1
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Oh ES, Lee JW, Song YN, Kim MO, Lee RW, Kang MJ, Lee J, Yun SH, Hong ST, Ro H, Lee SU. Tangeretin inhibits airway inflammatory responses by reducing early growth response 1 (EGR1) expression in mice exposed to cigarette smoke and lipopolysaccharide. Heliyon 2024; 10:e39797. [PMID: 39553588 PMCID: PMC11564960 DOI: 10.1016/j.heliyon.2024.e39797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Tangeretin, a natural polymethoxyflavone compound, possesses potent anti-inflammatory activity that improves respiratory inflammation in chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms underlying the anti-COPD effects of tangeretin remain unclear. In this study, we aimed to investigate the key molecular mechanisms by which tangeretin suppresses COPD-related inflammatory responses. Methods We conducted the investigation in phorbol-12-myristate-13-acetate (PMA)-stimulated human airway epithelial cells (in vitro) and cigarette smoke (CS)/lipopolysaccharide (LPS)-exposed mice (in vivo). Results Tangeretin decreased the release of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and mucin 5AC (MUC5AC), by suppressing early growth response 1 (EGR1) expression in vitro. Tangeretin and EGR1 small interfering ribonucleic acid (siRNA) combination showed a synergistic reduction in MUC5AC and TNF-α secretion. Tangeretin administration significantly inhibited the levels of reactive oxygen species (ROS) production, elastase activity, TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1) secretion, and macrophage and neutrophil numbers in the bronchoalveolar lavage fluid of CS/LPS-exposed mice. Tangeretin also prevented CS/LPS-induced abnormal pathological changes and excessive MUC5AC and EGR1 expression in lung tissue. Conclusion Comprehensively, tangeretin inhibits the lung inflammatory response associated with COPD by reducing EGR1 expression in PMA-induced human epithelial cells and in a CS/LPS-stimulated mouse model. This study shows that tangeretin has anti-COPD properties and can be a promising alternative (or complementary) treatment for inflammatory lung disease.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Seok Han Yun
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, 266, Munhwa-Ro, Daejeon, 35015, Republic of Korea
| | - Hyunju Ro
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| |
Collapse
|
3
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
4
|
Faruque M, Nazmi K, van Splunter A, Laine ML, Bikker FJ. Sialagogic Effects Through Olfactory Stimulation with Mastic Resin and α-pinene Volatiles in vivo. Biomed Pharmacother 2023; 168:115699. [PMID: 37865987 DOI: 10.1016/j.biopha.2023.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Xerostomia, often associated with decreased saliva quality, poses challenges due to limited treatment efficacy. This study aimed to investigate alternative approaches to enhance saliva secretion through olfactory volatile stimulation with mastic resin and its main compound α-pinene, known for inhibiting acetylcholinesterase in vitro. METHODS The inhibitory effects of freshly prepared mastic resin extract oil and α-pinene oil on acetylcholinesterase (AChE) activity were measured in vitro. Eighty healthy participants were recruited and divided into two groups: exposed to mastic resin volatiles (n = 40) or α-pinene volatiles (n = 40). Saliva samples were collected pre, during and post exposure to analyze saliva flow rate, spinnbarkeit, ion composition and MUC5B levels. RESULTS Mastic resin extract oil and α-pinene oil inhibited AChE activity by 207 % and 22 %, respectively. Olfactory stimulation with these volatiles significantly increased saliva secretion rate without altering spinnbarkeit and ion composition. Salivary MUC5B concentration rose after exposure to mastic resin volatiles. CONCLUSIONS Olfactory stimulation with mastic resin and α-pinene volatiles demonstrated a bona fide in vivo effect on saliva secretion, confirming their sialagogic capability, potentially as a result of local glandular AChE inhibition. These findings highlight the therapeutic potential of both volatile compounds in treating patients with xerostomia and hyposalivation through olfactory exposure.
Collapse
Affiliation(s)
- Mouri Faruque
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands.
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Annina van Splunter
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SI. Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types? Am J Respir Cell Mol Biol 2023; 69:500-507. [PMID: 37584669 PMCID: PMC10633838 DOI: 10.1165/rcmb.2023-0175ps] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023] Open
Abstract
The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey L. Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Irina Petrache
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Farrah Kheradmand
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Ian M. Adcock
- Department of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
6
|
Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7543-7568. [PMID: 37715840 DOI: 10.1007/s10653-023-01749-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Today, the rapid development of science and technology and the rapid change in economy and society are changing the way of life of human beings and affecting the natural, living, working, and internal environment on which human beings depend. At the same time, the global incidence of cancer has increased significantly yearly, and cancer has become the number one killer that threatens human health. Studies have shown that diet, living habits, residential environment, mental and psychological factors, intestinal flora, genetics, social factors, and viral and non-viral infections are closely related to human cancer. However, the molecular mechanisms of the environment and cancer development remain to be further explored. In recent years, DNA methylation has become a key hub and bridge for environmental and cancer research. Some environmental factors can alter the hyper/hypomethylation of human cancer suppressor gene promoters, proto-oncogene promoters, and the whole genome, causing low/high expression or gene mutation of related genes, thereby exerting oncogenic or anticancer effects. It is expected to develop early warning markers of cancer environment based on DNA methylation, thereby providing new methods for early detection of cancers, diagnosis, and targeted therapy. This review systematically expounds on the internal mechanism of environmental factors affecting cancer by changing DNA methylation, aiming to help establish the concept of cancer prevention and improve people's health.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Feifei Ding
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China.
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China.
| |
Collapse
|
7
|
Hadate T, Kawamura R, Tabara Y, Maruyama K, Takakado M, Ikeda Y, Ohashi J, Takata Y, Saito I, Osawa H. Positive association between serum resistin and smoking was strongest in homozygotes of the G-A haplotype at c.-420 C>G and c.-358 G>A in RETN promoter: the Toon Genome Study. J Hum Genet 2023; 68:745-750. [PMID: 37423942 DOI: 10.1038/s10038-023-01176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Resistin is mainly expressed in human monocytes/macrophages and is associated with insulin resistance, inflammation, and atherosclerosis. Serum resistin is strongly correlated with the G-A haplotype defined by single nucleotide polymorphisms (SNPs) c.-420 C>G (SNP-420) (rs1862513) and c.-358 G>A (SNP-358) (rs3219175) in the promoter region of the human resistin gene (RETN). Smoking is also associated with insulin resistance. We investigated the association between smoking and serum resistin and the effect of the G-A haplotype on this association. Participants were recruited under the Toon Genome Study (an observational epidemiology research in the Japanese population). Of these, 1975 subjects genotyped for both SNP-420 and SNP-358 were analyzed for serum resistin by grouping them based on smoking status and G-A haplotype status. RETN mRNA, isolated from whole blood cells, was evaluated in smokers (n = 7) and age-, sex-, and BMI-matched non-smokers (n = 7) with the G-A haplotype homozygotes. Serum resistin tended to be higher in current smokers who smoked more cigarettes per day (P for trend < 0.0001). The positive association between serum resistin and smoking was strongest in the G-A haplotype homozygotes, followed by heterozygotes and non-carriers (interaction P < 0.0001). This positive association was stronger in the G-A homozygotes than the C-G homozygotes (interaction P < 0.0001). RETN mRNA was 1.40-fold higher in smokers than non-smokers with the G-A homozygotes (P = 0.022). Therefore, the positive association between serum resistin and smoking was strongest in the G-A haplotype homozygotes defined by RETN SNP-420 and SNP-358.
Collapse
Affiliation(s)
- Toshimi Hadate
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryoichi Kawamura
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasuharu Tabara
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koutatsu Maruyama
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Ehime, Japan
| | - Misaki Takakado
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yosuke Ikeda
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yasunori Takata
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Haruhiko Osawa
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
8
|
Tyrrell J, Ghosh A, Manzo ND, Randell SH, Tarran R. Evaluation of chronic cigarette smoke exposure in human bronchial epithelial cultures. J Appl Toxicol 2023; 43:862-873. [PMID: 36594405 DOI: 10.1002/jat.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Cigarette smoke (CS) exposure induces both cytotoxicity and inflammation, and often causes COPD, a growing cause of morbidity and mortality. CS also inhibits the CFTR Cl- channel, leading to airway surface liquid dehydration, which is predicated to impair clearance of inhaled pathogens and toxicants. Numerous in vitro studies have been performed that utilize acute (≤24 h) CS exposures. However, CS exposure is typically chronic. We evaluated the feasibility of using British-American Tobacco (BAT)-designed CS exposure chambers for chronically exposing human bronchial epithelial cultures (HBECs) to CS. HBECs are polarized and contain mucosal and serosal sides. In vivo, inhaled CS interacts with mucosal membranes, and BAT chambers are designed to direct CS to HBEC mucosal surfaces while keeping CS away from serosal surfaces via a perfusion system. We found that serosal perfusion was absolutely required to maintain HBEC viability over time following chronic CS exposure. Indeed, with this system, we found that CS increased inflammation and mucin levels, while decreasing CFTR function. Without this serosal perfusion, CS was extremely toxic within 24 h. We therefore propose that 5- and 10-day CS exposures with serosal perfusion are suitable for measuring chronic CS exposure and can be used for monitoring new and emerging tobacco products.
Collapse
Affiliation(s)
- Jean Tyrrell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arunava Ghosh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas D Manzo
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Nishida Y, Yagi H, Ota M, Tanaka A, Sato K, Inoue T, Yamada S, Arakawa N, Ishige T, Kobayashi Y, Arakawa H, Takizawa T. Oxidative stress induces MUC5AC expression through mitochondrial damage-dependent STING signaling in human bronchial epithelial cells. FASEB Bioadv 2023; 5:171-181. [PMID: 37020748 PMCID: PMC10068767 DOI: 10.1096/fba.2022-00081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress increases the production of the predominant mucin MUC5AC in airway epithelial cells and is implicated in the pathogenesis of bronchial asthma and chronic obstructive pulmonary disease. Oxidative stress impairs mitochondria, releasing mitochondrial DNA into the cytoplasm and inducing inflammation through the intracytoplasmic DNA sensor STING (stimulator of interferon genes). However, the role of innate immunity in mucin production remains unknown. We aimed to elucidate the role of innate immunity in mucin production in airway epithelial cells under oxidative stress. Human airway epithelial cell line (NCI-H292) and normal human bronchial epithelial cells were used to confirm MUC5AC expression levels by real-time PCR when stimulated with hydrogen peroxide (H2O2). MUC5AC transcriptional activity was increased and mitochondrial DNA was released into the cytosol by H2O2. Mitochondrial antioxidants were used to confirm the effects of mitochondrial oxidative stress where antioxidants inhibited the increase in MUC5AC transcriptional activity. Cyclic GMP-AMP synthase (cGAS) or STING knockout (KO) cells were generated to investigate their involvement. H2O2-induced MUC5AC expression was suppressed in STING KO cells, but not in cGAS KO cells. The epidermal growth factor receptor was comparably expressed in STING KO and wild-type cells. Thus, mitochondria and STING play important roles in mucin production in response to oxidative stress in airway epithelial cells.
Collapse
Affiliation(s)
- Yutaka Nishida
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Hisako Yagi
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Masaya Ota
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
- Department of PediatricsNiigata University Graduate School of MedicineNiigataJapan
| | - Atsushi Tanaka
- Department of Medicine, Research Institute of Medical SciencesYamagata UniversityYamagataJapan
| | - Koichiro Sato
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takaharu Inoue
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Satoshi Yamada
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Naoya Arakawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takashi Ishige
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Yasuko Kobayashi
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Hirokazu Arakawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takumi Takizawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| |
Collapse
|
10
|
DNA Methylation of the Dopamine Transporter DAT1 Gene—Bliss Seekers in the Light of Epigenetics. Int J Mol Sci 2023; 24:ijms24065265. [PMID: 36982343 PMCID: PMC10049030 DOI: 10.3390/ijms24065265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
DNA methylation (leading to gene silencing) is one of the best-studied epigenetic mechanisms. It is also essential in regulating the dynamics of dopamine release in the synaptic cleft. This regulation relates to the expression of the dopamine transporter gene (DAT1). We examined 137 people addicted to nicotine, 274 addicted subjects, 105 sports subjects and 290 people from the control group. After applying the Bonferroni correction, our results show that as many as 24 out of 33 examined CpG islands had statistically significantly higher methylation in the nicotine-dependent subjects and athletes groups compared to the control group. Analysis of total DAT1 methylation revealed a statistically significant increase in the number of total methylated CpG islands in addicted subjects (40.94%), nicotine-dependent subjects (62.84%) and sports subjects (65.71%) compared to controls (42.36%). The analysis of the methylation status of individual CpG sites revealed a new direction of research on the biological aspects of regulating dopamine release in people addicted to nicotine, people practicing sports and people addicted to psychoactive substances.
Collapse
|
11
|
Rathnayake SNH, Ditz B, van Nijnatten J, Sadaf T, Hansbro PM, Brandsma CA, Timens W, van Schadewijk A, Hiemstra PS, ten Hacken NHT, Oliver B, Kerstjens HAM, van den Berge M, Faiz A. Smoking induces shifts in cellular composition and transcriptome within the bronchial mucus barrier. Respirology 2023; 28:132-142. [PMID: 36414410 PMCID: PMC10947540 DOI: 10.1111/resp.14401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Smoking disturbs the bronchial-mucus-barrier. This study assesses the cellular composition and gene expression shifts of the bronchial-mucus-barrier with smoking to understand the mechanism of mucosal damage by cigarette smoke exposure. We explore whether single-cell-RNA-sequencing (scRNA-seq) based cellular deconvolution (CD) can predict cell-type composition in RNA-seq data. METHODS RNA-seq data of bronchial biopsies from three cohorts were analysed using CD. The cohorts included 56 participants with chronic obstructive pulmonary disease [COPD] (38 smokers; 18 ex-smokers), 77 participants without COPD (40 never-smokers; 37 smokers) and 16 participants who stopped smoking for 1 year (11 COPD and 5 non-COPD-smokers). Differential gene expression was used to investigate gene expression shifts. The CD-derived goblet cell ratios were validated by correlating with staining-derived goblet cell ratios from the COPD cohort. Statistics were done in the R software (false discovery rate p-value < 0.05). RESULTS Both CD methods indicate a shift in bronchial-mucus-barrier cell composition towards goblet cells in COPD and non-COPD-smokers compared to ex- and never-smokers. It shows that the effect was reversible within a year of smoking cessation. A reduction of ciliated and basal cells was observed with current smoking, which resolved following smoking cessation. The expression of mucin and sodium channel (ENaC) genes, but not chloride channel genes, were altered in COPD and current smokers compared to never smokers or ex-smokers. The goblet cell-derived staining scores correlate with CD-derived goblet cell ratios. CONCLUSION Smoking alters bronchial-mucus-barrier cell composition, transcriptome and increases mucus production. This effect is partly reversible within a year of smoking cessation. CD methodology can predict goblet-cell percentages from RNA-seq.
Collapse
Affiliation(s)
- Senani N. H. Rathnayake
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Benedikt Ditz
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Jos van Nijnatten
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Tayyaba Sadaf
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- Centre for InflammationCentenary Institute, and the University of Technology Sydney, Faculty of ScienceSydneyNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute, and the University of Technology Sydney, Faculty of ScienceSydneyNew South WalesAustralia
| | - Corry A. Brandsma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | | | - Peter S. Hiemstra
- Department of PulmonologyLeiden University Medical CenterLeidenthe Netherlands
| | - Nick H. T. ten Hacken
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Brian Oliver
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Huib A. M. Kerstjens
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Maarten van den Berge
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Alen Faiz
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
12
|
Günther F, Einhauser S, Peterhoff D, Wiegrebe S, Niller HH, Beileke S, Steininger P, Burkhardt R, Küchenhoff H, Gefeller O, Überla K, Heid IM, Wagner R. Higher Infection Risk among Health Care Workers and Lower Risk among Smokers Persistent across SARS-CoV-2 Waves-Longitudinal Results from the Population-Based TiKoCo Seroprevalence Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16996. [PMID: 36554876 PMCID: PMC9779618 DOI: 10.3390/ijerph192416996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 seroprevalence was reported as substantially increased in medical personnel and decreased in smokers after the first wave in spring 2020, including in our population-based Tirschenreuth Study (TiKoCo). However, it is unclear whether these associations were limited to the early pandemic and whether the decrease in smokers was due to reduced infection or antibody response. We evaluated the association of occupation and smoking with period-specific seropositivity: for the first wave until July 2020 (baseline, BL), the low infection period in summer (follow-up 1, FU1, November 2020), and the second/third wave (FU2, April 2021). We measured binding antibodies directed to SARS-CoV-2 nucleoprotein (N), viral spike protein (S), and neutralizing antibodies at BL, FU1, and FU2. Previous infection, vaccination, smoking, and occupation were assessed by questionnaires. The 4181 participants (3513/3374 at FU1/FU2) included 6.5% medical personnel and 20.4% current smokers. At all three timepoints, new seropositivity was higher in medical personnel with ORs = 1.99 (95%-CI = 1.36-2.93), 1.41 (0.29-6.80), and 3.17 (1.92-5.24) at BL, FU1, and FU2, respectively, and nearly halved among current smokers with ORs = 0.47 (95%-CI = 0.33-0.66), 0.40 (0.09-1.81), and 0.56 (0.33-0.94). Current smokers compared to never-smokers had similar antibody levels after infection or vaccination and reduced odds of a positive SARS-CoV-2 result among tested. Our data suggest that decreased seroprevalence among smokers results from fewer infections rather than reduced antibody response. The persistently higher infection risk of medical staff across infection waves, despite improved means of protection over time, underscores the burden for health care personnel.
Collapse
Affiliation(s)
- Felix Günther
- Department of Mathematics, Stockholm University, Albanovägen 28, 11419 Stockholm, Sweden
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Simon Wiegrebe
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Helmut Küchenhoff
- Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Olaf Gefeller
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054 Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Zhang Y, Qi J, Yan D, Deng Y, Zhang J, Luo Q. HNE Induces the Hyperexpression of MUC5AC in Chronic Rhinosinusitis With Nasal Polyps by Activating the TRAF6/Autophagy Regulatory Axis. Am J Rhinol Allergy 2022; 36:816-826. [PMID: 35915986 DOI: 10.1177/19458924221116939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hypersecretion of mucin 5AC (MUC5AC) is a prominent feature of chronic rhinosinusitis with nasal polyps (CRSwNP) and autophagy plays a pivotal role in this process. TNF receptor-associated factor 6 (TRAF6) functions as a signal transducer in many inflammation diseases, whereas the correlation between TRAF6 and autophagy in CRSwNP remains unclear. OBJECTIVE To investigate the role of TRAF6 in the human neutrophil elastase (HNE)-induced autophagy and mucin MUC5AC over-expression in CRSwNP. METHODS Tissue specimens were obtained from control subjects and patients with CRSwNP. The relationships between HNE, TRAF6, autophagy, and MUC5AC were investigated. The effect of TRAF6 on HNE-mediated autophagy and hypersecretion of MUC5AC was assessed by in-vitro culture of HNECs treated with human recombinant HNE. RESULTS Patients with CRSwNP had more protein expression of HNE, MUC5AC, TRAF6, and light chain (LC3B), and increased levels of Beclin-1(BECN1) and autophagy-related gene 5 (ATG5) in mRNA level. Treatment of nasal epithelial cells with recombinant HNE induced the upregulation of TRAF6, autophagy, and MUC5AC. Alternatively, si-TRAF6 or autophagy inhibitor treatment mitigates the hyperexpression of MUC5AC before incubating with recombinant HNE. CONCLUSION HNE promotes autophagy through TRAF6, resulting in hyperexpression of MUC5AC in CRSwNP.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jing Qi
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Danqing Yan
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yangquan Deng
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jian Zhang
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Qing Luo
- Department of Otolaryngology-Head and Neck Surgery, 117970the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
14
|
Chmielowiec J, Chmielowiec K, Strońska-Pluta A, Suchanecka A, Humińska-Lisowska K, Lachowicz M, Niewczas M, Białecka M, Śmiarowska M, Grzywacz A. Methylation in the Promoter Region of the Dopamine Transporter DAT1 Gene in People Addicted to Nicotine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148602. [PMID: 35886451 PMCID: PMC9321476 DOI: 10.3390/ijerph19148602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
The dopaminergic system is a crucial element of the addiction processes. The dopamine transporter modulates the dynamics and levels of released dopamine in the synaptic cleft. Therefore, regulation of dopamine transporter (DAT1) gene expression is critical for maintaining homeostasis in the dopaminergic system. The aim of our study is evaluation of the methylation status of 33 CpG islands located in the DAT1 gene promoter region related to nicotine dependency. We investigated 142 nicotine-dependent subjects and 238 controls. Our results show that as many as 14 of the 33 CpG islands tested had statistically significantly higher methylation in the nicotine-dependent group compared to the control group. After applying Bonferroni correction, the total number of methylation sites was also significantly higher in the dependent subjects group. The analysis of the methylation status of particular CpG sites revealed a new direction of research regarding the biological aspects of nicotine addiction.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.S.-P.); (A.S.)
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.S.-P.); (A.S.)
| | - Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Milena Lachowicz
- Department of Psychology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Marta Niewczas
- Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Monika Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.B.); (M.Ś.)
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.B.); (M.Ś.)
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.S.-P.); (A.S.)
- Correspondence: ; Tel.: +48-91441-47-46
| |
Collapse
|
15
|
Csekő K, Hargitai D, Draskóczi L, Kéri A, Jaikumpun P, Kerémi B, Helyes Z, Zsembery Á. Safety of chronic hypertonic bicarbonate inhalation in a cigarette smoke-induced airway irritation guinea pig model. BMC Pulm Med 2022; 22:131. [PMID: 35392868 PMCID: PMC8991956 DOI: 10.1186/s12890-022-01919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are often associated with airway fluid acidification. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to impaired bicarbonate secretion contributing to CF airway pathology. Chronic cigarette smoke (CS) -the major cause of COPD- is reported to induce acquired CFTR dysfunction underlying airway acidification and inflammation. We hypothesize that bicarbonate-containing aerosols could be beneficial for patients with CFTR dysfunctions. Thus, we investigated the safety of hypertonic sodium bicarbonate (NaHCO3) inhalation in CS-exposed guinea pigs. METHODS Animals were divided into groups inhaling hypertonic NaCl (8.4%) or hypertonic NaHCO3 (8.4%) aerosol for 8 weeks. Subgroups from each treatment groups were further exposed to CS. Respiratory functions were measured at 0 and after 2, 4, 6 and 8 weeks. After 8 weeks blood tests and pulmonary histopathological assessment were performed. RESULTS Neither smoking nor NaHCO3-inhalation affected body weight, arterial and urine pH, or histopathology significantly. NaHCO3-inhalation did not worsen respiratory parameters. Moreover, it normalized the CS-induced transient alterations in frequency, peak inspiratory flow, inspiratory and expiratory times. CONCLUSION Long-term NaHCO3-inhalation is safe in chronic CS-exposed guinea pigs. Our data suggest that bicarbonate-containing aerosols might be carefully applied to CF patients.
Collapse
Affiliation(s)
- Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, 7624, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, Pécs, 7624, Hungary
| | - Dóra Hargitai
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary
| | - Lilla Draskóczi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, 7624, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, Pécs, 7624, Hungary
| | - Adrienn Kéri
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
- Heim Pál Children Hospital, Budapest, 1089, Hungary
| | - Pongsiri Jaikumpun
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Beáta Kerémi
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, 7624, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, Pécs, 7624, Hungary
- PharmInVivo Ltd, Pécs, 7629, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
16
|
Sajuthi SP, Everman JL, Jackson ND, Saef B, Rios CL, Moore CM, Mak ACY, Eng C, Fairbanks-Mahnke A, Salazar S, Elhawary J, Huntsman S, Medina V, Nickerson DA, Germer S, Zody MC, Abecasis G, Kang HM, Rice KM, Kumar R, Zaitlen NA, Oh S, Rodríguez-Santana J, Burchard EG, Seibold MA. Nasal airway transcriptome-wide association study of asthma reveals genetically driven mucus pathobiology. Nat Commun 2022; 13:1632. [PMID: 35347136 PMCID: PMC8960819 DOI: 10.1038/s41467-022-28973-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
To identify genetic determinants of airway dysfunction, we performed a transcriptome-wide association study for asthma by combining RNA-seq data from the nasal airway epithelium of 681 children, with UK Biobank genetic association data. Our airway analysis identified 95 asthma genes, 58 of which were not identified by transcriptome-wide association analyses using other asthma-relevant tissues. Among these genes were MUC5AC, an airway mucin, and FOXA3, a transcriptional driver of mucus metaplasia. Muco-ciliary epithelial cultures from genotyped donors revealed that the MUC5AC risk variant increases MUC5AC protein secretion and mucus secretory cell frequency. Airway transcriptome-wide association analyses for mucus production and chronic cough also identified MUC5AC. These cis-expression variants were associated with trans effects on expression; the MUC5AC variant was associated with upregulation of non-inflammatory mucus secretory network genes, while the FOXA3 variant was associated with upregulation of type-2 inflammation-induced mucus-metaplasia pathway genes. Our results reveal genetic mechanisms of airway mucus pathobiology.
Collapse
Affiliation(s)
- Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Benjamin Saef
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Cydney L Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Angel C Y Mak
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Ana Fairbanks-Mahnke
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Sandra Salazar
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jennifer Elhawary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hyun Min Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Noah A Zaitlen
- Department of Neurology and Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sam Oh
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
17
|
Traini C, Nistri S, Calosi L, Vannucchi MG. Chronic Exposure to Cigarette Smoke Affects the Ileum and Colon of Guinea Pigs Differently. Relaxin (RLX-2, Serelaxin) Prevents Most Local Damage. Front Pharmacol 2022; 12:804623. [PMID: 35095510 PMCID: PMC8793690 DOI: 10.3389/fphar.2021.804623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Cigarette smoking (CS) is the cause of several organ and apparatus diseases. The effects of smoke in the gut are partially known. Accumulating evidence has shown a relationship between smoking and inflammatory bowel disease, prompting us to investigate the mechanisms of action of smoking in animal models. Despite the role played by neuropeptides in gut inflammation, there are no reports on their role in animal models of smoking exposure. The hormone relaxin has shown anti-inflammatory properties in the intestine, and it might represent a putative therapy to prevent gut damage caused by smoking. Presently, we investigate the effects of chronic smoke exposure on inflammation, mucosal secretion, and vasoactive intestinal peptide (VIP) and substance P (SP) expressions in the ileum and colon of guinea pigs. We also verify the ability of relaxin to counter the smoke-induced effects. Smoke impacted plasma carbon monoxide (CO). In the ileum, it induced inflammatory infiltrates, fibrosis, and acidic mucin production; reduced the blood vessel area; decreased c-kit-positive mast cells and VIP-positive neurons; and increased the SP-positive nerve fibers. In the colon, it reduced the blood vessel area and the goblet cell area and decreased c-kit-positive mast cells, VIP-positive neurons, and SP-positive nerve fibers. Relaxin prevented most of the smoking-induced changes in the ileum, while it was less effective in the colon. This study shows the diverse sensitivity to CS between the ileum and the colon and demonstrates that both VIP and SP are affected by smoking. The efficacy of relaxin proposes this hormone as a potential anti-inflammatory therapeutic to counteract gut damage in humans affected by inflammatory bowel diseases.
Collapse
Affiliation(s)
- Chiara Traini
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Guifu Dihuang Pills Ameliorated Mucus Hypersecretion by Suppressing Muc5ac Expression and Inactivating the ERK-SP1 Pathway in Lipopolysaccharide/Cigarette Smoke-Induced Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9539218. [PMID: 34777538 PMCID: PMC8580658 DOI: 10.1155/2021/9539218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Mucus hypersecretion is a hallmark of chronic obstructive pulmonary disease (COPD) and is associated with increasing sputum production and declining pulmonary function. Therefore, reducing mucus secretion can be a new therapeutic opportunity for preventing COPD. The Guifu Dihuang pill (GFDHP) is a classical Chinese medicine and has been used as an immunoregulator for treatment of kidney yang deficiency syndrome, including hypothyroidism, adrenocortical hypofunction, chronic bronchitis, and COPD, for more than 2000 years. However, the protective effects and mechanisms of GFDHP against mucus hypersecretion in COPD remain obscure. The aim of the present study was to explore the inhibitory effects of GFDHP on lipopolysaccharide/cigarette smoke- (LPS/CS-) induced Mucin5ac (Muc5ac) overproduction and airway goblet cell hyperplasia in mice. The mice were randomly assigned into 6 groups: control, model, GFDHP-L, GFDHP-M, GFDHP-H, and dexamethasone. The mice were given LPS twice through intranasal inhalation and then exposed to CS daily for 6 weeks. Three doses of GFDHP were orally administered daily during the last 3 weeks of the experiment. Pulmonary function was examined with an EMKA pulmonary system, and pulmonary hyperpermeability and lung damage were evaluated with an in vivo imaging system. Inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) were detected with a cell count analyzer and though ELISA analysis, respectively. Lung pathological changes and airway goblet cell hyperplasia were analyzed with hematoxylin and eosin and Alcian blue periodic acid Schiff staining. The protein expression levels of Muc5ac and extracellular signal-regulated kinase (ERK)-specificity protein1 (SP1) signaling pathway were measured with Western blot and immunohistochemistry. The results demonstrated that GFDHP improved pulmonary function and suppressed mouse pulmonary hyperpermeability and edema. GFDHP suppressed inflammatory cell infiltration and cytokine release in BALF, thereby elevating pulmonary function. It ameliorated lung pathological changes and airway goblet cell hyperplasia, and suppressed expression levels of Muc5ac mRNA and protein and phospho-ERK and SP1 levels in the lung tissues of the COPD mice. In conclusion, GFDHP inhibited mucus hypersecretion induced by LPS/CS by suppressing the activation of the ERK-SP1 pathway.
Collapse
|
19
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
20
|
Mastalerz M, Dick E, Chakraborty AA, Hennen E, Schamberger AC, Schröppel A, Lindner M, Hatz R, Behr J, Hilgendorff A, Schmid O, Staab-Weijnitz CA. Validation of in vitro models for smoke exposure of primary human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 322:L129-L148. [PMID: 34668416 DOI: 10.1152/ajplung.00091.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RATIONALE The bronchial epithelium is constantly challenged by inhalative insults including cigarette smoke (CS), a key risk factor for lung disease. In vitro exposure of bronchial epithelial cells using CS extract (CSE) is a widespread alternative to whole CS (wCS) exposure. However, CSE exposure protocols vary considerably between studies, precluding direct comparison of applied doses. Moreover, they are rarely validated in terms of physiological response in vivo and the relevance of the findings is often unclear. METHODS We tested six different exposure settings in primary human bronchial epithelial cells (phBECs), including five CSE protocols in comparison with wCS exposure. We quantified cell-delivered dose and directly compared all exposures using expression analysis of 10 well-established smoke-induced genes in bronchial epithelial cells. CSE exposure of phBECs was varied in terms of differentiation state, exposure route, duration of exposure, and dose. Gene expression was assessed by quantitative Real-Time PCR (qPCR) and Western Blot analysis. Cell type-specific expression of smoke-induced genes was analyzed by immunofluorescent analysis. RESULTS Three surprisingly dissimilar exposure types, namely chronic CSE treatment of differentiating phBECs, acute CSE treatment of submerged basal phBECs, and wCS exposure of differentiated phBECs performed best, resulting in significant upregulation of seven (chronic CSE) and six (acute wCS, acute submerged CSE exposure) out of 10 genes. Acute apical or basolateral exposure of differentiated phBECs with CSE was much less effective despite similar doses used. CONCLUSIONS Our findings provide guidance for the design of human in vitro CS exposure models in experimental and translational lung research.
Collapse
Affiliation(s)
- Michal Mastalerz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ashesh Anjankumar Chakraborty
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Hennen
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea C Schamberger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Schröppel
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Rudolf Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität (LMU), Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
21
|
Collin AM, Lecocq M, Detry B, Carlier FM, Bouzin C, de Sany P, Hoton D, Verleden S, Froidure A, Pilette C, Gohy S. Loss of ciliated cells and altered airway epithelial integrity in cystic fibrosis. J Cyst Fibros 2021; 20:e129-e139. [PMID: 34657818 DOI: 10.1016/j.jcf.2021.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/28/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In cystic fibrosis, the respiratory epithelium is the target tissue of both the genetic abnormality of the disease and of external aggressions, notably by pathogens (Pseudomonas aeruginosa). A detailed characterisation of the cystic fibrosis bronchial epithelium is however lacking, as most previous studies focused on the nasal epithelium or on cell lines. This study aimed to characterise the abnormal phenotype and epithelial-to-mesenchymal transition in cystic fibrosis bronchial epithelium and to evaluate in cell cultures whether abnormalities persist ex vivo. METHODS Explant lung tissues (n = 44) were assessed for bronchial epithelial cell phenotyping by immunostaining. Human bronchial epithelial cells were derived from basal cells isolated from cystic fibrosis patients or control donors and cultured in air-liquid interface for 2, 4 or 6 weeks. RESULTS Enhanced mucin 5AC and decreased β-tubulin expression were observed in cystic fibrosis airways reflecting a decreased ciliated/goblet cell ratio, associated with increased number of vimentin-positive cells, indicating epithelial-to-mesenchymal transition process. These features were recapitulated in vitro, in cystic fibrosis-derived reconstituted epithelium. However, they were not induced by CFTR inhibition or Pseudomonas infection, and most abnormalities tended to disappear in long-term culture (6 weeks) except for increased fibronectin release, an epithelial-to-mesenchymal transition marker. CONCLUSIONS This study provides new insights into airway epithelial changes in cystic fibrosis, which are imprinted through an acquired mechanism that we could not relate to CFTR function.
Collapse
Affiliation(s)
- Amandine M Collin
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marylène Lecocq
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bruno Detry
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - François M Carlier
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Philippe de Sany
- Pole of Microbiology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Delphine Hoton
- Department of Pathology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Stijn Verleden
- Lung Transplant Unit, Division of Respiratory Disease, Department of chronic disease, metabolism and aging, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Antoine Froidure
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Pneumology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Pneumology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Pneumology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Centre de référence pour la mucoviscidose, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
22
|
Taniguchi A, Tsuge M, Miyahara N, Tsukahara H. Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2021; 10:antiox10101537. [PMID: 34679673 PMCID: PMC8533053 DOI: 10.3390/antiox10101537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
The respiratory system is continuously exposed to endogenous and exogenous oxidants. Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the airways, leading to the destruction of lung parenchyma (emphysema) and declining pulmonary function. It is increasingly obvious that reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the progression and amplification of the inflammatory responses related to this disease. First, we described the association between cigarette smoking, the most representative exogenous oxidant, and COPD and then presented the multiple pathophysiological aspects of ROS and antioxidative defense systems in the development and progression of COPD. Second, the relationship between nitric oxide system (endothelial) dysfunction and oxidative stress has been discussed. Third, we have provided data on the use of these biomarkers in the pathogenetic mechanisms involved in COPD and its progression and presented an overview of oxidative stress biomarkers having clinical applications in respiratory medicine, including those in exhaled breath, as per recent observations. Finally, we explained the findings of recent clinical and experimental studies evaluating the efficacy of antioxidative interventions for COPD. Future breakthroughs in antioxidative therapy may provide a promising therapeutic strategy for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Akihiko Taniguchi
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Mitsuru Tsuge
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Nobuaki Miyahara
- Department of Medical Technology, Okayama University Academic Field of Health Sciences, Okayama 700-8558, Japan;
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
- Correspondence:
| |
Collapse
|
23
|
Laqqan MM, Yassin MM. Potential effect of tobacco cigarettes smoking on global DNA methylation status and protamines transcripts in human spermatozoa. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Epigenetics refers to an alteration in gene expression without alteration in the sequence of DNA and this process may be affected by environmental factors and lifestyle like cigarette smoking. This study was designed to evaluate the potential effect of cigarette smoking on the global DNA methylation status and the transcription level of protamine 1 and protamine 2 in human spermatozoa. A total of 188 semen samples were collected from men with a mean age of 34.9 ± 5.8 years old (98 heavy smokers and 90 non-smokers). The DNA and RNA were isolated from purified spermatozoa, then the status of global DNA methylation and the transcription level of protamine 1 and protamine 2 were evaluated using ELISA and qPCR, respectively. The chromatin non-condensation and DNA fragmentation in human spermatozoa were evaluated using chromomycin A3 staining and TUNEL assay, respectively.
Results
A significant increase has been found in the status of global DNA methylation in spermatozoa of heavy smokers compared to non-smokers (7.69 ± 0.69 ng/μl vs. 4.90 ± 0.40 ng/μl, P < 0.001). Additionally, a significant reduction has been found in transcription level of protamine 1 (25.49 ± 0.31 vs. 23.94 ± 0.40, P < 0.001) and protamine 2 (28.27 ± 0.39 vs. 23.45 ± 0.30, P < 0.001) in heavy smokers. A downregulation has been found in the transcription level of protamine 1 and protamine 2 with a fold change of 0.497 and 0.047, respectively. A significant increase has been shown in the level of DNA fragmentation and chromatin non-condensation in heavy smokers compared to non-smokers (P < 0.001). On the other hand, a significant positive correlation has been found between sperm chromatin non-condensation, sperm DNA fragmentation, transcription level of protamine 1, transcription level of protamine 2, and global DNA methylation status (r = 0.304, P < 0.001; r = 0.399, P < 0.001; r = 0.216, P = 0.003; r = 0.494, P < 0.001, respectively).
Conclusion
Tobacco cigarette smoking has a potential influence on the global DNA methylation and the transcription level of protamine genes in human spermatozoa, and consequently, affect negatively on the semen parameters.
Collapse
|
24
|
Lakshmanan I, Chaudhary S, Vengoji R, Seshacharyulu P, Rachagani S, Carmicheal J, Jahan R, Atri P, Chirravuri‐Venkata R, Gupta R, Marimuthu S, Perumal N, Rauth S, Kaur S, Mallya K, Smith LM, Lele SM, Ponnusamy MP, Nasser MW, Salgia R, Batra SK, Ganti AK. ST6GalNAc-I promotes lung cancer metastasis by altering MUC5AC sialylation. Mol Oncol 2021; 15:1866-1881. [PMID: 33792183 PMCID: PMC8253099 DOI: 10.1002/1878-0261.12956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related mortality. However, the molecular mechanisms associated with the development of metastasis are poorly understood. Understanding the biology of LC metastasis is critical to unveil the molecular mechanisms for designing targeted therapies. We developed two genetically engineered LC mouse models KrasG12D/+ ; Trp53R172H/+ ; Ad-Cre (KPA) and KrasG12D/+ ; Ad-Cre (KA). Survival analysis showed significantly (P = 0.0049) shorter survival in KPA tumor-bearing mice as compared to KA, suggesting the aggressiveness of the model. Our transcriptomic data showed high expression of N-acetylgalactosaminide alpha-2, 6-sialyltransferase 1 (St6galnac-I) in KPA compared to KA tumors. ST6GalNAc-I is an O-glycosyltransferase, which catalyzes the addition of sialic acid to the initiating GalNAc residues forming sialyl Tn (STn) on glycoproteins, such as mucins. Ectopic expression of species-specific p53 mutants in the syngeneic mouse and human LC cells led to increased cell migration and high expression of ST6GalNAc-I, STn, and MUC5AC. Immunoprecipitation of MUC5AC in the ectopically expressing p53R175H cells exhibited higher affinity toward STn. In addition, ST6GalNAc-I knockout (KO) cells also showed decreased migration, possibly due to reduced glycosylation of MUC5AC as observed by low STn on the glycoprotein. Interestingly, ST6GalNAc-I KO cells injected mice developed less liver metastasis (P = 0.01) compared to controls, while colocalization of MUC5AC and STn was observed in the liver metastatic tissues of control mice. Collectively, our findings support the hypothesis that mutant p53R175H mediates ST6GalNAc-I expression, leading to the sialyation of MUC5AC, and thus contribute to LC liver metastasis.
Collapse
Affiliation(s)
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | | | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Joseph Carmicheal
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Rahat Jahan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Pranita Atri
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | | | - Rohitesh Gupta
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Kavita Mallya
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Lynette M. Smith
- Department of BiostatisticsCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Subodh M. Lele
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
- Eppley Institute for Research in Cancer and Allied DiseasesOmahaNEUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics ResearchCity of Hope Comprehensive Cancer CenterBeckman Research InstituteDuarteCAUSA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
- Eppley Institute for Research in Cancer and Allied DiseasesOmahaNEUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
- Department of Internal MedicineVA Nebraska Western Iowa Health Care SystemUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
25
|
Abstract
Cigarette smoking is the major culprit of chronic lung diseases and the most dominant risk factor for the development of both lung cancer and chronic obstructive pulmonary disease (COPD). In addition, chronic inflammation has been shown to increase the risk of lung cancer and COPD in clinical and epidemiological studies. For pulmonary disease-related research, mice are the most commonly used model system. Multiple lung cancer mouse models driven by targeted genetic alterations are used to evaluate the critical roles of oncogenes and tumor suppressor genes. These models are useful in addressing lung tumorigenesis associated with specific genetic changes, but they are not able to provide a global insight into cigarette smoke-induced carcinogenesis. To fill this knowledge gap, we developed a lung cancer model by treating mice with cigarette smoke carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) with/without repeated lipopolysaccharides (LPS) exposure in order to determine the role of chronic inflammation in lung tumorigenesis. Notably, combined LPS/NNK treatment increased tumor number, tumor incidence, and tumor area compared to NNK treatment alone. Therefore, this model offers a feasible approach to investigate lung cancer development on a more global level, determine the role of inflammation in carcinogenesis, and provide a tool for evaluating chemoprevention and immunotherapy.
Collapse
Affiliation(s)
- Marissa E Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth Kahkonen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chia-Hsin Liu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
26
|
Wu X, Yao C, Kong J, Tian Y, Fan Y, Zhang Z, Han J, Wu S. Molecular mechanism underlying miR‑130b‑Sp1 transcriptional regulation in LPS‑induced upregulation of MUC5AC in the bile duct epithelium. Mol Med Rep 2021; 23:106. [PMID: 33300069 PMCID: PMC7723072 DOI: 10.3892/mmr.2020.11745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatolithiasis is a common disease that represents a serious health threat to the Chinese population. The pathological mechanism underlying hepatolithiasis is closely related to bacterial infections of the intrahepatic bile duct, followed by chronic inflammation and the overexpression of mucin 5AC (MUC5AC). However, the exact mechanism responsible for the lipopolysaccharide (LPS)‑induced upregulation of MUC5AC has yet to be elucidated. Specificity protein 1 (Sp1) is a ubiquitous transcription factor that plays a vital role in the regulation of a number of genes that are responsible for normal cellular function. microRNA (miR/miRNA)‑130b is a member of the miRNA family. miRNAs can bind to the 3'‑untralsated region (3'‑UTR) of a target gene and influence its expression levels. The present study found that LPS increases the expression of MUC5AC by influencing Sp1 secretion. Chromatin immunoprecipitation‑quantitative PCR experiments further verified three Sp1 binding sites in the MUC5AC promoter sequence that can regulate the expression of MUC5AC. Further analysis demonstrated that Sp1 expression was regulated by miR‑130b. Luciferase experiments identified one miR‑130b binding site in the Sp1 3'‑UTR region. In vivo experiments also confirmed the role of the miR‑130b‑Sp1‑MUC5AC signaling pathway in the formation of biliary stones and indicated that this pathway may provide targeted therapeutic strategies for the treatment of intrahepatic bile duct stones.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Chenhui Yao
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jing Kong
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yu Tian
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Fan
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhen Zhang
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jinyan Han
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuodong Wu
- Department of Secondary General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
27
|
Kim MD, Baumlin N, Dennis JS, Yoshida M, Kis A, Aguiar C, Schmid A, Mendes E, Salathe M. Losartan reduces cigarette smoke-induced airway inflammation and mucus hypersecretion. ERJ Open Res 2021; 7:00394-2020. [PMID: 33532463 PMCID: PMC7836504 DOI: 10.1183/23120541.00394-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 11/05/2022] Open
Abstract
The aim was to determine whether losartan reduces cigarette smoke (CS)-induced airway inflammation and mucus hypersecretion in an in vitro model and a small clinical trial. Primary human bronchial epithelial cells (HBECs) were differentiated at the air-liquid interface (ALI) and exposed to CS. Expression of transforming growth factor (TGF)-β1 and the mucin MUC5AC, and expression or activity of matrix metalloproteinase (MMP)-9 were measured after CS exposure. Parameters of mucociliary clearance were evaluated by measuring airway surface liquid volumes, mucus concentrations, and conductance of cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated and voltage-dependent potassium (BK) channels. Nasal cells were collected from study participants and expression of MUC5AC, TGF-β1, and MMP-9 mRNAs was measured before and after losartan treatment. In vitro, CS exposure of HBECs caused a significant increase in mRNA expression of MUC5AC and TGF-β1 and MMP-9 activity and decreased CFTR and BK channel activities, thereby reducing airway surface liquid volumes and increasing mucus concentrations. Treatment of HBECs with losartan rescued CS-induced CFTR and BK dysfunction and caused a significant decrease in MUC5AC expression and mucus concentrations, partially by inhibiting TGF-β signalling. In a prospective clinical study, cigarette smokers showed significantly reduced mRNA expression levels of MUC5AC, TGF-β1, and MMP-9 in the upper airways after 2 months of losartan treatment. Our findings suggest that losartan may be an effective therapy to reduce inflammation and mucus hypersecretion in CS-induced chronic airway diseases.
Collapse
Affiliation(s)
- Michael D Kim
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - Nathalie Baumlin
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - John S Dennis
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Makoto Yoshida
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adrian Kis
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina Aguiar
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andreas Schmid
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eliana Mendes
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthias Salathe
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
28
|
Helling BA, Sobreira DR, Hansen GT, Sakabe NJ, Luo K, Billstrand C, Laxman B, Nicolae RI, Nicolae DL, Bochkov YA, Gern JE, Nobrega MA, White SR, Ober C. Altered transcriptional and chromatin responses to rhinovirus in bronchial epithelial cells from adults with asthma. Commun Biol 2020; 3:678. [PMID: 33188283 PMCID: PMC7666152 DOI: 10.1038/s42003-020-01411-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
There is a life-long relationship between rhinovirus (RV) infection and the development and clinical manifestations of asthma. In this study we demonstrate that cultured primary bronchial epithelial cells from adults with asthma (n = 9) show different transcriptional and chromatin responses to RV infection compared to those without asthma (n = 9). Both the number and magnitude of transcriptional and chromatin responses to RV were muted in cells from asthma cases compared to controls. Pathway analysis of the transcriptionally responsive genes revealed enrichments of apoptotic pathways in controls but inflammatory pathways in asthma cases. Using promoter capture Hi-C we tethered regions of RV-responsive chromatin to RV-responsive genes and showed enrichment of these regions and genes at asthma GWAS loci. Taken together, our studies indicate a delayed or prolonged inflammatory state in cells from asthma cases and highlight genes that may contribute to genetic risk for asthma.
Collapse
Affiliation(s)
- Britney A Helling
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Débora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Grace T Hansen
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Bharathi Laxman
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Raluca I Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Dan L Nicolae
- Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
29
|
Amelioration of Cigarette Smoke-Induced Mucus Hypersecretion and Viscosity by Dendrobium officinale Polysaccharides In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8217642. [PMID: 33144914 PMCID: PMC7596542 DOI: 10.1155/2020/8217642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), characterized by oxidative stress and inflammation, is one of the leading causes of death worldwide, in which cigarette smoke (CS) is the major risk factor. Dendrobium officinale polysaccharides (DOPs) are the main active ingredients extracted from Dendrobium officinale, which have been reported to have antioxidant and anti-inflammatory activity as well as inhibition of mucin gene expression. This study is aimed at investigating the effect of DOPs on CS-induced mucus hypersecretion and viscosity in vitro and in vivo. For in vitro study, primary normal human bronchial epithelial cells (HBECs) differentiated at the air-liquid interface (ALI) culture for 28 days were stimulated with cigarette smoke medium (CSM) in the absence or presence of various concentrations of DOPs or N-acetylcysteine (NAC) for 24 hours. For in vivo study, male Sprague-Dawley rats were randomized to sham air (SA) as control group or CS group for 56 days. At day 29, rats were subdivided and given water as control, DOPs, or NAC as positive control as a mucolytic drug via oral gavage for the remaining duration. Samples collected from apical washing, cell lysates, bronchoalveolar lavage (BAL), and lung tissues were evaluated for mucin gene expression, mucus secretion, and viscosity. DOPs ameliorated the CS-induced mucus hypersecretion and viscosity as shown by the downregulation of MUC5AC mRNA, MUC5AC secretary protein, and mucus viscosity via inhibition of mucus secretory granules in both in vitro and in vivo models. DOPs produced its effective effects on the CS-induced mucus hypersecretion and viscosity via the inhibition of the mucus secretory granules. These findings could be a starting point for considering the potential role of DOPs in the management of the smoking-mediated COPD. However, further research is needed.
Collapse
|
30
|
Mo J, Au DWT, Wan MT, Shi J, Zhang G, Winkler C, Kong RYC, Seemann F. Multigenerational Impacts of Benzo[ a]pyrene on Bone Modeling and Remodeling in Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12271-12284. [PMID: 32840350 DOI: 10.1021/acs.est.0c02416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ancestral benzo[a]pyrene (BaP) (1 μg/L, 21 days) exposure has previously been shown to cause skeletal deformities in medaka (Oryzias latipes) larvae in the F1-F3 generation. However, when and how this deformity is induced during bone development remain to be elucidated. The col10a1:nlGFP/osx:mCherry double transgenic medaka model was employed to determine the temporal and spatial changes of col10a1:nlGFP- positive osteochondral progenitor cells (OPCs) and osx:mCherry-positive premature osteoblasts (POBs) [8 days postfertilization (dpf)-31 dpf] in combination with changes in bone mineralization at the tissue level. Ancestral BaP exposure delayed the development of col10a1:nlGFP- and osx:mCherry-positive osteoblasts and reduced the abundance of col10a1:nlGFP-positive osteoblast progenitors and col10a1:nlGFP/osx:mCherry double-positive premature osteoblasts during critical windows of early vertebral bone formation, associated with reduced bone mineralization in embryos (14 dpf) and larvae (31 dpf), compressed vertebral segments in larvae (31 dpf), and reduced bone thickness in adult male medaka (6 months old) of the F1-F3 generations. Both Col10a1:nlGFP and osx:mCherry were identified as potential targets of epigenetic modifications underlying the transgenerational inheritance of BaP bone toxicity. The present study provides novel knowledge of the underlying mechanisms of transgenerational toxicity of BaP at the cellular level.
Collapse
Affiliation(s)
- Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Miles Teng Wan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, 119077, Singapore
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong SAR, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Frauke Seemann
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Center for Coastal Studies and Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, United States
| |
Collapse
|
31
|
Zhu M, Ye M, Wang J, Ye L, Jin M. Construction of Potential miRNA-mRNA Regulatory Network in COPD Plasma by Bioinformatics Analysis. Int J Chron Obstruct Pulmon Dis 2020; 15:2135-2145. [PMID: 32982206 PMCID: PMC7490070 DOI: 10.2147/copd.s255262] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has become a major cause of morbidity and mortality worldwide. Increasing evidence indicates that aberrantly expressed microRNAs (miRNAs) are involved in the pathogenesis of COPD. However, an integrative exploration of miRNA–mRNA regulatory network in COPD plasma remains lacking. Methods The microarray datasets GSE24709, GSE61741, and GSE31568 were downloaded from the GEO database and analyzed using GEO2R tool to identify differentially expressed miRNAs (DEMs) between COPD and normal plasma. The consistently changing miRNAs in the three datasets were screened out as candidate DEMs. Potential upstream transcription factors and downstream target genes of candidate DEMs were predicted by FunRich and miRNet, respectively. Next, GO annotation and KEGG pathway enrichment analysis for target genes were performed using DAVID. Then, PPI and DEM-hub gene network were constructed using the STRING database and Cytoscape software. Finally, GSE56768 was used to evaluate the hub gene expressions. Results A total of nine (six upregulated and three downregulated) DEMs were screened out in the above three datasets. SP1 was predicted to potentially regulate most of the downregulated DEMs, while YY1 and E2F1 could regulate both upregulated and downregulated DEMs. 1139 target genes were then predicted, including 596 upregulated DEM target genes and 543 downregulated DEM target genes. Target genes of DEMs were mainly enriched in PI3K/Akt signaling pathway, mTOR signaling pathway, and autophagy. Through the DEM-hub gene network construction, most of the hub genes were found to be potentially modulated by miR-497-5p, miR-130b-5p, and miR-126-5p. Among the top 12 hub genes, MYC and FOXO1 expressions were consistent with that in the GSE56768 dataset. Conclusion In the study, potential miRNA–mRNA regulatory network was firstly constructed in COPD plasma, which may provide a new insight into the pathogenesis and treatment of COPD.
Collapse
Affiliation(s)
- Mengchan Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Maosong Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ling Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Meiling Jin
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Zhou RH, Zhang JT, Chen C, Xu ZH, Lv XB, Ye L, Yu BT. Identification of CDC5L as bridge gene between chronic obstructive pulmonary disease and lung adenocarcinoma. Epigenomics 2020; 12:1515-1529. [PMID: 32543224 DOI: 10.2217/epi-2020-0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: This study aimed to explore the genetic and epigenetic similarities between chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma (LUAD). Materials & methods: We mainly used Weighted correlation network analysis, protein-protein interaction network and pivot analysis to identify hub modules, bridge regulators, bridge genes and hub-driving genes in both diseases and carried out verifying using external datasets. Results: We identified eight bridge regulators, 19 key molecules in the COPD model and ten key molecules in the LUAD model. Moreover, we validated that CDC5L could be a reliable biomarker in COPD and may regulate cell proliferation and metastasis in LUAD via promoter methylation. Conclusion: Our results might form a theoretical foundation for future study at an epigenetic level.
Collapse
Affiliation(s)
- Rui-Hao Zhou
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Jing-Tao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Chan Chen
- Department of Anesthesiology & Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Zi-Hao Xu
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis & Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
33
|
Zal F, Yarahmadi A, Totonchi H, Barazesh M, Moradi Sarabi M. Nicotine attenuates global genomic DNA methylation by influencing DNMTs gene expression in human endometrial stromal cells. Genes Environ 2020; 42:6. [PMID: 32042366 PMCID: PMC7003317 DOI: 10.1186/s41021-020-0144-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is increasing evidence indicating an incidence of infertility and also the risk of endometrial cancers among smokers. However, the mechanism underlying nicotine adverse effect on female reproduction remains unclear. Growing evidence has suggested that environmental exposures such as nicotine could modulate the epigenome. No study has yet been published to evaluate the direct effect of nicotine on the epigenome profiling of human endometrial stromal cells (HESC). Herein, we decided to examine the direct effects of nicotine on global genomic DNA methylation status and DNA methyl- transferases (DNMTs) gene expression in HESC. HESC were treated with different doses of nicotine (0 or control, 10- 11, 10- 8 and 10- 6) M for 24 h and their genomic global DNA methylation and gene expression of DNMTs (DNMT1, DNMT3A, and DNMT3B) were investigated using ELISA and real-time PCR, respectively. RESULTS Nicotine treatments reduced the average level of DNMTs gene expression by 90, 79, and 73.4% in 10- 11, 10- 8 and 10- 6 M of nicotine treated cells as compared to control cells, respectively (p < 0.05). Also, 10- 8 and 10- 6 M of nicotine concentrations effectively reduced the amounts of 5-methylated cytosine (5-mC) by 1.09 and 1.87% compared to control cells, respectively (p < 0.05). The 5-mC percentages were positively correlated with the relative cellular DNMTs expression in HESC as verified by the Pearson correlation test. CONCLUSION An interesting possibility raised by the current study is that the reduced genomic global DNA methylation level in HESC may be partly due to the suppression of DNMTs gene expression caused by nicotine in these cells. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Fatemeh Zal
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Yarahmadi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Totonchi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Barazesh
- Biotechnology Department, School of advanced medical sciences and technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, 381251698 Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
34
|
Yoshikawa R, Katada J. Effects of active smoking on postoperative outcomes in hospitalised patients undergoing elective surgery: a retrospective analysis of an administrative claims database in Japan. BMJ Open 2019; 9:e029913. [PMID: 31575535 PMCID: PMC6797353 DOI: 10.1136/bmjopen-2019-029913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the effects of smoking on prognosis after elective surgeries. Incidence of 30-day postoperative complications was compared between propensity score-matched 'ever-smoker' and 'never-smoker' cohorts. Thirty-day mortality and medical costs during the hospital stay were also compared. DESIGN AND SETTING A large-scale retrospective study using deidentified administrative claims data obtained from 372 acute care hospitals across Japan using the Diagnosis Procedure Combination system (ie, a flat-fee payment system). PARTICIPANTS Inpatients who were hospitalised to undergo elective surgery. PRIMARY AND SECONDARY OUTCOME MEASURES The primary endpoint of this study was incidence of 30-day postoperative complications. Secondary endpoints were 30-day mortality and total medical costs during hospitalisation. Comparison between ever-smokers and never-smokers was conducted using matched cohorts created by 1:1 propensity score matching. RESULTS Using 561 598 eligible patients, matched ever-smoker and never-smoker cohorts (n=1 55 593 each) were created. Ever-smokers were defined as patients with Brinkman Index ≥1. The percentage of patients who were male was 76.7%, and mean ages for ever-smokers and never-smokers were 65.1±13.8 years old and 66.4±15.3 years old, respectively. The Brinkman Index of the ever-smoker cohort was 677.6±553.4. Smoking was significantly associated with higher risk of 30-day postoperative complications compared with not smoking (OR 1.15, 95% CI 1.13 to 1.17, p<0.001). Similarly, smoking was significantly associated with postoperative 30-day mortality, with OR of 1.22 (95% CI 1.08 to 1.39, p=0.002). CONCLUSIONS Our results suggest that smoking could be associated with risk of poor postoperative outcomes. In particular, a history of smoking may increase the risk of 30-day postoperative complications as well as that of 30-day mortality. The results suggest that smoking might have a harmful effect on postoperative outcomes irrespective of types of surgery.
Collapse
Affiliation(s)
| | - Jun Katada
- Medical Affairs, Pfizer Japan Inc, Tokyo, Japan
| |
Collapse
|
35
|
Maas SCE, Vidaki A, Wilson R, Teumer A, Liu F, van Meurs JBJ, Uitterlinden AG, Boomsma DI, de Geus EJC, Willemsen G, van Dongen J, van der Kallen CJH, Slagboom PE, Beekman M, van Heemst D, van den Berg LH, Duijts L, Jaddoe VWV, Ladwig KH, Kunze S, Peters A, Ikram MA, Grabe HJ, Felix JF, Waldenberger M, Franco OH, Ghanbari M, Kayser M. Validated inference of smoking habits from blood with a finite DNA methylation marker set. Eur J Epidemiol 2019; 34:1055-1074. [PMID: 31494793 PMCID: PMC6861351 DOI: 10.1007/s10654-019-00555-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Inferring a person’s smoking habit and history from blood is relevant for complementing or replacing self-reports in epidemiological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a validated statistical model based on a large dataset are not yet available. Employing 14 epigenome-wide association studies for marker discovery, and using data from six population-based cohorts (N = 3764) for model building, we identified 13 CpGs most suitable for inferring smoking versus non-smoking status from blood with a cumulative Area Under the Curve (AUC) of 0.901. Internal fivefold cross-validation yielded an average AUC of 0.897 ± 0.137, while external model validation in an independent population-based cohort (N = 1608) achieved an AUC of 0.911. These 13 CpGs also provided accurate inference of current (average AUCcrossvalidation 0.925 ± 0.021, AUCexternalvalidation0.914), former (0.766 ± 0.023, 0.699) and never smoking (0.830 ± 0.019, 0.781) status, allowed inferring pack-years in current smokers (10 pack-years 0.800 ± 0.068, 0.796; 15 pack-years 0.767 ± 0.102, 0.752) and inferring smoking cessation time in former smokers (5 years 0.774 ± 0.024, 0.760; 10 years 0.766 ± 0.033, 0.764; 15 years 0.767 ± 0.020, 0.754). Model application to children revealed highly accurate inference of the true non-smoking status (6 years of age: accuracy 0.994, N = 355; 10 years: 0.994, N = 309), suggesting prenatal and passive smoking exposure having no impact on model applications in adults. The finite set of DNA methylation markers allow accurate inference of smoking habit, with comparable accuracy as plasma cotinine use, and smoking history from blood, which we envision becoming useful in epidemiology and public health research, and in medical and forensic applications.
Collapse
Affiliation(s)
- Silvana C E Maas
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17475, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, 100101 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, 100049 Beijing, People's Republic of China
| | - Joyce B J van Meurs
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, Maastricht University Medical Center, Randwycksingel 35, 6229 EG, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, P.O. box 9600, 2300 RC, Leiden, The Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, P.O. box 9600, 2300 RC, Leiden, The Netherlands
| | - Diana van Heemst
- Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, P.O. box 9600, 2300 RC, Leiden, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Postbus 85500, 3508 GA, Utrecht, The Netherlands
| | | | - Liesbeth Duijts
- Division of Respiratory Medicine and Allergology and Division of Neonatology, Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Karl-Heinz Ladwig
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany.,Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands. .,Department of Genetics, School of Medicine, Mashhad University of Medical Science, PO Box 91735-951, 9133913716 Mashhad, Iran.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Igari K, Kelly MJ, Yamanouchi D. Cigarette Smoke Extract Activates Tartrate-Resistant Acid Phosphatase-Positive Macrophage. J Vasc Res 2019; 56:139-151. [PMID: 31064000 PMCID: PMC6764454 DOI: 10.1159/000498893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/13/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND It has been reported that smoking is one of the strongest positive risk factors for abdominal aortic aneurysms (AAAs). Although many studies have been directed to decipher the effect of smoking on AAA, its effect on macrophage activation has not yet been explored. OBJECTIVES We have reported the importance of osteoclastogenesis (OCG) in aneurysm formation. Therefore, we examined the effect of cigarette smoking on OCG and arterial aneurysmal formation by using cigarette smoke extract (CSE) in this study. METHODS Macrophage cell lines were stimulated with CSE, and their activation and differentiation were examined in vitro. Since macrophages activated through the OCG pathway are identified by tartrate-resistant acid phosphatase (TRAP) expression, these cells are referred to as TRAP-positive macrophages (TPMs) in this study. We also applied CSE-contained PBS in the calcium chloride-induced mouse carotid aneurysm model in vivo. RESULTS Macrophages stimulated with CSE expressed significantly higher levels of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), TRAP, cathepsin K, matrix metalloproteinase-9 and membrane-type metalloproteinase (MT1-MMP). CSE-treated mouse aneurysms showed increased aneurysm size with increased TPM infiltration and protease expression compared to non-CSE-treated mouse aneurysms. CONCLUSIONS These results suggest that CSE intensifies OCG in macrophages and promotes arterial aneurysmal progression.
Collapse
Affiliation(s)
- Kimihiro Igari
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Matthew J Kelly
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA,
| |
Collapse
|
37
|
Peng H, Guo T, Chen Z, Zhang H, Cai S, Yang M, Chen P, Guan C, Fang X. Hypermethylation of mitochondrial transcription factor A induced by cigarette smoke is associated with chronic obstructive pulmonary disease. Exp Lung Res 2019; 45:101-111. [PMID: 31198067 DOI: 10.1080/01902148.2018.1556748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 02/08/2023]
Abstract
Purpose of the study: Cigarette smoking is a leading environmental contributor to chronic obstructive pulmonary disease (COPD), but its epigenetic regulation of mtTFA gene remains elusive. This study aims to explore the relationship of DNA methylation of mtTFA and cigarette smoking in COPD. Materials and Methods: We analyzed DNA methylation on mtTFA promoters in clinical samples from COPD patients and subjects with normal pulmonary function. Expression of mtTFA mRNA in the clinical samples and mtTFA mRNA and protein in human umbilical vein endothelial cells(HUVECs) treated with cigarette smoke extract (CSE) was evaluated. mtTFA mRNA and protein levels were measured to determine effects of demethylation agents on CSE-treated HUVECs. Results: The DNA methylation level of the mtTFA promoter was significantly increased in COPD group. Expression of mtTFA mRNA was downregulated in the lungs as a consequence of hypermethylation of mtTFA promoter. Expression of mtTFA mRNA and protein was downregulated in CSE-treated HUVECs as a consequence of hypermethylation of the mtTFA promoter. mtTFA expression in CSE-treated HUVECs was restored by the methylation inhibitor, 5-aza-2'-deoxycytidine(AZA). Conclusions: Cigarette smoke-induced hypermethylation of the mtTFA promoter is related to the initiation and progression of COPD. Our finding may provide a new strategy for the intervention of COPD by developing demethylation agents targeting mtTFA hypermethylation.
Collapse
Affiliation(s)
- Hong Peng
- a Department of Respiratory and Critical Care Medicine , The Second Xiangya Hospital of Central-South University , Changsha , PR China
- b b The Respiratory Disease Research Institute of Central South University , Changsha , PR China
- c c The Respiratory Disease Diagnosis and Treatment Center of Hunan Province , Changsha , PR China
| | - Ting Guo
- a Department of Respiratory and Critical Care Medicine , The Second Xiangya Hospital of Central-South University , Changsha , PR China
- b b The Respiratory Disease Research Institute of Central South University , Changsha , PR China
- c c The Respiratory Disease Diagnosis and Treatment Center of Hunan Province , Changsha , PR China
| | - Zhiyong Chen
- d d Department of Urology , Xiangya Hospital of Central-South University , Changsha , PR China
| | - Hongliang Zhang
- a Department of Respiratory and Critical Care Medicine , The Second Xiangya Hospital of Central-South University , Changsha , PR China
- b b The Respiratory Disease Research Institute of Central South University , Changsha , PR China
- c c The Respiratory Disease Diagnosis and Treatment Center of Hunan Province , Changsha , PR China
| | - Shan Cai
- a Department of Respiratory and Critical Care Medicine , The Second Xiangya Hospital of Central-South University , Changsha , PR China
- b b The Respiratory Disease Research Institute of Central South University , Changsha , PR China
- c c The Respiratory Disease Diagnosis and Treatment Center of Hunan Province , Changsha , PR China
| | - Min Yang
- a Department of Respiratory and Critical Care Medicine , The Second Xiangya Hospital of Central-South University , Changsha , PR China
- b b The Respiratory Disease Research Institute of Central South University , Changsha , PR China
- c c The Respiratory Disease Diagnosis and Treatment Center of Hunan Province , Changsha , PR China
| | - Ping Chen
- a Department of Respiratory and Critical Care Medicine , The Second Xiangya Hospital of Central-South University , Changsha , PR China
- b b The Respiratory Disease Research Institute of Central South University , Changsha , PR China
- c c The Respiratory Disease Diagnosis and Treatment Center of Hunan Province , Changsha , PR China
| | - Chaxiang Guan
- e Physiological Research Center , Xiangya Medical School of Central-South University , Changsha , PR China
| | - Xiang Fang
- f Department of Neurology , University of Texas Medical Branch , Galveston , Texas, USA
| |
Collapse
|
38
|
Ishikawa S, Matsumura K, Kitamura N, Takanami Y, Ito S. Multi-omics analysis: Repeated exposure of a 3D bronchial tissue culture to whole-cigarette smoke. Toxicol In Vitro 2019; 54:251-262. [PMID: 30291989 DOI: 10.1016/j.tiv.2018.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 02/02/2023]
Abstract
Cigarette smoke (CS) is a major risk factor in the development of chronic inflammatory lung diseases such as chronic obstructive pulmonary disease. A comprehensive investigation of the biological impacts of chronic CS exposure on lung tissue is therefore important for understanding the pathogenesis of lung disease. We used three-dimensional (3D) organotypic human bronchial tissue cultures and metabolomics, transcriptomics, and proteomics to investigate changes in biological processes affected by repeated whole-CS exposure. We found that CS perturbed central carbon metabolism in relation with oxidative stress responses. Epidermal growth factor receptor, which is involved in the early-stage pathogenesis of airway diseases, was identified as a key regulator of the perturbed processes. Proteomic analysis of proteins in the apical surface liquid of the 3D bronchial tissue cultures indicated that repeated whole-CS exposure induced alterations in the secretion of several known biomarkers of airway diseases, including mucins and matrix metalloproteinases. These findings are consistent with observations from lung disease patients. Overall, our results suggest that 3D bronchial tissue cultures can provide valuable information on tissue-specific alterations in biological processes induced by chronic exposure to CS.
Collapse
Affiliation(s)
- Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Nobumasa Kitamura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Yuichiro Takanami
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| |
Collapse
|
39
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
40
|
Yu N, Sun YT, Su XM, He M, Dai B, Kang J. Eucalyptol protects lungs against bacterial invasion through attenuating ciliated cell damage and suppressing MUC5AC expression. J Cell Physiol 2018; 234:5842-5850. [PMID: 29215731 DOI: 10.1002/jcp.26359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/02/2017] [Indexed: 01/22/2023]
Abstract
This study was conducted to investigate whether eucalyptol plays a role in influencing bacterial growth in cigarette smoke-exposed lungs. Rats were exposed to air (control) and cigarette smoke (smoking) in the presence and absence of eucalyptol (260 mg/day). Morphological analysis of lung structures and status of airway mucous production were observed under microscope. Pathological changes of ciliated columnar epithelium in airways were examined using transmission electron microscopy. MUC5AC protein and messenger RNA (mRNA) expression in bronchoalveolar lavage fluid (BALF) and lungs were determined. Application of eucalyptol reduced pulmonary bullae formation and airway mucus overproduction in the smoke-exposed lungs. Treatment with eucalyptol attenuated ciliated cell damage in cigarette smoke-exposed lungs. Bacterial colonies of lungs were obviously lower in the eucalyptol-treated rats than that in the smoking rats (p < 0.01). Treatment with eucalyptol reduced the counts of bacterial colonization residing in the challenged lungs (p < 0.01). Application of eucalyptol not only decreased MUC5AC protein expression in BALF and tobacco-exposed lungs but also suppressed its mRNA expression in the lungs (all p < 0.05). Intervention of eucalyptol benefits elimination of bacterial organisms from tobacco-exposed lungs through attenuating ciliated cell damage and suppressing MUC5AC expression in the lungs.
Collapse
Affiliation(s)
- Na Yu
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Tian Sun
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin-Ming Su
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Environment and Health Research Center, China Medical University, Shenyang, Liaoning, China
| | - Bing Dai
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Kang
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
41
|
Wu Y, Li Y, Wang B, He X, Li Y, Wu B, Yu G, Wang H, Xu B. Role of p62/SQSTM1 in lipopolysaccharide (LPS)-induced mucus hypersecretion in bronchial epithelial cells. Life Sci 2018; 211:270-278. [DOI: 10.1016/j.lfs.2018.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
|
42
|
Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease. Biochem Soc Trans 2018; 46:707-719. [PMID: 29802217 DOI: 10.1042/bst20170455] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers. In addition to modulated levels of mucin gene transcription, translational and post-translational biosynthetic processes also exert significant influence upon mucin function. Mucins are massive macromolecules with numerous functional domains that contribute to their structural composition and biophysical properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. Glycosylation is a defining process for mucins that is specific with respect to additions of glycans to mucin apoprotein backbones, and glycan additions influence the physical properties of the mucins via structural modifications as well as charge interactions. Ultimately, through their tight regulation and complex assembly, airway mucins follow the biological rule of 'form fits function' in that their structural organization influences their role in lung homeostatic mechanisms.
Collapse
|
43
|
Um SW, Kim Y, Lee BB, Kim D, Lee KJ, Kim HK, Han J, Kim H, Shim YM, Kim DH. Genome-wide analysis of DNA methylation in bronchial washings. Clin Epigenetics 2018; 10:65. [PMID: 29796116 PMCID: PMC5960087 DOI: 10.1186/s13148-018-0498-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/03/2022] Open
Abstract
Background The objective of this study was to discover DNA methylation biomarkers for detecting non-small lung cancer (NSCLC) in bronchial washings and understanding the association between DNA methylation and smoking cessation. Methods DNA methylation was analyzed in bronchial washing samples from 70 NSCLCs and 53 hospital-based controls using Illumina HumanMethylation450K BeadChip. Methylation levels in these bronchial washings were compared to those in 897 primary lung tissues of The Cancer Genome Atlas (TCGA) data. Results Twenty-four CpGs (p < 1.03E−07) were significantly methylated in bronchial washings from 70 NSCLC patients compared to those from 53 controls. The CpGs also had significant methylation in the TCGA cohort. The 123 participants were divided into a training set (N = 82) and a test set (N = 41) to build a classification model. Logistic regression model showed the best performance for classification of lung cancer in bronchial washing samples: the sensitivity and specificity of a marker panel consisting of seven CpGs in TFAP2A, TBX15, PHF11, TOX2, PRR15, PDGFRA, and HOXA11 genes were 87.0 and 83.3% in the test set, respectively. The area under the curve (AUC) was equal to 0.87 (95% confidence interval = 0.73–0.96, p < 0.001). Methylation levels of two CpGs in RUNX3 and MIR196A1 genes were inversely associated with duration of smoking cessation in the controls, but not in NSCLCs, after adjusting for pack-years of smoking. Conclusions The present study suggests that NSCLC may be detected by analyzing methylation changes of seven CpGs in bronchial washings. Furthermore, smoking cessation may lead to decreased DNA methylation in nonmalignant bronchial epithelial cells in a gene-specific manner. Electronic supplementary material The online version of this article (10.1186/s13148-018-0498-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sang-Won Um
- 1Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Bo Bin Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Dongho Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Kyung-Jong Lee
- 1Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Hong Kwan Kim
- 3Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Joungho Han
- 4Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Hojoong Kim
- 1Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Young Mog Shim
- 3Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea.,Samsung Medical Center, Research Institute for Future Medicine, #50 Ilwon-dong, Kangnam-gu, Professor Rm #5, Seoul, 135-710 South Korea
| |
Collapse
|
44
|
Kopa PN, Pawliczak R. Effect of smoking on gene expression profile – overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol Mech Methods 2018; 28:397-409. [DOI: 10.1080/15376516.2018.1461289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulina Natalia Kopa
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
45
|
Savin Z, Kivity S, Yonath H, Yehuda S. Smoking and the intestinal microbiome. Arch Microbiol 2018; 200:677-684. [DOI: 10.1007/s00203-018-1506-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/07/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022]
|
46
|
Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S, Rebuli ME, Haridass P, Alexis NE, Jaspers I, Kesimer M. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med 2018; 197:492-501. [PMID: 29053025 PMCID: PMC5821909 DOI: 10.1164/rccm.201708-1590oc] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022] Open
Abstract
RATIONALE E-cigarettes have become increasingly popular and little is known about their potential adverse health effects. OBJECTIVES To determine the effects of e-cigarette use on the airways. METHODS Induced sputum samples from cigarette smokers, e-cigarette users, and nonsmokers were analyzed by quantitative proteomics, and the total and individual concentrations of mucins MUC5AC and MUC5B were determined by light scattering/refractometry and labeled mass spectrometry, respectively. Neutrophil extracellular trap (NET) formation rates were also determined for the same groups. MEASUREMENTS AND MAIN RESULTS E-cigarette users exhibited significant increases in aldehyde-detoxification and oxidative stress-related proteins associated with cigarette smoke compared with nonsmokers. The levels of innate defense proteins associated with chronic obstructive pulmonary disease, such as elastase and matrix metalloproteinase-9, were significantly elevated in e-cigarette users as well. E-cigarette users' sputum also uniquely exhibited significant increases in neutrophil granulocyte-related and NET-related proteins, such as myeloperoxidase, azurocidin, and protein-arginine deiminase 4, despite no significant elevation in neutrophil cell counts. Peripheral neutrophils from e-cigarette users showed increased susceptibility to phorbol 12-myristate 13-acetate-induced NETosis. Finally, a compositional change in the gel-forming building blocks of airway mucus (i.e., an elevated concentration of mucin MUC5AC) was observed in both cigarette smokers and e-cigarette users. CONCLUSIONS Together, our results indicate that e-cigarette use alters the profile of innate defense proteins in airway secretions, inducing similar and unique changes relative to cigarette smoking. These data challenge the concept that e-cigarettes are a healthier alternative to cigarettes.
Collapse
Affiliation(s)
- Boris Reidel
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Giorgia Radicioni
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Phillip W. Clapp
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amina A. Ford
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Sabri Abdelwahab
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Meghan E. Rebuli
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Neil E. Alexis
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
47
|
Liang Y, Liu KWK, Yeung SC, Li X, Ip MSM, Mak JCW. (-)-Epigallocatechin-3-gallate Reduces Cigarette Smoke-Induced Airway Neutrophilic Inflammation and Mucin Hypersecretion in Rats. Front Pharmacol 2017; 8:618. [PMID: 28932196 PMCID: PMC5592236 DOI: 10.3389/fphar.2017.00618] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Cigarette smoking is the leading cause of chronic obstructive pulmonary disease. (-)-Epigallocatechin-3-gallate (EGCG), the major catechins in Chinese green tea, has been studied for its anti-oxidative and anti-inflammatory properties in cell and animal models. In this study, we aimed to analyze the effects of EGCG on cigarette smoke (CS)-induced airway inflammation and mucus secretion in the CS-exposed rat model. Methods: Male Sprague-Dawley rats were randomly divided into either sham air (SA) or CS exposure. EGCG (50 mg/kg b.wt.) was given by oral gavage every other day in both SA and CS-exposed animals. Oxidative stress and inflammatory markers were determined in serum and/or bronchoalveolar lavage fluid by biochemical assays or ELISA. Lung morphological changes were examined by Periodic Acid-Schiff, Masson's Trichrome staining and immunohistochemical analysis. Western blot analysis was performed to explore the effects of EGCG on epidermal growth factor receptor (EGFR)-mediated signaling pathway. Results: (-)-Epigallocatechin-3-gallate treatment attenuated CS-induced oxidative stress, lung cytokine-induced neutrophil chemoattractant-1 release and neutrophil recruitment. CS exposure caused an increase in the number of goblet cells in line with MUC5AC upregulation, and increased lung collagen deposition, which were alleviated in the presence of EGCG. In addition, CS-induced phosphorylation of EGFR in rat lung was abrogated by EGCG treatment. Conclusion: (-)-Epigallocatechin-3-gallate treatment ameliorated CS-induced oxidative stress and neutrophilic inflammation, as well as airway mucus production and collagen deposition in rats. The present findings suggest that EGCG has a therapeutic effect on chronic airway inflammation and abnormal airway mucus production probably via inhibition of EGFR signaling pathway.
Collapse
Affiliation(s)
- Yingmin Liang
- Department of Medicine, The University of Hong KongPokfulam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPokfulam, Hong Kong
| | - Kenneth W K Liu
- Department of Medicine, The University of Hong KongPokfulam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPokfulam, Hong Kong
| | - Sze C Yeung
- Department of Medicine, The University of Hong KongPokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPokfulam, Hong Kong
| | - Xiang Li
- Department of Medicine, The University of Hong KongPokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPokfulam, Hong Kong
| | - Mary S M Ip
- Department of Medicine, The University of Hong KongPokfulam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPokfulam, Hong Kong
| | - Judith C W Mak
- Department of Medicine, The University of Hong KongPokfulam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPokfulam, Hong Kong.,Department of Pharmacology and Pharmacy, The University of Hong KongPokfulam, Hong Kong
| |
Collapse
|
48
|
Mizuno S, Ishizaki T, Kadowaki M, Akai M, Shiozaki K, Iguchi M, Oikawa T, Nakagawa K, Osanai K, Toga H, Gomez-Arroyo J, Kraskauskas D, Cool CD, Bogaard HJ, Voelkel NF. p53 Signaling Pathway Polymorphisms Associated With Emphysematous Changes in Patients With COPD. Chest 2017; 152:58-69. [PMID: 28315337 DOI: 10.1016/j.chest.2017.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/10/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The p53 signaling pathway may be important for the pathogenesis of emphysematous changes in the lungs of smokers. Polymorphism of p53 at codon 72 is known to affect apoptotic effector proteins, and the polymorphism of mouse double minute 2 homolog (MDM2) single nucleotide polymorphism (SNP)309 is known to increase MDM2 expression. The aim of this study was to assess polymorphisms of the p53 and MDM2 genes in smokers and confirm the role of SNPs in these genes in the pathogenesis of pulmonary emphysema. METHODS This study included 365 patients with a smoking history, and the polymorphisms of p53 and MDM2 genes were identified. The degree of pulmonary emphysema was determined by means of CT scanning. SNPs, MDM2 mRNA, and p53 protein levels were assessed in human lung tissues from smokers. Plasmids encoding p53 and MDM2 SNPs were used to transfect human lung fibroblasts (HLFs) with or without cigarette smoke extract (CSE), and the effects on cell proliferation and MDM2 promoter activity were measured. RESULTS The polymorphisms of the p53 and MDM2 genes were associated with emphysematous changes in the lung and were also associated with p53 protein and MDM2 mRNA expression in the lung tissue samples. Transfection with a p53 gene-coding plasmid regulated HLF proliferation, and the analysis of P2 promoter activity in MDM2 SNP309-coding HLFs showed the promoter activity was altered by CSE. CONCLUSIONS Our data demonstrated that p53 and MDM2 gene polymorphisms are associated with apoptotic signaling and smoking-related emphysematous changes in lungs from smokers.
Collapse
Affiliation(s)
- Shiro Mizuno
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Takeshi Ishizaki
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Maiko Kadowaki
- Department of Respiratory Medicine, University of Fukui, Fukui, Japan
| | - Masaya Akai
- Department of Respiratory Medicine, Fukui Red Cross Hospital, Fukui, Japan
| | - Kohei Shiozaki
- Department of Respiratory Medicine, Fukui Red Cross Hospital, Fukui, Japan
| | - Masaharu Iguchi
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Taku Oikawa
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Ken Nakagawa
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Hirohisa Toga
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Donatas Kraskauskas
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado Health Science Center, Lung Tissue Repository Consortium Repository, Aurora, CO
| | | | - Norbert F Voelkel
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
49
|
Breast tumor DNA methylation patterns associated with smoking in the Carolina Breast Cancer Study. Breast Cancer Res Treat 2017; 163:349-361. [PMID: 28275920 DOI: 10.1007/s10549-017-4178-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/26/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Tobacco smoking is a risk factor in several cancers, yet its roles as a putative etiologic exposure or poor prognostic factor in breast cancer are less clear. Altered DNA methylation contributes to breast cancer development and may provide a mechanistic link between smoking and gene expression changes leading to cancer development or progression. METHODS Using a cancer-focused array, we examined methylation at 933 CpGs in 517 invasive breast tumors in the Carolina Breast Cancer Study to determine whether methylation patterns differ by exposure to tobacco smoke. Multivariable generalized linear regression models were used to compare tumor methylation profiles between smokers and never smokers, overall, or stratified on hormone receptor (HR) status. RESULTS Modest differences in CpG methylation were detected at p < 0.05 in breast tumors from current or ever smokers compared with never smokers. In stratified analyses, HR- tumors from smokers exhibited primarily hypomethylation compared with tumors from never smokers; hypomethylation was similarly detected within the more homogeneous basal-like subtype. Most current smoking-associated CpG loci exhibited methylation levels in former smokers that were intermediate between those in current and never smokers and exhibited progressive changes in methylation with increasing duration of smoking. Among former smokers, restoration of methylation toward baseline (never smoking) levels was observed with increasing time since quitting. Moreover, smoking-related hypermethylation was stronger in HR+ breast tumors from blacks than in whites. CONCLUSIONS Our results suggest that breast tumor methylation patterns differ with tobacco smoke exposure; however, additional studies are needed to confirm these findings.
Collapse
|
50
|
Luettich K, Talikka M, Lowe FJ, Haswell LE, Park J, Gaca MD, Hoeng J. The Adverse Outcome Pathway for Oxidative Stress-Mediated EGFR Activation Leading to Decreased Lung Function. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| |
Collapse
|