1
|
Valmiki S, Bredefeld C, Hussain MM. A novel mutation, Ile344Asn, in microsomal triglyceride transfer protein abolishes binding to protein disulfide isomerase. J Lipid Res 2025; 66:100725. [PMID: 39672332 PMCID: PMC11745965 DOI: 10.1016/j.jlr.2024.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024] Open
Abstract
Microsomal triglyceride transfer protein (MTP) plays crucial roles in the assembly and secretion of apolipoprotein B-containing lipoproteins and loss of function MTP variants are associated with abetalipoproteinemia, a disease characterized by the absence of these lipoproteins. MTP is a heterodimeric protein of two subunits, MTP and protein disulfide isomerase (PDI). In this study, we report a proband with abetalipoproteinemia who was monitored annually for 10 years in her third decade and had very low plasma lipids and undetectable apoB-containing lipoproteins. Genetic testing revealed biallelic variants in the MTTP gene. She has a well-documented nonsense mutation Gly865∗ that does not interact with the PDI subunit. She also has a novel missense MTP mutation, Ile344Asn. We show that this mutation abrogates lipid transfer activity in MTP and does not support apolipoprotein B secretion. This residue is present in the central α-helical domain of MTP and the substitution of Ile with Asn at this position disrupts interactions between MTP and PDI subunits. Ile344 is away from the known MTP:PDI interacting sites identified in the crystal structure of MTP suggesting that MTP:PDI interactions are more dynamic than previously envisioned. Identification of more missense mutations will enhance our understanding of the structure-function of MTP and the role of critical residues in these interactions between the two subunits. This knowledge may guide us in developing novel treatment modalities to reduce plasma lipids and atherosclerosis.
Collapse
Affiliation(s)
- Swati Valmiki
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA
| | - Cindy Bredefeld
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA; Department of Medicine, NYU Grossman Long Island School of Medicine, Garden City, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
2
|
Grubaugh CR, Dhingra A, Prakash B, Montenegro D, Sparrow JR, Daniele LL, Curcio CA, Bell BA, Hussain MM, Boesze-Battaglia K. Microsomal triglyceride transfer protein is necessary to maintain lipid homeostasis and retinal function. FASEB J 2024; 38:e23522. [PMID: 38445789 PMCID: PMC10949407 DOI: 10.1096/fj.202302491r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.
Collapse
Affiliation(s)
- Catharina R. Grubaugh
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Binu Prakash
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Diego Montenegro
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10027 USA
| | - Janet R. Sparrow
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10027 USA
| | - Lauren L. Daniele
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Grubaugh CR, Dhingra A, Prakash B, Montenegro D, Sparrow JR, Daniele LL, Curcio CA, Bell BA, Hussain MM, Boesze-Battaglia K. Microsomal triglyceride transfer protein is necessary to maintain lipid homeostasis and retinal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570418. [PMID: 38105975 PMCID: PMC10723417 DOI: 10.1101/2023.12.06.570418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or to age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (apoB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor -associated cholesterol deposits and photoreceptor cell death, and loss of rod but not cone function. RPE-specific ablation of Mttp had no significant effect on plasma lipids and lipoproteins. While, apoB was decreased in the RPE, ocular retinoid concentrations remained unchanged. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but not directly involved in ocular retinoid and plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.
Collapse
Affiliation(s)
- Catharina R. Grubaugh
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Binu Prakash
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Diego Montenegro
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY,10027 USA
| | - Janet R. Sparrow
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY,10027 USA
| | - Lauren L. Daniele
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Xiong F, Zhou Q, Huang X, Cao P, Wang Y. Ferroptosis plays a novel role in nonalcoholic steatohepatitis pathogenesis. Front Pharmacol 2022; 13:1055793. [PMID: 36532757 PMCID: PMC9755204 DOI: 10.3389/fphar.2022.1055793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 09/29/2023] Open
Abstract
Ferroptosis relies on iron, and ferroptotic cell death is triggered when the balance of the oxidation-reduction system is disrupted by excessive lipid peroxide accumulation. A close relationship between ferroptosis and nonalcoholic steatohepatitis (NASH) is formed by phospholipid peroxidation substrates, bioactive iron, and reactive oxygen species (ROS) neutralization systems. Recent studies into ferroptosis during NASH development might reveal NASH pathogenesis and drug targets. Our review summarizes NASH pathogenesis from the perspective of ferroptosis mechanisms. Further, we discuss the relationship between mitochondrial dysfunction, ferroptosis, and NASH. Finally, potential pharmacological therapies directed to ferroptosis in NASH are hypothesized.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Gastroenterology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Wijffels G, Sullivan ML, Stockwell S, Briscoe S, Li Y, McCulloch R, Olm J, Cawdell-Smith J, Gaughan JB. Comparing the responses of grain fed feedlot cattle under moderate heat load and during subsequent recovery with those of feed restricted thermoneutral counterparts: plasma biochemistry. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2205-2221. [PMID: 35963925 DOI: 10.1007/s00484-022-02349-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Responses to heat stress in ruminants reflect the integration of local climatic conditions, environment/production system and the animal's homeostatic and homeorhetic capacities. Thus, the goal of ameliorating heat stress requires experimental settings that, within limits, closely resemble the target production system and cohort. We investigated the blood biochemical changes of two sequential cohorts of twelve 518 ± 23 kg grain fed Black Angus steers. Each cohort consisted of two treatments of 6 head/group: a thermally challenged (TC) treatment and a feed restricted thermoneutral (FRTN) treatment. Both groups were housed in climate controlled rooms for 19 days, with the TC group experiencing three distinct periods: PreChallenge, Challenge and Recovery. PreChallenge and Recovery delivered thermoneutral conditions, while Challenge consisted of 7 days of moderate diurnal heat load. The FRTN group was maintained in thermoneutral conditions at all times. Both groups were then relocated to outdoor pens for a further 40 days to detect any enduring change to metabolism as a consequence of the treatments. We compared blood biochemical responses of the treatments and inferred likely metabolic changes. Relative to the FRTN group, the TC animals experienced limited supply of triglycerides, cholesterol and glutamine during moderate heat load, suggesting constraints to energy metabolism. Lower blood urea during Recovery and in outdoor pens implied a requirement to capture N rather than allow its excretion. Altered liver enzyme profiles indicated a higher level of hepatic stress in the TC group. By the completion of feedlot finishing, the groups were not separable on most measures.
Collapse
Affiliation(s)
- Gene Wijffels
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia.
| | - M L Sullivan
- School of Agriculture and Food, The University of Queensland, Gatton, Qld, 4343, Australia
| | - S Stockwell
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - S Briscoe
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - Y Li
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - R McCulloch
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - J Olm
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - J Cawdell-Smith
- School of Agriculture and Food, The University of Queensland, Gatton, Qld, 4343, Australia
| | - J B Gaughan
- School of Agriculture and Food, The University of Queensland, Gatton, Qld, 4343, Australia
| |
Collapse
|
6
|
Conde de la Rosa L, Goicoechea L, Torres S, Garcia-Ruiz C, Fernandez-Checa JC. Role of Oxidative Stress in Liver Disorders. LIVERS 2022; 2:283-314. [DOI: 10.3390/livers2040023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Oxygen is vital for life as it is required for many different enzymatic reactions involved in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur as a consequence of an unbalance between antioxidant strategies. Given the important role of hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes to the development of many liver diseases. The present review, which is part of the special issue “Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition, current antioxidant therapies as treatment options for such disorders and their limitations for future trial design are discussed.
Collapse
Affiliation(s)
- Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - José C. Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Anaganti N, Chattopadhyay A, Poirier JT, Hussain MM. Generation of hepatoma cell lines deficient in microsomal triglyceride transfer protein. J Lipid Res 2022; 63:100257. [PMID: 35931202 PMCID: PMC9405095 DOI: 10.1016/j.jlr.2022.100257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 01/05/2023] Open
Abstract
The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.
Collapse
Affiliation(s)
- Narasimha Anaganti
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Atrayee Chattopadhyay
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA; VA New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
8
|
Lewis JH, Khaldoyanidi SK, Britten CD, Wei AH, Subklewe M. Clinical Significance of Transient Asymptomatic Elevations in Aminotransferase (TAEAT) in Oncology. Am J Clin Oncol 2022; 45:352-365. [PMID: 35848749 PMCID: PMC9311471 DOI: 10.1097/coc.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monitoring for liver injury remains an important aspect of drug safety assessment, including for oncotherapeutics. When present, drug-induced liver injury may limit the use or result in the discontinuation of these agents. Drug-induced liver injury can exhibit with a wide spectrum of clinical and biochemical manifestations, ranging from transient asymptomatic elevations in aminotransferases (TAEAT) to acute liver failure. Numerous oncotherapeutics have been associated with TAEAT, with published reports indicating a phenomenon in which patients may be asymptomatic without overt liver injury despite the presence of grade ≥3 aminotransferase elevations. In this review, we discuss the occurrence of TAEAT in the context of oncology clinical trials and clinical practice, as well as the clinical relevance of this phenomenon as an adverse event in response to oncotherapeutics and the related cellular and molecular mechanisms that may underlie its occurrence. We also identify several gaps in knowledge relevant to the diagnosis and the management of TAEAT in patients receiving oncotherapeutics, and identify areas warranting further study to enable the future development of consensus guidelines to support clinical decision-making.
Collapse
Affiliation(s)
| | | | | | - Andrew H. Wei
- The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Marion Subklewe
- University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
9
|
Pan X, Queiroz J, Hussain MM. Nonalcoholic fatty liver disease in CLOCK mutant mice. J Clin Invest 2021; 130:4282-4300. [PMID: 32396530 DOI: 10.1172/jci132765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming a major health issue as obesity increases around the world. We studied the effect of a circadian locomotor output cycles kaput (CLOCK) mutant (ClkΔ19/Δ19) protein on hepatic lipid metabolism in C57BL/6 Clkwt/wt and apolipoprotein E-deficient (Apoe-/-) mice. Both ClkΔ19/Δ19 and ClkΔ19/Δ19 Apoe-/- mice developed a full spectrum of liver diseases (steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma) recognized in human NAFLD when challenged with a Western diet, lipopolysaccharide, or CoCl2. We identified induction of CD36 and hypoxia-inducible factor 1α (HIF1α) proteins as contributing factors for NAFLD. Mechanistic studies showed that WT CLOCK protein interacted with the E-box enhancer elements in the promoters of the proline hydroxylase domain (PHD) proteins to increase expression. In ClkΔ19/Δ19 mice, PHD levels were low, and HIF1α protein levels were increased. When its levels were high, HIF1α interacted with the Cd36 promoter to augment expression and enhance fatty acid uptake. Thus, these studies establish a regulatory link among circadian rhythms, hypoxia response, fatty acid uptake, and NAFLD. The mouse models described here may be useful for further mechanistic studies in the progression of liver diseases and in the discovery of drugs for the treatment of these disorders.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.,Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joyce Queiroz
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.,Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA.,VA New York Harbor Healthcare System, Brooklyn, New York, USA
| |
Collapse
|
10
|
Li C, Si J, Tan F, Park KY, Zhao X. Lactobacillus plantarum KSFY06 Prevents Inflammatory Response and Oxidative Stress in Acute Liver Injury Induced by D-Gal/LPS in Mice. Drug Des Devel Ther 2021; 15:37-50. [PMID: 33442235 PMCID: PMC7797359 DOI: 10.2147/dddt.s286104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
AIM The purpose of this study is to investigate the preventive effect of Lactobacillus plantarum KSFY06 (LP-KSFY06) on D-galactose/lipopolysaccharide (D-Gal/LPS)-induced acute liver injury (ALI) in mice. METHODS We evaluated the antioxidant capacity of LP-KSFY06 in vitro, detailed the effects of LP-KSFY06 on the organ index, liver function index, biochemical index, cytokines, and related genes, and noted the accompanying pathological changes. RESULTS The results clearly showed that LP-KSFY06 can remove 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline -6-sulphonic acid) diammonium salt (ABTS) free radicals in vitro. The analysis of the organ index and pathology demonstrated that LP-KSFY06 significantly prevented ALI. Biochemical and molecular biological analysis showed that LP-KSFY06 prevented a decrease in the antioxidant-related levels of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), and also prevented an increase in aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels. LP-KSFY06 upregulated the anti-inflammatory factor interleukin (IL)-10 and downregulated the pro-inflammatory factors IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). These oxidative and inflammatory indicators were consistent with the results of gene detections. Furthermore, we determined that LP-KSFY06 downregulated Keap1, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), IL-18, and mitogen-activated protein kinase 14 (MAPK14 or p38), upregulated Nrf2, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (NQO1), B-cell inhibitor-α (IκB-α), and thioredoxin (Trx) mRNA expression. These may be related to the regulation of the Kelch-like ECH-associated protein-1 (Keap1)-nuclear factor-erythroid-2-related factor (Nrf2)/antioxidant response element (ARE) and NLRP3/NF-κB pathways. CONCLUSION LP-KSFY06 is an effective multifunctional Lactobacillus with strong anti-oxidant and anti-inflammatory ability that can prevent D-gal/LPS-induced ALI in mice and assist in maintaining health.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| | - Jun Si
- Pre-Hospital Emergency Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing400014, People’s Republic of China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela838, Philippines
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| |
Collapse
|
11
|
Lee J, Oh AR, Lee HY, Moon YA, Lee HJ, Cha JY. Deletion of KLF10 Leads to Stress-Induced Liver Fibrosis upon High Sucrose Feeding. Int J Mol Sci 2020; 22:ijms22010331. [PMID: 33396939 PMCID: PMC7794950 DOI: 10.3390/ijms22010331] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a consequence of chronic liver injury associated with chronic viral infection, alcohol abuse, and nonalcoholic fatty liver. The evidence from clinical and animal studies indicates that transforming growth factor-β (TGF-β) signaling is associated with the development of liver fibrosis. Krüppel-like factor 10 (KLF10) is a transcription factor that plays a significant role in TGF-β-mediated cell growth, apoptosis, and differentiation. In recent studies, it has been reported to be associated with glucose homeostasis and insulin resistance. In the present study, we investigated the role of KLF10 in the progression of liver disease upon a high-sucrose diet (HSD) in mice. Wild type (WT) and Klf10 knockout (KO) mice were fed either a control chow diet or HSD (50% sucrose) for eight weeks. Klf10 KO mice exhibited significant hepatic steatosis, inflammation, and liver injury upon HSD feeding, whereas the WT mice exhibited mild hepatic steatosis with no apparent liver injury. The livers of HSD-fed Klf10 KO mice demonstrated significantly increased endoplasmic reticulum stress, oxidative stress, and proinflammatory cytokines. Klf10 deletion led to the development of sucrose-induced hepatocyte cell death both in vivo and in vitro. Moreover, it significantly increased fibrogenic gene expression and collagen accumulation in the liver. Increased liver fibrosis was accompanied by increased phosphorylation and nuclear localization of Smad3. Here, we demonstrate that HSD-fed mice develop a severe liver injury in the absence of KLF10 due to the hyperactivation of the endoplasmic reticulum stress response and CCAAT/enhance-binding protein homologous protein (CHOP)-mediated apoptosis of hepatocytes. The current study suggests that KLF10 plays a protective role against the progression of hepatic steatosis into liver fibrosis in a lipogenic state.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Ah-Reum Oh
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Hui-Young Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University School of Medicine, Incheon 22212, Korea;
| | - Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: (H.-J.L.); (J.-Y.C.); Tel.: +82-32-899-6054 (H.-J.L.); +82-32-899-6070 (J.-Y.C.)
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea; (J.L.); (A.-R.O.); (H.-Y.L.)
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon 21565, Korea
- Correspondence: (H.-J.L.); (J.-Y.C.); Tel.: +82-32-899-6054 (H.-J.L.); +82-32-899-6070 (J.-Y.C.)
| |
Collapse
|
12
|
Dungubat E, Watabe S, Togashi-Kumagai A, Watanabe M, Kobayashi Y, Harada N, Yamaji R, Fukusato T, Lodon G, Sevjid B, Takahashi Y. Effects of Caffeine and Chlorogenic Acid on Nonalcoholic Steatohepatitis in Mice Induced by Choline-Deficient, L-Amino Acid-Defined, High-Fat Diet. Nutrients 2020; 12:nu12123886. [PMID: 33353230 PMCID: PMC7767129 DOI: 10.3390/nu12123886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Several recent experimental studies have investigated the effects of caffeine and chlorogenic acid (CGA), representative ingredients of coffee, on nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). However, the results are conflicting, and their effects are yet to be clarified. In the present study, we examined the effects of caffeine and CGA on choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice, relatively new model mice of NASH. Seven-week-old male C57BL/6J mice were divided into the following groups: Control diet (control), CDAHFD (CDAHFD), CDAHFD supplemented with 0.05% (w/w) caffeine (caffeine), and CDAHFD supplemented with 0.1% (w/w) CGA (CGA). After seven weeks, the mice were killed and serum biochemical, histopathological, and molecular analyses were performed. Serum alanine aminotransferase (ALT) levels were significantly higher in the caffeine and CGA groups than in the CDAHFD group. On image analysis, the prevalence of Oil red O-positive areas (reflecting steatosis) was significantly higher in the caffeine group than in the CDAHFD group, and that of CD45R-positive areas (reflecting lymphocytic infiltration) in the hepatic lobule was significantly higher in the caffeine and CGA groups than in the CDAHFD group. Hepatic expression of interleukin (IL)-6 mRNA was higher in the caffeine and CGA groups than in the CDAHFD group, and the difference was statistically significant for the caffeine group. In conclusion, in the present study, caffeine and CGA significantly worsened the markers of liver cell injury, inflammation, and/or steatosis in NASH lesions in mice.
Collapse
Affiliation(s)
- Erdenetsogt Dungubat
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan;
- Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Shiori Watabe
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (S.W.); (A.T.-K.); (M.W.)
| | - Arisa Togashi-Kumagai
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (S.W.); (A.T.-K.); (M.W.)
| | - Masato Watanabe
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (S.W.); (A.T.-K.); (M.W.)
| | - Yasuyuki Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (Y.K.); (N.H.); (R.Y.)
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (Y.K.); (N.H.); (R.Y.)
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (Y.K.); (N.H.); (R.Y.)
| | - Toshio Fukusato
- General Medical Education and Research Center, Teikyo University, Tokyo 173-8605, Japan;
| | - Galtsog Lodon
- Department of Pathology, School of Medicine, Ach Medical University, Ulaanbaatar 18080, Mongolia;
| | - Badamjav Sevjid
- Department of Gastroenterology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia;
| | - Yoshihisa Takahashi
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan;
- Correspondence: ; Tel.: +81-(476)-20-7701
| |
Collapse
|
13
|
Kobayashi A, Suzuki Y, Sugai S. Specificity of transaminase activities in the prediction of drug-induced hepatotoxicity. J Toxicol Sci 2020; 45:515-537. [PMID: 32879252 DOI: 10.2131/jts.45.515] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The activities of the transaminases (aminotransferases) alanine aminotransferase and aspartate aminotransferase in the blood (serum or plasma) are widely used as sensitive markers of possible tissue damage and, in particular for liver toxicity. On the other hand, an increase in transaminase activities is not always accompanied by findings suggestive of hepatotoxicity. Transaminases are some of the key enzymes in the gluconeogenesis and glycolysis pathways and exist in many organs and tissues which have high activities of the gluconeogenesis and glycolysis. The activities of transaminases are altered not only in the liver but also in other organs by modification of gluconeogenesis by nutritional or hormonal factors and this phenomenon leads to alteration of transaminase activity in the blood. Drugs, which are considered to directly or secondarily modify gluconeogenesis through lowering blood glucose levels or activating lipid metabolism, such as α-glucosidase inhibitors and fibrates, slightly increase transaminase activities in the blood but there is little evidence that the phenomenon is related to drug-induced liver injury (DILI). This type of elevations can be called pharmacology-related elevation. The pharmacology-related elevation of transaminase activities sometimes makes it difficult to assess precisely the potential hepatotoxicity of new investigational drugs. Considering the characteristic of transaminases, concomitant use of new biomarkers more specific to hepatic injury is needed in the assessment of DILI both in non-clinical and clinical studies. In this review, we will discuss the specificity of transaminases to DILI and future perspectives for transaminases in the estimation of risk of DILI.
Collapse
Affiliation(s)
- Akio Kobayashi
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Yusuke Suzuki
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Shoichiro Sugai
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| |
Collapse
|
14
|
Lewis JH, Jadoul M, Block GA, Chin MP, Ferguson DA, Goldsberry A, Meyer CJ, O'Grady M, Pergola PE, Reisman SA, Wigley WC, Chertow GM. Effects of Bardoxolone Methyl on Hepatic Enzymes in Patients with Type 2 Diabetes Mellitus and Stage 4 CKD. Clin Transl Sci 2020; 14:299-309. [PMID: 32860734 PMCID: PMC7877861 DOI: 10.1111/cts.12868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
In a multinational placebo‐controlled phase III clinical trial in 2,185 patients with type 2 diabetes mellitus and stage 4 chronic kidney disease, treatment with the Nrf2 activator bardoxolone methyl increased estimated glomerular filtration rate, a measure of kidney function, but also resulted in increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transferase. These increases in liver enzyme level(s) were maximal after 4 weeks of treatment and reversible, trending back toward baseline through week 48. Total bilirubin concentrations did not increase, and no cases met Hy’s Law criteria, although two subjects had ALT concentrations that exceeded 10 × the upper limit of the population reference range leading to discontinuation of treatment. Animal and cell culture experiments suggested that the increases in ALT and AST induced by bardoxolone methyl may be related to its pharmacological activity. Bardoxolone methyl significantly induced the mRNA expression of ALT and AST isoforms in cultured cells. Expression of ALT and AST isoforms in liver and kidney also positively correlated with Nrf2 status in mice. Overall, these data suggest that the increases in ALT and AST observed clinically were, at least in part, related to the pharmacological induction of aminotransferases via Nrf2 activation, rather than to any intrinsic form of hepatotoxicity.
Collapse
Affiliation(s)
- James H Lewis
- Division of Gastroenterology & Hepatology, Georgetown University Hospital, Washington, District of Columbia, USA
| | - Michel Jadoul
- Department of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | - Glenn M Chertow
- Division of Nephrology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
15
|
Iqbal J, Mascareno E, Chua S, Hussain MM. Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 2020; 295:4101-4113. [PMID: 32047110 PMCID: PMC7105304 DOI: 10.1074/jbc.ra119.011881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Indexed: 11/06/2022] Open
Abstract
The hormone leptin regulates fat storage and metabolism by signaling through the brain and peripheral tissues. Lipids delivered to peripheral tissues originate mostly from the intestine and liver via synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. An intracellular chaperone, microsomal triglyceride transfer protein (MTP), is required for the biosynthesis of these lipoproteins, and its regulation determines fat mobilization to different tissues. Using cell culture and animal models, here we sought to identify the effects of leptin on MTP expression in the intestine and liver. Leptin decreased MTP expression in differentiated intestinal Caco-2 cells, but increased expression in hepatic Huh7 cells. Similarly, acute and chronic leptin treatment of chow diet-fed WT mice decreased MTP expression in the intestine, increased it in the liver, and lowered plasma triglyceride levels. These leptin effects required the presence of leptin receptors (LEPRs). Further experiments also suggested that leptin interacted with long-form LEPR (ObRb), highly expressed in the intestine, to down-regulate MTP. In contrast, in the liver, leptin interacted with short-form LEPR (ObRa) to increase MTP expression. Mechanistic experiments disclosed that leptin activates signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways in intestinal and hepatic cells, respectively, and thereby regulates divergent MTP expression. Our results also indicated that leptin-mediated MTP regulation in the intestine affects plasma lipid levels. In summary, our findings suggest that leptin regulates MTP expression differentially by engaging with different LEPR types and activating distinct signaling pathways in intestinal and hepatic cells.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia.
| | - Eduardo Mascareno
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| | - Streamson Chua
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; Department of Foundations of Medicine, NYU Long Island School of Medicine and Diabetes and Obesity Research Center, NYU Winthrop Research Institute, Mineola, New York 11501; Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209.
| |
Collapse
|
16
|
Kizaki K, Kageyama T, Toji N, Koshi K, Sasaki K, Yamagishi N, Ishiguro-Oonuma T, Takahashi T, Hashizume K. Gene expression profiles in bovine granulocytes reflect the aberration of liver functions. Anim Sci J 2019; 91:e13324. [PMID: 31863537 DOI: 10.1111/asj.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/16/2019] [Accepted: 11/15/2019] [Indexed: 11/26/2022]
Abstract
Liver performs several important functions; however, predicting its functions is difficult. Methods of analyzing gene expression profiles, for example, microarray, provide functional information of tissues. Liver and peripheral blood leukocytes (PBLs) were collected from Holstein cows subjected to two different physiological conditions (non-pregnant and pregnant), and PBLs were fractionated by gradient cell separation. RNA from PBLs and liver were applied to oligo-DNA microarray and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). It revealed a group of stable bovine liver genes under constant physiological conditions. When they applied to physiological conditions including non-pregnant and pregnant, the profiles of some genes in liver were consistent with those in PBLs. Microarray data subjected to a principal component analysis (PCA) showed that the hepatic gene expression profiles were more consistent with those of granulocytes than mononuclear cells. The relationship of gene profiles in liver with granulocytes was confirmed by RT-qPCR and hierarchical cluster analysis. Gene profiles of granulocytes were more reliable than those of mononuclear cells, which reflected liver functions. These results suggest that the genes expressed in PBLs, particularly granulocytes, may be convenient bioindicators for the diagnosis of clinical disorder and/or detecting aberration of liver functions in cows subjected to different physiological conditions.
Collapse
Affiliation(s)
- Keiichiro Kizaki
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Tomomi Kageyama
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan
| | - Noriyuki Toji
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Katsuo Koshi
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan
| | - Kouya Sasaki
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Norio Yamagishi
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Toshina Ishiguro-Oonuma
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Toru Takahashi
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kazuyoshi Hashizume
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan
| |
Collapse
|
17
|
García-Ruiz C, Fernández-Checa JC. Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol Commun 2018; 2:1425-1439. [PMID: 30556032 PMCID: PMC6287487 DOI: 10.1002/hep4.1271] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Fatty liver disease is one of the most prevalent forms of chronic liver disease that encompasses both alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH) are intermediate stages of ALD and NAFLD, which can progress to more advanced forms, including cirrhosis and hepatocellular carcinoma. Oxidative stress and particularly alterations in mitochondrial function are thought to play a significant role in both ASH and NASH and recognized to contribute to the generation of reactive oxygen species (ROS), as documented in experimental models. Despite the evidence of ROS generation, the therapeutic efficacy of treatment with antioxidants in patients with fatty liver disease has yielded poor results. Although oxidative stress is considered to be the disequilibrium between ROS and antioxidants, there is evidence that a subtle balance among antioxidants, particularly in mitochondria, is necessary to avoid the generation of ROS and hence oxidative stress. Conclusion: As mitochondria are a major source of ROS, the present review summarizes the role of mitochondrial oxidative stress in ASH and NASH and presents emerging data indicating the need to preserve mitochondrial antioxidant balance as a potential approach for the treatment of human fatty liver disease, which may pave the way for the design of future trials to test the therapeutic role of antioxidants in fatty liver disease.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Cell Death and Proliferation Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior Investigaciones Científicas Barcelona Spain.,Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD Barcelona Spain
| | - José C Fernández-Checa
- Cell Death and Proliferation Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior Investigaciones Científicas Barcelona Spain.,Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD Barcelona Spain.,University of Southern California Research Center for ALPD Keck School of Medicine Los Angeles CA
| |
Collapse
|
18
|
Tian S, Li B, Lei P, Yang X, Zhang X, Bao Y, Shan Y. Sulforaphane Improves Abnormal Lipid Metabolism via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways. Mol Nutr Food Res 2018; 62:e1700737. [DOI: 10.1002/mnfr.201700737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Sicong Tian
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Baolong Li
- Heilongjiang University of Chinese Medicine; Harbin China
| | - Peng Lei
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Xiuli Yang
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Xiaohong Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology; School of Medicine; Ningbo University; Zhejiang China
| | - Yongping Bao
- Norwich Medical School; University of East Anglia; Norwich UK
| | - Yujuan Shan
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| |
Collapse
|
19
|
Implication of STARD5 and cholesterol homeostasis disturbance in the endoplasmic reticulum stress-related response induced by pro-apoptotic aminosteroid RM-133. Pharmacol Res 2017; 128:52-60. [PMID: 29287690 DOI: 10.1016/j.phrs.2017.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 01/13/2023]
Abstract
The aminosteroid derivative RM-133 is an effective anticancer molecule for which proof of concept has been achieved in several mouse xenograph models (HL-60, MCF-7, PANC-1 and OVCAR-3). To promote this new family of molecules toward a clinical phase 1 trial, the mechanism of action governing the anticancer properties of the representative candidate RM-133 needs to be characterized. In vitro experiments were first used to determine that RM-133 causes apoptosis in cancer cells. Then, using proteomic and transcriptomic experiments, RM-133 cytotoxicity was proven to be achieved via the endoplasmic reticulum (ER)-related apoptosis, which characterizes RM-133 as an endoplasmic reticulum stress aggravator (ERSA) anticancer drug. Furthermore, an shRNA-genome-wide screening has permitted to identify the steroidogenic acute regulator-related lipid transfer protein 5 (STARD5) as a major player in the RM-133 ER-related apoptosis mechanism, which was validated by an in vitro binding experiment. Altogether, the results presented herein suggest that RM-133 provokes a disturbance of cholesterol homeostasis via the implication of STARD5, which delivers an ERSA molecule to the ER. These results will be a springboard for RM-133 in its path toward clinical use.
Collapse
|
20
|
Scerbo D, Son NH, Sirwi A, Zeng L, Sas KM, Cifarelli V, Schoiswohl G, Huggins LA, Gumaste N, Hu Y, Pennathur S, Abumrad NA, Kershaw EE, Hussain MM, Susztak K, Goldberg IJ. Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids. J Lipid Res 2017; 58:1132-1142. [PMID: 28404638 DOI: 10.1194/jlr.m074427] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/10/2017] [Indexed: 01/13/2023] Open
Abstract
Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or NEFAs. With overnight fasting, kidneys accumulated triglyceride, but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a β adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cluster of differentiation (Cd)36 mRNA increased 2-fold, and angiopoietin-like 4 (Angptl4), an LPL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LPL with poloxamer 407 or by use of mice with induced genetic LPL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter, CD36.
Collapse
Affiliation(s)
- Diego Scerbo
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY.,Institute of Human Nutrition, Columbia University, New York, NY
| | - Ni-Huiping Son
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Alaa Sirwi
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Lixia Zeng
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | - Kelli M Sas
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | | | - Gabriele Schoiswohl
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA.,Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Namrata Gumaste
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Yunying Hu
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | | | - Nada A Abumrad
- Department of Medicine, Washington University, St. Louis, MO
| | - Erin E Kershaw
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Katalin Susztak
- Division of Renal Electrolyte and Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| |
Collapse
|
21
|
Torres S, Matías N, Baulies A, Nuñez S, Alarcon-Vila C, Martinez L, Nuño N, Fernandez A, Caballeria J, Levade T, Gonzalez-Franquesa A, Garcia-Rovés P, Balboa E, Zanlungo S, Fabrías G, Casas J, Enrich C, Garcia-Ruiz C, Fernández-Checa JC. Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease. Redox Biol 2017; 11:60-72. [PMID: 27888692 PMCID: PMC5123076 DOI: 10.1016/j.redox.2016.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 01/17/2023] Open
Abstract
Niemann Pick type C (NPC) disease is a progressive lysosomal storage disorder caused by mutations in genes encoding NPC1/NPC2 proteins, characterized by neurological defects, hepatosplenomegaly and premature death. While the primary biochemical feature of NPC disease is the intracellular accumulation of cholesterol and gangliosides, predominantly in endolysosomes, mitochondrial cholesterol accumulation has also been reported. As accumulation of cholesterol in mitochondria is known to impair the transport of GSH into mitochondria, resulting in mitochondrial GSH (mGSH) depletion, we investigated the impact of mGSH recovery in NPC disease. We show that GSH ethyl ester (GSH-EE), but not N-acetylcysteine (NAC), restored the mGSH pool in liver and brain of Npc1-/- mice and in fibroblasts from NPC patients, while both GSH-EE and NAC increased total GSH levels. GSH-EE but not NAC increased the median survival and maximal life span of Npc1-/- mice. Moreover, intraperitoneal therapy with GSH-EE protected against oxidative stress and oxidant-induced cell death, restored calbindin levels in cerebellar Purkinje cells and reversed locomotor impairment in Npc1-/- mice. High-resolution respirometry analyses revealed that GSH-EE improved oxidative phosphorylation, coupled respiration and maximal electron transfer in cerebellum of Npc1-/- mice. Lipidomic analyses showed that GSH-EE treatment had not effect in the profile of most sphingolipids in liver and brain, except for some particular species in brain of Npc1-/- mice. These findings indicate that the specific replenishment of mGSH may be a potential promising therapy for NPC disease, worth exploring alone or in combination with other options.
Collapse
Affiliation(s)
- Sandra Torres
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Nuria Matías
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Anna Baulies
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Susana Nuñez
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Cristina Alarcon-Vila
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Laura Martinez
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Natalia Nuño
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Anna Fernandez
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Joan Caballeria
- Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancerologie de Toulouse, Toulouse, France
| | - Alba Gonzalez-Franquesa
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Pablo Garcia-Rovés
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Elisa Balboa
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gemma Fabrías
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Carlos Enrich
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - José C Fernández-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
22
|
A wild-type mouse-based model for the regression of inflammation in atherosclerosis. PLoS One 2017; 12:e0173975. [PMID: 28291840 PMCID: PMC5349694 DOI: 10.1371/journal.pone.0173975] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis can be induced by the injection of a gain-of-function mutant of proprotein convertase subtilisin/kexin type 9 (PCSK9)-encoding adeno-associated viral vector (AAVmPCSK9), avoiding the need for knockout mice models, such as low-density lipoprotein receptor deficient mice. As regression of atherosclerosis is a crucial therapeutic goal, we aimed to establish a regression model based on AAVmPCSK9, which will eliminate the need for germ-line genetic modifications. C57BL6/J mice were injected with AAVmPCSK9 and were fed with Western diet for 16 weeks, followed by reversal of hyperlipidemia by a diet switch to chow and treatment with a microsomal triglyceride transfer protein inhibitor (MTPi). Sixteen weeks following AAVmPCSK9 injection, mice had advanced atherosclerotic lesions in the aortic root. Surprisingly, diet switch to chow alone reversed hyperlipidemia to near normal levels, and the addition of MTPi completely normalized hyperlipidemia. A six week reversal of hyperlipidemia, either by diet switch alone or by diet switch and MTPi treatment, was accompanied by regression of atherosclerosis as defined by a significant decrease of macrophages in the atherosclerotic plaques, compared to baseline. Thus, we have established an atherosclerosis regression model that is independent of the genetic background.
Collapse
|
23
|
Newberry EP, Xie Y, Kennedy SM, Graham MJ, Crooke RM, Jiang H, Chen A, Ory DS, Davidson NO. Prevention of hepatic fibrosis with liver microsomal triglyceride transfer protein deletion in liver fatty acid binding protein null mice. Hepatology 2017; 65:836-852. [PMID: 27862118 PMCID: PMC5319898 DOI: 10.1002/hep.28941] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Blocking hepatic very low-density lipoprotein secretion through genetic or pharmacologic inhibition of microsomal triglyceride transfer protein (Mttp) causes hepatic steatosis, yet the risks for developing hepatic fibrosis are poorly understood. We report that liver-specific Mttp knockout mice (Mttp-LKO) exhibit both steatosis and fibrosis, which is exacerbated by a high-transfat/fructose diet. When crossed into germline liver fatty acid (FA) binding protein null mice (Mttp-LKO, i.e., double knockout mice) hepatic steatosis was greatly diminished and fibrosis prevented, on both low-fat and high-fat diets. The mechanisms underlying protection include reduced long chain FA uptake, shifts in FA distribution (lipidomic profiling), and metabolic turnover, specifically decreased hepatic 18:2 FA and triglyceride species and a shift in 18:2 FA use for oxidation versus incorporation into newly synthesized triglyceride. Double knockout mice were protected against fasting-induced hepatic steatosis (a model of enhanced exogenous FA delivery) yet developed steatosis upon induction of hepatic de novo lipogenesis with fructose feeding. Mttp-LKO mice, on either the liver FA binding protein null or Apobec-1 null background (i.e., apolipoprotein B100 only) exhibited only subtle increases in endoplasmic reticulum stress, suggesting that an altered unfolded protein response is unlikely to account for the attenuated phenotype in double knockout mice. Acute, antisense-mediated liver FA binding protein knockdown in Mttp-LKO mice also reduced FA uptake, increased oxidation versus incorporation of 18:2 species with complete reversal of hepatic steatosis, increased hepatic injury, and worsened fibrosis. CONCLUSION Perturbing exogenous hepatic FA use modulates both hepatic steatosis and fibrosis in the setting of hepatic Mttp deletion, adding new insight into the pathophysiological mechanisms and consequences of defective very low-density lipoprotein secretion. (Hepatology 2017;65:836-852).
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | - Yan Xie
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | - Susan M. Kennedy
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | | | | | - Hui Jiang
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | - Anping Chen
- Department of Pathology, Saint Louis University Saint Louis, MO
| | - Daniel S. Ory
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | - Nicholas O. Davidson
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110,Correspondence:
| |
Collapse
|
24
|
The Combination of Blueberry Juice and Probiotics Ameliorate Non-Alcoholic Steatohepatitis (NASH) by Affecting SREBP-1c/PNPLA-3 Pathway via PPAR-α. Nutrients 2017; 9:nu9030198. [PMID: 28264426 PMCID: PMC5372861 DOI: 10.3390/nu9030198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is liver inflammation and a major threat to public health. Several pharmaceutical agents have been used for NASH therapy but their high-rate side effects limit the use. Blueberry juice and probiotics (BP) have anti-inflammation and antibacterial properties, and may be potential candidates for NASH therapy. To understand the molecular mechanism, Sprague Dawley rats were used to create NASH models and received different treatments. Liver tissues were examined using HE (hematoxylin and eosin) and ORO (Oil Red O) stain, and serum biochemical indices were measured. The levels of peroxisome proliferators-activated receptor (PPAR)-α, sterol regulatory element binding protein-1c (SREBP-1c), Patatin-like phospholipase domain-containing protein 3 (PNPLA-3), inflammatory cytokines and apoptosis biomarkers in liver tissues were measured by qRT-PCR and Western blot. HE and ORO analysis indicated that the hepatocytes were seriously damaged with more and larger lipid droplets in NASH models while BP reduced the number and size of lipid droplets (p < 0.05). Meanwhile, BP increased the levels of SOD (superoxide dismutase), GSH (reduced glutathione) and HDL-C (high-density lipoprotein cholesterol), and reduced the levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), TG (triglycerides), LDL-C (low-density lipoprotein cholesterol) and MDA (malondialdehyde) in NASH models (p < 0.05). BP increased the level of PPAR-α (Peroxisome proliferator-activated receptor α), and reduced the levels of SREBP-1c (sterol regulatory element binding protein-1c) and PNPLA-3 (Patatin-like phospholipase domain-containing protein 3) (p < 0.05). BP reduced hepatic inflammation and apoptosis by affecting IL-6 (interleukin 6), TNF-α (Tumor necrosis factor α), caspase-3 and Bcl-2 in NASH models. Furthermore, PPAR-α inhibitor increased the level of SREBP-1c and PNPLA-3. Therefore, BP prevents NASH progression by affecting SREBP-1c/PNPLA-3 pathway via PPAR-α.
Collapse
|
25
|
McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI JOURNAL 2016; 15:817-828. [PMID: 28337112 PMCID: PMC5318690 DOI: 10.17179/excli2016-800] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Laboratory testing is important in the diagnosis and monitoring of liver injury and disease. Current liver tests include plasma markers of injury (e.g. aminotransferases, γ-glutamyl transferase, and alkaline phosphatase), markers of function (e.g. prothrombin time, bilirubin), viral hepatitis serologies, and markers of proliferation (e.g. α-fetoprotein). Among the injury markers, the alanine and aspartate aminotransferases (ALT and AST, respectively) are the most commonly used. However, interpretation of ALT and AST plasma levels can be complicated. Furthermore, both have poor prognostic utility in acute liver injury and liver failure. New biomarkers of liver injury are rapidly being developed, and the US Food and Drug Administration the European Medicines Agency have recently expressed support for use of some of these biomarkers in drug trials. The purpose of this paper is to review the history of liver biomarkers, to summarize mechanisms and interpretation of ALT and AST elevation in plasma in liver injury (particularly acute liver injury), and to discuss emerging liver injury biomarkers that may complement or even replace ALT and AST in the future.
Collapse
Affiliation(s)
- Mitchell R McGill
- Div. of Laboratory and Genomic Medicine, Dept. of Pathology and Immunology; Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Zhang L, Shen L, Xu D, Wang L, Guo Y, Liu Z, Liu Y, Liu L, Magdalou J, Chen L, Wang H. Increased susceptibility of prenatal food restricted offspring to high-fat diet-induced nonalcoholic fatty liver disease is intrauterine programmed. Reprod Toxicol 2016; 65:236-247. [DOI: 10.1016/j.reprotox.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 01/07/2023]
|
27
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|
28
|
Rando G, Tan CK, Khaled N, Montagner A, Leuenberger N, Bertrand-Michel J, Paramalingam E, Guillou H, Wahli W. Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism. eLife 2016; 5. [PMID: 27367842 PMCID: PMC4963200 DOI: 10.7554/elife.11853] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/30/2016] [Indexed: 01/12/2023] Open
Abstract
In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands. DOI:http://dx.doi.org/10.7554/eLife.11853.001 Birth is a highly stressful and critical event. In the womb, babies rely on the supply of oxygen and nutrients provided by the placenta. However, once they are born they need to breathe for themselves and gain all their nutrients from suckling milk. The placenta provides a sugar-rich diet, while milk is richer in fat. Failing to cope with this change in diet leads to serious complications and sometimes death. Therefore, a better understanding of how the body adapts to these changes may shed light on pathways that are important for good health in later life. The liver plays a central role in processing the nutrients absorbed by the gut. It uses fats to produce molecules called ketone bodies, such as β-hydroxybutyrate, which are then used as fuel by other tissues and organs including the heart, muscle and the brain. A protein called PPARα controls the production of ketone bodies primarily by regulating genes that are involved in the uptake and breakdown of fat in the liver. However, little is known about how this protein affects the development of the liver. Here, Rando, Tan et al. report that mice start to produce more PPARα in the liver shortly before birth. This ultimately activates several genes that encode enzymes that break down fats. The experiments show that during labor, stress hormones called glucocorticoids directly stimulate the production of PPARα in the liver of the fetus to prepare newborn mice for harnessing energy from fat-rich milk. In the absence of PPARα, mouse liver cells are less able to break down fats after birth and so start to accumulate fat, resulting in fewer ketone bodies being produced. Rando, Tan et al. show that β-hydroxybutyrate regulates some PPARα target genes, including one called Fgf21. The activity of this gene increases only after milk suckling starts and it encodes a protein that enhances the breakdown of fats in the liver. Without PPARα, the expression levels of its target genes, including Fgf21, do not increase after birth, which promotes the build up of fats in liver cells, a condition known as liver steatosis. Overall, the results reported by Rando, Tan et al. highlight how stress during labor plays an important role in priming the body to cope with a fat-rich diet after birth. Future studies will need to determine if stress hormones and ketone bodies could be used as therapies for babies born by caesarean section with liver steatosis. DOI:http://dx.doi.org/10.7554/eLife.11853.002
Collapse
Affiliation(s)
- Gianpaolo Rando
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Chek Kun Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, , Singapore
| | - Nourhène Khaled
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- UMR 1331 ToxAlim Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
| | - Nicolas Leuenberger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Justine Bertrand-Michel
- IFR 150 Plateforme Metatoul, Institut Fédératif de Recherche Bio-Médicale de Toulouse INSERM U563, Toulouse, France
| | - Eeswari Paramalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, , Singapore
| | - Hervé Guillou
- UMR 1331 ToxAlim Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Lee Kong Chian School of Medicine, Nanyang Technological University, , Singapore.,UMR 1331 ToxAlim Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
| |
Collapse
|
29
|
Bakillah A, Hussain MM. Mice subjected to aP2-Cre mediated ablation of microsomal triglyceride transfer protein are resistant to high fat diet induced obesity. Nutr Metab (Lond) 2016; 13:1. [PMID: 26752997 PMCID: PMC4706691 DOI: 10.1186/s12986-016-0061-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/03/2016] [Indexed: 02/06/2023] Open
Abstract
Background Microsomal triglyceride transfer protein (MTP) is essential for the assembly of lipoproteins. MTP has been shown on the surface of lipid droplets of adipocytes; however its function in adipose tissue is not well defined. We hypothesized that MTP may play critical role in adipose lipid droplet formation and expansion. Methods Plasmids mediated overexpression and siRNA mediated knockdown of Mttp gene were performed in 3T3-L1 pre-adipocytes to evaluate the effects of MTP on cell differentiation and triglyceride accumulation. Adipose-specific knockdown of MTP was achieved in mice bybreeding MTP floxed (Mttpfl/fl) mice with aP2-Cre recombinase transgenic mice. Adipose-specific MTP deficient (A-Mttp-/-) mice were fed 60 % high-fat diet (HFD), and the effects of MTP knockdown on body weight, body fat composition, plasma and tissues lipid composition, glucose metabolism, lipogenesis and intestinal absorption was studied. Lipids were measured in total fasting plasma and size fractionated plasma using colorimetric assays. Gene expression was investigated by Real-Time quantitative PCR. All data was assessed using t-test, ANOVA. Results MTP expression increased during early differentiation in 3T3-L1 cells, and declined later. The increases in MTP expression preceded PPARγ expression. MTP overexpression enhanced lipid droplets formation, and knockdown attenuated cellular lipid accumulation. These studies indicated that MTP positively affects adipogenesis. The ablation of the Mttp gene using aP2-Cre (A-Mttp-/-) in mice resulted in a lean phenotype when fed a HFD. These mice had reduced white adipose tissue compared with wild-type Mttpfl/fl mice. The adipose tissue of A-Mttp-/- mice had increased number of smaller size adipocytes and less macrophage infiltration. Further, these mice were protected from HFD-induced fatty liver. The A-Mttp-/- mice had moderate increase in plasma triglyceride, but normal cholesterol, glucose and insulin levels. Gene expression analysis showed that the adipose tissue of the A-Mttp-/- mice had significantly lower mRNA levels of PPARγ and its downstream targets. Conclusion These data suggest that MTP might modulate adipogenesis by influencing PPARγ expression, and play a role in the accretion of lipids to form larger lipid droplets. Thus, agents that inactivate adipose MTP may be useful anti-obesity drugs.
Collapse
Affiliation(s)
- Ahmed Bakillah
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; Department of Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; Department of Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; VA New York Harbor Healthcare System, Brooklyn, NY 11209 USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW To summarize the role of the microRNA-30c (miR-30c) in lipid metabolism and adipogenesis, to address consequences associated with reduced expression in cancer and cardiac function, and to speculate benefits of overexpressing miR-30c in the treatment of hyperlipidemia, atherosclerosis, and cancer. RECENT FINDINGS Overexpression of hepatic miR-30c curtails hyperlipidemia and atherosclerosis by decreasing lipid biosynthesis and lipoprotein secretion. miR-30c expression is significantly elevated during cellular adipogenesis and might play a pro-adipogenic role by up-regulating the expression of adipocyte markers and inducing lipid accumulation. miR-30c is downregulated in cardiac hypertrophy and ischemia, indicating that its expression might be essential for normal cardiac structure and function. Many studies have demonstrated that miR-30c is lower in cancer and its high expression impedes cancer progression by targeting genes involved in cell proliferation and invasion. SUMMARY These studies highlight the important role miR-30c plays in lipid metabolism, adipogenesis, and cell proliferation and differentiation. Further, they point to pathologic outcomes associated with reduced expression in cancer and cardiac hypertrophy. Additionally, they suggest that increasing miR-30c expression in the liver and cancerous tissue might reduce hyperlipidemia and atherosclerosis, and cancer progression and metastasis, respectively. Studies are needed to evaluate the efficacy of miR-30c mimic in the treatment of these disorders.
Collapse
Affiliation(s)
- Sara Irani
- aSchool of Graduate Studies, Molecular and Cell Biology Program bDepartment of Cell Biology cDepartment of Pediatrics, SUNY Downstate Medical Center dVA New York Harbor Healthcare System, Brooklyn, New York, USA
| | | |
Collapse
|
31
|
Abstract
Microsomal triglyceride transfer protein (MTP) is one of the promising targets for the therapy of dyslipidemia and MTP inhibition can lead to robust plasma low-density lipoprotein cholesterol (LDL-C) reduction. Lomitapide, a small-molecule MTP inhibitor, was recently approved by the US FDA as an additional treatment for homozygous familial hypercholesterolemia (hoFH). However, liver-related side effects, including hepatic fat accumulation and transaminase elevations, are the main safety concerns associated with MTP inhibitors. Here, we review recent knowledge on the mechanisms underlying liver toxicity of MTP inhibitors. The contribution of altered levels of intracellular triglycerides, cholesteryl esters, and free cholesterols toward cellular dysfunction is specifically addressed. On this basis, therapies targeted to attenuate cellular lipid accumulation, to reduce risk factors for non-alcoholic fatty liver disease (NAFLD) (i.e., insulin resistance and oxidative stress) and to specifically inhibit intestinal MTP may be useful for ameliorating liver damage induced by MTP inhibitors. In particular, weight loss through lifestyle interventions is expected to be the most effective and safest way to minimize the undesirable side effects. Specific dietary supplementation might also have protective effects against hepatosteatosis. Despite that, to date, few clinical data support these therapeutic options in MTP inhibition-related liver damage, such proposed approaches may be further explored in the future for their use in preventing unwanted effects of MTP inhibitors.
Collapse
|
32
|
Sookoian S, Pirola CJ. Liver enzymes, metabolomics and genome-wide association studies: From systems biology to the personalized medicine. World J Gastroenterol 2015; 21:711-725. [PMID: 25624707 PMCID: PMC4299326 DOI: 10.3748/wjg.v21.i3.711] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/18/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
For several decades, serum levels of alanine (ALT) and aspartate (AST) aminotransferases have been regarded as markers of liver injury, including a wide range of etiologies from viral hepatitis to fatty liver. The increasing worldwide prevalence of metabolic syndrome and cardiovascular disease revealed that transaminases are strong predictors of type 2 diabetes, coronary heart disease, atherothrombotic risk profile, and overall risk of metabolic disease. Therefore, it is plausible to suggest that aminotransferases are surrogate biomarkers of “liver metabolic functioning” beyond the classical concept of liver cellular damage, as their enzymatic activity might actually reflect key aspects of the physiology and pathophysiology of the liver function. In this study, we summarize the background information and recent findings on the biological role of ALT and AST, and review the knowledge gained from the application of genome-wide approaches and “omics” technologies that uncovered new concepts on the role of aminotransferases in human diseases and systemic regulation of metabolic functions. Prediction of biomolecular interactions between the candidate genes recently discovered to be associated with plasma concentrations of liver enzymes showed interesting interconnectivity nodes, which suggest that regulation of aminotransferase activity is a complex and highly regulated trait. Finally, links between aminotransferase genes and metabolites are explored to understand the genetic contributions to the metabolic diversity.
Collapse
|
33
|
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project. Drug Discov Today 2015; 20:505-13. [PMID: 25582842 DOI: 10.1016/j.drudis.2014.12.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022]
Abstract
The pharmaceutical industry is faced with steadily declining R&D efficiency which results in fewer drugs reaching the market despite increased investment. A major cause for this low efficiency is the failure of drug candidates in late-stage development owing to safety issues or previously undiscovered side-effects. We analyzed to what extent gene expression data can help to de-risk drug development in early phases by detecting the biological effects of compounds across disease areas, targets and scaffolds. For eight drug discovery projects within a global pharmaceutical company, gene expression data were informative and able to support go/no-go decisions. Our studies show that gene expression profiling can detect adverse effects of compounds, and is a valuable tool in early-stage drug discovery decision making.
Collapse
|
34
|
Das G, Rees A. Microsomal triglyceride transfer protein inhibition: a novel treatment for lowering plasma cholesterol. Curr Opin Lipidol 2014; 25:471-3. [PMID: 25370457 DOI: 10.1097/mol.0000000000000134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Gautam Das
- aDepartment of Diabetes and Endocrinology, Prince Charles Hospital, Cwm Taf University Health Board, Gurnos, Merthyr Tydfil bDepartment of Diabetes and Endocrinology, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, Wales, UK
| | | |
Collapse
|
35
|
Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol accumulation in alcoholic liver disease: Role of ASMase and endoplasmic reticulum stress. Redox Biol 2014; 3:100-8. [PMID: 25453982 PMCID: PMC4297930 DOI: 10.1016/j.redox.2014.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease and a growing health concern in theworld. While the pathogenesis of ALD is poorly characterized key players identified in experimental models and patients, such as perturbations in mitochondrial structure and function, selective loss of antioxidant defense and susceptibility to inflammatory cytokines, contribute to ALD progression. Both oxidative stress and mitochondrial dysfunction compromise essential cellular functions and energy generation and hence are important pathogenic mechanisms of ALD. An important process mediating the mitochondrial disruption induced by alcohol intake is the trafficking of cholesterol to mitochondria, mediated by acid sphingomyelinase-induced endoplasmic reticulum stress, which contributes to increased cholesterol synthesis and StARD1upregulation. Mitochondrial cholesterol accumulation not only sensitizes to oxidative stress but it can contribute to the metabolic reprogramming in ALD, manifested by activation of the hypoxia inducible transcription factor 1 and stimulation of glycolysis and lactate secretion. Thus, a better understanding of the mechanisms underlying alcohol-mediated mitochondrial impairment and oxidative stress may lead to the identification of novel treatments for ALD. The present review briefly summarizes current knowledge on the cellular and molecular mechanisms contributing to alcohol-induced mitochondrial dysfunction and cholesterol accumulation and provides insights for potential therapeutic targets in ALD. Alcohol perturbs mitochondria function, which modulates ROS generation and alcohol metabolism. Alcohol stimulates mitochondrial cholesterol (mChol) accumulation. MChol accumulation impairs mitochondrial function and mediates alcohol-induced lipotoxicity. ASMase promotes mitochondrial dysfunction by stimulating mChol loading.
Collapse
Affiliation(s)
- Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain.
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Jose C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain; Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
George M, Selvarajan S, Muthukumar R, Elangovan S. Looking into the Crystal Ball—Upcoming Drugs for Dyslipidemia. J Cardiovasc Pharmacol Ther 2014; 20:11-20. [DOI: 10.1177/1074248414545127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dyslipidaemia is a critical risk factor for the development of cardiovascular complications such as ischemic heart disease and stroke. Although statins are effective anti-dyslipidemic drugs, their usage is fraught with issues such as failure of adequate lipid control in 30% of cases and intolerance in select patients. The limited potential of other alternatives such as fibrates, bile acid sequestrants and niacin has spurred the search for novel drug molecules with better efficacy and safety. CETP inhibitors such as evacetrapib and anacetrapib have shown promise in raising HDL besides LDL lowering property. Microsomal triglyceride transfer protein (MTP) inhibitors such as lomitapide and Apo CIII inhibitors such as mipomersen have recently been approved in Familial Hypercholesterolemia but experience in the non-familial setting is pretty much limited. One of the novel anti-dyslipidemic drugs which is greatly anticipated to make a mark in LDL-C control is the PCSK9 inhibitors. Some of the anti-dyslipidemic drugs which work by PCSK9 inhibition include evolocumab, alirocumab and ALN-PCS. Other approaches that are being given due consideration include farnesoid X receptor modulation and Lp-PLA2 inhibition. While it may not be an easy proposition to dismantle statins from their current position as a cholesterol reducing agent and as a drug to reduce coronary and cerebro-vascular atherosclerosis, our improved understanding of the disease and appropriate harnessing of resources using sound and robust technology could make rapid in-roads in our pursuit of the ideal anti-dyslipidemic drug.
Collapse
Affiliation(s)
- Melvin George
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| | - Sandhiya Selvarajan
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Rajaram Muthukumar
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| | - Shanmugam Elangovan
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| |
Collapse
|
37
|
Onur S, Niklowitz P, Jacobs G, Nöthlings U, Lieb W, Menke T, Döring F. Ubiquinol reduces gamma glutamyltransferase as a marker of oxidative stress in humans. BMC Res Notes 2014; 7:427. [PMID: 24996614 PMCID: PMC4105833 DOI: 10.1186/1756-0500-7-427] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reduced form of Coenzyme Q10 (CoQ10), ubiquinol (Q10H2), serves as a potent antioxidant in mitochondria and lipid membranes. There is evidence that Q10H2 protects against oxidative events in lipids, proteins and DNA. Serum gamma-glutamyltransferase (GGT) activity is associated with cardiovascular diseases. In a physiological range, activity of GGT is a potential early and sensitive marker of inflammation and oxidative stress.In this study, we first examined the relationship between CoQ10 status and serum GGT activity in 416 healthy participants between 19 and 62 years of age in a cross-sectional study (cohort I). In the second step, 53 healthy males (21-48 years of age; cohort II) underwent a 14-day Q10H2 supplementation (150 mg/d) to evaluate the effect of Q10H2 supplementation on serum GGT activity and GGT1 gene expression. FINDINGS There was a strong positive association between CoQ10 status and serum GGT activity in cohort I. However, a gender-specific examination revealed differences between male and female volunteers regarding the association between CoQ10 status and serum GGT activity. Q10H2 supplementation (cohort II) caused a significant decrease in serum GGT activity from T0 to T14 (p < 0.001). GGT1 mRNA levels declined 1.49-fold after Q10H2 supplementation. Of note, other liver enzymes (i.e., aspartate aminotransferase, AST) were not affected by Q10H2 supplementation. CONCLUSIONS CoQ10 level is positively associated with serum GGT activity. Supplementation with Q10H2 reduces serum GGT activity. This effect might be caused by gene expression. Overall, we provide preliminary evidence that higher Q10H2 levels improve oxidative stress via reduction of serum GGT activity in humans. TRIAL REGISTRATION Current Controlled Trials ISRCTN26780329.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Döring
- Institute of Human Nutrition and Food Science, Division of Molecular Prevention, Christian Albrechts University Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| |
Collapse
|
38
|
Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014; 5:151. [PMID: 25024695 PMCID: PMC4079069 DOI: 10.3389/fphar.2014.00151] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
39
|
Cao J, Perez S, Goodwin B, Lin Q, Peng H, Qadri A, Zhou Y, Clark RW, Perreault M, Tobin JF, Gimeno RE. Mice deleted for GPAT3 have reduced GPAT activity in white adipose tissue and altered energy and cholesterol homeostasis in diet-induced obesity. Am J Physiol Endocrinol Metab 2014; 306:E1176-87. [PMID: 24714397 DOI: 10.1152/ajpendo.00666.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first step in the synthesis of glycerolipids and glycerophospholipids. Microsomal GPAT, the major GPAT activity, is encoded by at least two closely related genes, GPAT3 and GPAT4. To investigate the in vivo functions of GPAT3, we generated Gpat3-deficient (Gpat3(-/-)) mice. Total GPAT activity in white adipose tissue of Gpat3(-/-) mice was reduced by 80%, suggesting that GPAT3 is the predominant GPAT in this tissue. In liver, GPAT3 deletion had no impact on total GPAT activity but resulted in a 30% reduction in N-ethylmaleimide-sensitive GPAT activity. The Gpat3(-/-) mice were viable and fertile and exhibited no obvious metabolic abnormalities on standard laboratory chow. However, when fed a high-fat diet, female Gpat3(-/-) mice showed decreased body weight gain and adiposity and increased energy expenditure. Increased energy expenditure was also observed in male Gpat3(-/-) mice, although it was not accompanied by a significant change in body weight. GPAT3 deficiency lowered fed, but not fasted, glucose levels and tended to improve glucose tolerance in diet-induced obese male and female mice. On a high-fat diet, Gpat3(-/-) mice had enlarged livers and displayed a dysregulation in cholesterol metabolism. These data establish GPAT3 as the primary GPAT in white adipose tissue and reveal an important role of the enzyme in regulating energy, glucose, and lipid homeostasis.
Collapse
Affiliation(s)
- Jingsong Cao
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Sylvie Perez
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Bryan Goodwin
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Qingcong Lin
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Haibing Peng
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Ariful Qadri
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Yingjiang Zhou
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Ronald W Clark
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Mylene Perreault
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - James F Tobin
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Ruth E Gimeno
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| |
Collapse
|
40
|
Dikkers A, Annema W, de Boer JF, Iqbal J, Hussain MM, Tietge UJF. Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice. J Lipid Res 2014; 55:816-25. [PMID: 24511105 DOI: 10.1194/jlr.m042986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp(-/-)) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp(-/-) mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp(-/-) mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.
Collapse
Affiliation(s)
- Arne Dikkers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Salgado MC, Metón I, Anemaet IG, Baanante IV. Activating transcription factor 4 mediates up-regulation of alanine aminotransferase 2 gene expression under metabolic stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:288-96. [PMID: 24418603 DOI: 10.1016/j.bbagrm.2014.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 12/22/2022]
Abstract
Alanine aminotransferase (ALT) provides a molecular link between carbohydrate and amino acid metabolism. In humans, two ALT isoforms have been characterized: ALT1, cytosolic, and ALT2, mitochondrial. To gain insight into the transcriptional regulation of the ALT2 gene, we cloned and characterized the human ALT2 promoter. 5'-deletion analysis of ALT2 promoter in transiently transfected HepG2 cells and site-directed mutagenesis allowed us to identify ATF4 as a new factor involved in the transcriptional regulation of ALT2 expression. Quantitative RT-PCR assays showed that the metabolic stressors histidinol and tunicamycin increased ATF4 levels and up-regulated ALT2 in HepG2 and Huh7 cells. Consistently, knock-down of ATF4 decreased ALT2 mRNA levels in HepG2 and Huh-7 cells. Moreover, ATF4 silencing prevented the activating effect of histidinol and tunicamycin on ATF4 and ALT2 expression. Our findings point to ALT2 as an enzyme involved in the metabolic adaptation of the cell to stress.
Collapse
Affiliation(s)
- María C Salgado
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - Isidoro Metón
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - Ida G Anemaet
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - Isabel V Baanante
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain.
| |
Collapse
|
42
|
Arensdorf AM, Diedrichs D, Rutkowski DT. Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences. Front Genet 2013; 4:256. [PMID: 24348511 PMCID: PMC3844873 DOI: 10.3389/fgene.2013.00256] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022] Open
Abstract
The mammalian unfolded protein response (UPR) is propagated by three ER-resident transmembrane proteins, each of which initiates a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends to genes involved in diverse physiological processes having seemingly little to do with ER protein folding, and this includes a substantial number of mRNAs that are suppressed by stress rather than stimulated. Through multiple non-canonical mechanisms emanating from each of the UPR pathways, the cell dynamically regulates transcription and mRNA degradation. Here we highlight these mechanisms and their increasingly appreciated impact on physiological processes.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Danilo Diedrichs
- Department of Mathematics and Computer Science, Wheaton College Wheaton, IL, USA
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
43
|
Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome. Arch Virol 2013; 159:1017-25. [PMID: 24240483 DOI: 10.1007/s00705-013-1892-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.
Collapse
|
44
|
Botros M, Sikaris KA. The de ritis ratio: the test of time. Clin Biochem Rev 2013; 34:117-30. [PMID: 24353357 PMCID: PMC3866949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
De Ritis described the ratio between the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT) almost 50 years ago. While initially described as a characteristic of acute viral hepatitis where ALT was usually higher than AST, other authors have subsequently found it useful in alcoholic hepatitis, where AST is usually higher than ALT. These interpretations are far too simplistic however as acute viral hepatitis can have AST greater than ALT, and this can be a sign of fulminant disease, while alcoholic hepatitis can have ALT greater than AST when several days have elapsed since alcohol exposure. The ratio therefore represents the time course and aggressiveness of disease that would be predicted from the relatively short half-life of AST (18 h) compared to ALT (36 h). In chronic viral illnesses such as chronic viral hepatitis and chronic alcoholism as well as non-alcoholic fatty liver disease, an elevated AST/ALT ratio is predictive of long terms complications including fibrosis and cirrhosis. There are methodological issues, particularly whether or not pyridoxal phosphate is used in the transaminase assays, and although this can have specific effects when patient samples are deficient in this vitamin, these method differences generally have mild effects on the usefulness of the assays or the ratio. Ideally laboratories should be using pyridoxal phosphate supplemented assays in alcoholic, elderly and cancer patients who may be pyridoxine deplete. Ideally all laboratories reporting abnormal ALT should also report AST and calculate the De Ritis ratio because it provides useful diagnostic and prognostic information.
Collapse
Affiliation(s)
- Mona Botros
- Melbourne Pathology, 103 Victoria Parade, Collingwood, Vic. 3066, Australia
| | - Kenneth A Sikaris
- Melbourne Pathology, 103 Victoria Parade, Collingwood, Vic. 3066, Australia
| |
Collapse
|
45
|
Iqbal J, Parks JS, Hussain MM. Lipid absorption defects in intestine-specific microsomal triglyceride transfer protein and ATP-binding cassette transporter A1-deficient mice. J Biol Chem 2013; 288:30432-30444. [PMID: 24019513 DOI: 10.1074/jbc.m113.501247] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92-95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations.
Collapse
Affiliation(s)
- Jahangir Iqbal
- From the Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203 and
| | - John S Parks
- the Department of Pathology, Section on Lipid Sciences and Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 25157
| | - M Mahmood Hussain
- From the Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203 and.
| |
Collapse
|
46
|
Soh J, Hussain MM. Supplementary site interactions are critical for the regulation of microsomal triglyceride transfer protein by microRNA-30c. Nutr Metab (Lond) 2013; 10:56. [PMID: 24007526 PMCID: PMC3856448 DOI: 10.1186/1743-7075-10-56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/31/2013] [Indexed: 11/10/2022] Open
Abstract
Microsomal triglyceride transfer protein (MTTP) is an essential chaperone that assists in the assembly of apolipoprotein B-containing lipoproteins to transport lipids. We have shown that microRNA (miR)-30c regulates MTTP expression but other members of the same family do not. Further, we showed that interactions between miR-30c seed sequence and the 3΄-untranslated region (UTR) of the MTTP mRNA are critical for this regulation. The same seed sequence is shared by all the members of the miR-30 family. Therefore, it is unclear why only miR-30c regulates MTTP expression. Bioinformatics analysis revealed that, miR-30c interacts with MTTP mRNA involving supplementary site, besides seed sequence, forming an intervening loop. Here, we evaluated the importance of the supplementary site and the size of the intervening loop in miR-30c/MTTP mRNA interactions by cloning MTTP 3΄-UTR at the end of the luciferase gene and subjecting it to site-directed mutagenesis. Reducing the number of base pairs at the supplementary site abolished the ability of miR-30c to reduce luciferase activity. However, increasing the number of base pairs at the supplementary site, seed sequence or in the intervening loop enhanced the efficacy of miR-30c in reducing luciferase activity. These studies demonstrated that the supplementary site of miR-30c is, but the intervening loop is not, critical for binding to the MTTP mRNA. To our knowledge, this is the first demonstration that miRs might require both seed and supplementary interactions to regulate target mRNA specificity. Further, this study suggests that more potent miR-30c mimics could be synthesized by increasing base pairing in the loop region.
Collapse
Affiliation(s)
- James Soh
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
47
|
García-Ruiz C, Kaplowitz N, Fernandez-Checa JC. Role of Mitochondria in Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2013; 1:159-168. [PMID: 25343061 DOI: 10.1007/s40139-013-0021-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol-induced liver disease (ALD) is a major health concern of alcohol abuse and a leading cause of liver-related morbidity and mortality. The pathogenesis of ALD is multifactorial and still ill characterized. One of the hallmarks of ALD common for both patients and experimental models is the alteration in the architecture and function of mitochondria. Due to their primordial role in energy production, metabolism and cell fate decisions, these changes in mitochondria caused by alcohol are considered an important contributory factor in ALD. A better understanding of the mechanisms underlying alcohol-mediated mitochondrial alterations may shed light on ALD pathogenesis and provide novel avenues for treatment. The purpose of the current review is to briefly update the latest developments in ALD research regarding morphological and functional mitochondrial regulation including mitochondrial dynamics and biogenesis, mitochondrial protein acetylation and evidence for an endoplasmic reticulum stress-mitochondrial cholesterol link of potential relevance for ALD.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic and CIBEREHD, Barcelona, Spain
| | - Neil Kaplowitz
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern, California, Los Angeles, CA, USA
| | - José C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic and CIBEREHD, Barcelona, Spain. Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern, California, Los Angeles, CA, USA
| |
Collapse
|