1
|
Singh AK, Kumar Pathak A, Kumar P, Kumar Singh A, Kumar Sah Gond M, Singh Negi R, Das R, Agrawal S, Kumar Mishra S, Tiwari KN. Effects of Asiatic acid on brain cancer by altering astrocytes and the AKT1-PRKCB signaling pathway: A genomic and network pharmacology perspective. Brain Res 2025; 1859:149652. [PMID: 40252893 DOI: 10.1016/j.brainres.2025.149652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
The most common primary brain tumor, glioblastoma (GBM), currently has a dismal prognosis because of its fast growth and dissemination. Recent research indicates that Asiatic acid (AA), which is extracted from Trema orientalis L., has potential as a medicinal agent. AA, which was obtained from a methanolic extract of Trema orientalis L. and examined utilizing high-resolution mass spectroscopy (HRMS) analysis, was employed in this investigation. Then, in order to forecast the therapeutic advantages of AA in managing GBM, we conducted an in silico study. Online web servers like SwissADME, pKCSM, and Protox-II were used to assess AA. Then, the major targets of the AA (from Swiss Target Prediction and TargetNet) and GBM (from GeneCards and DisGeNET) were identified. The important genes were then merged into the STRING and ShinyGo databases to examine the protein-protein interaction (PPI) network, gene annotation, and KEGG pathways, with the goal of identifying the core mechanisms involved in GBM management. The top five hub gene targets of the built network (AKT1, SRC, IL-6, TNF, and EGFR) were investigated, along with some contemporaneous additional major targets (PRKCB, GSK3B, ITGB1, BRAF, and PTPN6). These targets were tightly linked to GO activities such as synoviocyte proliferation, cytokine activity, and EGFR tyrosine kinase inhibitor resistance, as well as proteoglycans in cancer-related pathways. Furthermore, a survival study was conducted to assess the chronicity of targets, as well as molecular docking activity between important targets and AA against GBM to determine binding effectiveness. Overall, the study found that AKT1 is the most powerful receptor for AA, having a binding energy of -8.19 kcal/mol, followed by PRKCB (-7.53 kcal/mol). Finally, docking studies suggest that AA has the potential to be an effective treatment for GBM. Furthermore, clinical studies will provide more precise insights into the AA's efficacy as a medicine in the future.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmacognosy, Kunwar Haribansh Singh College of Pharmacy, Jaunpur, Uttar Pradesh 222182, India
| | - Adarsh Kumar Pathak
- Department of Pharmaceutical Chemistry, Ashok Singh Pharmacy College, Jaunpur, Uttar Pradesh 222180, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, PG College, Mariahu, VBS Purvanchal University, Jaunpur, Uttar Pradesh 222161, India
| | - Manjeet Kumar Sah Gond
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rohit Singh Negi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Richa Das
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760 Gujarat, India
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760 Gujarat, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Ei ZZ, Racha S, Chunhacha P, Yokoya M, Moriue S, Zou H, Chanvorachote P. Substituents introduction of methyl and methoxy functional groups on resveratrol stabilizes mTOR binding for autophagic cell death induction. Sci Rep 2025; 15:14675. [PMID: 40287470 PMCID: PMC12033263 DOI: 10.1038/s41598-025-98616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
The regulation of the mammalian target of rapamycin (mTOR) protein by cancer cells can lead to uncontrol of cancer cell growth and cancer therapy resistance. The drug discovery of the anticancer agent 5-(3-hydroxy-4-methoxyphenethyl)-2-methoxy-3-methylphenol (SM-3), a derivative of resveratrol by substituting a methyl group at the hydroxy group of ring A and adding a methoxy group at the para position of ring B, shows promising potential for targeting autophagy to induce cell death and suppress cancer stem cells (CSCs) through the inhibition of the mTOR protein. In human lung cancer cells, SM-3 showed greater efficacy, with lower IC50 values of 72.74 ± 0.13, 67.66 ± 0.10, and 43.24 ± 0.11 µM in A549, H292, and H460 cells, respectively, compared to the parent compound, Resveratrol (Res). Moreover, the selectivity index (SI) values for BEAS2B cells compared to tumor cells treated with SM-3 were 10.99, 11.81, and 18.49 for A549, H292, and H460 cell lines, respectively. Therefore, SM-3 treatment led to reduced proliferation rates and colony formation in lung cancer cells. In our study, spheroids treated with SM-3 showed a higher proportion of dead spheroids compared to those treated with Res. Additionally, SM-3 treatment resulted in decreased expression of stem cell markers (CD133, CD44, and ALDH1A1) and transcription factors (OCT4, NANOG, and SOX2) in spheroids and organoids from human lung cancer cells by inhibiting the mTOR/pAkt pathway. SM-3 was also found to induce autophagic cell death, as indicated by Monodansylcadaverine staining, acidic vesicle formation, and the conversion of LC3BI to LC3BII. Using MM/GBSA calculations, SM-3 exhibited a stronger binding affinity (-25.09 kcal/mol) compared to Res (-18.85 kcal/mol). SM-3 also displayed greater stability during the entire simulation, maintaining lower RMSD values of 2-3 Å even after 80 ns. In summary, the introduction of methyl and methoxy functional groups on Res to create SM-3 effectively suppressed cancer spheroids and organoids formation in lung cancer cells by targeting the upstream mTOR/pAkt pathway.
Collapse
Affiliation(s)
- Zin Zin Ei
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn university, Bangkok, 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Satapat Racha
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn university, Bangkok, 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn university, Bangkok, 10330, Thailand
| | - Preedakorn Chunhacha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Sohsuke Moriue
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn university, Bangkok, 10330, Thailand.
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
- Sustainable Environment Research Institute, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Chang L, Čok Z, Yu L. Protein Kinases as Mediators for miRNA Modulation of Neuropathic Pain. Cells 2025; 14:577. [PMID: 40277902 PMCID: PMC12025903 DOI: 10.3390/cells14080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Neuropathic pain is a chronic condition resulting from injury or dysfunction in the somatosensory nervous system, which leads to persistent pain and a significant impairment of quality of life. Research has highlighted the complex molecular mechanisms that underlie neuropathic pain and has begun to delineate the roles of microRNAs (miRNAs) in modulating pain pathways. miRNAs, which are small non-coding RNAs that regulate gene expression post-transcriptionally, have been shown to influence key cellular processes, including neuroinflammation, neuronal excitability, and synaptic plasticity. These processes contribute to the persistence of neuropathic pain, and miRNAs have emerged as critical regulators of pain behaviors by modulating signaling pathways that control pain sensitivity. miRNAs can influence neuropathic pain by targeting genes that encode protein kinases involved in pain signaling. This review focuses on miRNAs that have been demonstrated to modulate neuropathic pain behavior through their effects on protein kinases or their immediate upstream regulators. The relationship between miRNAs and neuropathic pain behaviors is characterized as either an upregulation or a downregulation of miRNA levels that leads to a reduction in neuropathic pain. In the case of miRNA upregulation resulting in an alleviation of neuropathic pain behaviors, protein kinases exhibit a positive correlation with neuropathic pain, whereas decreased protein kinase levels correlate with diminished neuropathic pain behaviors. The only exception is GRK2, which shows an inverse correlation with neuropathic pain. In the case of miRNA downregulation resulting in a reduction in neuropathic pain behaviors, protein kinases display mixed relationships to neuropathic pain, with some kinases exhibiting positive correlation, while others exhibit negative correlation. By exploring how protein kinases mediate miRNA modulation of neuropathic pain, valuable insight may be gained into the pathophysiology of neuropathic pain, offering potential therapeutic targets for developing more effective strategies for pain management.
Collapse
Affiliation(s)
| | | | - Lei Yu
- Department of Genetics, Center of Alcohol & Substance Use Studies, Rutgers University, Piscataway, NJ 08854, USA; (L.C.)
| |
Collapse
|
4
|
Brown SP, Jena AK, Osko JJ, Ransdell JL. Tsc1 deletion in Purkinje neurons disrupts the axon initial segment, impairing excitability and cerebellar function. Neurobiol Dis 2025; 207:106856. [PMID: 40015654 PMCID: PMC11997981 DOI: 10.1016/j.nbd.2025.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Loss-of-function mutations in tuberous sclerosis 1 (TSC1) are prevalent monogenic causes of autism spectrum disorder (ASD). Selective deletion of Tsc1 from mouse cerebellar Purkinje neurons has been shown to cause several ASD-linked behavioral impairments, which are linked to reduced Purkinje neuron repetitive firing rates. We used electrophysiology methods to investigate why Purkinje neuron-specific Tsc1 deletion (Tsc1mut/mut) impairs Purkinje neuron firing. These studies revealed a depolarized shift in action potential threshold voltage, an effect that we link to reduced expression of the fast-transient voltage-gated sodium (Nav) current in Tsc1mut/mut Purkinje neurons. The reduced Nav currents in these cells was associated with diminished secondary immunofluorescence from anti-pan Nav channel labeling at Purkinje neuron axon initial segments (AIS). Anti-ankyrinG immunofluorescence was also found to be significantly reduced at the AIS of Tsc1mut/mut Purkinje neurons, suggesting Tsc1 is necessary for the organization and functioning of the Purkinje neuron AIS. An analysis of the 1st and 2nd derivative of the action potential voltage-waveform supported this hypothesis, revealing spike initiation and propagation from the AIS of Tsc1mut/mut Purkinje neurons is impaired compared to age-matched control Purkinje neurons. Heterozygous Tsc1 deletion resulted in no significant changes in the firing properties of adult Purkinje neurons, and slight reductions in anti-pan Nav and anti-ankyrinG labeling at the Purkinje neuron AIS, revealing deficits in Purkinje neuron firing due to Tsc1 haploinsufficiency are delayed compared to age-matched Tsc1mut/mut Purkinje neurons. Together, these data reveal that the loss of Tsc1 impairs Purkinje neuron firing and membrane excitability through the dysregulation of proteins essential for AIS organization and function.
Collapse
Affiliation(s)
- Samuel P Brown
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Achintya K Jena
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Joanna J Osko
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Joseph L Ransdell
- Department of Biology, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
5
|
Kausar MA, Anwar S, Khan YS, Saleh AA, Ahmed MAA, Kaur S, Iqbal N, Siddiqui WA, Najm MZ. Autophagy and Cancer: Insights into Molecular Mechanisms and Therapeutic Approaches for Chronic Myeloid Leukemia. Biomolecules 2025; 15:215. [PMID: 40001518 PMCID: PMC11853340 DOI: 10.3390/biom15020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Autophagy is a critical cellular process that maintains homeostasis by recycling damaged or aberrant components. This process is orchestrated by a network of proteins that form autophagosomes, which engulf and degrade intracellular material. In cancer, autophagy plays a dual role: it suppresses tumor initiation in the early stages but supports tumor growth and survival in advanced stages. Chronic myeloid leukemia (CML), a hematological malignancy, is characterized by the Philadelphia chromosome, a chromosomal abnormality resulting from a translocation between chromosomes 9 and 22. Autophagy has emerged as a key factor in CML pathogenesis, promoting cancer cell survival and contributing to resistance against tyrosine kinase inhibitors (TKIs), the primary treatment for CML. Targeting autophagic pathways is being actively explored as a therapeutic approach to overcome drug resistance and enhance cancer cell death. Recent research highlights the intricate interplay between autophagy and CML progression, underscoring its role in disease biology and treatment outcomes. This review aims to provide a comprehensive analysis of the molecular and cellular mechanisms underlying CML, with a focus on the therapeutic potential of targeting autophagy.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Autophagy/drug effects
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Animals
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Ayman A. Saleh
- Department of Pathology, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | | | - Simran Kaur
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122103, Haryana, India;
| | - Naveed Iqbal
- Department of Obstetrics and Gynecology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia;
| | - Waseem Ahmad Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India;
| | - Mohammad Zeeshan Najm
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122103, Haryana, India;
| |
Collapse
|
6
|
Yadav A, Dabur R. Ursolic Acid Restores Redox Homeostasis and Pro-inflammatory Cytokine Production in Denervation-Induced Skeletal Muscle Atrophy. Appl Biochem Biotechnol 2025; 197:1152-1173. [PMID: 39361198 DOI: 10.1007/s12010-024-05059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 02/13/2025]
Abstract
Skeletal muscle (SkM) atrophy results from metabolic disorders causing body and muscle mass loss, affecting morbidity and mortality. Increased oxidative stress, inflammation, and poor prognosis are the leading causes of involuntary weight loss. Ursolic acid (UA), known for its antioxidant and anti-inflammatory properties, can potentially reduce oxidative stress and inflammation in muscles, but its effects on muscle mass regulation are still unknown. Therefore, the present study investigated the medicinal efficacy of UA and its mode of action against the murine model of SkM atrophy over 7 days of UA supplementation. Denervation-induced SkM atrophy significantly impacts overall body weight and the weight of individual muscles (p < 0.05). However, supplementation with UA can effectively counteract these effects by promoting the synthesis of the slow-myosin heavy chain, thereby restoring body weight and myotube diameter. Moreover, UA also plays a crucial role in reducing the production levels of reactive oxygen species (ROS), lipid peroxidation (LPO), and caspase-3-like activity in atrophied muscles. UA also prevents the leakage of creatine kinase (CK) through the upregulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) expression. Furthermore, the results obtained from qRT-PCR demonstrated a significant decrease in the levels of pro-inflammatory markers, namely IL-1β, IL-6, TNF-α, and TWEAK, up to four-fold after the third day of the UA intervention. UA also upregulated PGC-1α, Bcl2, and p-Aktser473 expression towards the regulation of redox homeostasis.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
7
|
Brown SP, Jena AK, Osko JJ, Ransdell JL. Tsc1 Deletion in Purkinje Neurons Disrupts the Axon Initial Segment, Impairing Excitability and Cerebellar Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635932. [PMID: 39974887 PMCID: PMC11838410 DOI: 10.1101/2025.01.31.635932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Loss-of-function mutations in tuberous sclerosis 1 (TSC1) are prevalent monogenic causes of autism spectrum disorder (ASD). Selective deletion of Tsc1 from mouse cerebellar Purkinje neurons has been shown to cause several ASD-linked behavioral impairments, which are linked to reduced Purkinje neuron repetitive firing rates. We used electrophysiology methods to investigate why Purkinje neuron-specific Tsc1 deletion (Tsc1 mut/mut ) impairs Purkinje neuron firing. These studies revealed a depolarized shift in action potential threshold voltage, an effect that we link to reduced expression of the fast-transient voltage-gated sodium (Nav) current in Tsc1 mut/mut Purkinje neurons. The reduced Nav currents in these cells was associated with diminished secondary immunofluorescence from anti-pan Nav channel labeling at Purkinje neuron axon initial segments (AIS). Interestingly, anti-ankyrinG immunofluorescence was also found to be significantly reduced at the AIS of Tsc1 mut/mut Purkinje neurons, suggesting Tsc1 is necessary for the organization and functioning of the Purkinje neuron AIS. An analysis of the 1st and 2nd derivative of the action potential voltage-waveform supported this hypothesis, revealing spike initiation and propagation from the AIS of Tsc1 mut/mut Purkinje neurons is impaired compared to age-matched control Purkinje neurons. Heterozygous Tsc1 deletion resulted in no significant changes in the firing properties of adult Purkinje neurons, and slight reductions in anti-pan Nav and anti-ankyrinG labeling at the Purkinje neuron AIS, revealing deficits in Purkinje neuron firing due to Tsc1 haploinsufficiency are delayed compared to age-matched Tsc1 mut/mut Purkinje neurons. Together, these data reveal the loss of Tsc1 impairs Purkinje neuron firing and membrane excitability through the dysregulation of proteins necessary for AIS organization and function.
Collapse
Affiliation(s)
| | | | - Joanna J. Osko
- Department of Biology Miami University, Oxford, OH 45056
| | | |
Collapse
|
8
|
Herrera J, Bensussen A, García-Gómez ML, Garay-Arroyo A, Álvarez-Buylla ER. A system-level model reveals that transcriptional stochasticity is required for hematopoietic stem cell differentiation. NPJ Syst Biol Appl 2024; 10:145. [PMID: 39639033 PMCID: PMC11621455 DOI: 10.1038/s41540-024-00469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
HSCs differentiation has been difficult to study experimentally due to the high number of components and interactions involved, as well as the impact of diverse physiological conditions. From a 200-node network, that was grounded on experimental data, we derived a 21-node regulatory network by collapsing linear pathways and retaining the functional feedback loops. This regulatory network core integrates key nodes and interactions underlying HSCs differentiation, including transcription factors, metabolic, and redox signaling pathways. We used Boolean, continuous, and stochastic dynamic models to simulate the hypoxic conditions of the HSCs niche, as well as the patterns and temporal sequences of HSCs transitions and differentiation. Our findings indicate that HSCs differentiation is a plastic process in which cell fates can transdifferentiate among themselves. Additionally, we found that cell heterogeneity is fundamental for HSCs differentiation. Lastly, we found that oxygen activates ROS production, inhibiting quiescence and promoting growth and differentiation pathways of HSCs.
Collapse
Affiliation(s)
- Joel Herrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | - Mónica L García-Gómez
- Theoretical Biology, Institute of Biodynamics and Biocomplexity; Experimental and Computational Plant Development, Institute of Environmental Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adriana Garay-Arroyo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
9
|
Gholami F, Seyedalipour B, Heidari-Kalvani N, Nabi-Afjadi M, Yaghoubzad-Maleki M, Fathi Z, Alipourfard I, Barjesteh F, Bahreini E. Catharanthine, an anticancer vinca alkaloid: an in silico and in vitro analysis of the autophagic system as the major mechanism of cell death in liver HepG2 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8879-8892. [PMID: 38856913 DOI: 10.1007/s00210-024-03191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Catharanthine, a component of the anticancer drug vinblastine along with vindoline, disrupts the cell cycle by interfering with mitotic spindle formation. Apart from their antioxidant properties, vinca alkaloids like catharanthine inhibit phosphodiesterase activity and elevate intracellular cAMP levels. The aim of this study was to investigate how catharantine affects apoptosis and autophagy. This study conducted experiments on HepG2 liver carcinoma cells with varying doses of catharanthine to evaluate cell death rates and viability and determine the IC50 concentration via MTT assays. The apoptotic and autophagic effects of catharanthine were assessed using flow cytometry with annexin V and PI staining, while the expression of autophagy-related genes was analyzed through quantitative PCR. Additionally, molecular docking and molecular dynamics simulations were employed to further investigate catharanthine's impact on autophagy mechanisms. The study showed that catharanthine reduced oxidative stress and triggered apoptosis in HepG2 cells in a dose-dependent manner. Catharanthine also upregulated the expression of autophagy-related genes like LC3, Beclin1, and ULK1. Notably, catharanthine increased sirtuin-1 levels, a known autophagy inducer, while decreasing Akt expression compared to untreated cells. Molecular docking results indicated rapamycin had a stronger binding affinity with FRB (-10.7 KJ/mol-1) than catharanthine (-7.3 KJ/mol-1). Additionally, molecular dynamics simulations revealed that catharanthine interacted effectively with the FRB domain of mTOR, displaying stability and a strong binding affinity, although not as potent as rapamycin. In summary, besides its cytotoxic and pro-apoptotic effects, catharanthine activates autophagy signaling pathways and induces autophagic necrosis by inhibiting mTOR.
Collapse
Affiliation(s)
- Farnoosh Gholami
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Nafiseh Heidari-Kalvani
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zeinab Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fereshte Barjesteh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Shaftoe JB, Gillis TE. Effects of hemodynamic load on cardiac remodeling in fish and mammals: the value of comparative models. J Exp Biol 2024; 227:jeb247836. [PMID: 39429041 DOI: 10.1242/jeb.247836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The ability of the vertebrate heart to remodel enables the cardiac phenotype to be responsive to changes in physiological conditions and aerobic demand. Examples include exercise-induced cardiac hypertrophy, and the significant remodeling of the trout heart during thermal acclimation. Such changes are thought to occur in response to a change in hemodynamic load (i.e. the forces that the heart must work against to circulate blood). Variations in hemodynamic load are caused by either a volume overload (high volume of blood returning to the heart, impairing contraction) or a pressure overload (elevated afterload pressure that the heart must contract against). The changes observed in the heart during remodeling are regulated by multiple cellular signaling pathways. The cardiac response to these regulatory mechanisms occurs across levels of biological organization, affecting cardiac morphology, tissue composition and contractile function. Importantly, prolonged exposure to pressure overload can cause a physiological response - that improves function - to transition to a pathological response that causes loss of function. This Review explores the role of changes in hemodynamic load in regulating the remodeling response, and considers the cellular signals responsible for regulating remodeling, incorporating knowledge gained from studying biomedical models and comparative animal models. We specifically focus on the renin-angiotensin system, and the role of nitric oxide, oxygen free radicals and transforming growth factor beta. Through this approach, we highlight the strong conservation of the regulatory pathways of cardiac remodeling, and the specific conditions within endotherms that may be conducive to the development of pathological phenotypes.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
11
|
Shakya R, Suraneni P, Zaslavsky A, Rahi A, Magdongon CB, Gajjela R, Mattamana BB, Varma D. The Hexosamine Biosynthetic Pathway alters the cytoskeleton to modulate cell proliferation and migration in metastatic prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618283. [PMID: 39464080 PMCID: PMC11507681 DOI: 10.1101/2024.10.14.618283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Castration-resistant prostate cancer (CRPC) progresses despite androgen deprivation therapy, as cancer cells adapt to grow without testosterone, becoming more aggressive and prone to metastasis. CRPC biology complicates the development of effective therapies, posing challenges for patient care. Recent gene-expression and metabolomics studies highlight the Hexosamine Biosynthetic Pathway (HBP) as a critical player, with key components like GNPNAT1 and UAP1 being downregulated in metastatic CRPC. GNPNAT1 knockdown has been shown to increase cell proliferation and metastasis in CRPC cell lines, though the mechanisms remain unclear. To investigate the cellular basis of these CRPC phenotypes, we generated a CRISPR-Cas9 knockout model of GNPNAT1 in 22Rv1 CRPC cells, analyzing its impact on metabolomic, glycoproteomic, and transcriptomic profiles of cells. We hypothesize that HBP inhibition disrupts the cytoskeleton, altering mitotic progression and promoting uncontrolled growth. GNPNAT1 KO cells showed reduced levels of cytoskeletal filaments, such as actin and microtubules, leading to cell structure disorganization and chromosomal mis-segregation. GNPNAT1 inhibition also activated PI3K/AKT signaling, promoting proliferation, and impaired cell adhesion by mislocalizing EphB6, enhancing migration via the RhoA pathway and promoting epithelial-to-mesenchymal transition. These findings suggest that HBP plays a critical role in regulating CRPC cell behavior, and targeting this pathway could provide a novel therapeutic approach.
Collapse
Affiliation(s)
- Rajina Shakya
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Praveen Suraneni
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander Zaslavsky
- Department of Urology, University of Michigan Medical School, Ann Harbor, MI 48108, USA
| | - Amit Rahi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christine B Magdongon
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Raju Gajjela
- Proteomics Core, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Basil B Mattamana
- Proteomics Core, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dileep Varma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Kang N, Kim J, Kwon M, Son Y, Eo SK, Baryawno N, Kim BS, Yoon S, Oh SO, Lee D, Kim K. Blockade of mTORC1 via Rapamycin Suppresses 27-Hydroxycholestrol-Induced Inflammatory Responses. Int J Mol Sci 2024; 25:10381. [PMID: 39408711 PMCID: PMC11477202 DOI: 10.3390/ijms251910381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Atherosclerosis is characterized by the deposition and accumulation of extracellular cholesterol and inflammatory cells in the arterial blood vessel walls, and 27-hydroxycholesterol (27OHChol) is the most abundant cholesterol metabolite. 27OHChol is an oxysterol that induces immune responses, including immune cell activation and chemokine secretion, although the underlying mechanisms are not fully understood. In this study, we investigated the roles of the mechanistic target of rapamycin (mTOR) in 27HChol-induced inflammation using rapamycin. Treating monocytic cells with rapamycin effectively reduced the expression of CCL2 and CD14, which was involved with the increased immune response by 27OHChol. Rapamycin also suppressed the phosphorylation of S6 and 4EBP1, which are downstream of mTORC1. Additionally, it also alleviates the increase in differentiation markers into macrophage. These results suggest that 27OHChol induces inflammation by activating the mTORC1 signaling pathway, and rapamycin may be useful for the treatment of atherosclerosis-related inflammation involving 27OHchol.
Collapse
Affiliation(s)
- Nakyung Kang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (J.K.); (Y.S.)
| | - Jaesung Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (J.K.); (Y.S.)
| | - Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Yonghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (J.K.); (Y.S.)
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (J.K.); (Y.S.)
| |
Collapse
|
13
|
Trujano-Camacho S, Cantú-de León D, Pérez-Yepez E, Contreras-Romero C, Coronel-Hernandez J, Millan-Catalan O, Rodríguez-Dorantes M, López-Camarillo C, Gutiérrez-Ruiz C, Jacobo-Herrera N, Pérez-Plasencia C. HOTAIR Promotes the Hyperactivation of PI3K/Akt and Wnt/β-Catenin Signaling Pathways via PTEN Hypermethylation in Cervical Cancer. Cells 2024; 13:1484. [PMID: 39273054 PMCID: PMC11394386 DOI: 10.3390/cells13171484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The mechanisms underlying the sustained activation of the PI3K/AKT and Wnt/β-catenin pathways mediated by HOTAIR in cervical cancer (CC) have not been extensively described. To address this knowledge gap in the literature, we explored the interactions between these pathways by driving HOTAIR expression levels in HeLa cells. Our findings reveal that HOTAIR is a key regulator in sustaining the activation of both signaling pathways. Specifically, altering HOTAIR expression-either by knockdown or overexpression-significantly influenced the transcriptional activity of the PI3K/AKT and Wnt/β-catenin pathways. Additionally, we discovered that HIF1α directly induces HOTAIR transcription, which in turn leads to the epigenetic silencing of the PTEN promoter via DNMT1. This process leads to the sustained activation of both pathways, highlighting a novel regulatory axis involving HOTAIR and HIF1α in cervical cancer. Our results suggest a new model in which HOTAIR sustains reciprocal activation of the PI3K/AKT and Wnt/β-catenin pathways through the HOTAIR/HIF1α axis, thereby contributing to the oncogenic phenotype of cervical cancer.
Collapse
Affiliation(s)
- Samuel Trujano-Camacho
- Experimental Biology PhD Program, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - David Cantú-de León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - Eloy Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - Carlos Contreras-Romero
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - Jossimar Coronel-Hernandez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | | | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México 03100, Mexico;
| | - Concepción Gutiérrez-Ruiz
- Laboratory of Experimental Medicine, Translational Medicine Unit, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico;
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| |
Collapse
|
14
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
15
|
Abukwaik R, Vera-Siguenza E, Tennant D, Spill F. p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect. Bull Math Biol 2024; 86:124. [PMID: 39207627 PMCID: PMC11362376 DOI: 10.1007/s11538-024-01346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Cancer cells exhibit significant alterations in their metabolism, characterised by a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on glycolysis, even in the presence of oxygen. This metabolic shift, known as the Warburg effect, is pivotal in fuelling cancer's uncontrolled growth, invasion, and therapeutic resistance. While dysregulation of many genes contributes to this metabolic shift, the tumour suppressor gene p53 emerges as a master player. Yet, the molecular mechanisms remain elusive. This study introduces a comprehensive mathematical model, integrating essential p53 targets, offering insights into how p53 orchestrates its targets to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation outcomes align closely with experimental data comparing glucose metabolism in colon cancer cells with wild-type and mutated p53. Additionally, our findings reveal the dynamic capability of elevated p53 activation to fully reverse the Warburg effect, highlighting the significance of its activity levels not just in triggering apoptosis (programmed cell death) post-chemotherapy but also in modifying the metabolic pathways implicated in treatment resistance. In scenarios of p53 mutations, our analysis suggests targeting glycolysis-instigating signalling pathways as an alternative strategy, whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mitochondrial respiration but may not effectively suppress the glycolysis pathway, potentially boosting the energy production and cancer cell viability.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, King Abdulaziz University, Rabigh, Saudi Arabia.
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| |
Collapse
|
16
|
Brune Z, Lu A, Moss M, Brune L, Huang A, Matta B, Barnes BJ. IRF5 mediates adaptive immunity via altered glutamine metabolism, mTORC1 signaling and post-transcriptional regulation following T cell receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609422. [PMID: 39253451 PMCID: PMC11382993 DOI: 10.1101/2024.08.26.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although dynamic alterations in transcriptional, translational, and metabolic programs have been described in T cells, the factors and pathways guiding these molecular shifts are poorly understood, with recent studies revealing a disassociation between transcriptional responses and protein expression following T cell receptor (TCR) stimulation. Previous studies identified interferon regulatory factor 5 (IRF5) in the transcriptional regulation of cytokines, chemotactic molecules and T effector transcription factors following TCR signaling. In this study, we identified T cell intrinsic IRF5 regulation of mTORC1 activity as a key modulator of CD40L protein expression. We further demonstrated a global shift in T cell metabolism, with alterations in glutamine metabolism accompanied by shifts in T cell populations at the single cell level due to loss of Irf5. T cell conditional Irf5 knockout mice in a murine model of experimental autoimmune encephalomyelitis (EAE) demonstrated protection from clinical disease with conserved defects in mTORC1 activity and glutamine regulation. Together, these findings expand our mechanistic understanding of IRF5 as an intrinsic regulator of T effector function(s) and support the therapeutic targeting of IRF5 in multiple sclerosis.
Collapse
Affiliation(s)
- Zarina Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ailing Lu
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Matthew Moss
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Leianna Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Amanda Huang
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Bharati Matta
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Betsy J Barnes
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
17
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
18
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
19
|
Cheng X. A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes (Basel) 2024; 15:903. [PMID: 39062682 PMCID: PMC11275319 DOI: 10.3390/genes15070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2), a targetable transmembrane glycoprotein receptor of the epidermal growth factor receptor (EGFR) family, plays a crucial role in cell proliferation, survival, and differentiation. Aberrant HER2 signaling is implicated in various cancers, particularly in breast and gastric cancers, where HER2 overexpression or amplification correlates with aggressive tumor behavior and poor prognosis. HER2-activating mutations contribute to accelerated tumorigenesis and metastasis. This review provides an overview of HER2 biology, signaling pathways, mechanisms of dysregulation, and diagnostic approaches, as well as therapeutic strategies targeting HER2 in cancer. Understanding the intricate details of HER2 regulation is essential for developing effective targeted therapies and improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- Department of Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63108, USA
| |
Collapse
|
20
|
Shinhmar S, Schaf J, Lloyd Jones K, Pardo OE, Beesley P, Williams RSB. Developing a Tanshinone IIA Memetic by Targeting MIOS to Regulate mTORC1 and Autophagy in Glioblastoma. Int J Mol Sci 2024; 25:6586. [PMID: 38928292 PMCID: PMC11204349 DOI: 10.3390/ijms25126586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Tanshinone IIA (T2A) is a bioactive compound that provides promise in the treatment of glioblastoma multiforme (GBM), with a range of molecular mechanisms including the inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy. Recently, T2A has been demonstrated to function through sestrin 2 (SESN) to inhibit mTORC1 activity, but its possible impact on autophagy through this pathway has not been investigated. Here, the model system Dictyostelium discoideum and GBM cell lines were employed to investigate the cellular role of T2A in regulating SESN to inhibit mTORC1 and activate autophagy through a GATOR2 component MIOS. In D. discoideum, T2A treatment induced autophagy and inhibited mTORC1 activity, with both effects lost upon the ablation of SESN (sesn-) or MIOS (mios-). We further investigated the targeting of MIOS to reproduce this effect of T2A, where computational analysis identified 25 novel compounds predicted to strongly bind the human MIOS protein, with one compound (MIOS inhibitor 3; Mi3) reducing cell proliferation in two GBM cells. Furthermore, Mi3 specificity was demonstrated through the loss of potency in the D. discoideum mios- cells regarding cell proliferation and the induction of autophagy. In GBM cells, Mi3 treatment also reduced mTORC1 activity and induced autophagy. Thus, a potential T2A mimetic showing the inhibition of mTORC1 and induction of autophagy in GBM cells was identified.
Collapse
Affiliation(s)
- Sonia Shinhmar
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| | - Judith Schaf
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| | - Katie Lloyd Jones
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| | - Olivier E. Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
| | - Philip Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| |
Collapse
|
21
|
Hsueh TC, Chen PH, Hong JR. ISKNV Triggers AMPK/mTOR-Mediated Autophagy Signaling through Oxidative Stress, Inducing Antioxidant Enzyme Expression and Enhancing Viral Replication in GF-1 Cells. Viruses 2024; 16:914. [PMID: 38932206 PMCID: PMC11209599 DOI: 10.3390/v16060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) infections can induce the process of host cellular autophagy but have rarely been identified within the molecular autophagy signaling pathway. In the present study, we demonstrated that ISKNV induces ROS-mediated oxidative stress signals for the induction of 5'AMP-activated protein kinase/mechanistic target of rapamycin kinase (AMPK/mTOR)-mediated autophagy and upregulation of host antioxidant enzymes in fish GF-1 cells. We also examined ISKNV-induced oxidative stress, finding that reactive oxidative species (ROS) increased by 1.5-fold and 2.5-fold from day 2 to day 3, respectively, as assessed by the H2DCFDA assay for tracing hydrogen peroxide (H2O2), which was blocked by NAC treatment in fish GF-1 cells. Furthermore, ISKNV infection was shown to trigger oxidative stress/Nrf2 signaling from day 1 to day 3; this event was then correlated with the upregulation of antioxidant enzymes such as Cu/ZnSOD and MnSOD and was blocked by the antioxidant NAC. Using an MDC assay, TEM analysis and autophagy marker LC3-II/I ratio, we found that ROS stress can regulate autophagosome formation within the induction of autophagy, which was inhibited by NAC treatment in GF-1 cells. Through signal analysis, we found that AMPK/mTOR flux was modulated through inhibition of mTOR and activation of AMPK, indicating phosphorylation levels of mTOR Ser 2448 and AMPK Thr 172 from day 1 to day 3; however, this process was reversed by NAC treatment, which also caused a reduction in virus titer (TCID50%) of up to 1000 times by day 3 in GF-1 cells. Thus, ISKNV-induced oxidative stress signaling is blocked by antioxidant NAC, which can also either suppress mTOR/AMPK autophagic signals or reduce viral replication. These findings may provide the basis for the creation of DNA control and treatment strategies.
Collapse
Affiliation(s)
- Tsai-Ching Hsueh
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Han Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
22
|
Liu B, Yao X, Shang Y, Dai J. The multiple roles of autophagy in uveal melanoma and the microenvironment. J Cancer Res Clin Oncol 2024; 150:121. [PMID: 38467935 PMCID: PMC10927889 DOI: 10.1007/s00432-023-05576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults, and effective clinical treatment strategies are still lacking. Autophagy is a lysosome-dependent degradation system that can encapsulate abnormal proteins, damaged organelles. However, dysfunctional autophagy has multiple types and plays a complex role in tumorigenicity depending on many factors, such as tumor stage, microenvironment, signaling pathway activation, and application of autophagic drugs. METHODS A systematic review of the literature was conducted to analyze the role of autophagy in UM, as well as describing the development of autophagic drugs and the link between autophagy and the tumor microenvironment. RESULTS In this review, we summarize current research advances regarding the types of autophagy, the mechanisms of autophagy, the application of autophagy inhibitors or agonists, autophagy and the tumor microenvironment. Finally, we also discuss the relationship between autophagy and UM. CONCLUSION Understanding the molecular mechanisms of how autophagy differentially affects tumor progression may help to design better therapeutic regimens to prevent and treat UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Miller MJ, Akter D, Mahmud J, Chan GC. Human cytomegalovirus modulates mTORC1 to redirect mRNA translation within quiescently infected monocytes. J Virol 2024; 98:e0188823. [PMID: 38289104 PMCID: PMC10878035 DOI: 10.1128/jvi.01888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024] Open
Abstract
Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.
Collapse
Affiliation(s)
- Michael J. Miller
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Dilruba Akter
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jamil Mahmud
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Gary C. Chan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
24
|
El-Aarag B, Shalaan ES, Ahmed AAS, El Sayed IET, Ibrahim WM. Cryptolepine Analog Exhibits Antitumor Activity against Ehrlich Ascites Carcinoma Cells in Mice via Targeting Cell Growth, Oxidative Stress, and PTEN/Akt/mTOR Signaling Pathway. Anticancer Agents Med Chem 2024; 24:436-442. [PMID: 38305388 DOI: 10.2174/0118715206274318231128072821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The efficacy of chemotherapy continues to be limited due to associated toxicity and chemoresistance. Thus, synthesizing and investigating novel agents for cancer treatment that could potentially eliminate such limitations is imperative. OBJECTIVE The current study aims to explore the anticancer potency of cryptolepine (CPE) analog on Ehrlich ascites carcinoma cells (EACs) in mice. METHODS The effect of a CPE analog on EAC cell viability and ascites volume, as well as malonaldehyde, total antioxidant capacity, and catalase, were estimated. The concentration of caspase-8 and mTOR in EACs was also measured, and the expression levels of PTEN and Akt were determined. RESULTS Results revealed that CPE analog exerts a cytotoxic effect on EAC cell viability and reduces the ascites volume. Moreover, this analog induces oxidative stress in EACs by increasing the level of malonaldehyde and decreasing the level of total antioxidant capacity and catalase activity. It also induces apoptosis by elevating the concentration of caspase-8 in EACs. Furthermore, it decreases the concentration of mTOR in EACs. Moreover, it upregulates the expression of PTEN and downregulates the expression of Akt in EACs. CONCLUSION Our findings showed the anticancer activity of CPE analog against EACs in mice mediated by regulation of the PTEN/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Bishoy El-Aarag
- Biochemistry Division, Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 7008530, Japan
| | - Eman S Shalaan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
| | - Abdullah A S Ahmed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
| | | | - Wafaa M Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Lotfimehr H, Mardi N, Narimani S, Nasrabadi HT, Karimipour M, Sokullu E, Rahbarghazi R. mTOR signalling pathway in stem cell bioactivities and angiogenesis potential. Cell Prolif 2023; 56:e13499. [PMID: 37156724 PMCID: PMC10693190 DOI: 10.1111/cpr.13499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that responds to different stimuli such as stresses, starvation and hypoxic conditions. The modulation of this effector can lead to the alteration of cell dynamic growth, proliferation, basal metabolism and other bioactivities. Considering this fact, the mTOR pathway is believed to regulate the diverse functions in several cell lineages. Due to the pleiotropic effects of the mTOR, we here, hypothesize that this effector can also regulate the bioactivity of stem cells in response to external stimuli pathways under physiological and pathological conditions. As a correlation, we aimed to highlight the close relationship between the mTOR signalling axis and the regenerative potential of stem cells in a different milieu. The relevant publications were included in this study using electronic searches of the PubMed database from inception to February 2023. We noted that the mTOR signalling cascade can affect different stem cell bioactivities, especially angiogenesis under physiological and pathological conditions. Modulation of mTOR signalling pathways is thought of as an effective strategy to modulate the angiogenic properties of stem cells.
Collapse
Affiliation(s)
- Hamid Lotfimehr
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Narges Mardi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Samaneh Narimani
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM)IstanbulTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
26
|
Rodrigues NR, Macedo GE, Martins IK, Vieira PDB, Kich KG, Posser T, Franco JL. Sleep disturbance induces a modulation of clock gene expression and alters metabolism regulation in drosophila. Physiol Behav 2023; 271:114334. [PMID: 37595818 DOI: 10.1016/j.physbeh.2023.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Sleep disorders are catching attention worldwide as they can induce dyshomeostasis and health issues in all animals, including humans. Circadian rhythms are biological 24-hour cycles that influence physiology and behavior in all living organisms. Sleep is a crucial resting state for survival and is under the control of circadian rhythms. Studies have shown the influence of sleep on various pathological conditions, including metabolic diseases; however, the biological mechanisms involving the circadian clock, sleep, and metabolism regulation are not well understood. In previous work, we standardized a sleep disturbance protocol and, observed that short-time sleep deprivation and sleep-pattern alteration induce homeostatic sleep regulation, locomotor deficits, and increase oxidative stress. Now, we investigated the relationship between these alterations with the circadian clock and energetic metabolism. In this study, we evaluated the expression of the circadian clock and drosophila insulin-like peptides (DILPs) genes and metabolic markers glucose, triglycerides, and glycogen in fruit flies subjected to short-term sleep disruption protocols. The sleep disturbance altered the expression of clock genes and DILPs genes expression, and modulated glucose, triglycerides, and glycogen levels. Moreover, we demonstrated changes in mTor/dFoxo genes, AKT phosphorylation, and dopamine levels in nocturnal light-exposed flies. Thus, our results suggest a connection between clock genes and metabolism disruption as a consequence of sleep disruption, demonstrating the importance of sleep quality in health maintenance.
Collapse
Affiliation(s)
- Nathane Rosa Rodrigues
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria Santa Maria, RS, 97105-900, Brazil.
| | - Giulianna Echeverria Macedo
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Patrícia de Brum Vieira
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Karen Gomes Kich
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
27
|
Veeramuthu K, Ahuja V, Annadurai P, Gideon DA, Sundarrajan B, Rusu ME, Annadurai V, Dhandayuthapani K. Chemical Profiling and Biological Activity of Psydrax dicoccos Gaertn. Molecules 2023; 28:7101. [PMID: 37894581 PMCID: PMC10609380 DOI: 10.3390/molecules28207101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer is one of the deadliest diseases in women with a mortality rate of 6.6%. Adverse effects of synthetic drugs have directed research toward safer alternatives such as natural compounds. This study focused on Psydrax dicoccos Gaertn, an evergreen tree abundantly distributed in Tamil Nadu (India) for its possible application against breast cancer cells. P. dicoccos leaf methanol extract, found within a wide range of phytochemicals, demonstrated cytotoxic effects against MCF7 breast cancer cells at IC50 of 34 μg/mL. The extract exhibited good antioxidant activities against DPPH• (62%) and ABTS•+ (80%), as well as concentration-dependent (100-800 μg/mL) anti-inflammatory potential of 18-60% compared to standards, ascorbic acid or aspirin, respectively. Moreover, even low extract concentrations (10 μg/mL) inhibited the growth of Escherichia coli (1.9 ± 0.6 mm) and Pseudomonas aeruginosa (2.3 ± 0.7 mm), thus showing high antimicrobial and anti-inflammatory potential. GC-MS and LC-MS analyses identified 31 and 16 components, respectively, of which selected compounds were used to evaluate the interaction between key receptors (AKT-1, COX-2, and HER-2) of breast cancer based on binding energy (ΔG) and inhibition constant (Ki). The results indicate that bioactive compounds from P. dicoccos have potential against breast cancer cells, but further evaluations are needed.
Collapse
Affiliation(s)
- Kamaraj Veeramuthu
- Thanthai Periyar Government Arts and Science College (Autonomous), Bharathidasan University, Tiruchirappalli 620023, Tamil Nadu, India; (K.V.); (B.S.)
| | - Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
- University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Pushparaj Annadurai
- C.P.R. Environmental Education Center, 1 Eldams Road, Alwarpet, Chennai 600018, Tamil Nadu, India;
| | - Daniel A. Gideon
- Department of Biochemistry, St. Joseph College, Bangalore 560025, Karnataka, India;
| | - Balamurugan Sundarrajan
- Thanthai Periyar Government Arts and Science College (Autonomous), Bharathidasan University, Tiruchirappalli 620023, Tamil Nadu, India; (K.V.); (B.S.)
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vinothkanna Annadurai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Kandavel Dhandayuthapani
- Department of Botany, Government Arts College for Men, Nandanam, University of Madras, Chennai 600035, Tamil Nadu, India
| |
Collapse
|
28
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
29
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
30
|
Kubi JA, Brah AS, Cheung KMC, Lee YL, Lee KF, Sze SCW, Qiao W, Yeung KWK. A new osteogenic protein isolated from Dioscorea opposita Thunb accelerates bone defect healing through the mTOR signaling axis. Bioact Mater 2023; 27:429-446. [PMID: 37152710 PMCID: PMC10160600 DOI: 10.1016/j.bioactmat.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Delayed bone defect repairs lead to severe health and socioeconomic impacts on patients. Hence, there are increasing demands for medical interventions to promote bone defect healing. Recombinant proteins such as BMP-2 have been recognized as one of the powerful osteogenic substances that promote mesenchymal stem cells (MSCs) to osteoblast differentiation and are widely applied clinically for bone defect repairs. However, recent reports show that BMP-2 treatment has been associated with clinical adverse side effects such as ectopic bone formation, osteolysis and stimulation of inflammation. Here, we have identified one new osteogenic protein, named 'HKUOT-S2' protein, from Dioscorea opposita Thunb. Using the bone defect model, we have shown that the HKUOT-S2 protein can accelerate bone defect repair by activating the mTOR signaling axis of MSCs-derived osteoblasts and increasing osteoblastic biomineralization. The HKUOT-S2 protein can also modulate the transcriptomic changes of macrophages, stem cells, and osteoblasts, thereby enhancing the crosstalk between the polarized macrophages and MSCs-osteoblast differentiation to facilitate osteogenesis. Furthermore, this protein had no toxic effects in vivo. We have also identified HKUOT-S2 peptide sequence TKSSLPGQTK as a functional osteogenic unit that can promote osteoblast differentiation in vitro. The HKUOT-S2 protein with robust osteogenic activity could be a potential alternative osteoanabolic agent for promoting osteogenesis and bone defect repairs. We believe that the HKUOT-S2 protein may potentially be applied clinically as a new class of osteogenic agent for bone defect healing.
Collapse
Affiliation(s)
- John Akrofi Kubi
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Augustine Suurinobah Brah
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, Hong Kong S.A.R, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, Hong Kong S.A.R, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R, PR China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R, PR China
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Hong Kong S.A.R, PR China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| |
Collapse
|
31
|
He J, Lin M, Zhang X, Zhang R, Tian T, Zhou Y, Dong W, Yang Y, Sun X, Dai Y, Xu Y, Zhang Z, Xu M, Lei QY, Xu Y, Lv L. TET2 is required to suppress mTORC1 signaling through urea cycle with therapeutic potential. Cell Discov 2023; 9:84. [PMID: 37550284 PMCID: PMC10406918 DOI: 10.1038/s41421-023-00567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/14/2023] [Indexed: 08/09/2023] Open
Abstract
Tumor development, involving both cell growth (mass accumulation) and cell proliferation, is a complex process governed by the interplay of multiple signaling pathways. TET2 mainly functions as a DNA dioxygenase, which modulates gene expression and biological functions via oxidation of 5mC in DNA, yet whether it plays a role in regulating cell growth remains unknown. Here we show that TET2 suppresses mTORC1 signaling, a major growth controller, to inhibit cell growth and promote autophagy. Mechanistically, TET2 functions as a 5mC "eraser" by mRNA oxidation, abolishes YBX1-HuR binding and promotes decay of urea cycle enzyme mRNAs, thus negatively regulating urea cycle and arginine production, which suppresses mTORC1 signaling. Therefore, TET2-deficient tumor cells are more sensitive to mTORC1 inhibition. Our results uncover a novel function for TET2 in suppressing mTORC1 signaling and inhibiting cell growth, linking TET2-mediated mRNA oxidation to cell metabolism and cell growth control. These findings demonstrate the potential of mTORC1 inhibition as a possible treatment for TET2-deficient tumors.
Collapse
Affiliation(s)
- Jing He
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingen Lin
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinchao Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruonan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tongguan Tian
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Yuefan Zhou
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenjing Dong
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yajing Yang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xue Sun
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Dai
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhenru Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT, USA
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanping Xu
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 316] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
33
|
Kuczyńska M, Gabig-Cimińska M, Moskot M. Molecular treatment trajectories within psoriatic T lymphocytes: a mini review. Front Immunol 2023; 14:1170273. [PMID: 37251381 PMCID: PMC10213638 DOI: 10.3389/fimmu.2023.1170273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Multiple biological processes in mammalian cells are implicated in psoriasis (Ps) development and progression, as well as in the pathogenic mechanisms associated with this chronic immune-mediated inflammatory disease (IMID). These refer to molecular cascades contributing to the pathological topical and systemic reactions in Ps, where local skin-resident cells derived from peripheral blood and skin-infiltrating cells originating from the circulatory system, in particular T lymphocytes (T cells), are key actors. The interplay between molecular components of T cell signalling transduction and their involvement in cellular cascades (i.e. throughout Ca2+/CaN/NFAT, MAPK/JNK, PI3K/Akt/mTOR, JAK/STAT pathways) has been of concern in the last few years; this is still less characterised than expected, even though some evidence has accumulated to date identifying them as potential objects in the management of Ps. Innovative therapeutic strategies for the use of compounds such as synthetic Small Molecule Drugs (SMDs) and their various combinations proved to be promising tools for the treatment of Ps via incomplete blocking, also known as modulation of disease-associated molecular tracks. Despite recent drug development having mainly centred on biological therapies for Ps, yet displaying serious limitations, SMDs acting on specific pathway factor isoforms or single effectors within T cell, could represent a valid innovation in real-world treatment patterns in patients with Ps. Of note, due to the intricate crosstalk between intracellular pathways, the use of selective agents targeting proper tracks is, in our opinion, a challenge for modern science regarding the prevention of disease at its onset and also in the prediction of patient response to Ps treatment.
Collapse
Affiliation(s)
| | | | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
34
|
Khwanraj K, Prommahom A, Dharmasaroja P. eEF1A2 siRNA Suppresses MPP+-Induced Activation of Akt and mTOR and Potentiates Caspase-3 Activation in a Parkinson’s Disease Model. ScientificWorldJournal 2023; 2023:1335201. [PMID: 37051183 PMCID: PMC10085650 DOI: 10.1155/2023/1335201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
The tissue-specific protein eEF1A2 has been linked to the development of neurological disorders. The role of eEF1A2 in the pathogenesis of Parkinson’s disease (PD) has yet to be investigated. The aim of this study was to determine the potential neuroprotective effects of eEF1A2 in an MPP+ model of PD. Differentiated SH-SY5Y cells were transfected with eEF1A2 siRNA, followed by MPP+ exposure. The expression of p-Akt1 and p-mTORC1 was determined using Western blotting. The expression of p53, Bax, Bcl-2, and caspase-3 was evaluated using qRT-PCR. Cleaved caspase-3 levels and Annexin V/propidium iodide flow cytometry were used to determine apoptosis. The effects of PI3K inhibition were examined. The results showed that eEF1A2 siRNA significantly reduced the eEF1A2 expression induced by MPP+. MPP+ treatment activated Akt1 and mTORC1; however, eEF1A2 knockdown suppressed this activation. In eEF1A2-knockdown cells, MPP+ treatment increased the expression of p53 and caspase-3 mRNA levels as well as increased apoptotic cell death when compared to MPP+ treatment alone. In cells exposed to MPP+, upstream inhibition of the Akt/mTOR pathway, by either LY294002 or wortmannin, inhibited the phosphorylation of Akt1 and mTORC1. Both PI3K inhibitors increased eEF1A2 expression in cells, whether or not they were also treated with MPP+. In conclusion, eEF1A2 may function as a neuroprotective factor against MPP+, in part by regulating the Akt/mTOR pathway upstream.
Collapse
Affiliation(s)
- Kawinthra Khwanraj
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Athinan Prommahom
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | | |
Collapse
|
35
|
Zhao J, Ding C, Li HB. N 6 - Methyladenosine defines a new checkpoint in γδ T cell development. Bioessays 2023; 45:e2300002. [PMID: 36942692 DOI: 10.1002/bies.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
T cells, which are derived from hematopoietic stem cells (HSCs), are the most important components of adaptive immune system. Based on the expression of αβ and γδ receptors, T cells are mainly divided into αβ and γδ T cells. In the thymus, they share common progenitor cells, while undergoing a series of well-characterized and different developmental processes. N6 -Methyladenosine (m6 A), one of the most abundant modifications in mRNAs, plays critical roles in cell development and maintenance of function. Recently, we have demonstrated that the depletion of m6 A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells through the regulation of Jag1/Notch2 signaling, but not αβ T cells, indicating a checkpoint role of ALKBH5 and m6 A modification in the early development of γδ T cells. Based on previous studies, many key pathway molecules, which exert dominant roles in γδ T cell fate determination, have been identified as the targets regulated by m6 A modification. In this review, we mainly summarize the potential regulation between m6 A modification and these key signaling molecules in the γδ T cell lineage commitment, to provide new perspectives in the checkpoint of γδ T cell development.
Collapse
Affiliation(s)
- Jiachen Zhao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenbo Ding
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Chrysophanol-Induced Autophagy Disrupts Apoptosis via the PI3K/Akt/mTOR Pathway in Oral Squamous Cell Carcinoma Cells. Medicina (B Aires) 2022; 59:medicina59010042. [PMID: 36676666 PMCID: PMC9864245 DOI: 10.3390/medicina59010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background and Objectives: Natural products are necessary sources for drug discovery and have contributed to cancer chemotherapy over the past few decades. Furthermore, substances derived from plants have fewer side effects. Chrysophanol is an anthraquinone derivative that is isolated from rhubarb. Although the anticancer effect of chrysophanol on several cancer cells has been reported, studies on the antitumor effect of chrysophanol on oral squamous-cell carcinoma (OSCC) cells have yet to be elucidated. Therefore, in this study, we investigated the anticancer effect of chrysophanol on OSCC cells (CAL-27 and Ca9-22) via apoptosis and autophagy, among the cell death pathways. Results: It was found that chrysophanol inhibited the growth and viability of CAL-27 and Ca9-22 and induced apoptosis through the intrinsic pathway. It was also found that chrysophanol activates autophagy-related factors (ATG5, beclin-1, and P62/SQSTM1) and LC3B conversion. That is, chrysophanol activated both apoptosis and autophagy. Here, we focused on the roles of chrysophanol-induced apoptosis and the autophagy pathway. When the autophagy inhibitor 3-MA and PI3K/Akt inhibitor were used to inhibit the autophagy induced by chrysophanol, it was confirmed that the rate of apoptosis significantly increased. Therefore, we confirmed that chrysophanol induces apoptosis and autophagy at the same time, and the induced autophagy plays a role in interfering with apoptosis processes. Conclusions: Therefore, the potential of chrysophanol as an excellent anticancer agent in OSCC was confirmed via this study. Furthermore, the combined treatment of drugs that can inhibit chrysophanol-induced autophagy is expected to have a tremendous synergistic effect in overcoming oral cancer.
Collapse
|
37
|
Pontrello CG, McWhirt JM, Glabe CG, Brewer GJ. Age-Related Oxidative Redox and Metabolic Changes Precede Intraneuronal Amyloid-β Accumulation and Plaque Deposition in a Transgenic Alzheimer's Disease Mouse Model. J Alzheimers Dis 2022; 90:1501-1521. [PMID: 36278355 PMCID: PMC9789488 DOI: 10.3233/jad-220824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Many identified mechanisms could be upstream of the prominent amyloid-β (Aβ) plaques in Alzheimer's disease (AD). OBJECTIVE To profile the progression of pathology in AD. METHODS We monitored metabolic signaling, redox stress, intraneuronal amyloid-β (iAβ) accumulation, and extracellular plaque deposition in the brains of 3xTg-AD mice across the lifespan. RESULTS Intracellular accumulation of aggregated Aβ in the CA1 pyramidal cells at 9 months preceded extracellular plaques that first presented in the CA1 at 16 months of age. In biochemical assays, brain glutathione (GSH) declined with age in both 3xTg-AD and non-transgenic controls, but the decline was accelerated in 3xTg-AD brains from 2 to 4 months. The decline in GSH correlated exponentially with the rise in iAβ. Integrated metabolic signaling as the ratio of phospho-Akt (pAkt) to total Akt (tAkt) in the PI3kinase and mTOR pathway declined at 6, 9, and 12 months, before rising at 16 and 20 months. These pAkt/tAkt ratios correlated with both iAβ and GSH levels in a U-shaped relationship. Selective vulnerability of age-related AD-genotype-specific pAkt changes was greatest in the CA1 pyramidal cell layer. To demonstrate redox causation, iAβ accumulation was lowered in cultured middle-age adult 3xTg-AD neurons by treatment of the oxidized redox state in the neurons with exogenous cysteine. CONCLUSION The order of pathologic progression in the 3xTg-AD mouse was loss of GSH (oxidative redox shift) followed by a pAkt/tAkt metabolic shift in CA1, iAβ accumulation in CA1, and extracellular Aβ deposition. Upstream targets may prove strategically more effective for therapy before irreversible changes.
Collapse
Affiliation(s)
- Crystal G. Pontrello
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joshua M. McWhirt
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA,Correspondence to: Gregory J. Brewer, Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA. Tel.: +1 217 502 4511; E-mail:
| |
Collapse
|
38
|
The importance of habitat in the tumor-associated Pten, Mtor, and Akt gene expressions and chromosomal aberrations for wild rats. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Malik IA, Rajput M, Werner R, Fey D, Salehzadeh N, von Arnim CAF, Wilting J. Differential in vitro effects of targeted therapeutics in primary human liver cancer: importance for combined liver cancer. BMC Cancer 2022; 22:1193. [PMCID: PMC9675209 DOI: 10.1186/s12885-022-10247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/29/2022] [Indexed: 11/21/2022] Open
Abstract
The incidence of primary liver tumors, hepatocellular carcinoma (HCC), intrahepatic cholangiocellular carcinoma (ICC), and combined HCC/ICC (cHCC/CC) is increasing. For ICC, targeted therapy exists only for a small subpopulation of patients, while for HCC, Sorafenib and Lenvatinib are in use. Diagnosis of cHCC/CC is a great challenge and its incidence is underestimated, bearing the risk of unintended non-treatment of ICC. Here, we investigated effects of targeted inhibitors on human ICC cell lines (HUH28, RBE, SSP25), in comparison to extrahepatic (E)CC lines (EGI1, CCC5, TFK1), and HCC/hepatoblastoma cell lines (HEP3B, HUH7, HEPG2). Cells were challenged with: AKT inhibitor MK-2206; multikinase inhibitors Sorafenib, Lenvatinib and Dasatinib; PI3-kinase inhibitors BKM-120, Wortmannin, LY294002, and CAL-101; and mTOR inhibitor Rapamycin. Dosage of the substances was based on the large number of published data of recent years. Proliferation was analyzed daily for four days. All cell lines were highly responsive to MK-2206. Thereby, MK-2206 reduced expression of phospho(p)-AKT in all ICC, ECC, and HCC lines, which mostly corresponded to reduction of p-mTOR, whereas p-ERK1/2 was upregulated in many cases. Lenvatinib showed inhibitory effects on the two HCC cell lines, but not on HEPG2, ICCs and ECCs. Sorafenib inhibited proliferation of all cells, except the ECC line CCC5. However, at reduced dosage, we observed increased cell numbers in some ICC experiments. Dasatinib was highly effective especially in ICC cell lines. Inhibitory effects were observed with all four PI3-kinase inhibitors. However, cell type-specific differences were also evident here. Rapamycin was most effective in the two HCC cell lines. Our studies show that the nine inhibitors differentially target ICC, ECC, and HCC/hepatoblastoma lines. Caution should be taken with Lenvatinib and Sorafenib administration in patients with cHCC/CC as the drugs may have no effects on, or might even stimulate, ICC.
Collapse
Affiliation(s)
- Ihtzaz Ahmed Malik
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Mansi Rajput
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Rieke Werner
- grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Dorothea Fey
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany ,grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Niloofar Salehzadeh
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany ,grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Christine A. F. von Arnim
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Jörg Wilting
- grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| |
Collapse
|
40
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022; 19:1235-1250. [PMID: 36071219 PMCID: PMC9622814 DOI: 10.1038/s41423-022-00921-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
41
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022. [PMID: 36071219 DOI: 10.1038/s41423-022-00921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
42
|
Yi YW, You KS, Han S, Ha IJ, Park JS, Lee SG, Seong YS. Inhibition of IκB Kinase Is a Potential Therapeutic Strategy to Circumvent Resistance to Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:5215. [PMID: 36358633 PMCID: PMC9654813 DOI: 10.3390/cancers14215215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 03/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) remains as an intractable malignancy with limited therapeutic targets. High expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis of TNBC; however, EGFR targeting has failed with unfavorable clinical outcomes. Here, we performed a combinatorial screening of fifty-five protein kinase inhibitors with the EGFR inhibitor gefitinib in the TNBC cell line MDA-MB-231 and identified the IκB kinase (IKK) inhibitor IKK16 as a sensitizer of gefitinib. Cell viability and clonogenic survival assays were performed to evaluate the antiproliferative effects of the gefitinib and IKK16 (Gefitinib + IKK16) combination in TNBC cell lines. Western blot analyses were also performed to reveal the potential mode of action of this combination. In addition, next-generation sequencing (NGS) analysis was performed in Gefitinib+IKK16-treated cells. The Gefitinib+IKK16 treatment synergistically reduced cell viability and colony formation of TNBC cell lines such as HS578T, MDA-MB-231, and MDA-MB-468. This combination downregulated p-STAT3, p-AKT, p-mTOR, p-GSK3β, and p-RPS6. In addition, p-NF-κB and the total NF-κB were also regulated by this combination. Furthermore, NGS analysis revealed that NF-κB/RELA targets including CCL2, CXCL8, EDN1, IL-1β, IL-6, and SERPINE1 were further reduced and several potential tumor suppressors, such as FABP3, FADS2, FDFT1, SEMA6A, and PCK2, were synergistically induced by the Gefitinib-+IKK16 treatment. Taken together, we identified the IKK/NF-κB pathway as a potential target in combination of EGFR inhibition for treating TNBC.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| |
Collapse
|
43
|
Sayed AM, Gohar OM, Abd-Alhameed EK, Hassanein EHM, Ali FEM. The importance of natural chalcones in ischemic organ damage: Comprehensive and bioinformatic analysis review. J Food Biochem 2022; 46:e14320. [PMID: 35857486 DOI: 10.1111/jfbc.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Over the last few decades, extensive research has been conducted, yielding a detailed account of thousands of newly discovered compounds of natural origin and their biological activities, all of which have the potential to be used for a wide range of therapeutic purposes. There are multiple research papers denoting the central objective of chalcones, which have been shown to have therapeutic potential against various forms of ischemia. The various aspects of chalcones are discussed in this review regarding molecular mechanisms involved in the promising anti-ischemic potential of these chalcones. The main mechanisms involved in these protective effects are Nrf2/Akt activation and NF-κB/TLR4 suppression. Furthermore, in-silico studies were carried out to discover the probable binding of these chalcones to Keap-1 (an inhibitor of Nrf2), Akt, NF-κB, and TLR4 protein molecules. Besides, network pharmacology analysis was conducted to predict the interacting partners of these signals. The obtained results indicated that Nrf2, Akt, NF-κB, and TLR4 are involved in the beneficial anti-ischemic actions of chalcones. Conclusively, the present findings show that chalcones as anti-ischemic agents have a valid rationale. The discussed studies will provide a comprehensive viewpoint on chalcones and can help to optimize their effects in different ischemia. PRACTICAL APPLICATIONS: Ischemic organ damage is an unavoidable pathological condition with a high worldwide incidence. According to the current research progress, natural chalcones have been proved to treat and/or prevent various types of ischemic organ damage by alleviating oxidative stress, inflammation, and apoptosis by different molecular mechanisms. This article displays the comprehensive research progress and the molecular basis of ischemic organ damage pathophysiology and introduces natural chalcones' mechanism in the ischemic organ condition.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama M Gohar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
44
|
Opioids and Vitamin C: Known Interactions and Potential for Redox-Signaling Crosstalk. Antioxidants (Basel) 2022; 11:antiox11071267. [PMID: 35883757 PMCID: PMC9312198 DOI: 10.3390/antiox11071267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Opioids are among the most widely used classes of pharmacologically active compounds both clinically and recreationally. Beyond their analgesic efficacy via μ opioid receptor (MOR) agonism, a prominent side effect is central respiratory depression, leading to systemic hypoxia and free radical generation. Vitamin C (ascorbic acid; AA) is an essential antioxidant vitamin and is involved in the recycling of redox cofactors associated with inflammation. While AA has been shown to reduce some of the negative side effects of opioids, the underlying mechanisms have not been explored. The present review seeks to provide a signaling framework under which MOR activation and AA may interact. AA can directly quench reactive oxygen and nitrogen species induced by opioids, yet this activity alone does not sufficiently describe observations. Downstream of MOR activation, confounding effects from AA with STAT3, HIF1α, and NF-κB have the potential to block production of antioxidant proteins such as nitric oxide synthase and superoxide dismutase. Further mechanistic research is necessary to understand the underlying signaling crosstalk of MOR activation and AA in the amelioration of the negative, potentially fatal side effects of opioids.
Collapse
|
45
|
He B, Wang Z, Moreau R. Chylomicron production is repressed by RPTOR knockdown, R-α-lipoic acid and 4-phenylbutyric acid in human enterocyte-like Caco-2 cells. J Nutr Biochem 2022; 108:109087. [PMID: 35691593 DOI: 10.1016/j.jnutbio.2022.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Although the role of mechanistic target of rapamycin complex 1 (mTORC1) in lipid metabolism has been the subject of previous research, its function in chylomicron production is not known. In this study, we created three stable human colorectal adenocarcinoma Caco-2 cell lines exhibiting normal, low or high mTORC1 kinase activity, and used these cells to investigate the consequences of manipulating mTORC1 activity on enterocyte differentiation and chylomicron-like particle production. Constitutively active mTORC1 induced Caco-2 cell proliferation and differentiation (as judged by alkaline phosphatase activity) but weakened transepithelial electrical resistance (TEER). Repressed mTORC1 activity due to the knockdown of RPTOR significantly decreased the expression of lipogenic genes FASN, DGAT1 and DGAT2, lipoprotein assembly genes APOB and MTTP, reduced protein expression of APOB, MTTP and FASN, downregulated the gene expression of very long-chain fatty acyl-CoA ligase (FATP2), acyl-CoA binding protein (DBI), and prechylomicron transport vesicle-associated proteins VAMP7 (vesicle-associated membrane protein 7) and SAR1B (secretion associated Ras related GTPase 1B) resulting in the repression of apoB-containing triacylglycerol-rich lipoprotein secretion. Exposure of Caco-2 cells harboring a constitutively active mTORC1 to short-chain fatty acid derivatives, R-α-lipoic acid and 4-phenylbutyric acid, downregulated chylomicron-like particle secretion by interfering with the lipidation and assembly of the particles, and concomitantly repressed mTORC1 activity with no change to Raptor abundance or PRAS40 (Thr246) phosphorylation. R-α-lipoic acid and 4-phenylbutyric acid may be useful to mitigate intestinal lipoprotein overproduction and associated postprandial inflammation.
Collapse
Affiliation(s)
- Bo He
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zhigang Wang
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
46
|
Jiang H, Kan X, Ding C, Sun Y. The Multi-Faceted Role of Autophagy During Animal Virus Infection. Front Cell Infect Microbiol 2022; 12:858953. [PMID: 35402295 PMCID: PMC8990858 DOI: 10.3389/fcimb.2022.858953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a process of degradation to maintain cellular homeostatic by lysosomes, which ensures cellular survival under various stress conditions, including nutrient deficiency, hypoxia, high temperature, and pathogenic infection. Xenophagy, a form of selective autophagy, serves as a defense mechanism against multiple intracellular pathogen types, such as viruses, bacteria, and parasites. Recent years have seen a growing list of animal viruses with autophagy machinery. Although the relationship between autophagy and human viruses has been widely summarized, little attention has been paid to the role of this cellular function in the veterinary field, especially today, with the growth of serious zoonotic diseases. The mechanisms of the same virus inducing autophagy in different species, or different viruses inducing autophagy in the same species have not been clarified. In this review, we examine the role of autophagy in important animal viral infectious diseases and discuss the regulation mechanisms of different animal viruses to provide a potential theoretical basis for therapeutic strategies, such as targets of new vaccine development or drugs, to improve industrial production in farming.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| |
Collapse
|
47
|
Silva RCMC, Ribeiro JS, da Silva GPD, da Costa LJ, Travassos LH. Autophagy Modulators in Coronavirus Diseases: A Double Strike in Viral Burden and Inflammation. Front Cell Infect Microbiol 2022; 12:845368. [PMID: 35433503 PMCID: PMC9010404 DOI: 10.3389/fcimb.2022.845368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses are the etiologic agents of several diseases. Coronaviruses of critical medical importance are characterized by highly inflammatory pathophysiology, involving severe pulmonary impairment and infection of multiple cell types within the body. Here, we discuss the interplay between coronaviruses and autophagy regarding virus life cycle, cell resistance, and inflammation, highlighting distinct mechanisms by which autophagy restrains inflammatory responses, especially those involved in coronavirus pathogenesis. We also address different autophagy modulators available and the rationale for drug repurposing as an attractive adjunctive therapy. We focused on pharmaceuticals being tested in clinical trials with distinct mechanisms but with autophagy as a common target. These autophagy modulators act in cell resistance to virus infection and immunomodulation, providing a double-strike to prevent or treat severe disease development and death from coronaviruses diseases.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Peixoto Duarte da Silva
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Ishikita A, Matsushima S, Ikeda S, Okabe K, Nishimura R, Tadokoro T, Enzan N, Yamamoto T, Sada M, Tsutsui Y, Miyake R, Ikeda M, Ide T, Kinugawa S, Tsutsui H. GFAT2 mediates cardiac hypertrophy through HBP-O-GlcNAcylation-Akt pathway. iScience 2021; 24:103517. [PMID: 34934932 DOI: 10.1016/j.isci.2021.103517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/25/2021] [Accepted: 11/23/2021] [Indexed: 01/14/2023] Open
Abstract
Molecular mechanisms mediating cardiac hypertrophy by glucose metabolism are incompletely understood. Hexosamine biosynthesis pathway (HBP), an accessory pathway of glycolysis, is known to be involved in the attachment of O-linked N-acetylglucosamine motif (O-GlcNAcylation) to proteins, a post-translational modification. We here demonstrate that glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2), a critical HBP enzyme, is a major isoform of GFAT in the heart and is increased in response to several hypertrophic stimuli, including isoproterenol (ISO). Knockdown of GFAT2 suppresses ISO-induced cardiomyocyte hypertrophy, accompanied by suppression of Akt O-GlcNAcylation and activation. Knockdown of GFAT2 does not affect anti-hypertrophic effect by Akt inhibition. Administration of glucosamine, a substrate of HBP, induces protein O-GlcNAcylation, Akt activation, and cardiomyocyte hypertrophy. In mice, 6-diazo-5-oxo-L-norleucine, an inhibitor of GFAT, attenuates ISO-induced protein O-GlcNAcylation, Akt activation, and cardiac hypertrophy. Our results demonstrate that GFAT2 mediates cardiomyocyte hypertrophy by HBP-O-GlcNAcylation-Akt pathway and could be a critical therapeutic target of cardiac hypertrophy.
Collapse
Affiliation(s)
- Akihito Ishikita
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichiro Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Okabe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryohei Nishimura
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuyuki Enzan
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taishi Yamamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masashi Sada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Miyake
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Caetano-Silva S, Simbi BH, Marr N, Hibbert A, Allen SP, Pitsillides AA. Restraint upon Embryonic Metatarsal Ex Vivo Growth by Hydrogel Reveals Interaction between Quasi-Static Load and the mTOR Pathway. Int J Mol Sci 2021; 22:ijms222413220. [PMID: 34948015 PMCID: PMC8706285 DOI: 10.3390/ijms222413220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanical cues play a vital role in limb skeletal development, yet their influence and underpinning mechanisms in the regulation of endochondral ossification (EO) processes are incompletely defined. Furthermore, interactions between endochondral growth and mechanics and the mTOR/NF-ĸB pathways are yet to be explored. An appreciation of how mechanical cues regulate EO would also clearly be beneficial in the context of fracture healing and bone diseases, where these processes are recapitulated. The study herein addresses the hypothesis that the mTOR/NF-ĸB pathways interact with mechanics to control endochondral growth. To test this, murine embryonic metatarsals were incubated ex vivo in a hydrogel, allowing for the effects of quasi-static loading on longitudinal growth to be assessed. The results showed significant restriction of metatarsal growth under quasi-static loading during a 14-day period and concentration-dependent sensitivity to hydrogel-related restriction. This study also showed that hydrogel-treated metatarsals retain their viability and do not present with increased apoptosis. Metatarsals exhibited reversal of the growth-restriction when co-incubated with mTOR compounds, whilst it was found that these compounds showed no effects under basal culture conditions. Transcriptional changes linked to endochondral growth were assessed and downregulation of Col2 and Acan was observed in hydrogel-treated metatarsi at day 7. Furthermore, cell cycle analyses confirmed the presence of chondrocytes exhibiting S-G2/M arrest. These data indicate that quasi-static load provokes chondrocyte cell cycle arrest, which is partly overcome by mTOR, with a less marked interaction for NF-ĸB regulators.
Collapse
|
50
|
Salminen A, Kaarniranta K, Kauppinen A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: impact on the aging process and age-related diseases. Inflamm Res 2021; 70:1043-1061. [PMID: 34476533 PMCID: PMC8572812 DOI: 10.1007/s00011-021-01498-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The insulin/IGF-1 signaling pathway has a major role in the regulation of longevity both in Caenorhabditis elegans and mammalian species, i.e., reduced activity of this pathway extends lifespan, whereas increased activity accelerates the aging process. The insulin/IGF-1 pathway controls protein and energy metabolism as well as the proliferation and differentiation of insulin/IGF-1-responsive cells. Insulin/IGF-1 signaling also regulates the functions of the innate and adaptive immune systems. The purpose of this review was to elucidate whether insulin/IGF-1 signaling is linked to immunosuppressive STAT3 signaling which is known to promote the aging process. METHODS Original and review articles encompassing the connections between insulin/IGF-1 and STAT3 signaling were examined from major databases including Pubmed, Scopus, and Google Scholar. RESULTS The activation of insulin/IGF-1 receptors stimulates STAT3 signaling through the JAK and AKT-driven signaling pathways. STAT3 signaling is a major activator of immunosuppressive cells which are able to counteract the chronic low-grade inflammation associated with the aging process. However, the activation of STAT3 signaling stimulates a negative feedback response through the induction of SOCS factors which not only inhibit the activity of insulin/IGF-1 receptors but also that of many cytokine receptors. The inhibition of insulin/IGF-1 signaling evokes insulin resistance, a condition known to be increased with aging. STAT3 signaling also triggers the senescence of both non-immune and immune cells, especially through the activation of p53 signaling. CONCLUSIONS Given that cellular senescence, inflammaging, and counteracting immune suppression increase with aging, this might explain why excessive insulin/IGF-1 signaling promotes the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|