·77; P < 0·0001). Hence, H-ficolin participates in A. fumigatus defence through the activation of the lectin complement pathway, enhanced fungus-host interactions and modulated immune responses.
Collapse
Affiliation(s)
- Stefan Bidula
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Darren W Sexton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK
| | - Matthew Yates
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alireza Abdolrasouli
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Anand Shah
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Russell Wallis
- Departments of Infection, Immunity and Inflammation and Biochemistry, University of Leicester, Leicester, UK
| | - Anna Reed
- Department of Lung Transplantation, Harefield Hospital, Middlesex, UK
| | | | - Silke Schelenz
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Department of Microbiology, Royal Brompton Hospital, London, UK
| |
Collapse
|
18
|
Lei X, Liu C, Azadzoi K, Li C, Lu F, Xiang A, Sun J, Guo Y, Zhao Q, Yan Z, Yang J. A novel IgM-H-ficolin complement pathway to attack allogenic cancer cells in vitro. Sci Rep 2015; 5:7824. [PMID: 25592840 PMCID: PMC4296296 DOI: 10.1038/srep07824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/12/2014] [Indexed: 12/27/2022] Open
Abstract
The pentameric serum IgMs are critical to immune defense and surveillance through cytotoxicity against microbes and nascent cancer cells. Ficolins, a group of oligomeric lectins with an overall structure similar to C1q and mannose-binding lectin (MBL) participate in microbe infection and apoptotic cell clearance by activating the complement lectin pathway or a primitive opsonophagocytosis. It remains unknown whether serum IgMs interplay with ficolins in cancer immunosurveillance. Here we report a natural cancer killing of different types of cancer cells by sera from a healthy human population mediated by a novel IgM-H-ficolin complement activation pathway. We demonstrate for the first time that H-ficolin bound to a subset of IgMs in positive human sera and IgM-H-ficolin deposited on cancer cells to activate complement attack in cancer cells. Our data suggest that the IgM-H-ficolin -mediated complement activation pathway may be another defensive strategy for human cancer immunosurveillance.
Collapse
Affiliation(s)
- Xiaoying Lei
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Chaoxu Liu
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130 USA
| | - Kazem Azadzoi
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130 USA
| | - Cuiling Li
- Cancer Research Center, School of Medicine, Shandong University, Jinan, 250000 China
| | - Fan Lu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular biology, the Fourth Military Medical University, Xi'an, 710032 China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Jianbin Sun
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Yanhai Guo
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 China
| | - Zhen Yan
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Jinghua Yang
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130 USA
- Cancer Research Center, School of Medicine, Shandong University, Jinan, 250000 China
| |
Collapse
|
19
|
Østergaard JA, Thiel S, Hovind P, Holt CB, Parving HH, Flyvbjerg A, Rossing P, Hansen TK. Association of the pattern recognition molecule H-ficolin with incident microalbuminuria in an inception cohort of newly diagnosed type 1 diabetic patients: an 18 year follow-up study. Diabetologia 2014; 57:2201-7. [PMID: 25064124 DOI: 10.1007/s00125-014-3332-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/30/2014] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Increasing evidence links complement activation through the lectin pathway to diabetic nephropathy. Adverse complement recognition of proteins modified by glycation has been suggested to trigger complement auto-attack in diabetes. H-ficolin (also known as ficolin-3) is a pattern recognition molecule that activates the complement cascade on binding to glycated surfaces, but the role of H-ficolin in diabetic nephropathy is unknown. We aimed to investigate the association between circulating H-ficolin levels and the incidence of microalbuminuria in type 1 diabetes. METHODS We measured baseline H-ficolin levels and tracked the development of persistent micro- and macroalbuminuria in a prospective 18 year observational follow-up study of an inception cohort of 270 patients with newly diagnosed type 1 diabetes. RESULTS Patients were followed for a median of 18 years (range 1-22 years). During follow-up, 75 patients developed microalbuminuria, defined as a persistent urinary albumin excretion rate (UAER) above 30 mg/24 h. When H-ficolin levels were divided into quartile groups an unadjusted Cox proportional hazards regression model showed a significant association with risk of incident microalbuminuria during follow-up (HR, fourth vs first quartile, 2.45; 95% CI 1.24, 4.85) (p = 0.01). This remained significant after adjusting for HbA1c, systolic blood pressure, smoking and baseline UAER (HR 2.09; 95% CI 1.03, 4.25) (p = 0.04). CONCLUSIONS/INTERPRETATION Our data suggest that high levels of the complement activating molecule H-ficolin are associated with an increased risk of future progression to microalbuminuria in patients with newly diagnosed type 1 diabetes.
Collapse
Affiliation(s)
- Jakob A Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 2, DK-8000, Aarhus C, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang XW, Wang XW, Huang Y, Hui KM, Shi YR, Wang W, Ren Q. Cloning and characterization of two different ficolins from the giant freshwater prawn Macrobrachium rosenbergii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:359-69. [PMID: 24462836 DOI: 10.1016/j.dci.2014.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Ficolins, a kind of lectin containing collagen-like and fibrinogen-related domains (FReDs, also known as FBG or FREP), are involved in the first line of host defense against pathogens. In this study, two ficolins, namely, MrFico1 and MrFico2, from the giant freshwater prawn Macrobrachium rosenbergii were identified. In contrast to other ficolins, these two ficolins have no collagen-like domain, but such ficolins contain a coiled region and a FReD domain. Phylogenetic analysis showed that MrFico1 and MrFico2, together with two ficolin-like proteins from Pacifastacus leniusculus, belonged to one group. Quantitative RT-PCR (qRT-PCR) showed that both MrFico1 and MrFico2 were expressed in hepatopancreas, stomach and intestine, with the highest expression in stomach for MrFico1, compared to the highest expression in hepatopancreas for MrFico2. qRT-PCR analysis also showed that MrFico1 was obviously upregulated upon Vibrio anguillarium challenge, while MrFico2 was upregulated after challenged by V. anguillarium or white spot syndrome virus. Bacterium-binding experiment showed that MrFico1 and MrFico2 could bind to different microbes, and sugar-binding assay revealed that these two ficolins could also bind to lipopolysaccharide and peptidoglycan, the glycoconjugates of bacteria surface. Moreover, these two ficolins could agglutinate bacteria in a calcium-dependent manner, and the results of bacteria clearance experiment showed that both ficolins could facilitate the clearance of injected bacteria in the prawn. Our results suggested that MrFico1 and MrFico2 may function as pattern-recognition receptors in the immune system of M. rosenbergii.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- School of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Yan-Ru Shi
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
21
|
Matsushita M, Kilpatrick D, Shiraki H, Liu Y, Tateishi K, Tsujimura M, Endo Y, Fujita T. Purification, measurement of concentration, and functional complement assay of human ficolins. Methods Mol Biol 2014; 1100:141-59. [PMID: 24218257 DOI: 10.1007/978-1-62703-724-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ficolins constitute a group of lectins involved in innate immunity. L-Ficolin, H-ficolin, and M-ficolin are present in human serum. The human ficolins differ in carbohydrate-binding specificity, but they have in common the ability to recognize the acetyl group. L-Ficolin and H-ficolin are associated with serine proteases termed MASPs (MBL-associated serine proteases) and their truncated proteins, and the complexes (L/H-ficolin-MASP) activate the lectin pathway of complement upon binding to their ligands. Recombinant M-ficolin is also able to form a complex with MASP, resulting in complement activation. L-Ficolin and H-ficolin can be purified as a complex with MASP from serum by utilizing their binding specificities. These ficolin-MASP complexes have an ability to activate C4. Human ficolins are quantified by ELISA using specific antibodies or ligands.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kjaer TR, Thiel S, Andersen GR. Toward a structure-based comprehension of the lectin pathway of complement. Mol Immunol 2013; 56:222-31. [DOI: 10.1016/j.molimm.2013.05.220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 01/19/2023]
|
23
|
Kjaer TR, Thiel S, Andersen GR. Toward a structure-based comprehension of the lectin pathway of complement. Mol Immunol 2013; 56:413-22. [DOI: 10.1016/j.molimm.2013.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/14/2013] [Indexed: 01/19/2023]
|
24
|
Matsushita M. Ficolins in complement activation. Mol Immunol 2013; 55:22-6. [PMID: 22959617 DOI: 10.1016/j.molimm.2012.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
Abstract
Ficolins are a group of multimeric lectins made up of single subunits each of which is composed of a collagen-like domain and a fibrinogen-like domain. Most of the ficolins identified to date bind to acetylated compounds such as N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc). Ficolins in serum are complexed with MBL-associated serine proteases (MASPs) and their truncated proteins. These lectins play an important role in innate immunity. Binding of the ficolin-MASP complex to carbohydrates present on the surface of microbes initiates complement activation via the lectin pathway.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
25
|
Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz) 2013; 61:273-83. [PMID: 23563865 DOI: 10.1007/s00005-013-0229-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/25/2013] [Indexed: 01/19/2023]
Abstract
The complement system is an effector mechanism in immunity. It is activated in three ways, the classical, alternative and lectin pathways. The lectin pathway is initiated by the binding of mannose-binding lectin (MBL) or ficolins to carbohydrates on the surfaces of pathogens. In humans, MBL and three types of ficolins (L-ficolin, H-ficolin, and M-ficolin) are present in plasma. Of these lectins, at least, MBL, L-ficolin, and H-ficolin are complexed with three types of MBL-associated serine proteases (MASPs), MASP-1, MASP-2, and MASP-3 and their truncated proteins (MAp44 and sMAP). In the lectin pathway, the lectin-MASP complex (i.e., a complex of lectin, MASPs and their truncated proteins) binds to pathogens, resulting in the activation of C4 and C2 to generate a C3 convertase capable of activating C3. MASP-2 is involved in the activation of C4 and C2. MASP-1 activates C2 and MASP-2. The functions of MASP-3, sMAP, and MAp44 in the lectin pathway remain unknown. MASP-1 and MASP-3 also have a role in the alternative pathway. MBL and ficolins are able to bind to a variety of pathogens depending on their carbohydrate binding specificity, resulting in the activation of the lectin pathway. Deficiencies of the components of the lectin pathway are associated to susceptibility to infection, indicating an important role of the lectin pathway in innate immunity. The lectin-MASP complex is also involved in innate immunity by activating the coagulation system. Recent findings suggest a crucial role of MASP-3 in development.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
26
|
Degn SE, Jensen L, Olszowski T, Jensenius JC, Thiel S. Co-complexes of MASP-1 and MASP-2 associated with the soluble pattern-recognition molecules drive lectin pathway activation in a manner inhibitable by MAp44. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1334-45. [PMID: 23785123 DOI: 10.4049/jimmunol.1300780] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lectin pathway of complement is an integral component of innate immunity. It is activated upon binding of mannan-binding lectin (MBL) or ficolins (H-, L-, and M-ficolin) to suitable ligand patterns on microorganisms. MBL and ficolins are polydisperse homo-oligomeric molecules, found in complexes with MBL-associated serine proteases (MASP-1, -2, and -3) and MBL-associated proteins (MAp19 and MAp44). This scenario is far more complex than the well-defined activation complex of the classical pathway, C1qC1r(2)C1s(2), and the composition of the activating complexes of the lectin pathway is ill defined. We and other investigators recently demonstrated that both MASP-1 and MASP-2 are crucial to lectin pathway activation. MASP-1 transactivates MASP-2 and, although MASP-1 also cleaves C2, MASP-2 cleaves both C4 and C2, allowing formation of the C3 convertase, C4bC2a. Juxtaposition of MASP-1 and MASP-2 during activation must be required for transactivation. We previously presented a possible scenario, which parallels that of the classical pathway, in which MASP-1 and MASP-2 are found together in the same MBL or ficolin complex. In this study, we demonstrate that, although MASPs do not directly form heterodimers, the addition of MBL or ficolins allows the formation of MASP-1-MASP-2 co-complexes. We find that such co-complexes have a functional role in activating complement and are present in serum at varying levels, impacting on the degree of complement activation. This raises the novel possibility that MAp44 may inhibit complement, not simply by brute force displacement of MASP-2 from MBL or ficolins, but by disruption of co-complexes, hence impairing transactivation. We present support for this contention.
Collapse
Affiliation(s)
- Søren E Degn
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Axelgaard E, Jensen L, Dyrlund TF, Nielsen HJ, Enghild JJ, Thiel S, Jensenius JC. Investigations on collectin liver 1. J Biol Chem 2013; 288:23407-20. [PMID: 23814060 DOI: 10.1074/jbc.m113.492603] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collectins are pattern recognition molecules of the innate immune system showing binding to carbohydrate structures on microorganisms in a calcium-dependent manner. Recently, three novel collectins, collectin liver 1 (CL-L1), collectin kidney 1 (CL-K1 and CL-11), and collectin placenta 1 (CL-P1), were discovered. The roles of these three collectins remain largely unknown. Here, we present a time-resolved immunofluorometric assay for quantification of CL-L1. The concentration of CL-L1 in donor plasma (n = 210) was distributed log-normally with a median value of 3.0 μg/ml (range 1.5-5.5 μg/ml). We observed on average 30% higher concentrations of CL-L1 in plasma as compared with serum. Size analysis by gel-permeation chromatography showed CL-L1 in serum to elute as large 700-800-kDa complexes and smaller 200-300-kDa complexes. CL-L1 showed specific binding to mannose-TSK beads in a Ca(2+)-dependent manner. This binding could be inhibited by mannose and glucose, but not galactose, indicating that CL-L1 binds via its carbohydrate-recognition domain and has ligand specificity similar to that of mannan-binding lectin. Western blot analysis of CL-L1 showed the presence of several oligomeric forms in serum. Ontogeny studies showed CL-L1 to be present at birth at near adult levels. CL-L1 levels exhibit low variation in healthy adults over a 1-year period. During acute-phase responses, the CL-L1 levels display only minor variations. In serum, CL-L1 was found in complexes with mannan-binding lectin-associated serine proteases, suggesting a role in the lectin pathway of complement activation. The presented data establish a basis for future studies on the biological role of CL-L1.
Collapse
Affiliation(s)
- Esben Axelgaard
- Department of Biomedicine, Wilhelm Meyers Allé 4, Faculty of Health Sciences, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
28
|
Brinkmann CR, Jensen L, Dagnæs-Hansen F, Holm IE, Endo Y, Fujita T, Thiel S, Jensenius JC, Degn SE. Mitochondria and the lectin pathway of complement. J Biol Chem 2013; 288:8016-8027. [PMID: 23378531 PMCID: PMC3605621 DOI: 10.1074/jbc.m112.430249] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/28/2013] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, the powerhouses of our cells, are remnants of a eubacterial endosymbiont. Notwithstanding the evolutionary time that has passed since the initial endosymbiotic event, mitochondria have retained many hallmarks of their eubacterial origin. Recent studies have indicated that during perturbations of normal homeostasis, such as following acute trauma leading to massive necrosis and release of mitochondria, the immune system might mistake symbiont for enemy and initiate an inappropriate immune response. The innate immune system is the first line of defense against invading microbial pathogens, and as such is the primary suspect in the recognition of mitochondria-derived danger-associated molecular patterns and initiation of an aberrant response. Conversely, innate immune mechanisms are also central to noninflammatory clearance of innocuous agents. Here we investigated the role of a central humoral component of innate immunity, the lectin pathway of complement, in recognition of mitochondria in vitro and in vivo. We found that the soluble pattern recognition molecules, mannan-binding lectin (MBL), L-ficolin, and M-ficolin, were able to recognize mitochondria. Furthermore, MBL in complex with MBL-associated serine protease 2 (MASP-2) was able to activate the lectin pathway and deposit C4 onto mitochondria, suggesting that these molecules are involved either in homeostatic clearance of mitochondria or in induction of untoward inflammatory reactions. We found that following mitochondrial challenge, C3 was consumed in vivo in the absence of overt inflammation, indicating a potential role of complement in noninflammatory clearance of mitochondria. Thus, we report here the first indication of involvement of the lectin pathway in mitochondrial immune handling.
Collapse
Affiliation(s)
- Christel R Brinkmann
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Frederik Dagnæs-Hansen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ida E Holm
- Laboratory for Experimental Neuropathology, Department of Pathology, Randers Hospital, DK-8930 Randers NØ, Denmark; Institute of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University, 1-Hikariga-oka, Fukushima City, Fukushima 960-1295, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, 1-Hikariga-oka, Fukushima City, Fukushima 960-1295, Japan
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jens C Jensenius
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Søren E Degn
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
29
|
Joseph K, Kulik L, Coughlin B, Kunchithapautham K, Bandyopadhyay M, Thiel S, Thielens NM, Holers VM, Rohrer B. Oxidative stress sensitizes retinal pigmented epithelial (RPE) cells to complement-mediated injury in a natural antibody-, lectin pathway-, and phospholipid epitope-dependent manner. J Biol Chem 2013; 288:12753-65. [PMID: 23493397 DOI: 10.1074/jbc.m112.421891] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Uncontrolled activation of the alternative complement pathway (AP) is thought to be associated with age-related macular degeneration. Previously, we have shown that in retinal pigmented epithelial (RPE) monolayers, oxidative stress reduced complement inhibition on the cell surface, resulting in sublytic complement activation and loss of transepithelial resistance (TER), but the potential ligand and pathway involved are unknown. ARPE-19 cells were grown as monolayers on transwell plates, and sublytic complement activation was induced with H2O2 and normal human serum. TER deteriorated rapidly in H2O2-exposed monolayers upon adding normal human serum. Although the effect required AP activation, AP was not sufficient, because elimination of MASP, but not C1q, prevented TER reduction. Reconstitution experiments to unravel essential components of the lectin pathway (LP) showed that both ficolin and mannan-binding lectin can activate the LP through natural IgM antibodies (IgM-C2) that recognize phospholipid cell surface modifications on oxidatively stressed RPE cells. The same epitopes were found on human primary embryonic RPE monolayers. Likewise, mouse laser-induced choroidal neovascularization, an injury that involves LP activation, could be increased in antibody-deficient rag1(-/-) mice using the phospholipid-specific IgM-C2. In summary, using a combination of depletion and reconstitution strategies, we have shown that the LP is required to initiate the complement cascade following natural antibody recognition of neoepitopes, which is then further amplified by the AP. LP activation is triggered by IgM bound to phospholipids. Taken together, we have defined novel mechanisms of complement activation in oxidatively stressed RPE, linking molecular events involved in age-related macular degeneration, including the presence of natural antibodies and neoepitopes.
Collapse
Affiliation(s)
- Kusumam Joseph
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schaffer T, Flogerzi B, Schoepfer AM, Seibold F, Müller S. Increased titers of anti-Saccharomyces cerevisiae antibodies in Crohn's disease patients with reduced H-ficolin levels but normal MASP-2 activity. J Crohns Colitis 2013; 7:e1-10. [PMID: 22445443 DOI: 10.1016/j.crohns.2012.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 01/23/2012] [Accepted: 02/14/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Mannan-binding lectin (MBL) and ficolins are microbial pattern recognition molecules that activate the lectin pathway of complement. We previously reported the association of MBL deficiency with anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with Crohn's disease (CD). However, ASCA are also frequently found in MBL-proficient CD patients. Here we addressed expression/function of ficolins and MBL-associated serine protease-2 (MASP-2) regarding potential association with ASCA. METHODS ASCA titers and MBL, ficolin and MASP-2 concentrations were determined by ELISA in the serum of patients with CD, ulcerative colitis (UC), and in healthy controls. MASP-2 activity was determined by measuring complement C4b-fixation. Anti-MBL autoantibodies were detected by ELISA. RESULTS In CD and UC patients, L-ficolin concentrations were significantly higher compared to healthy controls (p<0.001 and p=0.029). In contrast, H-ficolin concentrations were slightly reduced in CD and UC compared to healthy controls (p=0.037 for UC vs. hc). CD patients with high ASCA titers had significantly lower H-ficolin concentrations compared to ASCA-low/negative CD patients (p=0.009). However, MASP-2 activity was not different in ASCA-negative and ASCA-positive CD patients upon both, ficolin- or MBL-mediated MASP-2 activation. Finally, anti-MBL autoantibodies were not over-represented in MBL-proficient ASCA-positive CD patients. CONCLUSIONS Our results suggest that low expression of H-ficolin may promote elevated ASCA titers in the ASCA-positive subgroup of CD patients. However, unlike MBL deficiency, we found no evidence for low expression of serum ficolins or reduced MASP-2 activity that may predispose to ASCA development.
Collapse
Affiliation(s)
- Thomas Schaffer
- Department of Clinical Research, Division of Gastroenterology, University Hospital Bern, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Kjaer TR, Hansen AG, Sørensen UBS, Holm AT, Sørensen GL, Jensenius JC, Thiel S. M-ficolin binds selectively to the capsular polysaccharides of Streptococcus pneumoniae serotypes 19B and 19C and of a Streptococcus mitis strain. Infect Immun 2013; 81:452-9. [PMID: 23184524 PMCID: PMC3553806 DOI: 10.1128/iai.01148-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/21/2012] [Indexed: 11/20/2022] Open
Abstract
The three human ficolins (H-, L-, and M-ficolins) and mannan-binding lectin are pattern recognition molecules of the innate immune system mediating activation of the lectin pathway of the complement system. These four human proteins bind to some microorganisms and may be involved in the resolution of infections. We investigated binding selectivity by examining the binding of M-ficolin to a panel of more than 100 different streptococcal strains (Streptococcus pneumoniae and Streptococcus mitis), each expressing distinct polysaccharide structures. M-ficolin binding was observed for three strains only: strains of the pneumococcal serotypes 19B and 19C and a single S. mitis strain expressing a similar polysaccharide structure. The bound M-ficolin, in association with MASP-2, mediated the cleavage of complement factor C4. Binding to the bacteria was inhibitable by N-acetylglucosamine, indicating that the interaction with the bacterial surface takes place via the fibrinogen-like domain. The common N-acetylmannosamine residue present in the structures of the four capsular polysaccharides of group 19 is linked via a phosphodiester bond. This residue is apparently not a ligand for M-ficolin, since the lectin binds to two of the group 19 polysaccharides only. M-ficolin bound strongly to serotype 19B and 19C polysaccharides. In contrast to those of serotypes 19A and 19F, serotype 19B and 19C polysaccharides contain an extra N-acetylmannosamine residue linked via glycoside linkage only. Thus, this extra residue seems to be the M-ficolin ligand. In conclusion, we were able to demonstrate specific binding of M-ficolin to some capsular polysaccharides of the opportunistic pathogen S. pneumoniae and of the commensal bacterium S. mitis.
Collapse
Affiliation(s)
- Troels R. Kjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Uffe B. S. Sørensen
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Anne T. Holm
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Verma A, White M, Vathipadiekal V, Tripathi S, Mbianda J, Ieong M, Qi L, Taubenberger JK, Takahashi K, Jensenius JC, Thiel S, Hartshorn KL. Human H-ficolin inhibits replication of seasonal and pandemic influenza A viruses. THE JOURNAL OF IMMUNOLOGY 2012; 189:2478-87. [PMID: 22851708 DOI: 10.4049/jimmunol.1103786] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The collectins have been shown to have a role in host defense against influenza A virus (IAV) and other significant viral pathogens (e.g., HIV). The ficolins are a related group of innate immune proteins that are present at relatively high concentrations in serum, but also in respiratory secretions; however, there has been little study of the role of ficolins in viral infection. In this study, we demonstrate that purified recombinant human H-ficolin and H-ficolin in human serum and bronchoalveolar lavage fluid bind to IAV and inhibit viral infectivity and hemagglutination activity in vitro. Removal of ficolins from human serum or bronchoalveolar lavage fluid reduces their antiviral activity. Inhibition of IAV did not involve the calcium-dependent lectin activity of H-ficolin. We demonstrate that H-ficolin is sialylated and that removal of sialic acid abrogates IAV inhibition, while addition of the neuraminidase inhibitor oseltamivir potentiates neutralization, hemagglutinin inhibition, and viral aggregation caused by H-ficolin. Pandemic and mouse-adapted strains of IAV are generally not inhibited by the collectins surfactant protein D or mannose binding lectin because of a paucity of glycan attachments on the hemagglutinin of these strains. In contrast, H-ficolin inhibited both the mouse-adapted PR-8 H1N1 strain and a pandemic H1N1 strain from 2009. H-ficolin also fixed complement to a surface coated with IAV. These findings suggest that H-ficolin contributes to host defense against IAV.
Collapse
Affiliation(s)
- Anamika Verma
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Reichhardt MP, Loimaranta V, Thiel S, Finne J, Meri S, Jarva H. The salivary scavenger and agglutinin binds MBL and regulates the lectin pathway of complement in solution and on surfaces. Front Immunol 2012; 3:205. [PMID: 22811680 PMCID: PMC3397308 DOI: 10.3389/fimmu.2012.00205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/29/2012] [Indexed: 01/04/2023] Open
Abstract
The salivary scavenger and agglutinin (SALSA), also known as gp340, salivary agglutinin and deleted in malignant brain tumor 1, is a 340-kDa glycoprotein expressed on mucosal surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes and endogenous ligands, such as complement factor C1q, surfactant proteins D and A, and IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the identification of mannan-binding lectin (MBL) as a new binding partner. We observed that surface-associated SALSA activates complement via binding of MBL. On the other hand, soluble SALSA was found to inhibit Candida albicans-induced complement activation. Thus, SALSA has a dual complement activation modifying function. It activates the lectin pathway when bound to a surface and inhibits it when free in the fluid phase. These activities are mediated via a direct interaction with MBL. This suggests that SALSA could target the innate immune responses to certain microorganisms and simultaneously limit complement activation in the fluid phase.
Collapse
Affiliation(s)
- Martin P Reichhardt
- Infection Biology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|