1
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
2
|
Pan L, Qian J, Liu H, Tan B, Dong X, Yang Q, Chi S, Zhang S. Implications on growth performance, glucose metabolism, PI 3K/AKT pathway, intestinal flora induced by dietary taurine in a high-carbohydrate diet for grass carp ( Ctenopharyngodon idella). Br J Nutr 2024; 131:27-40. [PMID: 37492950 DOI: 10.1017/s0007114523001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
An 8-week experiment was performed to investigate the influence on growth performance, plasma biochemistry, glucose metabolism and the insulin pathway of supplementation of dietary taurine to a high-carbohydrate diet for grass carp. In this study, fish were fed diets at one of two carbohydrate levels, 31·49 % (positive control) or 38·61 % (T00). The high-carbohydrate basal diet (T00), without taurine, was supplemented with 0·05 % (T05), 0·10 % (T10), 0·15 % (T15) or 0·20 % (T20) taurine, resulting in six isonitrogenous (30·37 %) and isolipidic (2·37 %) experimental diets. The experimental results showed that optimal taurine level improved significantly weight gain, specific growth rate (SGR), feed utilisation, reduced plasma total cholesterol levels, TAG and promoted insulin-like growth factor level. Glucokinase, pyruvate kinase and phosphoenolpyruvate carboxykinase activities showed a quadratic function model with increasing dietary taurine level, while hexokinase, fatty acid synthetase activities exhibited a positive linear trend. Optimal taurine supplementation in high-carbohydrate diet upregulated insulin receptor (Ir), insulin receptor substrate (Irs1), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt1), glycogen synthase kinase 3 β (gs3kβ) mRNA level and downregulated insulin-like growth factor (igf-1), insulin-like growth factor 1 receptor (igf-1R) and Fork head transcription factor 1 (foxo1) mRNA level. The above results suggested that optimal taurine level could improve growth performance, hepatic capacity for glycolipid metabolism and insulin sensitivity, thus enhancing the utilisation of carbohydrates in grass carp. Based on SGR, dietary optimal tributyrin taurine supplementation in grass carp was estimated to be 0·08 %.
Collapse
Affiliation(s)
- Ling Pan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Jiahao Qian
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Yang C, Wei M, Zhao Y, Yang Z, Song M, Mi J, Yang X, Tian G. Regulation of insulin secretion by the post-translational modifications. Front Cell Dev Biol 2023; 11:1217189. [PMID: 37601108 PMCID: PMC10436566 DOI: 10.3389/fcell.2023.1217189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Post-translational modification (PTM) has a significant impact on cellular signaling and function regulation. In pancreatic β cells, PTMs are involved in insulin secretion, cell development, and viability. The dysregulation of PTM in β cells is clinically associated with the development of diabetes mellitus. Here, we summarized current findings on major PTMs occurring in β cells and their roles in insulin secretion. Our work provides comprehensive insight into understanding the mechanisms of insulin secretion and potential therapeutic targets for diabetes from the perspective of protein PTMs.
Collapse
Affiliation(s)
- Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Yanpu Zhao
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Zhanyi Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengyao Song
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoyong Yang
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Yang ML, Horstman S, Gee R, Guyer P, Lam TT, Kanyo J, Perdigoto AL, Speake C, Greenbaum CJ, Callebaut A, Overbergh L, Kibbey RG, Herold KC, James EA, Mamula MJ. Citrullination of glucokinase is linked to autoimmune diabetes. Nat Commun 2022; 13:1870. [PMID: 35388005 PMCID: PMC8986778 DOI: 10.1038/s41467-022-29512-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, including reactive oxygen species and inflammatory cytokines in tissues amplify various post-translational modifications of self-proteins. A number of post-translational modifications have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes. Here we show the citrullination of pancreatic glucokinase as a result of inflammation, triggering autoimmunity and affecting glucokinase biological functions. Glucokinase is expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells as a glucose sensor to initiate glycolysis and insulin signaling. We identify autoantibodies and autoreactive CD4+ T cells to glucokinase epitopes in the circulation of Type 1 diabetes patients and NOD mice. Finally, citrullination alters glucokinase biologic activity and suppresses glucose-stimulated insulin secretion. Our study define glucokinase as a Type 1 diabetes biomarker, providing new insights of how inflammation drives post-translational modifications to create both neoautoantigens and affect beta cell metabolism.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Sheryl Horstman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Renelle Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Ana L Perdigoto
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Richard G Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Mei L, Qv M, Bao H, He Q, Xu Y, Zhang Q, Shi W, Ren Q, Yan Z, Xu C, Tang C, Hussain M, Zeng LH, Wu X. SUMOylation activates large tumour suppressor 1 to maintain the tissue homeostasis during Hippo signalling. Oncogene 2021; 40:5357-5366. [PMID: 34267330 DOI: 10.1038/s41388-021-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Large tumour suppressor (LATS) 1/2, the core kinases of Hippo signalling, are critical for maintaining tissue homeostasis. Here, we investigate the role of SUMOylation in the regulation of LATS activation. High cell density induces the expression of components of the SUMOylation machinery and enhances the SUMOylation and activation of Lats1 but not Lats2, whereas genetic deletion of the SUMOylation E2 ligase, Ubc9, abolishes this Lats1 activation. Moreover, SUMOylation occurs at the K830 (mouse K829) residue to activate LATS1 and depends on the PIAS1/2 E3 ligase. Whereas the K830 deSUMOylation mutation of LATS1 found in the human metastatic prostate cancers eliminates the kinase activity by attenuating the formation of the phospho-MOB1/phospho-LATS1 complex. As a result, the LATS1(K830R) transgene phenocopies Yap transgene to cause the oversized livers in mice, whereas Lats1(K829R) knock-in phenocopies the deletion of Lats1 in causing the reproductive and endocrine defects and ovary tumours in mice. Thus, SUMOylation-mediated LATS1 activation is an integral component of Hippo signalling in the regulation of tissues homeostasis.
Collapse
Affiliation(s)
- Liu Mei
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangyang Bao
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shi
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biology and Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Qianlei Ren
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China
| | - Ziyi Yan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Iqbal S, Pérez-Palma E, Jespersen JB, May P, Hoksza D, Heyne HO, Ahmed SS, Rifat ZT, Rahman MS, Lage K, Palotie A, Cottrell JR, Wagner FF, Daly MJ, Campbell AJ, Lal D. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Proc Natl Acad Sci U S A 2020; 117:28201-28211. [PMID: 33106425 PMCID: PMC7668189 DOI: 10.1073/pnas.2002660117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.
Collapse
Affiliation(s)
- Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142;
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
| | - Eduardo Pérez-Palma
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jakob B Jespersen
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - David Hoksza
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague 11636, Czech Republic
| | - Henrike O Heyne
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Institute for Molecular Medicine Finland, University of Helsinki, 00100 Helsinki, Finland
| | - Shehab S Ahmed
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| | - Zaara T Rifat
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| | - M Sohel Rahman
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Institute for Molecular Medicine Finland, University of Helsinki, 00100 Helsinki, Finland
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
| | - Florence F Wagner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Institute for Molecular Medicine Finland, University of Helsinki, 00100 Helsinki, Finland
| | - Arthur J Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142;
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142;
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
8
|
Li N, Zhang S, Xiong F, Eizirik DL, Wang CY. SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Semin Cell Dev Biol 2020; 103:51-58. [PMID: 32331991 DOI: 10.1016/j.semcdb.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
SUMOylation is an evolutionarily conserved post-translational modification (PTM) that regulates protein subcellular localization, stability, conformation, transcription and enzymatic activity. Recent studies indicate that SUMOylation plays a key role in insulin gene expression, glucose metabolism and insulin exocytosis under physiological conditions in the pancreatic beta cells. Furthermore, SUMOylation is implicated in beta cell survival and recovery following exposure to oxidative stress, ER stress and inflammatory mediators under pathological situations. SUMOylation is closely regulated by the cellular redox status, and it collaborates with other PTMs such as phosphorylation, ubiquitination, and NEDDylation, to maintain beta cellular homeostasis. We hereby provide an update on recent findings regarding the role of SUMOylation in the regulation of pancreatic beta cell viability and function, and discuss its potential implication in beta cell senescence and RNA processing (e.g., pre-mRNA splicing and mRNA methylation). Through which we intend to provide novel insights into this fundamental biological process regarding both maintenance of beta cell viability and functionality, and beta cell dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 808 Route de Lennik, B-1070, Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China.
| |
Collapse
|
9
|
Dardashti RN, Kumar S, Sternisha SM, Reddy PS, Miller BG, Metanis N. Selenolysine: A New Tool for Traceless Isopeptide Bond Formation. Chemistry 2020; 26:4952-4957. [PMID: 31960982 PMCID: PMC7184786 DOI: 10.1002/chem.202000310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Despite their biological importance, post-translationally modified proteins are notoriously difficult to produce in a homogeneous fashion by using conventional expression systems. Chemical protein synthesis or semisynthesis offers a solution to this problem; however, traditional strategies often rely on sulfur-based chemistry that is incompatible with the presence of any cysteine residues in the target protein. To overcome these limitations, we present the design and synthesis of γ-selenolysine, a selenol-containing form of the commonly modified proteinogenic amino acid, lysine. The utility of γ-selenolysine is demonstrated with the traceless ligation of the small ubiquitin-like modifier protein, SUMO-1, to a peptide segment of human glucokinase. The resulting polypeptide is poised for native chemical ligation and chemoselective deselenization in the presence of unprotected cysteine residues. Selenolysine's straightforward synthesis and incorporation into synthetic peptides marks it as a universal handle for conjugating any ubiquitin-like modifying protein to its target.
Collapse
Affiliation(s)
- Rebecca Notis Dardashti
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Shailesh Kumar
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Post Sai Reddy
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Lu B, Munoz-Gomez M, Ikeda Y. The two major glucokinase isoforms show conserved functionality in β-cells despite different subcellular distribution. Biol Chem 2019; 399:565-576. [PMID: 29573377 DOI: 10.1515/hsz-2018-0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
Glucokinase (GCK) is crucial to regulating glucose metabolism in the liver and in pancreatic β-cells. There are two major GCK isoforms, hepatic and pancreatic GCKs, which differ only in exon 1. However, the functional differences between the two GCK isoforms remain poorly understood. Here, we used a β-cell-targeted gene transfer vector to determine the impact of isoform-specific GCK overexpression on β-cells in vitro and in vivo. We showed that pancreatic GCK had a nuclear localization signal unique to the pancreatic isoform, facilitating its nuclear distribution in β-cells. Despite the difference in subcellular distribution, overexpression of GCK isoforms similarly enhanced glucose uptake and β-cell proliferation in vitro. Overexpression of hepatic or pancreatic GCK also similarly enhanced β-cell proliferation in normal diet mice without affecting fasting glucose and intraperitoneal glucose tolerance tests (IPGTT). Our further study on human GCK sequences identified disproportional GCK amino acid variants in exon 1, while mutations linked to maturity onset diabetes of the young type 2 (MODY2) were disproportionally found in exons 2 through 10. Our results therefore indicate functional conservation between the two major GCK isoforms despite their distinct subcellular distribution.
Collapse
Affiliation(s)
- Brian Lu
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.,Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Miguel Munoz-Gomez
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.,Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 2019; 663:199-213. [PMID: 30641049 DOI: 10.1016/j.abb.2019.01.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Glucose metabolism in humans is tightly controlled by the activity of glucokinase (GCK). GCK is predominantly produced in the pancreas, where it catalyzes the rate-limiting step of insulin secretion, and in the liver, where it participates in glycogen synthesis. A multitude of disease-causing mutations within the gck gene have been identified. Activating mutations manifest themselves in the clinic as congenital hyperinsulinism, while loss-of-function mutations produce several diabetic conditions. Indeed, pharmaceutical companies have shown great interest in developing GCK-associated treatments for diabetic patients. Due to its essential role in maintaining whole-body glucose homeostasis, GCK activity is extensively regulated at multiple levels. GCK possesses a unique ability to self-regulate its own activity via slow conformational dynamics, which allows for a cooperative response to glucose. GCK is also subject to a number of protein-protein interactions and post-translational modification events that produce a broad range of physiological consequences. While significant advances in our understanding of these individual regulatory mechanisms have been recently achieved, how these strategies are integrated and coordinated within the cell is less clear. This review serves to synthesize the relevant findings and offer insights into the connections between molecular and cellular control of GCK.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
12
|
Oral formulation of DPP-4 inhibitor plus Quercetin improves metabolic homeostasis in type 1 diabetic rats. Sci Rep 2018; 8:15310. [PMID: 30333575 PMCID: PMC6192983 DOI: 10.1038/s41598-018-33727-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
This study aimed to investigate the potential of an oral formulation (QV formulation) containing Quercetin and a Dipeptidyl Peptidase-4 Inhibitor (DPP-4 inhibitor), Vildagliptin, in improving metabolic homeostasis in type 1 diabetes model. Female albino Fischer rats were divided into four groups: untreated control animals (C), untreated diabetic animals (D), diabetic animals treated with QV formulation (DQV), and diabetic animals treated with insulin (DI). Diabetes was induced by injection of alloxan (135 mg kg body mass)-1 and confirmed by glycemic test. After the 30-day treatment period, biochemical parameters were analyzed in the pancreas, liver, and serum. Histopathological changes in pancreatic tissue were examined by Hematoxyline & Eosin staining and the insulin content in the islet measured by immunohistochemistry with anti-insulin antibody. The glycogen content in the hepatocytes was quantified by Periodic Schiff Acid staining. The QV formulation reduced the glycemia, preserved the pancreatic architecture, increased insulin levels, furthermore ameliorated lipid profile and to promote higher survival rate of animals. Together, our data suggest that the QV formulation treatment was able to normalize metabolic homeostasis in type 1 diabetic rats.
Collapse
|
13
|
The E3 SUMO ligase PIASγ is a novel interaction partner regulating the activity of diabetes associated hepatocyte nuclear factor-1α. Sci Rep 2018; 8:12780. [PMID: 30143652 PMCID: PMC6109179 DOI: 10.1038/s41598-018-29448-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
The transcription factor hepatocyte nuclear factor-1α (HNF-1A) is involved in normal pancreas development and function. Rare variants in the HNF1A gene can cause monogenic diabetes, while common variants confer type 2 diabetes risk. The precise mechanisms for regulation of HNF-1A, including the role and function of post-translational modifications, are still largely unknown. Here, we present the first evidence for HNF-1A being a substrate of SUMOylation in cellulo and identify two lysine (K) residues (K205 and K273) as SUMOylation sites. Overexpression of protein inhibitor of activated STAT (PIASγ) represses the transcriptional activity of HNF-1A and is dependent on simultaneous HNF-1A SUMOylation at K205 and K273. Moreover, PIASγ is a novel HNF-1A interaction partner whose expression leads to translocation of HNF-1A to the nuclear periphery. Thus, our findings support that the E3 SUMO ligase PIASγ regulates HNF-1A SUMOylation with functional implications, representing new targets for drug development and precision medicine in diabetes.
Collapse
|
14
|
He X, Lai Q, Chen C, Li N, Sun F, Huang W, Zhang S, Yu Q, Yang P, Xiong F, Chen Z, Gong Q, Ren B, Weng J, Eizirik DL, Zhou Z, Wang CY. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function. Diabetologia 2018; 61:881-895. [PMID: 29299635 DOI: 10.1007/s00125-017-4523-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Post-translational attachment of a small ubiquitin-like modifier (SUMO) to the lysine (K) residue(s) of target proteins (SUMOylation) is an evolutionary conserved regulatory mechanism. This modification has previously been demonstrated to be implicated in the control of a remarkably versatile regulatory mechanism of cellular processes. However, the exact regulatory role and biological actions of the E2 SUMO-conjugating enzyme (UBC9)-mediated SUMOylation function in pancreatic beta cells has remained elusive. METHODS Inducible beta cell-specific Ubc9 (also known as Ube2i) knockout (KO; Ubc9Δbeta) and transgenic (Ubc9Tg) mice were employed to address the impact of SUMOylation on beta cell viability and functionality. Ubc9 deficiency or overexpression was induced at 8 weeks of age using tamoxifen. To study the mechanism involved, we closely examined the regulation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) through SUMOylation in beta cells. RESULTS Upon induction of Ubc9 deficiency, Ubc9Δbeta islets exhibited a 3.5-fold higher accumulation of reactive oxygen species (ROS) than Ubc9f/f control islets. Islets from Ubc9Δbeta mice also had decreased insulin content and loss of beta cell mass after tamoxifen treatment. Specifically, at day 45 after Ubc9 deletion only 40% of beta cell mass remained in Ubc9Δbeta mice, while 90% of beta cell mass was lost by day 75. Diabetes onset was noted in some Ubc9Δbeta mice 8 weeks after induction of Ubc9 deficiency and all mice developed diabetes by 10 weeks following tamoxifen treatment. In contrast, Ubc9Tg beta cells displayed an increased antioxidant ability but impaired insulin secretion. Unlike Ubc9Δbeta mice, which spontaneously developed diabetes, Ubc9Tg mice preserved normal non-fasting blood glucose levels without developing diabetes. It was noted that SUMOylation of NRF2 promoted its nuclear expression along with enhanced transcriptional activity, thereby preventing ROS accumulation in beta cells. CONCLUSIONS/INTERPRETATION SUMOylation function is required to protect against oxidative stress in beta cells; this mechanism is, at least in part, carried out by the regulation of NRF2 activity to enhance ROS detoxification. Homeostatic SUMOylation is also likely to be essential for maintaining beta cell functionality.
Collapse
Affiliation(s)
- Xiaoyu He
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qiaohong Lai
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Cai Chen
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wenting Huang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qilin Yu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Zhishui Chen
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Quan Gong
- Medical College of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Boxu Ren
- Medical College of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Zhiguang Zhou
- Diabetes Center, The Second Xiangya Hospital, Institute of Metabolism and Endocrinology, Central South University, Changsha, 410011, People's Republic of China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
15
|
MacDonald PE. A post-translational balancing act: the good and the bad of SUMOylation in pancreatic islets. Diabetologia 2018; 61:775-779. [PMID: 29330559 DOI: 10.1007/s00125-017-4543-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
Abstract
Post-translational modification of proteins contributes to the control of cell function and survival. The balance of these in insulin-producing pancreatic beta cells is important for the maintenance of glucose homeostasis. Protection from the damaging effects of reactive oxygen species is required for beta cell survival, but if this happens at the expense of insulin secretory function then the ability of islets to respond to changing metabolic conditions may be compromised. In this issue of Diabetologia, He et al ( https://doi.org/10.1007/s00125-017-4523-9 ) show that post-translational attachment of small ubiquitin-like modifier (SUMO) to target lysine residues (SUMOylation) strikes an important balance between the protection of beta cells from oxidative stress and the maintenance of insulin secretory function. They show that SUMOylation is required to stabilise nuclear factor erythroid 2-related factor 2 (NRF2) and increase antioxidant gene expression. Decreasing SUMOylation in beta cells impairs their antioxidant capacity, causes cell death, hyperglycaemia, and increased sensitivity to streptozotocin-induced diabetes, while increasing SUMOylation is protective. However, this protection from overt diabetes occurs in concert with glucose intolerance due to impaired beta cell function. A possible role for SUMOylation as a key factor balancing beta cell protection vs beta cell responsiveness to metabolic cues is discussed in this Commentary.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Alberta Diabetes Institute, LKS Centre, Rm. 6-126, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
16
|
Johansson BB, Fjeld K, Solheim MH, Shirakawa J, Zhang E, Keindl M, Hu J, Lindqvist A, Døskeland A, Mellgren G, Flatmark T, Njølstad PR, Kulkarni RN, Wierup N, Aukrust I, Bjørkhaug L. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation. Mol Cell Endocrinol 2017. [PMID: 28648619 DOI: 10.1016/j.mce.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal (30LKKVMRR36) in the human enzyme. Substituting the residues KK31,32 and RR35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell.
Collapse
Affiliation(s)
- Bente Berg Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marie Holm Solheim
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| | - Jun Shirakawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA; Department of Endocrinology and Metabolism, Yokohama City University, Yokohama, Japan
| | | | - Magdalena Keindl
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | | | - Anne Døskeland
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Norway
| | - Gunnar Mellgren
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Pål Rasmus Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - Nils Wierup
- Lund University Diabetes Centre, Malmö, Sweden
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biomedical Laboratory Sciences and Chemical Engineering, Western Norway University of Applied Sciences, Bergen, Norway.
| |
Collapse
|
17
|
Martins Peçanha FL, Dos Santos RS, da-Silva WS. Thyroid states regulate subcellular glucose phosphorylation activity in male mice. Endocr Connect 2017; 6:311-322. [PMID: 28483784 PMCID: PMC5510448 DOI: 10.1530/ec-17-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK) is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 µg/g, i.p. during 21 days) mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10), gastrocnemius (369.2% ± 112.4, n = 10) and heart (142.2% ± 13.6, n = 10) muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 µg/g, i.p.) did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways.
Collapse
Affiliation(s)
- Flavia Letícia Martins Peçanha
- Instituto de Bioquímica Médica Leopoldo de MeisLaboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Reinaldo Sousa Dos Santos
- Instituto de Bioquímica Médica Leopoldo de MeisLaboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Seixas da-Silva
- Instituto de Bioquímica Médica Leopoldo de MeisLaboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
A functional SUMO-motif in the active site of PIM1 promotes its degradation via RNF4, and stimulates protein kinase activity. Sci Rep 2017; 7:3598. [PMID: 28620180 PMCID: PMC5472562 DOI: 10.1038/s41598-017-03775-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/04/2017] [Indexed: 11/09/2022] Open
Abstract
The PIM1 serine/threonine protein kinase mediates growth factor and survival signalling, and cooperates potently with c-MYC during tumorigenesis. PIM1 is overexpressed in many human cancers and is a promising target for drug development. PIM1 levels are regulated mainly through cytokine-induced transcription and protein degradation, but mechanisms regulating its activity and levels remain largely unexplored. Here, we show that PIM1 is modified in vitro and in cultured cells by the Small ubiquitin-like modifier (SUMO) on two independent sites: K169, within a consensus SUMOylation motif (IK169DE171) in the active site of PIM1, and also at a second promiscuous site. Alanine substitution of E171 (within the consensus motif) abolished SUMOylation, significantly increased the half-life of PIM1, and markedly reduced its ubiquitylation. Mechanistically, SUMOylation promoted ubiquitin-mediated degradation of PIM1 via recruitment of the SUMO-targeted ubiquitin ligase, RNF4. Additionally, SUMOylated PIM1 showed enhanced protein kinase activity in vitro. Interestingly, the E171A mutant was active in vitro but displayed altered substrate specificity in cultured cells, consistent with the idea that SUMOylation may govern PIM1 substrate specificity under certain contexts. Taken together, these data demonstrate that the protein kinase activity and levels of PIM1 can be regulated by a covalent post-translational modification.
Collapse
|
19
|
Liver glucose metabolism in humans. Biosci Rep 2016; 36:BSR20160385. [PMID: 27707936 PMCID: PMC5293555 DOI: 10.1042/bsr20160385] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP–galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis).
Collapse
|
20
|
SUMOylation of large tumor suppressor 1 at Lys751 attenuates its kinase activity and tumor-suppressor functions. Cancer Lett 2016; 386:1-11. [PMID: 27847303 DOI: 10.1016/j.canlet.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Large tumor suppressor (Lats) plays a critical role in maintaining cellular homeostasis and is the core to mediate Hippo growth-inhibitory signaling pathway. SUMOylation is a reversible and dynamic process that regulates a variety of cell functions. Here, we show that SUMOylation of Lats1 affects its kinase activity specifically towards Hippo signaling. Small ubiquitin-like modifier (SUMO) 1 interacts with and directly SUMOylates Lats1, whereas loss of SUMOylation pathway function disrupts Lats1 SUMOylation. Among potential SUMOylation sites on hLats1, K751 and K830 are conversed and essential for maintaining the transcriptional output of Hippo signaling, whereas K751 mutation more significantly abolishes SUMO1-induced Lats1 SUMOylation than K830 mutation. Though Lats1 SUMOylation at K751 affects neither its subcellular distribution nor its interactions with YAP and TAZ, it significantly destabilizes the phosphorylated Lats1 (Thr1079 but not Ser909), resulting in the attenuation of Lats1 kinase activity and inhibition of Hippo signaling. Moreover, HepG2 hepatocellular carcinoma cells express significantly more SUMOylated Lats1 than LO2 normal human hepatic cells, and in HepG2 cells or HepG2 cells xenografts, Lats1 SUMOylation at K751 consistently attenuates Lats1 kinase activity and subsequently suppresses Hippo signaling, resulting in not only the promotion of cell proliferation and colony formation but also the suppression of cell apoptosis. Together, we demonstrate that Lats1 SUMOylation at K751 suppresses its kinase activity and subsequently attenuates its tumor-suppressor functions. Thus, this study provides additional insight into how Hippo signaling is regulated and highlights the potentially critical role of Lats1 SUMOylation in tumor development.
Collapse
|
21
|
Jung HS, Kang YM, Park HS, Ahn BY, Lee H, Kim MJ, Jang JY, Kim SW. Senp2 expression was induced by chronic glucose stimulation in INS1 cells, and it was required for the associated induction of Ccnd1 and Mafa. Islets 2016; 8:207-216. [PMID: 27644314 PMCID: PMC5161141 DOI: 10.1080/19382014.2016.1235677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Post-translational modification by bonding of small ubiquitin-like modifier (SUMO) peptides influences various cellular functions, and is regulated by SUMO-specific proteases (SENPs). Several proteins have been suggested to have diverse impact on insulin synthesis and secretion through SUMO modification in β cells. However, the role of SUMO modification in β cell mass has not been established. Here, we examined the changes in expression of Senp in INS1 cells and pancreatic islets under diabetes-relevant stress conditions and associated changes in β cell mass. Treatment with 25 mM glucose for 72 h induced Senp2 mRNA expression but not that of Senp1 in INS1 cells. Immunohistochemical staining with anti-SENP2 antibody on human pancreas sections revealed that SENP2 was localized in the nucleus. Moreover, in a patient with type 2 diabetes, SENP2 levels were enhanced, especially in the cytoplasm. Senp2 cytoplasmic levels were also increased in islet cells in obese diabetic mice. Cell number peaked earlier in INS1 cells cultured in high-glucose conditions compared to those cultured in control media. This finding was associated with increased Ccnd1 mRNA expression in high-glucose conditions, and siRNA-mediated Senp2 suppression abrogated it. Mafa expression, unlike Pdx1, was also dependent on Senp2 expression during high-glucose conditions. In conclusion, Senp2 may play a role in β cell mass in response to chronic high-glucose through Cyclin D1 and Mafa.
Collapse
Affiliation(s)
- Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
- CONTACT Hye Seung Jung Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yu Mi Kang
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
| | - Ho Seon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung Yong Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hakmo Lee
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
| | - Min Joo Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Whe Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Xin Y, Okamoto H, Kim J, Ni M, Adler C, Cavino K, Na E, Murphy AJ, Yancopoulos GD, Lin C, Gromada J. Single-Cell RNAseq Reveals That Pancreatic β-Cells From Very Old Male Mice Have a Young Gene Signature. Endocrinology 2016; 157:3431-8. [PMID: 27466694 DOI: 10.1210/en.2016-1235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aging improves pancreatic β-cell function in mice. This is a surprising finding because aging is typically associated with functional decline. We performed single-cell RNA sequencing of β-cells from 3- and 26-month-old mice to explore how changes in gene expression contribute to improved function with age. The old mice were healthy and had reduced blood glucose levels and increased β-cell mass, which correlated to their body weight. β-Cells from young and old mice had similar transcriptome profiles. In fact, only 193 genes (0.89% of all detected genes) were significantly regulated (≥2-fold; false discovery rate < 0.01; normalized counts > 5). Of these, 183 were down-regulated and mainly associated with pathways regulating gene expression, cell cycle, cell death, and survival as well as cellular movement, function, and maintenance. Collectively our data show that β-cells from very old mice have transcriptome profiles similar to those of young mice. These data support previous findings that aging is not associated with reduced β-cell mass or functional β-cell decline in mice.
Collapse
Affiliation(s)
- Yurong Xin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Min Ni
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | - Katie Cavino
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Erqian Na
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | | | - Calvin Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| |
Collapse
|
23
|
Choi HJ, Park JH, Park JH, Lee KB, Oh SM. Pc2-mediated SUMOylation of WWOX is essential for its suppression of DU145 prostate tumorigenesis. FEBS Lett 2015; 589:3977-88. [PMID: 26592150 DOI: 10.1016/j.febslet.2015.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
Abstract
Tumor suppressor WW domain-containing oxidoreductase (WWOX) is depleted in various cancer types. Here we report that WWOX is modified by small ubiquitin-like modifier (SUMO) proteins and represses DU145 prostate cancer tumorigenesis in a SUMOylation-dependent manner. Ectopic WWOX was shown to associate with SUMO2/3 or E2 Ubc9. Furthermore, we revealed that WWOX SUMOylation was promoted by E3 ligase polycomb2 (Pc2), and that WWOX associated with Pc2. Meanwhile, anisomycin-induced activator protein-1 (AP-1) activity was markedly diminished by co-expression of SUMO and WWOX. Also, WWOX wild type (WT), but not WWOX SUMO mutant (K176A) markedly reduced both DU145 prostate cancer cell proliferation and xenograft tumorigenesis. Collectively, our findings demonstrate that SUMO modification of WWOX is essential for its suppressive activity for DU145 prostate cancer tumorigenesis.
Collapse
Affiliation(s)
- Hye-Jin Choi
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-832, Republic of Korea
| | - Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-832, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kyung Bok Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-832, Republic of Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-832, Republic of Korea.
| |
Collapse
|
24
|
Ferdaoussi M, Dai X, Jensen MV, Wang R, Peterson BS, Huang C, Ilkayeva O, Smith N, Miller N, Hajmrle C, Spigelman AF, Wright RC, Plummer G, Suzuki K, Mackay JP, van de Bunt M, Gloyn AL, Ryan TE, Norquay LD, Brosnan MJ, Trimmer JK, Rolph TP, Kibbey RG, Manning Fox JE, Colmers WF, Shirihai OS, Neufer PD, Yeh ETH, Newgard CB, MacDonald PE. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J Clin Invest 2015; 125:3847-60. [PMID: 26389676 DOI: 10.1172/jci82498] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/24/2015] [Indexed: 01/02/2023] Open
Abstract
Insulin secretion from β cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing β cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues β cell function in T2D.
Collapse
|
25
|
Hajmrle C, Ferdaoussi M, Plummer G, Spigelman AF, Lai K, Manning Fox JE, MacDonald PE. SUMOylation protects against IL-1β-induced apoptosis in INS-1 832/13 cells and human islets. Am J Physiol Endocrinol Metab 2014; 307:E664-73. [PMID: 25139051 PMCID: PMC4200309 DOI: 10.1152/ajpendo.00168.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Posttranslational modification by the small ubiquitin-like modifier (SUMO) peptides, known as SUMOylation, is reversed by the sentrin/SUMO-specific proteases (SENPs). While increased SUMOylation reduces β-cell exocytosis, insulin secretion, and responsiveness to GLP-1, the impact of SUMOylation on islet cell survival is unknown. Mouse islets, INS-1 832/13 cells, or human islets were transduced with adenoviruses to increase either SENP1 or SUMO1 or were transfected with siRNA duplexes to knockdown SENP1. We examined insulin secretion, intracellular Ca²⁺ responses, induction of endoplasmic reticulum stress markers and inducible nitric oxide synthase (iNOS) expression, and apoptosis by TUNEL and caspase 3 cleavage. Surprisingly, upregulation of SENP1 reduces insulin secretion and impairs intracellular Ca²⁺ handling. This secretory dysfunction is due to SENP1-induced cell death. Indeed, the detrimental effect of SENP1 on secretory function is diminished when two mediators of β-cell death, iNOS and NF-κB, are pharmacologically inhibited. Conversely, enhanced SUMOylation protects against IL-1β-induced cell death. This is associated with reduced iNOS expression, cleavage of caspase 3, and nuclear translocation of NF-κB. Taken together, these findings identify SUMO1 as a novel antiapoptotic protein in islets and demonstrate that reduced viability accounts for impaired islet function following SENP1 up-regulation.
Collapse
Affiliation(s)
- Catherine Hajmrle
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory Plummer
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Krista Lai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Estrada K, Aukrust I, Bjørkhaug L, Burtt NP, Mercader JM, García-Ortiz H, Huerta-Chagoya A, Moreno-Macías H, Walford G, Flannick J, Williams AL, Gómez-Vázquez MJ, Fernandez-Lopez JC, Martínez-Hernández A, Jiménez-Morales S, Centeno-Cruz F, Mendoza-Caamal E, Revilla-Monsalve C, Islas-Andrade S, Córdova EJ, Soberón X, González-Villalpando ME, Henderson E, Wilkens LR, Le Marchand L, Arellano-Campos O, Ordóñez-Sánchez ML, Rodríguez-Torres M, Rodríguez-Guillén R, Riba L, Najmi LA, Jacobs SBR, Fennell T, Gabriel S, Fontanillas P, Hanis CL, Lehman DM, Jenkinson CP, Abboud HE, Bell GI, Cortes ML, Boehnke M, González-Villalpando C, Orozco L, Haiman CA, Tusié-Luna T, Aguilar-Salinas CA, Altshuler D, Njølstad PR, Florez JC, MacArthur DG. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 2014; 311:2305-14. [PMID: 24915262 PMCID: PMC4425850 DOI: 10.1001/jama.2014.6511] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Latino populations have one of the highest prevalences of type 2 diabetes worldwide. OBJECTIVES To investigate the association between rare protein-coding genetic variants and prevalence of type 2 diabetes in a large Latino population and to explore potential molecular and physiological mechanisms for the observed relationships. DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on DNA samples from 3756 Mexican and US Latino individuals (1794 with type 2 diabetes and 1962 without diabetes) recruited from 1993 to 2013. One variant was further tested for allele frequency and association with type 2 diabetes in large multiethnic data sets of 14,276 participants and characterized in experimental assays. MAIN OUTCOME AND MEASURES Prevalence of type 2 diabetes. Secondary outcomes included age of onset, body mass index, and effect on protein function. RESULTS A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2 diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10(-7)) in hepatocyte nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental assays, HNF-1A protein encoding the p.E508K mutant demonstrated reduced transactivation activity of its target promoter compared with a wild-type protein. In our data, carriers and noncarriers of the p.E508K mutation with type 2 diabetes had no significant differences in compared clinical characteristics, including age at onset. The mean (SD) age for carriers was 45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and the mean (SD) BMI for carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19). CONCLUSIONS AND RELEVANCE Using whole-exome sequencing, we identified a single low-frequency variant in the MODY3-causing gene HNF1A that is associated with type 2 diabetes in Latino populations and may affect protein function. This finding may have implications for screening and therapeutic modification in this population, but additional studies are required.
Collapse
Affiliation(s)
| | - Karol Estrada
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts2Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway6Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lise Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway5Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Josep M Mercader
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts7Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston8Joint BSC-CRG-IRB Research Prog
| | | | - Alicia Huerta-Chagoya
- Instituto de Investigaciones Biomédicas, UNAM Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, Coyoacán, Mexico City, Mexico
| | | | - Geoffrey Walford
- Department of Medicine, Harvard Medical School, Boston, Massachusetts7Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts13Department of Molecular Biology, Harvard Medical School, Boston, Massachusetts
| | - Amy L Williams
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts14Department of Biological Sciences, Columbia University, New York, New York
| | - María J Gómez-Vázquez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | | | | | | | | | | | - Cristina Revilla-Monsalve
- Unidad de Investigación Médica en Enfermedades Metabólicas, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City
| | - Sergio Islas-Andrade
- Unidad de Investigación Médica en Enfermedades Metabólicas, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City
| | - Emilio J Córdova
- Instituto Nacional de Medicina Genómica, Tlalpan, Mexico City, Mexico
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Tlalpan, Mexico City, Mexico
| | - María E González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu
| | - Olimpia Arellano-Campos
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Maria L Ordóñez-Sánchez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Maribel Rodríguez-Torres
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Rosario Rodríguez-Guillén
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Laura Riba
- Instituto de Investigaciones Biomédicas, UNAM Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, Coyoacán, Mexico City, Mexico
| | - Laeya A Najmi
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway23Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Suzanne B R Jacobs
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Timothy Fennell
- The Genomics Platform, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Stacey Gabriel
- The Genomics Platform, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Pierre Fontanillas
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Craig L Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio
| | | | - Hanna E Abboud
- Department of Medicine, University of Texas Health Science Center at San Antonio
| | - Graeme I Bell
- Department of Human Genetics, University of Chicago, Chicago, Illinois28Department of Medicine, University of Chicago, Chicago, Illinois
| | - Maria L Cortes
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor
| | - Clicerio González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Tlalpan, Mexico City, Mexico
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Teresa Tusié-Luna
- Instituto de Investigaciones Biomédicas, UNAM Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, Coyoacán, Mexico City, Mexico17Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts3Department of Medicine, Harvard Medical School, Boston, Massachusetts7Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit)
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway5Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts3Department of Medicine, Harvard Medical School, Boston, Massachusetts7Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit)
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Wang CM, Liu R, Wang L, Nascimento L, Brennan VC, Yang WH. SUMOylation of FOXM1B alters its transcriptional activity on regulation of MiR-200 family and JNK1 in MCF7 human breast cancer cells. Int J Mol Sci 2014; 15:10233-51. [PMID: 24918286 PMCID: PMC4100150 DOI: 10.3390/ijms150610233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 01/04/2023] Open
Abstract
Transcription factor Forkhead Box Protein M1 (FOXM1) is a well-known master regulator in controlling cell-cycle pathways essential for DNA replication and mitosis, as well as cell proliferation. Among the three major isoforms of FOXM1, FOXM1B is highly associated with tumor growth and metastasis. The activities of FOXM1B are modulated by post-translational modifications (PTMs), such as phosphorylation, but whether it is modified by small ubiquitin-related modifier (SUMO) remains unknown. The aim of the current study was to determine whether FOXM1B is post-translationally modified by SUMO proteins and also to identify SUMOylation of FOXM1B on its target gene transcription activity. Here we report that FOXM1B is clearly defined as a SUMO target protein at the cellular levels. Moreover, a SUMOylation protease, SENP2, significantly decreased SUMOylation of FOXM1B. Notably, FOXM1B is selectively SUMOylated at lysine residue 463. While SUMOylation of FOXM1B is required for full repression of its target genes MiR-200b/c and p21, SUMOylation of FOXM1B is essential for full activation of JNK1 gene. Overall, we provide evidence that FOXM1B is post-translationally modified by SUMO and SUMOylation of FOXM1B plays a functional role in regulation of its target gene activities.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Runhua Liu
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lizhong Wang
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Leticia Nascimento
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Victoria C Brennan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| |
Collapse
|
28
|
Dai XQ, Spigelman AF, Khan S, Braun M, Manning Fox JE, MacDonald PE. SUMO1 enhances cAMP-dependent exocytosis and glucagon secretion from pancreatic α-cells. J Physiol 2014; 592:3715-26. [PMID: 24907310 DOI: 10.1113/jphysiol.2014.274084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Post-translational modification by the small ubiquitin-like modifier-1 (SUMO1) limits insulin secretion from β-cells by inhibiting insulin exocytosis and glucagon-like peptide-1 (GLP-1) receptor signalling. The secretion of glucagon from α-cells is regulated in a manner opposite to that of insulin; it is inhibited by elevated glucose and GLP-1, and increased by adrenergic signalling. We therefore sought to determine whether SUMO1 modulates mouse and human α-cell function. Action potentials (APs), ion channel function and exocytosis in single α-cells from mice and humans, identified by glucagon immunostaining, and glucagon secretion from intact islets were measured. The effects of SUMO1 on α-cell function and the respective inhibitory and stimulatory effects of exendin 4 and adrenaline were examined. Upregulation of SUMO1 increased α-cell AP duration, frequency and amplitude, in part as a result of increased Ca(2+) channel activity that led to elevated exocytosis. The ability of SUMO1 to enhance α-cell exocytosis was cAMP-dependent and resulted from an increased L-type Ca(2+) current and a shift away from exocytosis dependent on non-L-type channels, an effect that was mimicked by knockdown of the deSUMOylating enzyme sentrin/SUMO-specific protease-1 (SENP1). Finally, although SUMO1 prevented GLP-1 receptor-mediated inhibition of α-cell Na(+) channels and single-cell exocytosis, it failed to prevent the exendin 4-mediated inhibition of glucagon secretion. Consistent with its cAMP dependence, however, SUMO1 enhanced α-cell exocytosis and glucagon secretion stimulated by adrenaline. Thus, by contrast with its inhibitory role in β-cell exocytosis, SUMO1 is a positive regulator of α-cell exocytosis and glucagon secretion under conditions of elevated cAMP.
Collapse
Affiliation(s)
- Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Shara Khan
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthias Braun
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Recent advances in the regulation of pancreatic secretion by secretagogues, modulatory proteins and neural pathways are discussed. RECENT FINDINGS Downstream events involved in secretagogue stimulation of pancreatic secretion have been elucidated through characterization of the Src kinase pathway. An additional mechanism regulating vagus nerve effects on the pancreas involves Group II and III metabotropic glutamate receptors that are located presynaptically on certain vagal pancreas-projecting neurons. Hypothalamic neurons perceive glucose and regulate insulin release by direct communication with islets, and activation of proopiomelanocortin neurons by leptin enhances insulin secretion and modulates glucose but not energy homeostasis. Ghrelin and somatostatin mediate glucose-stimulated insulin secretion by differential receptor signaling that is dependent on the amount of ghrelin and state of receptor heterodimerization. Endoplasmic reticulum (ER) stress and loss-of-function mutations of a key ER stress protein are associated with disruption of membrane translocation and reduction in insulin secretion. The importance of hormones, neuropeptides, amino acids, cytokines and regulatory proteins in pancreatic secretion and the pathophysiology of type 2 diabetes are also discussed. SUMMARY The biomolecular pathways regulating pancreatic secretions are still not fully understood. New secretagogues and mechanisms continue to be identified and this information will aid in drug discovery and development of new and improved therapy for pancreatic disorders.
Collapse
|
30
|
Craig PM, Massarsky A, Moon TW. Understanding glucose uptake during methionine deprivation in incubated rainbow trout (Oncorhynchus mykiss) hepatocytes using a non-radioactive method. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:23-9. [DOI: 10.1016/j.cbpb.2013.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022]
|