1
|
Min EK, Kim SR, Lee CM, Na KH, Park CH, Oh BC, Jung Y, Hong IS. Identification of memory mechanism in tissue-resident stem cells via ANGPTL4 beyond immune cells upon viral antigen exposure. Mol Ther 2024; 32:3042-3058. [PMID: 38582960 PMCID: PMC11403228 DOI: 10.1016/j.ymthe.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Although memory functions of immune cells characterized by increased resistance to subsequent infections after initial pathogen exposure are well-established, it remains unclear whether non-immune cells, especially tissue-resident stem cells, exhibit similar memory mechanisms. The present study revealed that detrimental effects of initial viral antigen exposure (human papillomavirus [HPV]) on diverse stem cell functions were significantly exacerbated upon subsequent secondary exposure both in vitro and in vivo. Importantly, endometrial stem cells exhibited robust memory functions following consecutive HPV antigen exposures, whereas fully differentiated cells such as fibroblasts and vesicular cells did not show corresponding changes in response to the same antigen exposures. Deficiency of angiopoietin-like 4 (ANGPTL4) achieved through small hairpin RNA knockdown in vitro and knockout (KO) mice in vivo highlighted the critical role of ANGPTL4 in governing memory functions associated with various stem cell processes. This regulation occurred through histone H3 methylation alterations and PI3K/Akt signaling pathways in response to successive HPV antigen exposures. Furthermore, memory functions associated with various stem cell functions that were evident in wild-type mice following consecutive exposures to HPV antigen were not observed in ANGPTL4 KO mice. In summary, our findings strongly support the presence of memory mechanism in non-immune cells, particularly tissue-resident stem cells.
Collapse
Affiliation(s)
- Eun-Kyung Min
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Choon-Mi Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Kun-Hee Na
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - YunJae Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea.
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| |
Collapse
|
2
|
Park S, Min E, Kim S, Kim S, Na K, Park CH, Jung Y, Oh B, Hong I. Exploring Memory Function Beyond Immune Cells: ANGPTL4-Mediated Memory Functions in Tissue Resident Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307545. [PMID: 38666393 PMCID: PMC11267307 DOI: 10.1002/advs.202307545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/15/2024] [Indexed: 07/25/2024]
Abstract
Adapted immune cells are known to develop memory functions that increase resistance to subsequent infections after initial pathogen exposure, however, it is unclear whether non-immune cells, like tissue-resident stem cells, have similar memory functions. Here, it is found that tissue-resident stem cells crucial for tissue regeneration show diminished adverse effects on diverse stem cell functions against successive exposure to foreign antigen (β-glucan) to maintain tissue homeostasis and stability both in vitro and in vivo. These data suggest that endometrial stem cells may possess a robust memory function, in contrast, fully differentiated cells like fibroblasts and vesicular cells do not show these memory mechanisms upon consecutive antigen exposure. Moreover, the pivotal role of Angiopoietin-like 4 (ANGPTL4) in regulating the memory functions of endometrial stem cells is identified through specific shRNA knockdown in vitro and knockout mice in vivo experiments. ANGPTL4 is associated with the alteration of diverse stem cell functions and epigenetic modifications, notably through histone H3 methylation changes and two pathways (i.e., PI3K/Akt and FAK/ERK1/2 signaling) upon consecutive antigen exposure. These findings imply the existence of inherent self-defense mechanisms through which local stem cells can adapt and protect themselves from recurrent antigenic challenges, ultimately mitigating adverse consequences.
Collapse
Affiliation(s)
- Se‐Ra Park
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| | - Eun‐kyung Min
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| | - Soo‐Rim Kim
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| | - Suk‐Kyung Kim
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| | - Kun‐Hee Na
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Microbiology, College of MedicineGachon UniversityIncheon21999Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology‐Head and Neck Surgery, Chuncheon Sacred Heart HospitalHallym University College of MedicineChuncheon24201Republic of Korea
| | - YunJae Jung
- Department of Microbiology, College of MedicineGachon UniversityIncheon21999Republic of Korea
| | - Byung‐Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheon21999Republic of Korea
| | - In‐Sun Hong
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| |
Collapse
|
3
|
Yang Y, Koga H, Nakagawa Y, Nakamura T, Katagiri H, Takada R, Katakura M, Tsuji K, Sekiya I, Miyatake K. Characteristics of the synovial microenvironment and synovial mesenchymal stem cells with hip osteoarthritis of different bone morphologies. Arthritis Res Ther 2024; 26:17. [PMID: 38200556 PMCID: PMC10777653 DOI: 10.1186/s13075-023-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Variations in bone morphology in patients with hip osteoarthritis (HOA) can be broadly categorized into three types: atrophic, normotrophic, and hypertrophic. Despite the investigations examining clinical elements, such as bone morphology, pain, and range of motion, our understanding of the pathogenesis of HOA remains limited. Previous studies have suggested that osteophytes typically originate at the interface of the joint cartilage, periosteum, and synovium, potentially implicating synovial mesenchymal stem cells (SMSCs) in the process. This study aimed to investigate the potential factors that drive the development of bone morphological features in HOA by investigating the characteristics of the synovium, differentiation potential of SMSCs, and composition of synovial fluid in different types of HOA. METHODS Synovial tissue and fluid were collected from 30 patients who underwent total hip arthroplasty (THA) with the variable bone morphology of HOA patients. RNA sequencing analysis and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) were performed to analyse the genes in the normotrophic and hypertrophic synovial tissue. SMSCs were isolated and cultured from the normotrophic and hypertrophic synovial tissues of each hip joint in accordance with the variable bone morphology of HOA patients. Cell differentiation potential was compared using differentiation and colony-forming unit assays. Cytokine array was performed to analyse the protein expression in the synovial fluid. RESULTS In the RNA sequencing analysis, 103 differentially expressed genes (DEGs) were identified, predominantly related to the interleukin 17 (IL-17) signalling pathway. Using a protein-protein interaction (PPI) network, 20 hub genes were identified, including MYC, CXCL8, ATF3, NR4A1, ZC3H12A, NR4A2, FOSB, and FOSL1. Among these hub genes, four belonged to the AP-1 family. There were no significant differences in the tri-lineage differentiation potential and colony-forming capacity of SMSCs. However, RT-qPCR revealed elevated SOX9 expression levels in synovial tissues from the hypertrophic group. The cytokine array demonstrated significantly higher levels of CXCL8, MMP9, and VEGF in the synovial fluid of the hypertrophic group than in the normotrophic group, with CXCL8 and MMP9 being significantly expressed in the hypertrophic synovium. CONCLUSION Upregulation of AP-1 family genes in the synovium and increased concentrations of CXCL8, MMP9, and VEGF were detected in the synovial fluid of the hypertrophic group of HOA patients, potentially stimulating the differentiation of SMSCs towards the cartilage and thereby contributing to severe osteophyte formation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomasa Nakamura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Ryohei Takada
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Katakura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
4
|
Kondo S, Kojima K, Nakamura N, Miyabe M, Kikuchi T, Ohno T, Sawada N, Minato T, Saiki T, Ito M, Sasajima S, Matsubara T, Mitani A, Naruse K. Increased expression of angiopoietin-like protein 4 regulates matrix metalloproteinase-13 expression in Porphyromonas gingivalis lipopolysaccharides-stimulated gingival fibroblasts and ligature-induced experimental periodontitis. J Periodontal Res 2023; 58:43-52. [PMID: 36409042 DOI: 10.1111/jre.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Angiopoietin-like protein 4 (ANGPTL4) is produced in chronic or acute inflammation. Although ANGPTL4 increases in the periodontal ligament fibroblasts during hypoxia, the involvement and role of ANGPTL4 in periodontitis have not been elucidated. OBJECTIVE In this study, we investigated whether ligature-induced experimental periodontitis and/or Porphyromonas gingivalis lipopolysaccharides (Pg-LPS) would upregulate ANGPTL4 expression and whether ANGPTL4 would somehow involve in the expression of matrix metalloproteinases (MMPs) which are key molecules in the process of periodontal tissue destruction. METHODS Experimental periodontitis was induced in 6-week-old male Sprague-Dawley rats by placing a nylon suture around the neck of the maxillary second molar. Two weeks after the induction of periodontitis, the periodontal tissue was excised and analyzed by histological/immunohistochemical staining and gene expression analyses. Human gingival fibroblasts (hGFs) were stimulated with Pg-LPS. The gene expression of ANGPTLs and receptors involved in ANGPTL4 recognition were observed. We also confirmed the changes in gene expression of MMPs upon stimulation with human ANGPTL4. Furthermore, we downregulated ANGPTL4 expression by short interfering RNA in hGFs and investigated the effect of Pg-LPS on MMP production. RESULTS Induction of periodontitis significantly increased the expression of ANGPTL4 in the gingiva. Pg-LPS significantly increased the gene and protein expression of ANGPTL4 in hGFs but not the gene expression of other ANGPTLs or ANGPTL receptors. Recombinant human ANGPTL4 significantly increased MMP13 gene expression in hGFs. We also confirmed that MMP13 expression was increased in the gingiva during experimental periodontitis. Pg-LPS induced MMP13 gene expression in hGFs. These results suggest the pivotal role of ANGPTL4 in periodontitis. CONCLUSION Periodontitis increases ANGPTL4 expression in the gingiva, further suggesting that increased ANGPTL4 may be a factor involved in enhancing MMP13 expression.
Collapse
Affiliation(s)
- Shun Kondo
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kento Kojima
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tasuku Ohno
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Noritaka Sawada
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tomomi Minato
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tomokazu Saiki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mizuho Ito
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Sachiko Sasajima
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.,The Graduate Center of Human Sciences, Aichi Mizuho College, Nagoya, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
5
|
Gerwin N, Scotti C, Halleux C, Fornaro M, Elliott J, Zhang Y, Johnson K, Shi J, Walter S, Li Y, Jacobi C, Laplanche N, Belaud M, Paul J, Glowacki G, Peters T, Wharton KA, Vostiar I, Polus F, Kramer I, Guth S, Seroutou A, Choudhury S, Laurent D, Gimbel J, Goldhahn J, Schieker M, Brachat S, Roubenoff R, Kneissel M. Angiopoietin-like 3-derivative LNA043 for cartilage regeneration in osteoarthritis: a randomized phase 1 trial. Nat Med 2022; 28:2633-2645. [PMID: 36456835 PMCID: PMC9800282 DOI: 10.1038/s41591-022-02059-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
Abstract
Osteoarthritis (OA) is a common, debilitating, chronic disease with no disease-modifying drug approved to date. We discovered LNA043-a derivative of angiopoietin-like 3 (ANGPTL3)-as a potent chondrogenesis inducer using a phenotypic screen with human mesenchymal stem cells. We show that LNA043 promotes chondrogenesis and cartilage matrix synthesis in vitro and regenerates hyaline articular cartilage in preclinical OA and cartilage injury models in vivo. LNA043 exerts at least part of these effects through binding to the fibronectin receptor, integrin α5β1 on mesenchymal stem cells and chondrocytes. In a first-in-human (phase 1), randomized, double-blinded, placebo-controlled, single ascending dose, single-center trial ( NCT02491281 ; sponsored by Novartis Pharmaceuticals), 28 patients with knee OA were injected intra-articularly with LNA043 or placebo (3:1 ratio) either 2 h, 7 d or 21 d before total knee replacement. LNA043 met its primary safety endpoint and showed short serum pharmacokinetics, cartilage penetration and a lack of immunogenicity (secondary endpoints). Post-hoc transcriptomics profiling of cartilage revealed that a single LNA043 injection reverses the OA transcriptome signature over at least 21 d, inducing the expression of hyaline cartilage matrix components and anabolic signaling pathways, while suppressing mediators of OA progression. LNA043 is a novel disease-modifying OA drug candidate that is currently in a phase 2b trial ( NCT04864392 ) in patients with knee OA.
Collapse
Affiliation(s)
- Nicole Gerwin
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | - Mara Fornaro
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jimmy Elliott
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Yunyu Zhang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Jian Shi
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Sandra Walter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Yufei Li
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nelly Laplanche
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Magali Belaud
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Thomas Peters
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Igor Vostiar
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Florine Polus
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sabine Guth
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Didier Laurent
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Jörg Goldhahn
- Institute for Translational Medicine, ETH Zürich, Zürich, Switzerland
| | | | - Sophie Brachat
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | |
Collapse
|
6
|
Wang T, Wang J, Sun Z, Zhang L, Yu C, Zhao H, Yan M, Sun S, Ye Z, Zhang Y, Yu T. Single-cell RNA sequence presents atlas analysis for chondrocytes in the talus and reveals the potential mechanism in coping with mechanical stress. Front Cell Dev Biol 2022; 10:1047119. [PMID: 36438550 PMCID: PMC9685414 DOI: 10.3389/fcell.2022.1047119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 09/02/2023] Open
Abstract
Chondrocytes are indispensable for the function of cartilage because they provide the extracellular matrix. Therefore, gaining insight into the chondrocytes may be helpful in understanding cartilage function and pinpointing potential therapeutical targets for diseases. The talus is a part of the ankle joint, which serves as the major large joint that bears body weight. Compared with the distal tibial and fibula, the talus bears much more mechanical loading, which is a risk factor for osteoarthritis (OA). However, in most individuals, OA seems to be absent in the ankle, and the cartilage of the talus seems to function normally. This study applied single-cell RNA sequencing to demonstrate atlas for chondrocyte subsets in healthy talus cartilage obtained from five volunteers, and chondrocyte subsets were annotated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for each cell type, cell-cell interactions, and single-cell regulatory network inference and clustering for each cell type were conducted, and hub genes for each cell type were identified. Immunohistochemical staining was used to confirm the presence and distribution of each cell type. Two new chondrocyte subsets were annotated as MirCs and SpCs. The identified and speculated novel microenvironment may pose different directions in chondrocyte composition, development, and metabolism in the talus.
Collapse
Affiliation(s)
- Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junjie Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zewen Sun
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lu Zhang
- Medical Research Center, Institute of Orthopaedics and Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenghao Yu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mingyue Yan
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhenhao Ye
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Silencing of Angiopoietin-Like Protein 4 (Angptl4) Decreases Inflammation, Extracellular Matrix Degradation, and Apoptosis in Osteoarthritis via the Sirtuin 1/NF-κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1135827. [PMID: 36071864 PMCID: PMC9442503 DOI: 10.1155/2022/1135827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Osteoarthritis (OA) is a frequently observed condition in aged people. OA cartilage is characterized by chondrocyte apoptosis, chondrocyte inflammation, and hyperactive catabolism of extracellular matrix. However, the specific molecular mechanisms remain unclear. Recent data has shown that Angptl4, a multifunctional cytokine, is involved in the regulation of inflammatory and apoptosis responses in different tissues. This study is aimed at defining the role of Angptl4 in the development of OA. We employed X-ray analysis, safranin O-fast green (S-O) staining, and hematoxylin staining to evaluate histomorphological characteristics in the knee joint of mice. Real-time quantitative polymerase chain reaction, Western blot assays, immunofluorescence staining, and enzyme-linked immunosorbent assays (ELISA) were performed to analyze the changes in gene and protein expression. Mechanically, our data demonstrated that Angptl4 knockdown improved the degradation of extracellular matrix and reduced TNF-α-mediated chondrocyte inflammation and apoptosis by suppressing sirtuin 1/NF-κB signaling pathway. In addition, animal studies showed that the suppression of Angptl4 expression might alleviate OA development. In conclusion, our findings revealed the underlying mechanisms of Angptl4 regulation in chondrocytes and its potential value in the treatment of OA.
Collapse
|
8
|
Aung TM, Ciin MN, Silsirivanit A, Jusakul A, Lert-Itthiporn W, Proungvitaya T, Roytrakul S, Proungvitaya S. Serum Angiopoietin-Like Protein 4: A Potential Prognostic Biomarker for Prediction of Vascular Invasion and Lymph Node Metastasis in Cholangiocarcinoma Patients. Front Public Health 2022; 10:836985. [PMID: 35392474 PMCID: PMC8980351 DOI: 10.3389/fpubh.2022.836985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a tumor arising from cholangiocytes lining the bile ducts. Vascular invasion and lymph node metastasis are important prognostic factors for disease staging as well as clinical therapeutic decisions for CCA patients. In the present study, we applied CCA sera proteomic analysis to identify a potential biomarker for prognosis of CCA patients. Then, using bioinformatics tools, we identified angiopoietin-like protein 4 (ANGPTL4) which expressed highest signal intensity among candidate proteins in proteomic analysis of CCA sera. Expression of ANGPTL4 in CCA tissues was determined using immunohistochemistry. The results showed that ANGPTL4 was stained at higher level in CCA cells when compared with normal cholangiocytes. The high expression of ANGPTL4 was associated with lymph node metastasis and advanced tumor stage (p = 0.013 and p = 0.031, respectively). Furthermore, serum ANGPTL4 levels in CCA and healthy control (HC) were analyzed using a dot blot assay. And it was found that ANGPTL4 level was significantly higher in CCA than HC group (p < 0.0001). ROC curve analysis revealed that serum ANGPTL4 level was effectively distinguished CCA from healthy patients (cutoff = 0.2697 arbitrary unit (AU), 80.0% sensitivity, 72.7% specificity, AUC = 0.825, p < 0.0001). Serum ANGPTL4 level was associated with vascular invasion and lymph node metastasis (p = 0.0004 and p = 0.006), so that it differentiated CCA with vascular invasion from CCA without vascular invasion (cutoff = 0.5526 AU, 64.9% sensitivity, 92.9% specificity, AUC = 0.751, p = 0.006) and it corresponded to CCA with/without lymph node metastasis (cutoff = 0.5399 AU, 71.4% sensitivity, 70.8% specificity, AUC = 0.691, p = 0.01) by ROC analysis. Serum ANGPTL4 levels showed superior predictive efficiency compared with CA 19-9 and CEA for vascular invasion and lymph node metastasis. In addition, serum ANGPTL4 level was an independent predictive indicator by multivariate regression analysis. In conclusion, serum ANGPTL4 could be a novel prognostic biomarker for prediction of vascular invasion and lymph node metastasis of CCA patients.
Collapse
Affiliation(s)
- Tin May Aung
- Faculty of Associated Medical Sciences, Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Khon Kaen University, Khon Kaen, Thailand
| | - Mang Ngaih Ciin
- Faculty of Associated Medical Sciences, Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Khon Kaen University, Khon Kaen, Thailand
| | - Atit Silsirivanit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Sciences, Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Worachart Lert-Itthiporn
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tanakorn Proungvitaya
- Faculty of Associated Medical Sciences, Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Siriporn Proungvitaya
- Faculty of Associated Medical Sciences, Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Maumus M, Fonteneau G, Ruiz M, Assou S, Boukhaddaoui H, Pastoureau P, De Ceuninck F, Jorgensen C, Noel D. Neuromedin B promotes chondrocyte differentiation of mesenchymal stromal cells via calcineurin and calcium signaling. Cell Biosci 2021; 11:183. [PMID: 34663442 PMCID: PMC8525028 DOI: 10.1186/s13578-021-00695-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/30/2021] [Indexed: 11/11/2022] Open
Abstract
Background Articular cartilage is a complex tissue with poor healing capacities. Current approaches for cartilage repair based on mesenchymal stromal cells (MSCs) are often disappointing because of the lack of relevant differentiation factors that could drive MSC differentiation towards a stable mature chondrocyte phenotype. Results We used a large-scale transcriptomic approach to identify genes that are modulated at early stages of chondrogenic differentiation using the reference cartilage micropellet model. We identified several modulated genes and selected neuromedin B (NMB) as one of the early and transiently modulated genes. We found that the timely regulated increase of NMB was specific for chondrogenesis and not observed during osteogenesis or adipogenesis. Furthermore, NMB expression levels correlated with the differentiation capacity of MSCs and its inhibition resulted in impaired chondrogenic differentiation indicating that NMB is required for chondrogenesis. We further showed that NMB activated the calcineurin activity through a Ca2+-dependent signaling pathway. Conclusion NMB is a newly described chondroinductive bioactive factor that upregulates the key chondrogenic transcription factor Sox9 through the modulation of Ca2+ signaling pathway and calcineurin activity. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00695-1.
Collapse
Affiliation(s)
- Marie Maumus
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | - Maxime Ruiz
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Hassan Boukhaddaoui
- INM, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Philippe Pastoureau
- Institut de Recherches Servier, Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Croissy-sur-Seine, France
| | - Frédéric De Ceuninck
- Institut de Recherches Servier, Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Croissy-sur-Seine, France
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Danièle Noel
- IRMB, Univ Montpellier, INSERM, Montpellier, France. .,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Minicircles for Investigating and Treating Arthritic Diseases. Pharmaceutics 2021; 13:pharmaceutics13050736. [PMID: 34067675 PMCID: PMC8156692 DOI: 10.3390/pharmaceutics13050736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 01/22/2023] Open
Abstract
Gene delivery systems have become an essential component of research and the development of therapeutics for various diseases. Minicircles are non-viral vectors with promising characteristics for application in a variety of fields. With their minimal size, minicircles exhibit relatively high safety and efficient delivery of genes of interest into cells. Cartilage tissue lacks the natural ability to heal, making it difficult to treat osteoarthritis (OA) and rheumatoid arthritis (RA), which are the two main types of joint-related disease. Although both OA and RA affect the joint, RA is an autoimmune disease, while OA is a degenerative joint condition. Gene transfer using minicircles has also been used in many studies regarding cartilage and its diseased conditions. In this review, we summarize the cartilage-, OA-, and RA-based studies that have used minicircles as the gene delivery system.
Collapse
|
11
|
Robert AW, Marcon BH, Dallagiovanna B, Shigunov P. Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach. Front Cell Dev Biol 2020; 8:561. [PMID: 32733882 PMCID: PMC7362937 DOI: 10.3389/fcell.2020.00561] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Adipogenesis, osteogenesis and chondrogenesis of human mesenchymal stem/stromal cells (MSC) are complex and highly regulated processes. Over the years, several studies have focused on understanding the mechanisms involved in the MSC commitment to the osteogenic, adipogenic and/or chondrogenic phenotypes. High-throughput methodologies have been used to investigate the gene expression profile during differentiation. Association of data analysis of mRNAs, microRNAs, circular RNAs and long non-coding RNAs, obtained at different time points over these processes, are important to depict the complexity of differentiation. This review will discuss the results that were highlighted in transcriptome analyses of MSC undergoing adipogenic, osteogenic and chondrogenic differentiation. The focus is to shed light on key molecules, main signaling pathways and biological processes related to different time points of adipogenesis, osteogenesis and chondrogenesis.
Collapse
Affiliation(s)
- Anny W Robert
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Brazil
| | - Bruna H Marcon
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
12
|
Kim HS, Mandakhbayar N, Kim HW, Leong KW, Yoo HS. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials 2020; 269:120214. [PMID: 32736808 DOI: 10.1016/j.biomaterials.2020.120214] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Cartilage defect is difficult to heal due to its avascular properties. Implantation of mesenchymal stem cell is one of the most promising approach for regenerating cartilage defects. Here we prepared polymeric nanofibrils decorated with cartilage-derived decellularized extracellular matrix (dECM) as a chondroinductive scaffold material for cartilage repair. To fabricate nanofibrils, eletrospun PCL nanofibers were fragmented by subsequent mechanical and chemical process. The nanofibrils were surface-modified with poly(glycidyl methacrylate) (PGMA@NF) via surface-initiated atom transfer radical polymerization (SI-ATRP). The epoxy groups of PGMA@NF were subsequently reacted with dECM prepared from bovine articular cartilage. Therefore, the cartilage-dECM-decorated nanofibrils structurally and biochemically mimic cartilage-specific microenvironment. Once adipose-derived stem cells (ADSCs) were self-assembled with the cartilage-dECM-decorated nanofibrils by cell-directed association, they exhibited differentiation hallmarks of chondrogenesis without additional biologic additives. ADSCs in the nanofibril composites significantly increased expression of chondrogenic gene markers in comparison to those in pellet culture. Furthermore, ADSC-laden nanofibril composites filled the osteochondral defects compactly due to their clay-like texture. Thus, the ADSC-laden nanofibril composites supported the long-term regeneration of 12 weeks without matrix loss during joint movement. The defects treated with the ADSC-laden PGMA@NF significantly facilitated reconstruction of their cartilage and subchondral bone ECM matrices compared to those with ADSC-laden nanofibrils, non-specifically adsorbing cartilage-dECM without surface decoration of PGMA.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomateials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Molecular Science and Fusion Technology, Kangwon National University, Republic of Korea.
| |
Collapse
|
13
|
Zhao J, Liu J, Wu N, Zhang H, Zhang S, Li L, Wang M. ANGPTL4 overexpression is associated with progression and poor prognosis in breast cancer. Oncol Lett 2020; 20:2499-2505. [PMID: 32782569 DOI: 10.3892/ol.2020.11768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to analyze the expression levels of angiopoietin-like 4 (ANGPTL4) in breast cancer to investigate the association between ANGPTL4 and breast cancer. Immunohistochemistry was performed on formalin-fixed paraffin-embedded tissues, including 205 invasive ductal carcinoma (IDC) of no special type, 40 normal breast, 40 atypical ductal hyperplasia (ADH) and 40 ductal carcinomas in situ (DCIS) tissues. The non-parametric Kruskal-Wallis test was used to evaluate the differential expression of ANGPTL4 and clinicopathological parameters in breast cancer. Kaplan-Meier analysis and Cox regression analysis were used to evaluate the association between the expression levels of ANGPTL4 and the prognosis of breast cancer. The results revealed that ANGPTL4 expression was higher in IDC (63.4%; 130/205) compared with in normal breast tissues (17.5%; 7/40), ADH (30%; 12/40) and DCIS (37.5%; 15/40). The clinical significance of ANGPTL4 expression was analyzed in a total of 205 IDC tissues, and high expression levels of ANGPTL4 were positively associated with pathological stage (P<0.001), tumor size (P<0.001), histological grade (P<0.001), lymph node metastasis (P<0.001), distant metastasis (P<0.001) and local recurrence (P<0.001). Kaplan-Meier analysis revealed that patients with high ANGPTL4 expression had a shorter overall survival (OS; P<0.001) and disease-free survival (DFS; P<0.001) compared with patients with low ANGPTL4 expression. Multivariate Cox regression analysis revealed that ANGPTL4 was an independent prognostic factor for breast cancer OS (P=0.034) and DFS (P=0.011). The results of the present study demonstrated that ANGPLT4 was associated with malignant progression and poor prognosis of breast cancer, suggesting that ANGPLT4 may be a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Juntian Liu
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Nan Wu
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Hailian Zhang
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Shichao Zhang
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Lijuan Li
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Meng Wang
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| |
Collapse
|
14
|
Cuthbert RJ, Jones E, Sanjurjo-Rodríguez C, Lotfy A, Ganguly P, Churchman SM, Kastana P, Tan HB, McGonagle D, Papadimitriou E, Giannoudis PV. Regulation of Angiogenesis Discriminates Tissue Resident MSCs from Effective and Defective Osteogenic Environments. J Clin Med 2020; 9:jcm9061628. [PMID: 32481579 PMCID: PMC7355658 DOI: 10.3390/jcm9061628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The biological mechanisms that contribute to atrophic long bone non-union are poorly understood. Multipotential mesenchymal stromal cells (MSCs) are key contributors to bone formation and are recognised as important mediators of blood vessel formation. This study examines the role of MSCs in tissue formation at the site of atrophic non-union. Materials and Methods: Tissue and MSCs from non-union sites (n = 20) and induced periosteal (IP) membrane formed following the Masquelet bone reconstruction technique (n = 15) or bone marrow (n = 8) were compared. MSC content, differentiation, and influence on angiogenesis were measured in vitro. Cell content and vasculature measurements were performed by flow cytometry and histology, and gene expression was measured by quantitative polymerase chain reaction (qPCR). Results: MSCs from non-union sites had comparable differentiation potential to bone marrow MSCs. Compared with induced periosteum, non-union tissue contained similar proportion of colony-forming cells, but a greater proportion of pericytes (p = 0.036), and endothelial cells (p = 0.016) and blood vessels were more numerous (p = 0.001) with smaller luminal diameter (p = 0.046). MSCs showed marked differences in angiogenic transcripts depending on the source, and those from induced periosteum, but not non-union tissue, inhibited early stages of in vitro angiogenesis. Conclusions: In vitro, non-union site derived MSCs have no impairment of differentiation capacity, but they differ from IP-derived MSCs in mediating angiogenesis. Local MSCs may thus be strongly implicated in the formation of the immature vascular network at the non-union site. Attention should be given to their angiogenic support profile when selecting MSCs for regenerative therapy.
Collapse
Affiliation(s)
- R. J. Cuthbert
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - C. Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña 15001, Spain
| | - A. Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - P. Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - S. M. Churchman
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - P. Kastana
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - H. B. Tan
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - D. McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Papadimitriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - P. V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds LS7 4SA, UK
- Correspondence: ; Tel.: +44-113-392-2750; Fax: +44-113-392-3290
| |
Collapse
|
15
|
Cho DI, Kang HJ, Jeon JH, Eom GH, Cho HH, Kim MR, Cho M, Jeong HY, Cho HC, Hong MH, Kim YS, Ahn Y. Antiinflammatory activity of ANGPTL4 facilitates macrophage polarization to induce cardiac repair. JCI Insight 2019; 4:125437. [PMID: 31434807 DOI: 10.1172/jci.insight.125437] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can suppress pathological inflammation. However, the mechanisms underlying the association between MSCs and inflammation remain unclear. Under coculture conditions with macrophages, MSCs highly expressed angiopoietin-like 4 (ANGPTL4) to blunt the polarization of macrophages toward the proinflammatory phenotype. ANGPTL4-deficient MSCs failed to inhibit the inflammatory macrophage phenotype. In inflammation-related animal models, the injection of coculture medium or ANGPTL4 protein increased the antiinflammatory macrophages in both peritonitis and myocardial infarction. In particular, cardiac function and pathology were markedly improved by ANGPTL4 treatment. We found that retinoic acid-related orphan receptor α (RORα) was increased by inflammatory mediators, such as IL-1β, and bound to ANGPTL4 promoter in MSCs. Collectively, RORα-mediated ANGPTL4 induction was shown to contribute to the antiinflammatory activity of MSCs against macrophages under pathological conditions. This study suggests that the capability of ANGPTL4 to induce tissue repair is a promising opportunity for safe stem cell-free regeneration therapy from a translational perspective.
Collapse
Affiliation(s)
- Dong Im Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hye-Jin Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Hee Jeon
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyang Hee Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Korea
| | - Mi Ra Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Meeyoung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hye-Yun Jeong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hyen Chung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Korea
| | - Moon Hwa Hong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
16
|
Jeong SY, Kang ML, Park JW, Im GI. Dual functional nanoparticles containing SOX duo and ANGPT4 shRNA for osteoarthritis treatment. J Biomed Mater Res B Appl Biomater 2019; 108:234-242. [PMID: 30957437 DOI: 10.1002/jbm.b.34383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/09/2019] [Accepted: 03/24/2019] [Indexed: 12/15/2022]
Abstract
In our previous studies, we found that adult stem cells transfected with sex-determining region Y-box (SOX)-9, -6 and -5 genes (SOX trio) enhanced chondrogenesis and suppressed the progression of osteoarthritis (OA). The inhibition of angiopoietin-like 4 (ANGPT4) is known to reduce levels of cartilage damaging enzymes, such as, matrix metalloproteinases (MMPs). In this study, we designed nanoparticles comprising dexamethasone-conjugated polyethylenimine (DEX PEI) complexed with minicircle plasmid (MC) harboring SOX duo (SOX-9, -6) and ANGPTL4 small hairpin RNA (shANG) [MC SOX9/6/shANG] in the expectation that transfection of these nanoparticles would enhance chondrogenesis of stem cells and suppress inflammation in OA. Adipose-derived stem cells (ADSCs) transfected with MC SOX9/6/shANG (MC SOX9/6/shANG-tADSCs) showed significantly higher expressions of COL2 gene and protein than MC SOX9/6-transfected ADSCs (MC SOX9/6-tADSCs) during in vitro chondrogenesis while both enhanced chondrogenesis in the absence of growth factor addition as compared with negative controls. Furthermore, the expressions of MMP13 and MMP3 genes were significantly more diminished in MC SOX9/6/shANG-tADSCs than in MC SOX9/6-tADSCs. In vivo experiments using surgically-induced OA rats showed MC SOX9/6/shANG-tADSC-treated rats had significantly lower levels of cyclooxygenase (COX-2) and MMP13 in synovial fluids than MC SOX9/6-tADSC-treated rats, but no significant difference was observed between them in histological appearances. Both groups showed significantly less joint destruction than control groups did. These results demonstrate that dual functional nanoparticles containing SOX duo and ANGPT4 shRNA enhance chondrogenesis of ADSCs and suppress inflammation in OA. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:234-242, 2020.
Collapse
Affiliation(s)
- Se-Young Jeong
- Integrative Research Institute for Regenerative Medical Engineering, Dongguk University, 814 Siksa-Dong, 411-773, Goyang, Republic of Korea
| | - Mi-Lan Kang
- Integrative Research Institute for Regenerative Medical Engineering, Dongguk University, 814 Siksa-Dong, 411-773, Goyang, Republic of Korea
| | - Jeong-Won Park
- Integrative Research Institute for Regenerative Medical Engineering, Dongguk University, 814 Siksa-Dong, 411-773, Goyang, Republic of Korea
| | - Gun-Il Im
- Integrative Research Institute for Regenerative Medical Engineering, Dongguk University, 814 Siksa-Dong, 411-773, Goyang, Republic of Korea
| |
Collapse
|
17
|
Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep 2018; 38:BSR20180557. [PMID: 30049845 PMCID: PMC6137252 DOI: 10.1042/bsr20180557] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular permeability, angiogenesis, and inflammation. Dysregulations in these responses contribute to the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). However, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies that provide detailed data about the mechanisms of action for ANGPTL4, its applications as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken together, the discussions in this review will help us gain a better understanding of the molecular mechanisms by which ANGPTL4 functions in eye disease and will provide directions for future research.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
18
|
Tanoue H, Morinaga J, Yoshizawa T, Yugami M, Itoh H, Nakamura T, Uehara Y, Masuda T, Odagiri H, Sugizaki T, Kadomatsu T, Miyata K, Endo M, Terada K, Ochi H, Takeda S, Yamagata K, Fukuda T, Mizuta H, Oike Y. Angiopoietin-like protein 2 promotes chondrogenic differentiation during bone growth as a cartilage matrix factor. Osteoarthritis Cartilage 2018; 26:108-117. [PMID: 29074299 DOI: 10.1016/j.joca.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Chondrocyte differentiation is crucial for long bone growth. Many cartilage extracellular matrix (ECM) proteins reportedly contribute to chondrocyte differentiation, indicating that mechanisms underlying chondrocyte differentiation are likely more complex than previously appreciated. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor normally abundantly produced in mesenchymal lineage cells such as adipocytes and fibroblasts, but its loss contributes to the pathogenesis of lifestyle- or aging-related diseases. However, the function of ANGPTL2 in chondrocytes, which are also differentiated from mesenchymal stem cells, remains unclear. Here, we investigate whether ANGPTL2 is expressed in or functions in chondrocytes. METHODS First, we evaluated Angptl2 expression during chondrocyte differentiation using chondrogenic ATDC5 cells and wild-type epiphyseal cartilage of newborn mice. We next assessed ANGPTL2 function in chondrogenic differentiation and associated signaling using Angptl2 knockdown ATDC5 cells and Angptl2 knockout mice. RESULTS ANGPTL2 is expressed in chondrocytes, particularly those located in resting and proliferative zones, and accumulates in ECM surrounding chondrocytes. Interestingly, long bone growth was retarded in Angptl2 knockout mice from neonatal to adult stages via attenuation of chondrocyte differentiation. Both in vivo and in vitro experiments show that changes in ANGPTL2 expression can also alter p38 mitogen-activated protein kinase (MAPK) activity mediated by integrin α5β1. CONCLUSION ANGPTL2 contributes to chondrocyte differentiation and subsequent endochondral ossification through α5β1 integrin and p38 MAPK signaling during bone growth. Our findings provide insight into molecular mechanisms governing communication between chondrocytes and surrounding ECM components in bone growth activities.
Collapse
Affiliation(s)
- H Tanoue
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - J Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - T Yoshizawa
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - M Yugami
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - H Itoh
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - T Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - Y Uehara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - T Masuda
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - H Odagiri
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - T Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - T Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - K Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - M Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - K Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - H Ochi
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - S Takeda
- Endocrine Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 05-8470, Japan
| | - K Yamagata
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - T Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - H Mizuta
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan
| | - Y Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto 860-8556, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| |
Collapse
|
19
|
Li H, Wang D, Yuan Y, Min J. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Res Ther 2017; 19:248. [PMID: 29126436 PMCID: PMC5681770 DOI: 10.1186/s13075-017-1454-2] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/12/2017] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder and affects approximately half of the aged population. Current treatments for OA are largely palliative until the articular cartilage has been deeply damaged and irreversible morphological changes appear. Thus, effective methods are needed for diagnosing and monitoring the progression of OA during its early stages when therapeutic drugs or biological agents are most likely to be effective. Various proteinases involved in articular cartilage degeneration in pre-OA conditions, which may represent the earliest reversible measurable changes, are considered diagnostic and therapeutic targets for early OA. Of these proteinases, matrix metalloproteinase 13 (MMP-13) has received the most attention, because it is a central node in the cartilage degradation network. In this review, we highlight the main MMP-13-related changes in OA chondrocytes, including alterations in the activity and expression level of MMP-13 by upstream regulatory factors, DNA methylation, various non-coding RNAs (ncRNAs), and autophagy. Because MMP-13 and its regulatory networks are suitable targets for the development of effective early treatment strategies for OA, we discuss the specific targets of MMP-13, including upstream regulatory proteins, DNA methylation, non-coding RNAs, and autophagy-related proteins of MMP-13, and their therapeutic potential to inhibit the development of OA. Moreover, the various entities mentioned in this review might be useful as early biomarkers and for personalized approaches to disease prevention and treatment by improving the phenotyping of early OA patients.
Collapse
Affiliation(s)
- Heng Li
- The First Affiliated Hospital of Huzhou Teachers College, Zhejiang Province, 313000, China
| | - Dan Wang
- The First Affiliated Hospital of Huzhou Teachers College, Zhejiang Province, 313000, China
| | - Yongjian Yuan
- The First Affiliated Hospital of Huzhou Teachers College, Zhejiang Province, 313000, China
| | - Jikang Min
- The First Affiliated Hospital of Huzhou Teachers College, Zhejiang Province, 313000, China. .,Department of Orthopaedics, The First Affiliated Hospital of Huzhou Teachers College, The First People's Hospital of Huzhou, Zhejiang Province, 313000, China.
| |
Collapse
|
20
|
Lolli A, Penolazzi L, Narcisi R, van Osch GJVM, Piva R. Emerging potential of gene silencing approaches targeting anti-chondrogenic factors for cell-based cartilage repair. Cell Mol Life Sci 2017; 74:3451-3465. [PMID: 28434038 PMCID: PMC11107620 DOI: 10.1007/s00018-017-2531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
The field of cartilage repair has exponentially been growing over the past decade. Here, we discuss the possibility to achieve satisfactory regeneration of articular cartilage by means of human mesenchymal stem cells (hMSCs) depleted of anti-chondrogenic factors and implanted in the site of injury. Different types of molecules including transcription factors, transcriptional co-regulators, secreted proteins, and microRNAs have recently been identified as negative modulators of chondroprogenitor differentiation and chondrocyte function. We review the current knowledge about these molecules as potential targets for gene knockdown strategies using RNA interference (RNAi) tools that allow the specific suppression of gene function. The critical issues regarding the optimization of the gene silencing approach as well as the delivery strategies are discussed. We anticipate that further development of these techniques will lead to the generation of implantable hMSCs with enhanced potential to regenerate articular cartilage damaged by injury, disease, or aging.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands.
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
21
|
Zhang Z, Duan Y, Wu Z, Zhang H, Ren J, Huang L. PPARD is an Inhibitor of Cartilage Growth in External Ears. Int J Biol Sci 2017; 13:669-681. [PMID: 28539839 PMCID: PMC5441183 DOI: 10.7150/ijbs.19714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 01/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor beta/delta (PPARD) is an important determinant of multiple biological processes. Our previous studies identified a missense mutation in the PPARD gene that significantly reduces its transcription activity, and consequently causes enlarged external ears in pigs. However, the mechanisms underlying the causality has remained largely unknown. Here, we show that PPARD retards the development of auricular cartilage by accelerating the apoptosis of cartilage stem/progenitor cells (CSPCs), the terminal differentiation of cartilage cells and the degradation of cartilage extracellular matrix in the auricle. At the transcription level, PPARD upregulates a set of genes that are associated with CSPCs apoptosis and chondrogenic differentiation, chondroblast differentiation and extracellular matrix degradation. ChIP-seq identified direct target genes of PPARD, including a well-documented gene for cartilage development: PPARG. We further show that compared to wild-type PPARD, the G32E mutant up-regulates the expression of PPARG and subsequently leads to the downregulation of critical genes that inhibit cartilage growth. These findings allow us to conclude that PPARD is an inhibitor of auricular cartilage growth in pigs. The causative mutation (G32E) in the PPARD gene attenuates the PPARD-mediated retardation of cartilage growth in the auricle, contributing to enlarged ears in pigs. The findings advance our understanding of the mechanisms underlying auricular development in mammals, and shed insight into the studies of innate pinna disorders and cartilage regeneration medicine in humans.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanyu Duan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
22
|
Ratneswaran A, Sun MMG, Dupuis H, Sawyez C, Borradaile N, Beier F. Nuclear receptors regulate lipid metabolism and oxidative stress markers in chondrocytes. J Mol Med (Berl) 2017; 95:431-444. [PMID: 28070626 PMCID: PMC5357281 DOI: 10.1007/s00109-016-1501-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/14/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023]
Abstract
Abstract Joint homeostasis failure can result in osteoarthritis (OA). Currently, there are no treatments to alter disease progression in OA, but targeting early changes in cellular behavior has great potential. Recent data show that nuclear receptors contribute to the pathogenesis of OA and could be viable therapeutic targets, but their molecular mechanisms in cartilage are incompletely understood. This study examines global changes in gene expression after treatment with agonists for four nuclear receptor implicated in OA (LXR, PPARδ, PPARγ, and RXR). Murine articular chondrocytes were treated with agonists for LXR, PPARδ, PPARγ, or RXR and underwent microarray, qPCR, and cellular lipid analyses to evaluate changes in gene expression and lipid profile. Immunohistochemistry was conducted to compare two differentially expressed targets (Txnip, Gsta4) in control and cartilage-specific PPARδ knockout mice subjected to surgical destabilization of the medial meniscus (DMM). Nuclear receptor agonists induced different gene expression profiles with many responses affecting lipid metabolism. LXR activation downregulated gene expression of proteases involved in OA, whereas RXR agonism decreased expression of ECM components and increased expression of Mmp13. Functional assays indicate increases in cell triglyceride accumulation after PPARγ, LXR, and RXR agonism but a decrease after PPARδ agonism. PPARδ and RXR downregulate the antioxidant Gsta4, and PPARδ upregulates Txnip. Wild-type, but not PPARδ-deficient mice, display increased staining for Txnip after DMM. Collectively, these data demonstrate that nuclear receptor activation in chondrocytes primarily affects lipid metabolism. In the case of PPARδ, this change might lead to increased oxidative stress, possibly contributing to OA-associated changes. Key message Nuclear receptors regulate metabolic genes in chondrocytes. Nuclear receptors affect triglyceride levels. PPARδ mediates regulation of oxidative stress markers. Nuclear receptors are promising therapeutic targets for osteoarthritis.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-016-1501-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anusha Ratneswaran
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Western Bone & Joint Institute, University of Western Ontario, London, ON, Canada
| | - Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Western Bone & Joint Institute, University of Western Ontario, London, ON, Canada
| | - Holly Dupuis
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Western Bone & Joint Institute, University of Western Ontario, London, ON, Canada
| | - Cynthia Sawyez
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Nica Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada. .,Western Bone & Joint Institute, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
23
|
Knowles HJ. Multiple Roles of Angiopoietin-Like 4 in Osteolytic Disease. Front Endocrinol (Lausanne) 2017; 8:80. [PMID: 28458654 PMCID: PMC5394121 DOI: 10.3389/fendo.2017.00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/30/2017] [Indexed: 12/17/2022] Open
Abstract
Hypoxia and the hypoxia-inducible factor (HIF) transcription factor drive pathological bone loss in conditions including rheumatoid arthritis (RA), osteoarthritis, osteoporosis, primary bone tumours, and bone metastatic cancer. There is therefore considerable interest in determining the function(s) of HIF-induced genes in these pathologies. Angiopoietin-like 4 (ANGPTL4) is an adipose-derived, HIF-1α- and PPARγ-induced gene that was originally discovered as an endocrine and autocrine/paracrine regulator of lipid metabolism. Given the inverse relationship between bone adiposity and fracture risk, ANGPTL4 might be considered a good candidate for mediating the downstream effects of HIF-1α relevant to osteolytic disease. This review will consider the possible roles of ANGPTL4 in regulation of osteoclast-mediated bone resorption, cartilage degradation, angiogenesis, and inflammation, focusing on results obtained in the study of RA. Possible roles in other musculoskeletal pathologies will also be discussed. This will highlight ANGPTL4 as a regulator of multiple disease processes, which could represent a novel therapeutic target in osteolytic musculoskeletal disease.
Collapse
Affiliation(s)
- Helen J. Knowles
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- *Correspondence: Helen J. Knowles,
| |
Collapse
|
24
|
Chondrogenic Potential of Peripheral Blood Derived Mesenchymal Stem Cells Seeded on Demineralized Cancellous Bone Scaffolds. Sci Rep 2016; 6:36400. [PMID: 27821864 PMCID: PMC5099580 DOI: 10.1038/srep36400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
As a cell source with large quantity and easy access, peripheral blood mesenchymal stem cells (PBMSCs) were isolated and seeded in porcine demineralized cancellous bone (DCB) scaffolds, cultured in chondrogenic medium and evaluated for in vitro chondrogenesis. Bone marrow MSCs (BMMSCs) and articular cartilage chondrocytes (ACCs) underwent the same process as controls. The morphology, viability and proliferation of PBMSCs in DCB scaffolds were similar to those of BMMSCs and ACCs. PBMSCs and BMMSCs showed similar chondrogenesis potential with consistent production of COL 2 and SOX 9 protein and increased COL 2 and AGC mRNA expressions at week 3 but the COL 2 protein production was still less than that of ACCs. Minimal increase of hypertrophic markers was found in all groups. Relatively higher ALP and lower COL 10 mRNA expressions were found in both MSCs groups at week 3 than that in ACCs, whereas no significant difference of COL 1 and SOX 9 mRNA and MMP 13 protein was found among all groups. To conclude, PBMSCs shared similar proliferation and chondrogenic potential with BMMSCs in DCB scaffolds and could be an alternative to BMMSCs for cartilage tissue engineering. Further optimization of chondrogenesis system is needed regardless of the promising results.
Collapse
|
25
|
Liao YH, Chiang KH, Shieh JM, Huang CR, Shen CJ, Huang WC, Chen BK. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene 2016; 36:2228-2242. [PMID: 27797381 PMCID: PMC5415642 DOI: 10.1038/onc.2016.371] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
Epidermal growth factor (EGF) is important for cancer cell proliferation, angiogenesis and metastasis in many types of cancer. However, the mechanisms involved in EGF-induced head and neck squamous cell carcinoma (HNSCC) metastasis remain largely unknown. In this study, we reveal that angiopoietin-like 4 (ANGPTL4) plays an important role in the regulation of EGF-induced cancer metastasis. We showed that EGF-induced ANGPTL4 expression promoted anoikis resistance and cancer cell migration and invasion in HNSCC. In addition, depletion of ANGPTL4 inhibited EGF-induced cancer cell invasion. Autocrine production of EGF-induced ANGPTL4 regulated the expression of matrix metalloproteinases (MMPs). The induction of MMP-1 gene expression by ANGPTL4-activated integrin β1 signalling occurred through the AP-1 binding site in the MMP-1 gene promoter. Furthermore, down-regulation of MMP-1 impeded EGF- and recombinant ANGPTL4-enhanced HNSCC cell migration and invasion. Depletion of ANGPTL4 significantly blocked EGF-primed extravasation and metastatic seeding of tumour cells and MMP-1 expression in lungs. However, no effect of ANGPTL4 on tumour growth was observed. These results suggest that EGF-induced expression and autocrine production of ANGPTL4 enhances HNSCC metastasis via the up-regulation of MMP-1 expression. Inhibition of ANGPTL4 expression may be a potential strategy for the treatment of EGFR-mediated HNSCC metastasis.
Collapse
Affiliation(s)
- Y-H Liao
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - K-H Chiang
- Department of Chest Medicine, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | - J-M Shieh
- Department of Chest Medicine, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | - C-R Huang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - C-J Shen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - W-C Huang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - B-K Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
26
|
Abstract
Mesenchymal stem cells (MSCs) have great potential as a source of cells for cell-based therapy because of their ability for self-renewal and differentiation into functional cells. Moreover, matrix metalloproteinases (MMPs) have a critical role in the differentiation of MSCs into different lineages. MSCs also interact with exogenous MMPs at their surface, and regulate the pericellular localization of MMP activities. The fate of MSCs is regulated by specific MMPs associated with a key cell lineage. Recent reports suggest the integration of MMPs in the differentiation, angiogenesis, proliferation, and migration of MSCs. These interactions are not fully understood and warrant further investigation, especially for their application as therapeutic tools to treat different diseases. Therefore, overexpression of a single MMP or tissue-specific inhibitor of metalloproteinase in MSCs may promote transdifferentiation into a specific cell lineage, which can be used for the treatment of some diseases. In this review, we critically discuss the identification of various MMPs and the signaling pathways that affect the differentiation, migration, angiogenesis, and proliferation of MSCs.
Collapse
Affiliation(s)
- Sami G Almalki
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
27
|
Wang W, Liu Y, Hao J, Zheng S, Wen Y, Xiao X, He A, Fan Q, Zhang F, Liu R. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis. Gene 2016; 591:43-47. [PMID: 27374150 DOI: 10.1016/j.gene.2016.06.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022]
Abstract
Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA.
Collapse
Affiliation(s)
- Wenyu Wang
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Yang Liu
- Department of Rheumatology, Xi'an Fifth Hospital, PR China
| | - Jingcan Hao
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Shuyu Zheng
- Department of Radiation Oncology, First Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, PR China
| | - Yan Wen
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Xiao Xiao
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Awen He
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Qianrui Fan
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Feng Zhang
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China.
| | - Ruiyu Liu
- Department of Orthopedics, Second Affiliated Hospital of Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
28
|
Mousavizadeh R, Scott A, Lu A, Ardekani GS, Behzad H, Lundgreen K, Ghaffari M, McCormack RG, Duronio V. Angiopoietin-like 4 promotes angiogenesis in the tendon and is increased in cyclically loaded tendon fibroblasts. J Physiol 2016; 594:2971-83. [PMID: 26670924 PMCID: PMC4887665 DOI: 10.1113/jp271752] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Angiopoietin-like 4 (ANGPTL4) modulates tendon neovascularization. Cyclic loading stimulates the activity of transforming growth factor-β and hypoxia-inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells. Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. ABSTRACT The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin-like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor-β (TGF-β) and hypoxia-inducible factor 1α (HIF-1α) signalling, and the released ANGPTL4 was pro-angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF-β and HIF-1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation.
Collapse
Affiliation(s)
- Rouhollah Mousavizadeh
- Jack Bell Research Centre, Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Alex Scott
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Alex Lu
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Gholamreza S Ardekani
- Jack Bell Research Centre, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayedeh Behzad
- Department of Physical Therapy, University of British Columbia, Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Kirsten Lundgreen
- Department of Orthopaedic Surgery, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Mazyar Ghaffari
- Jack Bell Research Centre, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert G McCormack
- Department of Orthopedic Surgery, University of British Columbia, Vancouver, Canada
| | - Vincent Duronio
- Jack Bell Research Centre, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Carlson HL, Quinn JJ, Yang YW, Thornburg CK, Chang HY, Stadler HS. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes. PLoS Genet 2015; 11:e1005680. [PMID: 26633036 PMCID: PMC4669167 DOI: 10.1371/journal.pgen.1005680] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/27/2015] [Indexed: 01/23/2023] Open
Abstract
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. A fundamental problem studied by skeletal biologists is the development of regenerative therapies to replace cartilage tissues impacted by injury or disease, which for individuals affected by osteoarthritis represents nearly half of all of all adults over the age of sixty five. To date, no therapies exist to promote sustained cartilage regeneration, as we have not been able to recapitulate the programming events necessary to instruct cells to form articular cartilage without these cells continuing to differentiate into bone. Our analysis of the early programming events occurring during cartilage formation led to the identification of LncRNA-HIT a long noncoding RNA that is essential for the differentiation of the embryonic limb mesenchyme into cartilage. A genome wide analysis of LncRNA-HIT’s distribution in the mesenchyme revealed strong association between LncRNA-HIT and numerous genes whose products facilitate cartilage formation. In the absence of LncRNA-HIT, the expression of these chondrogenic genes is severely reduced, impacting the differentiation of these cells into cartilage. Mechanistically, LncRNA-HIT regulates these pro-chondrogenic genes by recruiting p100 and CBP to these loci, facilitating H3K27ac and transcriptional activation. LncRNA-HIT also appears to be present in most vertebrate species, suggesting that the epigenetic program regulated by this lncRNA may represent a fundamental mechanism used by many species to promote cartilage formation.
Collapse
Affiliation(s)
- Hanqian L. Carlson
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
| | - Jeffrey J. Quinn
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yul W. Yang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chelsea K. Thornburg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Howard Y. Chang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - H. Scott Stadler
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
30
|
Raghunathan VK, Morgan JT, Chang YR, Weber D, Phinney B, Murphy CJ, Russell P. Transforming Growth Factor Beta 3 Modifies Mechanics and Composition of Extracellular Matrix Deposited by Human Trabecular Meshwork Cells. ACS Biomater Sci Eng 2015; 1:110-118. [PMID: 30882039 DOI: 10.1021/ab500060r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pseudoexfoliation syndrome is a systemic disorder of the extracellular matrix (ECM) with ocular manifestations in the form of chronic open angle glaucoma. Elevated levels of TGFβ3 in the aqueous humor of individuals with pseudoexfoliation glaucoma (PEX) have been reported. The influence of TGFβ3 on the biochemical composition and biomechanics of ECM of human trabecular meshwork (HTM) cells was investigated. HTM cells from eye bank donor eyes were isolated, plated on aminosilane functionalized glass substrates and cultured in the presence or absence of 1 ng/mL TGFβ3 for 4 weeks. After incubation, samples were decellularized and decellularization was verified by immunostaining. The mechanics of the remaining ECM that was deposited by the treated or the control cells were measured by atomic force microscopy (AFM). Imaged by AFM, the surface features of the ECM from both sets of samples had a similar roughness/topography (as determined by RMS values) suggesting surface features of the ECM were similar in both cases; however, the ECM from the HTM cells treated with TGFβ3 was between 3- and 5-fold stiffer than that produced by the control HTM cells. Proteins present in the ECM were solubilized and analyzed using liquid chromatography tandem mass spectroscopy (LC-MS/MS). Data indicate that multiple proteins previously reported to be altered in glaucoma were changed in the ECM as a result of the presence of TGFβ3, including inhibitors of the BMP and Wnt signaling pathways. Gremlin1and 4, SERPINE1 and 2, periostin, secreted frizzled related protein (SFRP) 1 and 4, and ANGPTL4 were among those proteins that were overexpressed in the ECM after TGFβ3 treatment.
Collapse
Affiliation(s)
- Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Yow-Ren Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Darren Weber
- UC Davis Genome Center Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Brett Phinney
- UC Davis Genome Center Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States.,Department of Ophthalmology and Vision Sciences, School of Medicine, University of California, Davis, California 95616, United States
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|