1
|
Sun L, Fan G, Zhang Z, Chang D, Zhang X, Zhang T, Geng J, Zhang X, Lin M, Hu C, Zhou J, Wang M, Cao L, Zhang M, He B, Zhang S, Wang C. Phosphorylation of SIRT7 by ATM causes DNA mismatch repair downregulation and adaptive mutability during chemotherapy. Cell Rep 2025; 44:115269. [PMID: 39908142 DOI: 10.1016/j.celrep.2025.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Drug resistance significantly limits the efficacy of chemotherapy. The DNA mismatch repair (MMR) system maintains genomic stability by correcting DNA errors. During DNA-damaging treatments, cancer cells transiently increase their adaptive mutability, also known as microsatellite instability (MSI), to evade therapeutic pressure through MMR downregulation, conferring drug resistance. However, an understanding of the underlying mechanisms of MMR protein downregulation under DNA-damaging drugs remains limited. Our study reveals a negative correlation between SIRT7 protein levels and MMR core protein MSH2 levels in cervical and lung cancer tissues. SIRT7 destabilizes MSH2, promoting MSI and mutagenesis. Molecularly, DNA damage triggers ATM kinase-dependent phosphorylation and subcellular redistribution of SIRT7. Phosphorylated SIRT7 interacts with and deacetylates MSH2, impairing MMR, and inducing MSI and drug resistance. Our findings suggest that SIRT7 drives MMR downregulation under therapeutic stress and that ATM-dependent phosphorylation of SIRT7 may serve as a predictive biomarker for chemotherapeutic efficacy and a target for cancer treatment.
Collapse
Affiliation(s)
- Lianhui Sun
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Guangjian Fan
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Zhuqing Zhang
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Dong Chang
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Xiaoyu Zhang
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Tongqing Zhang
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Jichuan Geng
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Xiaoxia Zhang
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Menghan Lin
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Chen Hu
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Jiaqi Zhou
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Mengxue Wang
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Liu Cao
- Health Sciences Institute, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Mary Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R., Detroit, MI 48201, USA
| | - Baokun He
- Institute of Chinese Materia Medica, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Shengping Zhang
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
| | - Chuangui Wang
- Biomedical Translational Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
2
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Yang CH, Bergsma A, Drougard A, Dror E, Chandler DP, Schramek D, Triche TJ, Pospisilik JA. TRIM28-dependent developmental heterogeneity determines cancer susceptibility through distinct epigenetic states. NATURE CANCER 2025; 6:385-403. [PMID: 39856421 PMCID: PMC11864977 DOI: 10.1038/s43018-024-00900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
Mutations in cancer risk genes increase susceptibility, but not all carriers develop cancer. Indeed, while DNA mutations are necessary drivers of cancer, only a small subset of mutated cells go on to cause the disease. To date, the mechanisms underlying individual cancer susceptibility remain unclear. Here, we took advantage of a unique mouse model of intrinsic developmental heterogeneity (Trim28+/D9) to investigate whether early-life epigenetic variation influences cancer susceptibility later in life. We found that heterozygosity of Trim28 is sufficient to generate two distinct early-life epigenetic states associated with differing cancer susceptibility. These developmentally primed states exhibit differential methylation patterns at typically silenced heterochromatin, detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential, frequently mutated in human cancers and correlated with poor prognosis. This study provides genetic evidence that intrinsic developmental heterogeneity can prime individual, lifelong cancer susceptibility.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chih-Hsiang Yang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Pediatrics, MSU College of Human Medicine, East Lansing, MI, USA
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
3
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
4
|
Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet 2024; 15:1431564. [PMID: 39100077 PMCID: PMC11294089 DOI: 10.3389/fgene.2024.1431564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
TRIM28 (tripartite motif protein 28) was initially believed to be a transcription inhibitor that plays an important role in DNA damage repair (DDR) and in maintaining cancer cellular stemness. As research has continued to deepen, several studies have found that TRIM28 not only has ubiquitin E3 ligase activity to promote degradation of substrates, but also can promote SUMOylation of substrates. Although TRIM28 is highly expressed in various cancer tissues and has oncogenic effects, there are still a few studies indicating that TRIM28 has certain anticancer effects. Additionally, TRIM28 is subject to complex upstream regulation. In this review, we have elaborated on the structure and regulation of TRIM28. At the same time, highlighting the functional role of TRIM28 in tumor development and emphasizing its impact on cancer treatment provides a new direction for future clinical antitumor treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Haifeng Wang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Bitao Jiang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Roy A, Ghosh A. Epigenetic Restriction Factors (eRFs) in Virus Infection. Viruses 2024; 16:183. [PMID: 38399958 PMCID: PMC10892949 DOI: 10.3390/v16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
6
|
Bastianello G, Porcella G, Beznoussenko GV, Kidiyoor G, Ascione F, Li Q, Cattaneo A, Matafora V, Disanza A, Quarto M, Mironov AA, Oldani A, Barozzi S, Bachi A, Costanzo V, Scita G, Foiani M. Cell stretching activates an ATM mechano-transduction pathway that remodels cytoskeleton and chromatin. Cell Rep 2023; 42:113555. [PMID: 38088930 DOI: 10.1016/j.celrep.2023.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| | | | | | - Gururaj Kidiyoor
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | | | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Micaela Quarto
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sara Barozzi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Vincenzo Costanzo
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
7
|
Kiweler N, Schwarz H, Nguyen A, Matschos S, Mullins C, Piée-Staffa A, Brachetti C, Roos WP, Schneider G, Linnebacher M, Brenner W, Krämer OH. The epigenetic modifier HDAC2 and the checkpoint kinase ATM determine the responses of microsatellite instable colorectal cancer cells to 5-fluorouracil. Cell Biol Toxicol 2023; 39:2401-2419. [PMID: 35608750 PMCID: PMC10547618 DOI: 10.1007/s10565-022-09731-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
The epigenetic modifier histone deacetylase-2 (HDAC2) is frequently dysregulated in colon cancer cells. Microsatellite instability (MSI), an unfaithful replication of DNA at nucleotide repeats, occurs in about 15% of human colon tumors. MSI promotes a genetic frameshift and consequently a loss of HDAC2 in up to 43% of these tumors. We show that long-term and short-term cultures of colorectal cancers with MSI contain subpopulations of cells lacking HDAC2. These can be isolated as single cell-derived, proliferating populations. Xenografted patient-derived colon cancer tissues with MSI also show variable patterns of HDAC2 expression in mice. HDAC2-positive and HDAC2-negative RKO cells respond similarly to pharmacological inhibitors of the class I HDACs HDAC1/HDAC2/HDAC3. In contrast to this similarity, HDAC2-negative and HDAC2-positive RKO cells undergo differential cell cycle arrest and apoptosis induction in response to the frequently used chemotherapeutic 5-fluorouracil, which becomes incorporated into and damages RNA and DNA. 5-fluorouracil causes an enrichment of HDAC2-negative RKO cells in vitro and in a subset of primary colorectal tumors in mice. 5-fluorouracil induces the phosphorylation of KAP1, a target of the checkpoint kinase ataxia-telangiectasia mutated (ATM), stronger in HDAC2-negative cells than in their HDAC2-positive counterparts. Pharmacological inhibition of ATM sensitizes RKO cells to cytotoxic effects of 5-fluorouracil. These findings demonstrate that HDAC2 and ATM modulate the responses of colorectal cancer cells towards 5-FU.
Collapse
Affiliation(s)
- Nicole Kiweler
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
- Present Address: Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Helena Schwarz
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alexandra Nguyen
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephanie Matschos
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Christina Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Christina Brachetti
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Wynand P. Roos
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Günter Schneider
- Klinikum Rechts Der Isar, Medical Clinic and Polyclinic II, Technical University Munich, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
8
|
Stolarova L, Kleiblova P, Zemankova P, Stastna B, Janatova M, Soukupova J, Achatz MI, Ambrosone C, Apostolou P, Arun BK, Auer P, Barnard M, Bertelsen B, Blok MJ, Boddicker N, Brunet J, Burnside ES, Calvello M, Campbell I, Chan SH, Chen F, Chiang JB, Coppa A, Cortesi L, Crujeiras-González A, De Leeneer K, De Putter R, DePersia A, Devereux L, Domchek S, Efremidis A, Engel C, Ernst C, Evans DGR, Feliubadaló L, Fostira F, Fuentes-Ríos O, Gómez-García EB, González S, Haiman C, Hansen TVO, Hauke J, Hodge J, Hu C, Huang H, Ishak NDB, Iwasaki Y, Konstantopoulou I, Kraft P, Lacey J, Lázaro C, Li N, Lim WK, Lindstrom S, Lori A, Martinez E, Martins A, Matsuda K, Matullo G, McInerny S, Michailidou K, Montagna M, Monteiro AN, Mori L, Nathanson K, Neuhausen SL, Nevanlinna H, Olson JE, Palmer J, Pasini B, Patel A, Piane M, Poppe B, Radice P, Renieri A, Resta N, Richardson ME, Rosseel T, Ruddy KJ, Santamariña M, Dos Santos ES, Teras L, Toland AE, Trentham-Dietz A, Vachon CM, Volk AE, Weber-Lassalle N, Weitzel JN, Wiesmuller L, Winham S, Yadav S, Yannoukakos D, Yao S, Zampiga V, Zethoven M, Zhang ZW, Zima T, Spurdle AB, Vega A, Rossing M, et alStolarova L, Kleiblova P, Zemankova P, Stastna B, Janatova M, Soukupova J, Achatz MI, Ambrosone C, Apostolou P, Arun BK, Auer P, Barnard M, Bertelsen B, Blok MJ, Boddicker N, Brunet J, Burnside ES, Calvello M, Campbell I, Chan SH, Chen F, Chiang JB, Coppa A, Cortesi L, Crujeiras-González A, De Leeneer K, De Putter R, DePersia A, Devereux L, Domchek S, Efremidis A, Engel C, Ernst C, Evans DGR, Feliubadaló L, Fostira F, Fuentes-Ríos O, Gómez-García EB, González S, Haiman C, Hansen TVO, Hauke J, Hodge J, Hu C, Huang H, Ishak NDB, Iwasaki Y, Konstantopoulou I, Kraft P, Lacey J, Lázaro C, Li N, Lim WK, Lindstrom S, Lori A, Martinez E, Martins A, Matsuda K, Matullo G, McInerny S, Michailidou K, Montagna M, Monteiro AN, Mori L, Nathanson K, Neuhausen SL, Nevanlinna H, Olson JE, Palmer J, Pasini B, Patel A, Piane M, Poppe B, Radice P, Renieri A, Resta N, Richardson ME, Rosseel T, Ruddy KJ, Santamariña M, Dos Santos ES, Teras L, Toland AE, Trentham-Dietz A, Vachon CM, Volk AE, Weber-Lassalle N, Weitzel JN, Wiesmuller L, Winham S, Yadav S, Yannoukakos D, Yao S, Zampiga V, Zethoven M, Zhang ZW, Zima T, Spurdle AB, Vega A, Rossing M, Del Valle J, De Nicolo A, Hahnen E, Claes KB, Ngeow J, Momozawa Y, James PA, Couch FJ, Macurek L, Kleibl Z. ENIGMA CHEK2gether Project: A Comprehensive Study Identifies Functionally Impaired CHEK2 Germline Missense Variants Associated with Increased Breast Cancer Risk. Clin Cancer Res 2023; 29:3037-3050. [PMID: 37449874 PMCID: PMC10425727 DOI: 10.1158/1078-0432.ccr-23-0212] [Show More Authors] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Germline pathogenic variants in CHEK2 confer moderately elevated breast cancer risk (odds ratio, OR ∼ 2.5), qualifying carriers for enhanced breast cancer screening. Besides pathogenic variants, dozens of missense CHEK2 variants of uncertain significance (VUS) have been identified, hampering the clinical utility of germline genetic testing (GGT). EXPERIMENTAL DESIGN We collected 460 CHEK2 missense VUS identified by the ENIGMA consortium in 15 countries. Their functional characterization was performed using CHEK2-complementation assays quantifying KAP1 phosphorylation and CHK2 autophosphorylation in human RPE1-CHEK2-knockout cells. Concordant results in both functional assays were used to categorize CHEK2 VUS from 12 ENIGMA case-control datasets, including 73,048 female patients with breast cancer and 88,658 ethnicity-matched controls. RESULTS A total of 430/460 VUS were successfully analyzed, of which 340 (79.1%) were concordant in both functional assays and categorized as functionally impaired (N = 102), functionally intermediate (N = 12), or functionally wild-type (WT)-like (N = 226). We then examined their association with breast cancer risk in the case-control analysis. The OR and 95% CI (confidence intervals) for carriers of functionally impaired, intermediate, and WT-like variants were 2.83 (95% CI, 2.35-3.41), 1.57 (95% CI, 1.41-1.75), and 1.19 (95% CI, 1.08-1.31), respectively. The meta-analysis of population-specific datasets showed similar results. CONCLUSIONS We determined the functional consequences for the majority of CHEK2 missense VUS found in patients with breast cancer (3,660/4,436; 82.5%). Carriers of functionally impaired missense variants accounted for 0.5% of patients with breast cancer and were associated with a moderate risk similar to that of truncating CHEK2 variants. In contrast, 2.2% of all patients with breast cancer carried functionally wild-type/intermediate missense variants with no clinically relevant breast cancer risk in heterozygous carriers.
Collapse
Affiliation(s)
- Lenka Stolarova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Stastna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Maria Isabel Achatz
- A.C. Camargo Cancer Center and Oncology Center, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | - Christine Ambrosone
- Department of Cancer Prevention & Control, Roswell Park Cancer Center, Buffalo, New York
- WCHS Inc., Baltimore, Maryland
| | - Paraskevi Apostolou
- Human Molecular Genetics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Banu K. Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- WHI, USA
| | - Mollie Barnard
- Slone Epidemiology Center, Boston University, Boston, Massachusetts
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marinus J. Blok
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Nicholas Boddicker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- CARRIERS, USA
| | - Joan Brunet
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Elizabeth S. Burnside
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- WWHS, Charlotte, North Carolina
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Ian Campbell
- Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Sock Hoai Chan
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Fei Chen
- Keck School of Medicine, University of Southern California, Los Angeles, California
- MEC, USA
| | - Jian Bang Chiang
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, Modena University Hospital, Modena, Italy
| | - Ana Crujeiras-González
- Fundacion Publica Galega de Medicina Xenomica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Robin De Putter
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Allison DePersia
- Center for Medical Genetics, NorthShore University Health System, Evanston, Illinois
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Lifepool, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Susan Domchek
- CARRIERS, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anna Efremidis
- Clinical Cancer Genetics and Family Consultants, CLINICAGENE, Athens Medical Center, Athens, Greece
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - D. Gareth R. Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Lidia Feliubadaló
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Olivia Fuentes-Ríos
- Fundacion Publica Galega de Medicina Xenomica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Encarna B. Gómez-García
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Sara González
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Christopher Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, California
- MEC, USA
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - James Hodge
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
- CPS3, Kennesaw, Georgia
| | - Chunling Hu
- CARRIERS, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Hongyan Huang
- T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- NHS, Reston, Virginia
| | | | - Yusuke Iwasaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Peter Kraft
- T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- NHS, Reston, Virginia
| | - James Lacey
- Beckman Research Institute, City of Hope Cancer Center, Duarte, California
- CTS, USA
| | - Conxi Lázaro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Na Li
- Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Sara Lindstrom
- WHI, USA
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Adriana Lori
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
- American Cancer Society, Atlanta, Georgia
| | - Elana Martinez
- Duke-NUS Medical School, Singapore, Singapore
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California
| | - Alexandra Martins
- Inserm UMR1245, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, and Royal Melbourne Hospital, Melbourne, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Padua, Italy
| | - Alvaro N.A. Monteiro
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Luigi Mori
- Endocrine and Metabolic Disease Unit, ASST Spedali Civili of Brescia, Brescia, Italia
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Katherine Nathanson
- CARRIERS, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Janet E. Olson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- MCBCS, USA
| | - Julie Palmer
- Slone Epidemiology Center, Boston University, Boston, Massachusetts
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alpa Patel
- Department of Population Science, American Cancer Society, Atlanta, Georgia
- CPS-II, USA
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Paolo Radice
- Department of Experimental Oncology, Molecular Bases of Genetic Risk and Genetic Testing Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Nicoletta Resta
- Department of Precision and Regenerative Medicine and Ionian Area, Medical Genetics Unit, University of Bari, Bari, Italy
| | | | - Toon Rosseel
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Kathryn J. Ruddy
- MCBCS, USA
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Marta Santamariña
- Fundacion Publica Galega de Medicina Xenomica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | | | - Lauren Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia
- CPS-II, USA
| | - Amanda E. Toland
- Department of Cancer Biology & Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amy Trentham-Dietz
- WWHS, Charlotte, North Carolina
- University of Wisconsin, Madison, Wisconsin
| | | | - Alexander E. Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nana Weber-Lassalle
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Lisa Wiesmuller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Stacey Winham
- MMHS, USA
- Department Quantitative Sciences, Mayo Clinic, Rochester, Minnesota
| | - Siddhartha Yadav
- CARRIERS, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Song Yao
- WCHS Inc., Baltimore, Maryland
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Valentina Zampiga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori," Meldola, Italy
| | - Magnus Zethoven
- Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ze Wen Zhang
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Amanda B. Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ana Vega
- Fundacion Publica Galega de Medicina Xenomica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Maria Rossing
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jesús Del Valle
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Arcangela De Nicolo
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Joanne Ngeow
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Paul A. James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Inserm UMR1245, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Fergus J. Couch
- CARRIERS, USA
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Shaba E, Landi C, Marzocchi C, Vantaggiato L, Bini L, Ricci C, Cantara S. Proteomics Reveals How the Tardigrade Damage Suppressor Protein Teaches Transfected Human Cells to Survive UV-C Stress. Int J Mol Sci 2023; 24:11463. [PMID: 37511223 PMCID: PMC10380570 DOI: 10.3390/ijms241411463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The genome sequencing of the tardigrade Ramazzottius varieornatus revealed a unique nucleosome-binding protein named damage suppressor (Dsup), which was discovered to be crucial for the extraordinary abilities of tardigrades in surviving extreme stresses, such as UV. Evidence in Dsup-transfected human cells suggests that Dsup mediates an overall response in DNA damage signaling, DNA repair, and cell cycle regulation, resulting in an acquired resistance to stress. Given these promising outcomes, our study attempts to provide a wider comprehension of the molecular mechanisms modulated by Dsup in human cells and to explore the Dsup-activated molecular pathways under stress. We performed a differential proteomic analysis of Dsup-transfected and control human cells under basal conditions and at 24 h recovery after exposure to UV-C. We demonstrate via enrichment and network analyses, for the first time, that even in the absence of external stimuli, and more significantly, after stress, Dsup activates mechanisms involved with the unfolded protein response, the mRNA processing and stability, cytoplasmic stress granules, the DNA damage response, and the telomere maintenance. In conclusion, our results shed new light on Dsup-mediated protective mechanisms and increases our knowledge of the molecular machineries of extraordinary protection against UV-C stress.
Collapse
Affiliation(s)
- Enxhi Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Claudia Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Carlotta Marzocchi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
10
|
Chang YJ, Lin S, Kang ZF, Shen BJ, Tsai WH, Chen WC, Lu HP, Su YL, Chou SJ, Lin SY, Lin SW, Huang YJ, Wang HH, Chang CJ. Acetylation-Mimic Mutation of TRIM28-Lys304 to Gln Attenuates the Interaction with KRAB-Zinc-Finger Proteins and Affects Gene Expression in Leukemic K562 Cells. Int J Mol Sci 2023; 24:9830. [PMID: 37372979 DOI: 10.3390/ijms24129830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
TRIM28/KAP1/TIF1β is a crucial epigenetic modifier. Genetic ablation of trim28 is embryonic lethal, although RNAi-mediated knockdown in somatic cells yields viable cells. Reduction in TRIM28 abundance at the cellular or organismal level results in polyphenism. Posttranslational modifications such as phosphorylation and sumoylation have been shown to regulate TRIM28 activity. Moreover, several lysine residues of TRIM28 are subject to acetylation, but how acetylation of TRIM28 affects its functions remains poorly understood. Here, we report that, compared with wild-type TRIM28, the acetylation-mimic mutant TRIM28-K304Q has an altered interaction with Krüppel-associated box zinc-finger proteins (KRAB-ZNFs). The TRIM28-K304Q knock-in cells were created in K562 erythroleukemia cells by CRISPR-Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein nuclease 9) gene editing method. Transcriptome analysis revealed that TRIM28-K304Q and TRIM28 knockout K562 cells had similar global gene expression profiles, yet the profiles differed considerably from wild-type K562 cells. The expression levels of embryonic-related globin gene and a platelet cell marker integrin-beta 3 were increased in TRIM28-K304Q mutant cells, indicating the induction of differentiation. In addition to the differentiation-related genes, many zinc-finger-proteins genes and imprinting genes were activated in TRIM28-K304Q cells; they were inhibited by wild-type TRIM28 via binding with KRAB-ZNFs. These results suggest that acetylation/deacetylation of K304 in TRIM28 constitutes a switch for regulating its interaction with KRAB-ZNFs and alters the gene regulation as demonstrated by the acetylation mimic TRIM28-K304Q.
Collapse
Affiliation(s)
- Yao-Jen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Zhi-Fu Kang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bin-Jon Shen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Hai Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Ching Chen
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Pin Lu
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Lun Su
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yin-Jung Huang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ching-Jin Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Zhang Y, Wan X, Qiu L, Zhou L, Huang Q, Wei M, Liu X, Liu S, Zhang B, Han J. Trim28 citrullination maintains mouse embryonic stem cell pluripotency via regulating Nanog and Klf4 transcription. SCIENCE CHINA. LIFE SCIENCES 2023; 66:545-562. [PMID: 36100837 DOI: 10.1007/s11427-022-2167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Protein citrullination, including histone H1 and H3 citrullination, is important for transcriptional regulation, DNA damage response, and pluripotency of embryonic stem cells (ESCs). Tripartite motif containing 28 (Trim28), an embryonic development regulator involved in ESC self-renewal, has recently been identified as a novel substrate for citrullination by Padi4. However, the physiological functions of Trim28 citrullination and its role in regulating the chromatin structure and gene transcription of ESCs remain unknown. In this paper, we show that Trim28 is specifically citrullinated in mouse ESCs (mESCs), and that the loss of Trim28 citrullination induces loss of pluripotency. Mechanistically, Trim28 citrullination enhances the interaction of Trim28 with Smarcad1 and prevents chromatin condensation. Additionally, Trim28 citrullination regulates mESC pluripotency by promoting transcription of Nanog and Klf4 which it does by increasing the enrichment of H3K27ac and H3K4me3 and decreasing the enrichment of H3K9me3 in the transcriptional regulatory region. Thus, our findings suggest that Trim28 citrullination is the key for the epigenetic activation of pluripotency genes and pluripotency maintenance of ESCs. Together, these results uncover a role Trim28 citrullination plays in pluripotency regulation and provide novel insight into how citrullination of proteins other than histones regulates chromatin compaction.
Collapse
Affiliation(s)
- Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Wan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lian Zhou
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Huang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueqin Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sicheng Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Yang Y, Tan S, Han Y, Huang L, Yang R, Hu Z, Tao Y, Oyang L, Lin J, Peng Q, Jiang X, Xu X, Xia L, Peng M, Wu N, Tang Y, Li X, Liao Q, Zhou Y. The role of tripartite motif-containing 28 in cancer progression and its therapeutic potentials. Front Oncol 2023; 13:1100134. [PMID: 36756159 PMCID: PMC9899900 DOI: 10.3389/fonc.2023.1100134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Tripartite motif-containing 28 (TRIM28) belongs to tripartite motif (TRIM) family. TRIM28 not only binds and degrades its downstream target, but also acts as a transcription co-factor to inhibit gene expression. More and more studies have shown that TRIM28 plays a vital role in tumor genesis and progression. Here, we reviewed the role of TRIM28 in tumor proliferation, migration, invasion and cell death. Moreover, we also summarized the important role of TRIM28 in tumor stemness sustainability and immune regulation. Because of the importance of TRIM28 in tumors, TIRM28 may be a candidate target for anti-tumor therapy and play an important role in tumor diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| |
Collapse
|
13
|
Wu JL, Wu HY, Wu SJ, Tsai HY, Weng SH, Lin KT, Lin LI, Yao CY, Zamanova M, Lee YY, Angata T, Tien HF, Chen YJ, Lin KI. Phosphoproteomics Reveals the Role of Constitutive KAP1 Phosphorylation by B-Cell Receptor Signaling in Chronic Lymphocytic Leukemia. Mol Cancer Res 2022; 20:1222-1232. [PMID: 35533307 DOI: 10.1158/1541-7786.mcr-21-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Application of B-cell receptor (BCR) pathway inhibitor ibrutinib for chronic lymphocytic leukemia (CLL) is a major breakthrough, yet the downstream effects following inhibition of BCR signaling and during relapse await further clarification. By comparative phosphoproteomic profiling of B cells from patients with CLL and healthy donors, as well as CLL B cells collected at multiple time points during the course of ibrutinib treatment, we provided the landscape of dysregulated phosphoproteome in CLL and its dynamic alterations associated with ibrutinib treatment. Particularly, differential phosphorylation events associated with several signaling pathways, including BCR pathway, were enriched in patient CLL cells. A constitutively elevated phosphorylation level of KAP1 at serine 473 (S473) was found in the majority of CLL samples prior to treatment. Further verification showed that BCR activation promoted KAP1 S473 phosphorylation, whereas ibrutinib treatment abolished it. Depletion of KAP1 in primary CLL cells decelerated cell cycle progression and ectopic expression of a KAP1 S473 phospho-mimicking mutant accelerated G2/M cell cycle transition of CLL cells. Moreover, temporal phosphoproteomic profiles using a series of CLL cells isolated from one patient during the ibrutinib treatment revealed the dynamic changes of several molecules associated with BCR signaling in the ibrutinib responsive and recurrent stages. Implications: This phosphoproteomic analysis and functional validation illuminated the phosphorylation of KAP1 at S473 as an important downstream BCR signaling event and a potential indicator for the success of ibrutinib treatment in CLL.
Collapse
Affiliation(s)
| | - Hsin-Yi Wu
- National Taiwan University, Taipei, Taipei, Taiwan
| | - Shang-Ju Wu
- National Taiwan University Hospital, Taipei city, Taiwan
| | | | | | | | | | - Chi-Yuan Yao
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
Pellegrina D, Bahcheli AT, Krassowski M, Reimand J. Human phospho-signaling networks of SARS-CoV-2 infection are rewired by population genetic variants. Mol Syst Biol 2022; 18:e10823. [PMID: 35579274 PMCID: PMC9112486 DOI: 10.15252/msb.202110823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
SARS-CoV-2 infection hijacks signaling pathways and induces protein-protein interactions between human and viral proteins. Human genetic variation may impact SARS-CoV-2 infection and COVID-19 pathology; however, the genetic variation in these signaling networks remains uncharacterized. Here, we studied human missense single nucleotide variants (SNVs) altering phosphorylation sites modulated by SARS-CoV-2 infection, using machine learning to identify amino acid substitutions altering kinase-bound sequence motifs. We found 2,033 infrequent phosphorylation-associated SNVs (pSNVs) that are enriched in sequence motif alterations, potentially reflecting the evolution of signaling networks regulating host defenses. Proteins with pSNVs are involved in viral life cycle and host responses, including RNA splicing, interferon response (TRIM28), and glucose homeostasis (TBC1D4) with potential associations with COVID-19 comorbidities. pSNVs disrupt CDK and MAPK substrate motifs and replace these with motifs of Tank Binding Kinase 1 (TBK1) involved in innate immune responses, indicating consistent rewiring of signaling networks. Several pSNVs associate with severe COVID-19 and hospitalization (STARD13, ARFGEF2). Our analysis highlights potential genetic factors contributing to inter-individual variation of SARS-CoV-2 infection and COVID-19 and suggests leads for mechanistic and translational studies.
Collapse
Affiliation(s)
- Diogo Pellegrina
- Computational Biology ProgramOntario Institute for Cancer ResearchTorontoONCanada
| | - Alexander T Bahcheli
- Computational Biology ProgramOntario Institute for Cancer ResearchTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Michal Krassowski
- Medical Sciences DivisionNuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Jüri Reimand
- Computational Biology ProgramOntario Institute for Cancer ResearchTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| |
Collapse
|
15
|
Boonen RA, Vreeswijk MP, van Attikum H. CHEK2 variants: linking functional impact to cancer risk. Trends Cancer 2022; 8:759-770. [DOI: 10.1016/j.trecan.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
|
16
|
Boonen RA, Wiegant WW, Celosse N, Vroling B, Heijl S, Kote-Jarai Z, Mijuskovic M, Cristea S, Solleveld-Westerink N, van Wezel T, Beerenwinkel N, Eeles R, Devilee P, Vreeswijk MP, Marra G, van Attikum H. Functional Analysis Identifies Damaging CHEK2 Missense Variants Associated with Increased Cancer Risk. Cancer Res 2022; 82:615-631. [PMID: 34903604 PMCID: PMC9359737 DOI: 10.1158/0008-5472.can-21-1845] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023]
Abstract
Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 were found to impair protein function to a similar extent as truncating variants, while 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group [OR 2.23; 95% confidence interval (CI), 1.62-3.07; P < 0.0001] and intermediate variants (OR 1.63; 95% CI, 1.21-2.20; P = 0.0014) were associated with an increased breast cancer risk, while functional variants did not show this association (OR 1.13; 95% CI, 0.87-1.46; P = 0.378). Finally, a damaging VUS in CHEK2, c.486A>G/p.D162G, was also identified, which cosegregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer. SIGNIFICANCE Quantitative assessment of the functional consequences of CHEK2 variants of uncertain significance identifies damaging variants associated with increased cancer risk, which may aid in the clinical management of patients and carriers.
Collapse
Affiliation(s)
- Rick A.C.M. Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W. Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nandi Celosse
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bas Vroling
- Bio-Prodict, Nijmegen, the Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Martina Mijuskovic
- The Institute of Cancer Research, London, United Kingdom
- Illumina Cambridge Ltd., Cambridge, United Kingdom
| | - Simona Cristea
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Rosalind Eeles
- The Institute of Cancer Research, London, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike P.G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Quantitative analysis of phosphoproteome in necroptosis reveals a role of TRIM28 phosphorylation in promoting necroptosis-induced cytokine production. Cell Death Dis 2021; 12:994. [PMID: 34689152 PMCID: PMC8542044 DOI: 10.1038/s41419-021-04290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Necroptosis is a form of regulated necrotic cell death that promotes inflammation. In cells undergoing necroptosis, activated RIPK1 kinase mediates the formation of RIPK1/RIPK3/MLKL complex to promote MLKL oligomerization and execution of necroptosis. RIPK1 kinase activity also promotes cell-autonomous activation of proinflammatory cytokine production in necroptosis. However, the signaling pathways downstream of RIPK1 kinase in necroptosis and how RIPK1 kinase activation controls inflammatory response induced by necroptosis are still largely unknown. Here, we quantitatively measured the temporal dynamics of over 7000 confident phosphorylation-sites during necroptosis using mass spectrometry. Our study defined a RIPK1-dependent phosphorylation pattern in late necroptosis that is associated with a proinflammatory component marked by p-S473 TRIM28. We show that the activation of p38 MAPK mediated by oligomerized MLKL promotes the phosphorylation of S473 TRIM28, which in turn mediates inflammation during late necroptosis. Taken together, our study illustrates a mechanism by which p38 MAPK may be activated by oligomerized MLKL to promote inflammation in necroptosis.
Collapse
|
18
|
Cesaro E, Lupo A, Rapuano R, Pastore A, Grosso M, Costanzo P. ZNF224 Protein: Multifaceted Functions Based on Its Molecular Partners. Molecules 2021; 26:molecules26206296. [PMID: 34684876 PMCID: PMC8537547 DOI: 10.3390/molecules26206296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/05/2023] Open
Abstract
The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein-protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1-3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.
Collapse
Affiliation(s)
- Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
- Correspondence: (E.C.); (P.C.)
| | - Angelo Lupo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; (A.L.); (R.R.)
| | - Roberta Rapuano
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; (A.L.); (R.R.)
| | - Arianna Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
- Correspondence: (E.C.); (P.C.)
| |
Collapse
|
19
|
Park HH, Kim HR, Park SY, Hwang SM, Hong SM, Park S, Kang HC, Morgan MJ, Cha JH, Lee D, Roe JS, Kim YS. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer 2021; 20:107. [PMID: 34419074 PMCID: PMC8379748 DOI: 10.1186/s12943-021-01399-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022] Open
Abstract
Background Necroptosis is emerging as a new target for cancer immunotherapy as it is now recognized as a form of cell death that increases tumor immunogenicity, which would be especially helpful in treating immune-desert tumors. De novo synthesis of inflammatory proteins during necroptosis appears especially important in facilitating increased anti-tumor immune responses. While late-stage transcription mediated by NF-κB during cell death is believed to play a role in this process, it is otherwise unclear what cell signaling events initiate this transactivation of inflammatory genes. Methods We employed tandem-affinity purification linked to mass spectrometry (TAP-MS), in combination with the analysis of RNA-sequencing (RNA-Seq) datasets to identify the Tripartite Motif Protein 28 (TRIM28) as a candidate co-repressor. Comprehensive biochemical and molecular biology techniques were used to characterize the role of TRIM28 in RIPK3 activation-induced transcriptional and immunomodulatory events. The cell composition estimation module was used to evaluate the correlation between RIPK3/TRIM28 levels and CD8+ T cells or dendritic cells (DC) in all TCGA tumors. Results We identified TRIM28 as a co-repressor that regulates transcriptional activity during necroptosis. Activated RIPK3 phosphorylates TRIM28 on serine 473, inhibiting its chromatin binding activity, thereby contributing to the transactivation of NF-κB and other transcription factors, such as SOX9. This leads to elevated cytokine expression, which then potentiates immunoregulatory processes, such as DC maturation. The expression of RIPK3 has a significant positive association with the tumor-infiltrating immune cells populations in various tumor type, thereby activating anti-cancer responses. Conclusion Our data suggest that RIPK3 activation-dependent derepression of TRIM28 in cancer cells leads to increased immunostimulatory cytokine production in the tumor microenvironment, which then contributes to robust cytotoxic anti-tumor immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01399-3.
Collapse
Affiliation(s)
- Han-Hee Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sang-Yeong Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Sung-Min Hwang
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Sun Mi Hong
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Sangwook Park
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ho Chul Kang
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, 74464, USA
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, South Korea.,Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon, 22212, South Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, South Korea. .,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
20
|
Disruption of RING and PHD Domains of TRIM28 Evokes Differentiation in Human iPSCs. Cells 2021; 10:cells10081933. [PMID: 34440702 PMCID: PMC8394524 DOI: 10.3390/cells10081933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
TRIM28, a multi-domain protein, is crucial in the development of mouse embryos and the maintenance of embryonic stem cells’ (ESC) self-renewal potential. As the epigenetic factor modulating chromatin structure, TRIM28 regulates the expression of numerous genes and is associated with progression and poor prognosis in many types of cancer. Because of many similarities between highly dedifferentiated cancer cells and normal pluripotent stem cells, we applied human induced pluripotent stem cells (hiPSC) as a model for stemness studies. For the first time in hiPSC, we analyzed the function of individual TRIM28 domains. Here we demonstrate the essential role of a really interesting new gene (RING) domain and plant homeodomain (PHD) in regulating pluripotency maintenance and self-renewal capacity of hiPSC. Our data indicate that mutation within the RING or PHD domain leads to the loss of stem cell phenotypes and downregulation of the FGF signaling. Moreover, impairment of RING or PHD domain results in decreased proliferation and impedes embryoid body formation. In opposition to previous data indicating the impact of phosphorylation on TRIM28 function, our data suggest that TRIM28 phosphorylation does not significantly affect the pluripotency and self-renewal maintenance of hiPSC. Of note, iPSC with disrupted RING and PHD functions display downregulation of genes associated with tumor metastasis, which are considered important targets in cancer treatment. Our data suggest the potential use of RING and PHD domains of TRIM28 as targets in cancer therapy.
Collapse
|
21
|
Chikuma S, Yamanaka S, Nakagawa S, Ueda MT, Hayabuchi H, Tokifuji Y, Kanayama M, Okamura T, Arase H, Yoshimura A. TRIM28 Expression on Dendritic Cells Prevents Excessive T Cell Priming by Silencing Endogenous Retrovirus. THE JOURNAL OF IMMUNOLOGY 2021; 206:1528-1539. [PMID: 33619215 DOI: 10.4049/jimmunol.2001003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
Acquired immune reaction is initiated by dendritic cells (DCs), which present Ags to a few naive Ag-specific T cells. Deregulation of gene expression in DCs may alter the outcome of the immune response toward immunodeficiency and/or autoimmune diseases. Expression of TRIM28, a nuclear protein that mediates gene silencing through heterochromatin, decreased in DCs from old mice, suggesting alteration of gene regulation. Mice specifically lacking TRIM28 in DCs show increased DC population in the spleen and enhanced T cell priming toward inflammatory effector T cells, leading to acceleration and exacerbation in experimental autoimmune encephalomyelitis. TRIM28-deficient DCs were found to ectopically transcribe endogenous retrovirus (ERV) elements. Combined genome-wide analysis revealed a strong colocalization among the decreased repressive histone mark H3K9me3-transcribed ERV elements and the derepressed host genes that were related to inflammation in TRIM28-deficient DCs. This suggests that TRIM28 occupancy of ERV elements critically represses expression of proximal inflammatory genes on the genome. We propose that gene silencing through repressive histone modification by TRIM28 plays a role in maintaining the integrity of precise gene regulation in DCs, which prevents aberrant T cell priming to inflammatory effector T cells.
Collapse
Affiliation(s)
- Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Mahoko Takahashi Ueda
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan.,Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hodaka Hayabuchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yukiko Tokifuji
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Kanayama
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.,Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Disease, Osaka University, Osaka 565-0871, Japan; and.,Laboratory of Immunochemistry, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
22
|
Fouad S, Hauton D, D'Angiolella V. E2F1: Cause and Consequence of DNA Replication Stress. Front Mol Biosci 2021; 7:599332. [PMID: 33665206 PMCID: PMC7921158 DOI: 10.3389/fmolb.2020.599332] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, cell cycle entry occurs in response to the correct stimuli and is promoted by the transcriptional activity of E2F family members. E2F proteins regulate the transcription of S phase cyclins and genes required for DNA replication, DNA repair, and apoptosis. The activity of E2F1, the archetypal and most heavily studied E2F family member, is tightly controlled by the DNA damage checkpoints to modulate cell cycle progression and initiate programmed cell death, when required. Altered tumor suppressor and oncogenic signaling pathways often result in direct or indirect interference with E2F1 regulation to ensure higher rates of cell proliferation independently of external cues. Despite a clear link between dysregulated E2F1 activity and cancer progression, literature on the contribution of E2F1 to DNA replication stress phenotypes is somewhat scarce. This review discusses how dysfunctional tumor suppressor and oncogenic signaling pathways promote the disruption of E2F1 transcription and hence of its transcriptional targets, and how such events have the potential to drive DNA replication stress. In addition to the involvement of E2F1 upstream of DNA replication stress, this manuscript also considers the role of E2F1 as a downstream effector of the response to this type of cellular stress. Lastly, the review introduces some reflections on how E2F1 activity is integrated with checkpoint control through post-translational regulation, and proposes an exploitable tumor weakness based on this axis.
Collapse
Affiliation(s)
- Shahd Fouad
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - David Hauton
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Cao J, Li Q, Shen X, Yao Y, Li L, Ma H. Dehydroepiandrosterone attenuates LPS-induced inflammatory responses via activation of Nrf2 in RAW264.7 macrophages. Mol Immunol 2021; 131:97-111. [PMID: 33461765 DOI: 10.1016/j.molimm.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the major steroid hormone in humans and animals, which can regulate the body's inflammatory responses. However, the detail mechanism of this beneficial function is still poorly understood. The present study aimed to explore the anti-inflammation effect of DHEA and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The findings showed that DHEA significantly inhibited the inflammation-related mediators production and pro-inflammatory cytokines expression level. Further research found that DHEA obviously blocked the LPS-stimulated PI3K/AKT, MAPK and NF-κB activation in RAW 264.7 cells. Meanwhile, DHEA enhanced the autophagy-dependent Keap1 protein degradation, subsequently activated the Nrf2 pathway to alleviate the redox imbalance and inflammatory responses. In conclusion, our data demonstrated that DHEA suppresses inflammatory responses through the activation of Nrf2 and inhibition of NF-κB in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
PARIS-DJ-1 Interaction Regulates Mitochondrial Functions in Cardiomyocytes, Which Is Critically Important in Cardiac Hypertrophy. Mol Cell Biol 2020; 41:MCB.00106-20. [PMID: 33077496 DOI: 10.1128/mcb.00106-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction is one of the major pathological attributes of cardiac hypertrophy and is associated with reduced expression of PGC1α in cardiomyocytes. However, the transcriptional regulation of PGC1α remains elusive. Here, we show that parkin interacting substrate (PARIS), a KRAB zinc finger protein, prevented PGC1α transcription despite the induction of cardiomyocytes with hypertrophic stimuli. Moreover, PARIS expression and its nuclear localization are enhanced in hypertrophy both in vitro and in vivo Knocking down PARIS resulted in mitochondrial biogenesis and improved respiration and other biochemical features that were compromised during hypertrophy. Furthermore, a PARIS-dependent proteome showed exclusive binding of a deSUMOylating protein called DJ-1 to PARIS in control cells, while this interaction is completely abrogated in hypertrophied cells. We further demonstrate that proteasomal degradation of DJ-1 under oxidative stress led to augmented PARIS SUMOylation and consequent repression of PGC1α promoter activity. SUMOylation-resistant mutants of PARIS failed to repress PGC1α, suggesting a critical role for PARIS SUMOylation in hypertrophy. The present study, therefore, proposes a novel regulatory pathway where DJ-1 acts as an oxidative stress sensor and contributes to the feedback loop governing PARIS-mediated mitochondrial function.
Collapse
|
25
|
Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, Kleibl Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020; 9:cells9122675. [PMID: 33322746 PMCID: PMC7763663 DOI: 10.3390/cells9122675] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
Collapse
Affiliation(s)
- Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Petra Kleiblova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic;
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Correspondence: ; Tel.: +420-22496-745
| |
Collapse
|
26
|
TIF1 Proteins in Genome Stability and Cancer. Cancers (Basel) 2020; 12:cancers12082094. [PMID: 32731534 PMCID: PMC7463590 DOI: 10.3390/cancers12082094] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is a hallmark of cancer cells which results in excessive DNA damage. To counteract this, cells have evolved a tightly regulated DNA damage response (DDR) to rapidly sense DNA damage and promote its repair whilst halting cell cycle progression. The DDR functions predominantly within the context of chromatin and requires the action of chromatin-binding proteins to coordinate the appropriate response. TRIM24, TRIM28, TRIM33 and TRIM66 make up the transcriptional intermediary factor 1 (TIF1) family of chromatin-binding proteins, a subfamily of the large tripartite motif (TRIM) family of E3 ligases. All four TIF1 proteins are aberrantly expressed across numerous cancer types, and increasing evidence suggests that TIF1 family members can function to maintain genome stability by mediating chromatin-based responses to DNA damage. This review provides an overview of the TIF1 family in cancer, focusing on their roles in DNA repair, chromatin regulation and cell cycle regulation.
Collapse
|
27
|
Kumar J, Kaur G, Ren R, Lu Y, Lin K, Li J, Huang Y, Patel A, Barton MC, Macfarlan T, Zhang X, Cheng X. KRAB domain of ZFP568 disrupts TRIM28-mediated abnormal interactions in cancer cells. NAR Cancer 2020; 2:zcaa007. [PMID: 32743551 PMCID: PMC7380489 DOI: 10.1093/narcan/zcaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Interactions of KRAB (Krüppel-associated box)-associated protein KAP1 [also known as TRIM28 (tripartite motif containing protein 28)] with DNA-binding KRAB zinc finger (KRAB-ZF) proteins silence many transposable elements during embryogenesis. However, in some cancers, TRIM28 is upregulated and interacts with different partners, many of which are transcription regulators such as EZH2 in MCF7 cells, to form abnormal repressive or activating complexes that lead to misregulation of genes. We ask whether a KRAB domain-the TRIM28 interaction domain present in native binding partners of TRIM28 that mediate repression of transposable elements-could be used as a tool molecule to disrupt aberrant TRIM28 complexes. Expression of KRAB domain containing fragments from a KRAB-ZF protein (ZFP568) in MCF7 cells, without the DNA-binding zinc fingers, inhibited TRIM28-EZH2 interactions and caused degradation of both TRIM28 and EZH2 proteins as well as other components of the EZH2-associated polycomb repressor 2 complex. In consequence, the product of EZH2 enzymatic activity, trimethylation of histone H3 lysine 27 level, was significantly reduced. The expression of a synthetic KRAB domain significantly inhibits the growth of breast cancer cells (MCF7) but has no effect on normal (immortalized) human mammary epithelial cells (MCF10a). Further, we found that TRIM28 is a positive regulator of TRIM24 protein levels, as observed previously in prostate cancer cells, and expression of the KRAB domain also lowered TRIM24 protein. Importantly, reduction of TRIM24 levels, by treatment with either the KRAB domain or a small-molecule degrader targeted to TRIM24, is accompanied by an elevated level of tumor suppressor p53. Taken together, this study reveals a novel mechanism for a TRIM28-associated protein stability network and establishes TRIM28 as a potential therapeutic target in cancers where TRIM28 is elevated. Finally, we discuss a potential mechanism of KRAB-ZF gene expression controlled by a regulatory feedback loop of TRIM28-KRAB.
Collapse
Affiliation(s)
- Janani Kumar
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Todd Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Fonti G, Marcaida MJ, Bryan LC, Träger S, Kalantzi AS, Helleboid PYJ, Demurtas D, Tully MD, Grudinin S, Trono D, Fierz B, Dal Peraro M. KAP1 is an antiparallel dimer with a functional asymmetry. Life Sci Alliance 2019; 2:2/4/e201900349. [PMID: 31427381 PMCID: PMC6701479 DOI: 10.26508/lsa.201900349] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023] Open
Abstract
This study reveals the architecture of human KAP1 by integrating molecular modeling with small-angle X-ray scattering and single-molecule experiments. KAP1 dimers feature a structural asymmetry at the C-terminal domains that has functional implications for recruitment of HP1. KAP1 (KRAB domain–associated protein 1) plays a fundamental role in regulating gene expression in mammalian cells by recruiting different transcription factors and altering the chromatin state. In doing so, KAP1 acts both as a platform for macromolecular interactions and as an E3 small ubiquitin modifier ligase. This work sheds light on the overall organization of the full-length protein combining solution scattering data, integrative modeling, and single-molecule experiments. We show that KAP1 is an elongated antiparallel dimer with an asymmetry at the C-terminal domains. This conformation is consistent with the finding that the Really Interesting New Gene (RING) domain contributes to KAP1 auto-SUMOylation. Importantly, this intrinsic asymmetry has key functional implications for the KAP1 network of interactions, as the heterochromatin protein 1 (HP1) occupies only one of the two putative HP1 binding sites on the KAP1 dimer, resulting in an unexpected stoichiometry, even in the context of chromatin fibers.
Collapse
Affiliation(s)
- Giulia Fonti
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maria J Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland .,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Louise C Bryan
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sylvain Träger
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandra S Kalantzi
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pierre-Yves Jl Helleboid
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Davide Demurtas
- Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mark D Tully
- European Synchrotron Radiation Facility, Grenoble, France
| | - Sergei Grudinin
- University Grenoble Alpes, Centre National de la Recherche Scientifique, Inria, Grenoble Institut Polytechnique de Grenoble, Laboratoire Jean Kuntzmann, Grenoble, France
| | - Didier Trono
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland .,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
29
|
Jang SM, Kauzlaric A, Quivy JP, Pontis J, Rauwel B, Coluccio A, Offner S, Duc J, Turelli P, Almouzni G, Trono D. KAP1 facilitates reinstatement of heterochromatin after DNA replication. Nucleic Acids Res 2019; 46:8788-8802. [PMID: 29955894 PMCID: PMC6158507 DOI: 10.1093/nar/gky580] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
During cell division, maintenance of chromatin features from the parental genome requires their proper establishment on its newly synthetized copy. The loss of epigenetic marks within heterochromatin, typically enriched in repetitive elements, endangers genome stability and permits chromosomal rearrangements via recombination. However, how histone modifications associated with heterochromatin are maintained across mitosis remains poorly understood. KAP1 is known to act as a scaffold for a repressor complex that mediates local heterochromatin formation, and was previously demonstrated to play an important role during DNA repair. Accordingly, we investigated a putative role for this protein in the replication of heterochromatic regions. We first found that KAP1 associates with several DNA replication factors including PCNA, MCM3 and MCM6. We then observed that these interactions are promoted by KAP1 phosphorylation on serine 473 during S phase. Finally, we could demonstrate that KAP1 forms a complex with PCNA and the histone-lysine methyltransferase Suv39h1 to reinstate heterochromatin after DNA replication.
Collapse
Affiliation(s)
- Suk Min Jang
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Annamaria Kauzlaric
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Jean-Pierre Quivy
- Institut Curie, Centre de Recherche, Paris 75248, France.,Centre National de la Recherche Scientifique (CNRS), UMR3664, Paris 75248, France.,Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France.,Université Pierre et Marie Curie (UPMC), UMR3664, Paris 75248, France.,Sorbonne University, PSL, Paris 75005, France
| | - Julien Pontis
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Benjamin Rauwel
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Andrea Coluccio
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris 75248, France.,Centre National de la Recherche Scientifique (CNRS), UMR3664, Paris 75248, France.,Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France.,Université Pierre et Marie Curie (UPMC), UMR3664, Paris 75248, France.,Sorbonne University, PSL, Paris 75005, France
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Park J, Lee J, Lee DH. Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response. Mol Cells 2019; 42:546-556. [PMID: 31272138 PMCID: PMC6681864 DOI: 10.14348/molcells.2019.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.
Collapse
Affiliation(s)
- Jaehong Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Jihye Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
- Research Center of Ecomimetics, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
31
|
Kleiblova P, Stolarova L, Krizova K, Lhota F, Hojny J, Zemankova P, Havranek O, Vocka M, Cerna M, Lhotova K, Borecka M, Janatova M, Soukupova J, Sevcik J, Zimovjanova M, Kotlas J, Panczak A, Vesela K, Cervenkova J, Schneiderova M, Burocziova M, Burdova K, Stranecky V, Foretova L, Machackova E, Tavandzis S, Kmoch S, Macurek L, Kleibl Z. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int J Cancer 2019; 145:1782-1797. [PMID: 31050813 DOI: 10.1002/ijc.32385] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
Germline mutations in checkpoint kinase 2 (CHEK2), a multiple cancer-predisposing gene, increase breast cancer (BC) risk; however, risk estimates differ substantially in published studies. We analyzed germline CHEK2 variants in 1,928 high-risk Czech breast/ovarian cancer (BC/OC) patients and 3,360 population-matched controls (PMCs). For a functional classification of VUS, we developed a complementation assay in human nontransformed RPE1-CHEK2-knockout cells quantifying CHK2-specific phosphorylation of endogenous protein KAP1. We identified 10 truncations in 46 (2.39%) patients and in 11 (0.33%) PMC (p = 1.1 × 10-14 ). Two types of large intragenic rearrangements (LGR) were found in 20/46 mutation carriers. Truncations significantly increased unilateral BC risk (OR = 7.94; 95%CI 3.90-17.47; p = 1.1 × 10-14 ) and were more frequent in patients with bilateral BC (4/149; 2.68%; p = 0.003), double primary BC/OC (3/79; 3.80%; p = 0.004), male BC (3/48; 6.25%; p = 8.6 × 10-4 ), but not with OC (3/354; 0.85%; p = 0.14). Additionally, we found 26 missense VUS in 88 (4.56%) patients and 131 (3.90%) PMC (p = 0.22). Using our functional assay, 11 variants identified in 15 (0.78%) patients and 6 (0.18%) PMC were scored deleterious (p = 0.002). Frequencies of functionally intermediate and neutral variants did not differ between patients and PMC. Functionally deleterious CHEK2 missense variants significantly increased BC risk (OR = 3.90; 95%CI 1.24-13.35; p = 0.009) and marginally OC risk (OR = 4.77; 95%CI 0.77-22.47; p = 0.047); however, carriers low frequency will require evaluation in larger studies. Our study highlights importance of LGR detection for CHEK2 analysis, careful consideration of ethnicity in both cases and controls for risk estimates, and demonstrates promising potential of newly developed human nontransformed cell line assay for functional CHEK2 VUS classification.
Collapse
Affiliation(s)
- Petra Kleiblova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Krizova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Filip Lhota
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Hojny
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marta Cerna
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klara Lhotova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marianna Borecka
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Sevcik
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Zimovjanova
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaroslav Kotlas
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ales Panczak
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kamila Vesela
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Cervenkova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michaela Schneiderova
- First Department of Surgery, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Monika Burocziova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Kamila Burdova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Spiros Tavandzis
- Department of Medical Genetics, AGEL Laboratories, AGEL Research and Training Institute, Novy Jicin, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
32
|
Jiang Y, Han Z, Wang Y, Hao W. Depletion of SIRT7 sensitizes human non-small cell lung cancer cells to gemcitabine therapy by inhibiting autophagy. Biochem Biophys Res Commun 2018; 506:266-271. [PMID: 30348528 DOI: 10.1016/j.bbrc.2018.10.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
Abstract
Anti-metabolic therapy, as a major chemotherapy, is an important option in the treatment of lung cancer. However, tumor resistance to cytotoxic chemotherapy has become more common. It has been reported that autophagy is one of the processes contributing to such resistance. In our study, we find that SIRT7 protein level elevated dramatically in response to an anti-metabolic drug-gemcitabine treatment. Moreover, autophagy induced by gemcitabine in non-small cell lung cancer cells is SIRT7-dependent. Furthermore, depletion of SIRT7 promoted Gemcitabine-induced cell death. Our report also shows that SIRT7 knockdown markedly improves the anti-tumor activity of gemcitabine treatment in mice. These results suggest that SIRT7-elicits an autophagic response that plays a protective role against cell death and the SIRT7-inhibition has a potential to improve the efficacy of anti-metabolic therapy in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Yunfei Jiang
- The Third Affiliated Hospital of Qiqihar Medical University, 161000, China
| | - Zhendong Han
- The Third Affiliated Hospital of Qiqihar Medical University, 161000, China
| | - Yu Wang
- The Third Affiliated Hospital of Qiqihar Medical University, 161000, China
| | - Wenbo Hao
- The Third Affiliated Hospital of Qiqihar Medical University, 161000, China.
| |
Collapse
|
33
|
Krischuns T, Günl F, Henschel L, Binder M, Willemsen J, Schloer S, Rescher U, Gerlt V, Zimmer G, Nordhoff C, Ludwig S, Brunotte L. Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells. Front Immunol 2018; 9:2229. [PMID: 30323812 PMCID: PMC6172303 DOI: 10.3389/fimmu.2018.02229] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13,000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modifications, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-β and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-β, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection.
Collapse
Affiliation(s)
- Tim Krischuns
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Franziska Günl
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Lea Henschel
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joschka Willemsen
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schloer
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Ursula Rescher
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Vanessa Gerlt
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carolin Nordhoff
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
34
|
Chiu LY, Gong F, Miller KM. Bromodomain proteins: repairing DNA damage within chromatin. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0286. [PMID: 28847823 DOI: 10.1098/rstb.2016.0286] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
Genome surveillance and repair, termed the DNA damage response (DDR), functions within chromatin. Chromatin-based DDR mechanisms sustain genome and epigenome integrity, defects that can disrupt cellular homeostasis and contribute to human diseases. An important chromatin DDR pathway is acetylation signalling which is controlled by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, which regulate acetylated lysines within proteins. Acetylated proteins, including histones, can modulate chromatin structure and provide molecular signals that are bound by acetyl-lysine binders, including bromodomain (BRD) proteins. Acetylation signalling regulates several DDR pathways, as exemplified by the preponderance of HATs, HDACs and BRD proteins that localize at DNA breaks to modify chromatin for lesion repair. Here, we explore the involvement of acetylation signalling in the DDR, focusing on the involvement of BRD proteins in promoting chromatin remodelling to repair DNA double-strand breaks. BRD proteins have widespread DDR functions including chromatin remodelling, chromatin modification and transcriptional regulation. We discuss mechanistically how BRD proteins read acetylation signals within chromatin to trigger DDR and chromatin activities to facilitate genome-epigenome maintenance. Thus, DDR pathways involving BRD proteins represent key participants in pathways that preserve genome-epigenome integrity to safeguard normal genome and cellular functions.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| |
Collapse
|
35
|
Magni M, Buscemi G, Zannini L. Cell cycle and apoptosis regulator 2 at the interface between DNA damage response and cell physiology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:1-9. [DOI: 10.1016/j.mrrev.2018.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
|
36
|
Liu L, Zhang L, Wang J, Zhao X, Xu Q, Lu Y, Zuo Y, Chen L, Du J, Lian Y, Zhang Q. Downregulation of TRIM28 inhibits growth and increases apoptosis of nude mice with non‑small cell lung cancer xenografts. Mol Med Rep 2017; 17:835-842. [PMID: 29115614 PMCID: PMC5780162 DOI: 10.3892/mmr.2017.7955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
TRIM28 is a well-known transcriptional co-repressor of Kruppel-associated box zinc finger proteins. The authors previously demonstrated that TRIM28 small interfering (si)RNA decreases cell proliferation and inhibits cell cycle progression in non-small cell lung cancer (NSCLC) cell lines. The present study further demonstrated that the stable silencing of TRIM28 expression by a specific siRNA lentivirus vector significantly inhibited the growth and exerted obvious anti-tumor effects in nude mice. The results of the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay indicated that TRIM28 knockdown increased apoptosis. Furthermore, TRIM28 knockdown decreased the expression of B cell lymphoma (Bcl)-2 and increased the expression of Bcl-2 associated X, apoptosis regulator and p53 at the gene and protein levels. Auto-antibodies to TRIM28 were present in 12.32% of the sera of the patients with NSCLC. The results suggest that TRIM28 knockdown may be effective against NSCLC, and TRIM28 antibodies have the potential to act as novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Lei Liu
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Lei Zhang
- Department of Community Care, Nursing Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Jianping Wang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xuerong Zhao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Qian Xu
- Department of Central Laboratory, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yanjie Lu
- Department of Pathology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yanzhen Zuo
- Department of Pathology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Long Chen
- Department of Central Laboratory, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Jia Du
- Grade 2013, Clinical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yali Lian
- Grade 2013, Clinical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Qin Zhang
- Grade 2013, Clinical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
37
|
TIF1β is phosphorylated at serine 473 in colorectal tumor cells through p38 mitogen-activated protein kinase as an oxidative defense mechanism. Biochem Biophys Res Commun 2017; 492:310-315. [DOI: 10.1016/j.bbrc.2017.08.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/27/2017] [Indexed: 11/30/2022]
|
38
|
Liu H, Wei Q, Huang C, Zhang Y, Guo Z. Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. Int J Mol Sci 2017; 18:E1898. [PMID: 28869544 PMCID: PMC5618547 DOI: 10.3390/ijms18091898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023] Open
Abstract
DNA methylation is an important epigenetic modification that needs to be carefully controlled as a prerequisite for normal early embryogenesis. Compelling evidence now suggests that four maternal-effect proteins, primordial germ cell 7 (PGC7), zinc finger protein 57 (ZFP57), tripartite motif-containing 28 (TRIM28) and DNA methyltransferase (cytosine-5) 1 (DNMT1) are involved in the maintenance of DNA methylation. However, it is still not fully understood how these maternal-effect proteins maintain the DNA methylation imprint. We noticed that a feature common to these proteins is the presence of significant levels of intrinsic disorder so in this study we started from an intrinsic disorder perspective to try to understand these maternal-effect proteins. To do this, we firstly analysed the intrinsic disorder predispositions of PGC7, ZFP57, TRIM28 and DNMT1 by using a set of currently available computational tools and secondly conducted an intensive literature search to collect information on their interacting partners and structural characterization. Finally, we discuss the potential effect of intrinsic disorder on the function of these proteins in maintaining DNA methylation.
Collapse
Affiliation(s)
- Hongliang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Qing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
39
|
Czerwińska P, Mazurek S, Wiznerowicz M. The complexity of TRIM28 contribution to cancer. J Biomed Sci 2017; 24:63. [PMID: 28851455 PMCID: PMC5574234 DOI: 10.1186/s12929-017-0374-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Since the first discovery in 1996, the engagement of TRIM28 in distinct aspects of cellular biology has been extensively studied resulting in identification of a complex nature of TRIM28 protein. In this review, we summarize core biological functions of TRIM28 that emerge from TRIM28 multi-domain structure and possessed enzymatic activities. Moreover, we will discuss whether the complexity of TRIM28 engagement in cancer biology makes TRIM28 a possible candidate for targeted anti-cancer therapy. Briefly, we will demonstrate the role of TRIM28 in regulation of target gene transcription, response to DNA damage, downregulation of p53 activity, stimulation of epithelial-to-mesenchymal transition, stemness sustainability, induction of autophagy and regulation of retrotransposition, to provide the answer whether TRIM28 functions as a stimulator or inhibitor of tumorigenesis. To date, number of studies demonstrate significant upregulation of TRIM28 expression in cancer tissues which correlates with worse overall patient survival, suggesting that TRIM28 supports cancer progression. Here, we present distinct aspects of TRIM28 involvement in regulation of cancer cell homeostasis which collectively imply pro-tumorigenic character of TRIM28. Thorough analyses are further needed to verify whether TRIM28 possess the potential to become a new anti-cancer target.
Collapse
Affiliation(s)
- Patrycja Czerwińska
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland. .,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Sylwia Mazurek
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wiznerowicz
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
40
|
Shan P, Fan G, Sun L, Liu J, Wang W, Hu C, Zhang X, Zhai Q, Song X, Cao L, Cui Y, Zhang S, Wang C. SIRT1 Functions as a Negative Regulator of Eukaryotic Poly(A)RNA Transport. Curr Biol 2017; 27:2271-2284.e5. [PMID: 28756945 DOI: 10.1016/j.cub.2017.06.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 05/04/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
Most eukaryotic mRNAs are polyadenylated in the nucleus, and the poly(A)-tail is required for efficient mRNA export and translation. However, mechanisms governing mRNA transport remain unclear. Here, we report that the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase SIRT1 acts as an energy sensor and negatively regulates poly(A)RNA transport via deacetylating a poly(A)-binding protein, PABP1. Upon energy starvation, SIRT1 interacts with and deacetylates PABP1 and deactivates its poly(A)RNA binding, leading to nuclear accumulation of PABP1 and poly(A)RNA and thus facilitating eukaryotic cells to attenuate protein synthesis and energy consumption to adapt to energy stress. Moreover, AMPK-directed SIRT1 phosphorylation is required for energy starvation-induced PABP1-SIRT1 association, PABP1 deacetylation, and poly(A)RNA nuclear retention. In addition, the SIRT1-PABP1 association is not specific to energy starvation but represents a common stress response. These observations provide insights into dynamic modulation of eukaryotic mRNA transport and translation, suggesting that the poly(A)-tail also provides a basis for eukaryotes to effectively shut down mature mRNA transport and thereby tailor protein synthesis to maintain energy homeostasis under stress conditions.
Collapse
Affiliation(s)
- Peipei Shan
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Guangjian Fan
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lianhui Sun
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jinqin Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Weifang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Chen Hu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Xiaohong Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shengyang 110000, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shengyang 110000, China
| | - Yongping Cui
- Key Laboratory of Cellular Physiology Ministry of Education, Shanxi Medical University, Shanxi 030001, China
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Fundus Diseases, 100 Haining Road, Shanghai 200080, China.
| |
Collapse
|
41
|
Klimczak M, Czerwińska P, Mazurek S, Sozańska B, Biecek P, Mackiewicz A, Wiznerowicz M. TRIM28 epigenetic corepressor is indispensable for stable induced pluripotent stem cell formation. Stem Cell Res 2017; 23:163-172. [PMID: 28759843 DOI: 10.1016/j.scr.2017.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/08/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Cellular reprogramming proceeds in a stepwise pathway initiated by binding and transcription of pluripotency factors followed by genome-wide epigenetic changes. Priming events, such as erasure of DNA methylation and chromatin remodeling determines the success of pluripotency acquisition later. Therefore, growing efforts are made to understand epigenetic regulatory network that makes reprogramming possible and efficient. Here, we analyze the role of transcriptional corepressor TRIM28, involved in heterochromatin formation, during the process of reprogramming of mouse somatic cells into induced pluripotent stem cells (iPS cells). We demonstrate that Trim28 knockdown (Trim28 KD) causes that emerging iPS cells differentiate immediately back into MEFs therefore they fail to yield stable iPS cell colonies. To better comprehend the mechanism of TRIM28 action in reprogramming, we performed a reverse-phase protein array (RPPA) using in excess of 300 different antibodies and compared the proteomic profiles of wild-type and Trim28 KD cells during reprogramming. We revealed the differences in the dynamics of reprogramming of wild-type and Trim28 KD cells. Interestingly, proteomic profile of Trim28 KD cells at the final stage of reprogramming resembled differentiated state rather than maintenance of pluripotency and self-renewal, strongly suggesting spontaneous differentiation of Trim28 KD cells back to their parental cell type. We also observed that action of TRIM28 in reprogramming is accompanied by differential enrichment of proteins involved in cell cycle, adhesion and stemness. Collectively, these results suggest that regulation of epigenetic modifications coordinated by TRIM28 plays a crucial role in reprogramming process.
Collapse
Affiliation(s)
- Marta Klimczak
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Patrycja Czerwińska
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland; Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sylwia Mazurek
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara Sozańska
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Przemysław Biecek
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | - Andrzej Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland; Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Wiznerowicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland; Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
42
|
Liu L, Xiao L, Liang X, Chen L, Cheng L, Zhang L, Wu X, Xu Q, Ma C. TRIM28 knockdown increases sensitivity to etoposide by upregulating E2F1 in non-small cell lung cancer. Oncol Rep 2017; 37:3597-3605. [PMID: 28498400 DOI: 10.3892/or.2017.5638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/02/2017] [Indexed: 11/05/2022] Open
Abstract
Tripartite motif containing 28 (TRIM28) is a universal corepressor for Kruppel‑associated box zinc finger proteins. In our previous study, it was shown that expression of TRIM28 is upregulated in non‑small cell lung cancer (NSCLC) cell lines and tissues. Here, we demonstrated that the stable silencing of TRIM28 expression by a specific siRNA lentivirus vector increased the sensitivity of NSCLC cells to chemotherapeutic agent etoposide. Combination of TRIM28 siRNA and etoposide significantly inhibited the growth and proliferation of lung adenocarcinoma PAa cells and exerted obvious antitumor effects in nude mice. Using FCM and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay, we found that TRIM28 siRNA in combination with etoposide increased apoptosis in vitro and in vivo which was induced by E2F1 activity, since the expression of E2F1 and its target genes was significantly increased in the cotreatment group. Cell proliferation and apoptosis were almost completely abolished in the PAa cells cotreated with TRIM28 siRNA and etoposide following knockdown of E2F1. The results of our study demonstrated that the combination of TRIM28 siRNA and etoposide may be effective against NSCLC and has the potential of being a new therapeutic tool for future treatment.
Collapse
Affiliation(s)
- Lei Liu
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Lijun Xiao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xiujun Liang
- Department of Central Laboratory, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Long Chen
- Department of Central Laboratory, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Lei Zhang
- Department of Community Care, Nursing Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xiaoguang Wu
- Department of Central Laboratory, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Qian Xu
- Department of Central Laboratory, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Chunhu Ma
- Clinical Skills Center, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
43
|
Bártová E, Malyšková B, Komůrková D, Legartová S, Suchánková J, Krejčí J, Kozubek S. Function of heterochromatin protein 1 during DNA repair. PROTOPLASMA 2017; 254:1233-1240. [PMID: 28236007 DOI: 10.1007/s00709-017-1090-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/14/2017] [Indexed: 05/04/2023]
Abstract
This review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin, and HP1α and HP1β in particular are responsible for heterochromatin maintenance. The recruitment of these proteins to DNA lesions is also important from the perspective of proper DNA repair mechanisms. For example, HP1α is necessary for the binding of the main DNA damage-related protein 53BP1 at DNA repair foci, which are positive not only for the HP1α protein but also for the RAD51 protein, a component of DNA repair machinery. The HP1β protein also appears in monomeric form in DNA lesions together with the evolutionarily well-conserved protein called proliferating cell nuclear antigen (PCNA). The role of HP1 in DNA lesions is also mediated via the Kap1 transcription repressor. Taken together, these results indicate that the function of HP1 after DNA injury depends strongly on the kinetics of other DNA repair-related factors and their post-translational modifications, such as the phosphorylation of Kap-1.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.
| | - Barbora Malyšková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Denisa Komůrková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Suchánková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
44
|
Dai CH, Chen P, Li J, Lan T, Chen YC, Qian H, Chen K, Li MY. Co-inhibition of pol θ and HR genes efficiently synergize with cisplatin to suppress cisplatin-resistant lung cancer cells survival. Oncotarget 2016; 7:65157-65170. [PMID: 27533083 PMCID: PMC5323145 DOI: 10.18632/oncotarget.11214] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin exert its anticancer effect by creating intrastrand and interstrand DNA cross-links which block DNA replication and is a major drug used to treat lung cancer. However, the main obstacle of the efficacy of treatment is drug resistance. Here, we show that expression of translesion synthesis (TLS) polymerase Q (POLQ) was significantly elevated by exposure of lung cancer cells A549/DR (a cisplatin-resistant A549 cell line) to cisplatin. POLQ expression correlated inversely with homologous recombination (HR) activity. Co-depletion of BRCA2 and POLQ by siRNA markedly increased sensitivity of A549/DR cells to cisplatin, which was accompanied with impairment of double strand breaks (DSBs) repair reflected by prominent cell cycle checkpoint response, increased chromosomal aberrations and persistent colocalization of p-ATM and 53BP1 foci induced by cisplatin. Thus, co-knockdown of POLQ and HR can efficiently synergize with cisplatin to inhibit A549/DR cell survival by inhibiting DNA DSBs repair. Similar results were observed in A549/DR cells co-depleted of BRCA2 and POLQ following BMN673 (a PARP inhibitor) treatment. Importantly, the sensitization effects to cisplatin and BMN673 in A549/DR cells by co-depleting BRCA2 and POLQ was stronger than those by co-depleting BRCA2 and other TLS factors including POLH, REV3, or REV1. Our results indicate that there is a synthetic lethal relationship between pol θ-mediated DNA repair and HR pathways. Pol θ may be considered as a novel target for lung cancer therapy.
Collapse
Affiliation(s)
- Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tin Lan
- Institute of Medical Science, Jiangsu University, Zhenjiang, China
| | - Yong-Chang Chen
- Institute of Medical Science, Jiangsu University, Zhenjiang, China
| | - Hai Qian
- Institute of Medical Science, Jiangsu University, Zhenjiang, China
| | - Kang Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mei-Yu Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Cheng CT, Kuo CY, Ouyang C, Li CF, Chung Y, Chan DC, Kung HJ, Ann DK. Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. Cancer Res 2016; 76:5006-5018. [PMID: 27364555 PMCID: PMC5316485 DOI: 10.1158/0008-5472.can-15-2921] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial dynamics during nutrient starvation of cancer cells likely exert profound effects on their capability for metastatic progression. Here, we report that KAP1 (TRIM28), a transcriptional coadaptor protein implicated in metastatic progression in breast cancer, is a pivotal regulator of mitochondrial fusion in glucose-starved cancer cells. Diverse metabolic stresses induced Ser473 phosphorylation of KAP1 (pS473-KAP1) in a ROS- and p38-dependent manner. Results from live-cell imaging and molecular studies revealed that during the first 6 to 8 hours of glucose starvation, mitochondria initially underwent extensive fusion, but then subsequently fragmented in a pS473-KAP1-dependent manner. Mechanistic investigations using phosphorylation-defective mutants revealed that KAP1 Ser473 phosphorylation limited mitochondrial hyperfusion in glucose-starved breast cancer cells, as driven by downregulation of the mitofusin protein MFN2, leading to reduced oxidative phosphorylation and ROS production. In clinical specimens of breast cancer, reduced expression of MFN2 corresponded to poor prognosis in patients. In a mouse xenograft model of human breast cancer, there was an association in the core region of tumors between MFN2 downregulation and the presence of highly fragmented mitochondria. Collectively, our results suggest that KAP1 Ser473 phosphorylation acts through MFN2 reduction to restrict mitochondrial hyperfusion, thereby contributing to cancer cell survival under conditions of sustained metabolic stress. Cancer Res; 76(17); 5006-18. ©2016 AACR.
Collapse
Affiliation(s)
- Chun-Ting Cheng
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California. Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
| | - Ching-Ying Kuo
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California
| | - Ching Ouyang
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yiyin Chung
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California
| | - David C Chan
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California. National Health Research Institutes, Miaoli, Taiwan
| | - David K Ann
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California. Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California.
| |
Collapse
|
46
|
Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome. Nat Commun 2016; 7:12497. [PMID: 27511885 PMCID: PMC4987533 DOI: 10.1038/ncomms12497] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022] Open
Abstract
Maintenance of energy homeostasis is essential for cell survival. Here, we report that the ATP- and ubiquitin-independent REGγ-proteasome system plays a role in maintaining energy homeostasis and cell survival during energy starvation via repressing rDNA transcription, a major intracellular energy-consuming process. Mechanistically, REGγ-proteasome limits cellular rDNA transcription and energy consumption by targeting the rDNA transcription activator SirT7 for ubiquitin-independent degradation under normal conditions. Moreover, energy starvation induces an AMPK-directed SirT7 phosphorylation and subsequent REGγ-dependent SirT7 subcellular redistribution and degradation, thereby further reducing rDNA transcription to save energy to overcome cell death. Energy starvation is a promising strategy for cancer therapy. Our report also shows that REGγ knockdown markedly improves the anti-tumour activity of energy metabolism inhibitors in mice. Our results underscore a control mechanism for an ubiquitin-independent process in maintaining energy homeostasis and cell viability under starvation conditions, suggesting that REGγ-proteasome inhibition has a potential to provide tumour-starving benefits. In conditions of energy stress cells reduce transcription of ribosomal RNA (rRNA) to maintain cell survival. Here, the authors show that energy stress induces an AMPK-dependent phosphorylation of Sirt7, which promotes its ubiquitin-independent degradation by REGγ, resulting in the down-regulation of rRNA transcription and cell survival.
Collapse
|
47
|
Magni M, Ruscica V, Restelli M, Fontanella E, Buscemi G, Zannini L. CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 2016; 6:17817-31. [PMID: 26158765 PMCID: PMC4627348 DOI: 10.18632/oncotarget.4417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 01/26/2023] Open
Abstract
Cell cycle and apoptosis regulator 2 (CCAR2, formerly known as DBC1) is a nuclear protein largely involved in DNA damage response, apoptosis, metabolism, chromatin structure and transcription regulation. Upon DNA lesions, CCAR2 is phosphorylated by the apical kinases ATM/ATR and this phosphorylation enhances CCAR2 binding to SIRT1, leading to SIRT1 inhibition, p53 acetylation and p53-dependent apoptosis. Recently, we found that also the checkpoint kinase Chk2 and the proteasome activator REGγ are required for efficient CCAR2-mediated inhibition of SIRT1 and induction of p53-dependent apoptosis. Here, we report that CCAR2 is required for the repair of heterochromatic DNA lesions, as cells knock-out for CCAR2 retain, at late time-points after genotoxic treatment, abnormal levels of DNA damage-associated nuclear foci, whose timely resolution is reinstated by HP1β depletion. Conversely, repair of DNA damages in euchromatin are not affected by CCAR2 absence. We also report that the impairment in heterochromatic DNA repair is caused by defective Chk2 activation, detectable in CCAR2 ablated cells, which finally impacts on the phosphorylation of the Chk2 substrate KAP1 that is required for the induction of heterochromatin relaxation and DNA repair. These studies further extend and confirm the role of CCAR2 in the DNA damage response and DNA repair and illustrate a new mechanism of Chk2 activity regulation. Moreover, the involvement of CCAR2 in the repair of heterochromatic DNA breaks suggests a new role for this protein in the maintenance of chromosomal stability, which is necessary to prevent cancer formation.
Collapse
Affiliation(s)
- Martina Magni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Ruscica
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Current address: Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Michela Restelli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrico Fontanella
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
48
|
Bunch H. Role of genome guardian proteins in transcriptional elongation. FEBS Lett 2016; 590:1064-75. [PMID: 27010360 DOI: 10.1002/1873-3468.12152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Maintaining genomic integrity is vital for cell survival and homeostasis. Mutations in critical genes in germ-line and somatic cells are often implicated with the onset or progression of diseases. DNA repair enzymes thus take important roles as guardians of the genome in the cell. Besides the known function to repair DNA damage, recent findings indicate that DNA repair enzymes regulate the transcription of protein-coding and noncoding RNA genes. In particular, a novel role of DNA damage response signaling has been identified in the regulation of transcriptional elongation. Topoisomerases-mediated DNA breaks appear important for the regulation. In this review, recent findings of these DNA break- and repair-associated enzymes in transcription and potential roles of transcriptional activation-coupled DNA breaks are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
49
|
How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem J 2015; 471:1-11. [PMID: 26392571 DOI: 10.1042/bj20150582] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA DSBs (double-strand breaks) are a significant threat to the viability of a normal cell, since they can result in loss of genetic material if mitosis or replication is attempted in their presence. Consequently, evolutionary pressure has resulted in multiple pathways and responses to enable DSBs to be repaired efficiently and faithfully. Cancer cells, which are under pressure to gain genomic instability, have a striking ability to avoid the elegant mechanisms by which normal cells maintain genomic stability. Current models suggest that, in normal cells, DSB repair occurs in a hierarchical manner that promotes rapid and efficient rejoining first, with the utilization of additional steps or pathways of diminished accuracy if rejoining is unsuccessful or delayed. In the present review, we evaluate the fidelity of DSB repair pathways and discuss how cancer cells promote the utilization of less accurate processes. Homologous recombination serves to promote accuracy and stability during replication, providing a battlefield for cancer to gain instability. Non-homologous end-joining, a major DSB repair pathway in mammalian cells, usually operates with high fidelity and only switches to less faithful modes if timely repair fails. The transition step is finely tuned and provides another point of attack during tumour progression. In addition to DSB repair, a DSB signalling response activates processes such as cell cycle checkpoint arrest, which enhance the possibility of accurate DSB repair. We consider the ways by which cancers modify and hijack these processes to gain genomic instability.
Collapse
|
50
|
Fan G, Sun L, Shan P, Zhang X, Huan J, Zhang X, Li D, Wang T, Wei T, Zhang X, Gu X, Yao L, Xuan Y, Hou Z, Cui Y, Cao L, Li X, Zhang S, Wang C. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat Commun 2015; 6:8450. [PMID: 26439168 PMCID: PMC4600754 DOI: 10.1038/ncomms9450] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Guangjian Fan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Lianhui Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Peipei Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Xianying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jinliang Huan
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyang Gu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Liangfang Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Xuan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongping Cui
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Shanxi 030001, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Chuangui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China.,Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| |
Collapse
|