1
|
Vijayraghavan S, Ruggiero A, Becker S, Mieczkowski P, Hanna GS, Hamann MT, Saini N. Methylglyoxal mutagenizes single-stranded DNA via Rev1-associated slippage and mispairing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643935. [PMID: 40166206 PMCID: PMC11956917 DOI: 10.1101/2025.03.18.643935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde that is produced endogenously during metabolism and is derived from exogenous sources such as sugary food items and cigarette smoke. Unless detoxified by glyoxalases (Glo1 and Glo2), MG can readily react with all major biomolecules, including DNA and proteins, generating characteristic lesions and glycation-derived by- products. As a result, MG exposure has been linked to a variety of human diseases, including cancers. Prior studies show that MG can glycate DNA, preferentially on guanine residues, and cause DNA damage. However, the mutagenicity of MG is poorly understood in vivo. In the context of cancer, it is essential to comprehend the true contribution of MG to genome instability and global mutational burden. In the present study, we show that MG can robustly mutagenize induced single-stranded DNA (ssDNA) in yeast, within a guanine centered mutable motif. We demonstrate that genome-wide MG mutagenesis in ssDNA is greatly elevated throughout the genome in the absence of Glo1, and abrogated in the presence of the aldehyde quencher aminoguanidine. We uncovered strand slippage and mispairing as the predominant mechanism for generation of all MG-associated mutations, and demonstrate that the translesion polymerase Rev1 is necessary in this pathway. Finally, we find that the primary MG-associated mutation is enriched in a variety of sequenced tumor datasets. We discuss the genomic impact of methylglyoxal exposure in the context of mutagenesis, DNA damage, and carcinogenesis.
Collapse
|
2
|
Nomi Y, Anazawa T, Shinzawa K, Tamura M, Matsumoto H. Identification of Lactose-Derived α-Dicarbonyl Compounds in Dairy Products and Elucidation of Their Formation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:781-789. [PMID: 39704708 DOI: 10.1021/acs.jafc.4c08966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) generated from carbohydrates play a key role in food quality and safety as precursors. Lactose contributes to α-DCs generation in dairy products; however, α-DCs with intact lactose carbons have not been investigated so far. This study aimed to identify lactose-derived α-DCs, clarify the mechanism of its formation using model incubations, and investigate the distribution and contents of α-DCs in dairy products. From the heated lactose and lysine solution, four new α-DCs derivatives were isolated by column chromatography and preparative HPLC and identified as lactosone, 1-deoxylactosone (1-DL) and its epimer, and 1,5-dideoxylactoson-4-ene (1,5-DDLE) by MS and NMR analyses. 1-DL, 1-DL epimer, and 1,5-DDLE were specifically formed from Amadori compounds of lactose and could be indicators of lactose-associated Maillard reaction. These α-DCs were abundantly contained in thermally processed dairy products, especially infant formulas and whey protein, and affected by ingredients and manufacturing process.
Collapse
Affiliation(s)
- Yuri Nomi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata 956-8603, Japan
| | - Takuma Anazawa
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata 956-8603, Japan
| | - Kazumi Shinzawa
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata 956-8603, Japan
| | - Moeka Tamura
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata 956-8603, Japan
| | - Hitoshi Matsumoto
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata 956-8603, Japan
| |
Collapse
|
3
|
Jose J, Fonteh AN. A charge reversal approach for the sensitive quantification of dicarboxylic acids using Liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1737:465426. [PMID: 39423602 DOI: 10.1016/j.chroma.2024.465426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Dicarboxylic acids (DCAs) are essential for intermediate metabolism and are implicated in multiple processes associated with various diseases. Several DCAs contribute to energy metabolism, impact mitochondrial function, and play a crucial role in body function. However, the low abundance of some DCAs in various body fluids makes their quantification particularly challenging. Therefore, an extremely sensitive method is required to determine DCA level fluctuations in biological samples in different diseases. We developed and optimized an LC-MS/MS method to quantify DCAs. We achieved charge reversal of the compounds from negative to positive ionization through chemical derivatization with dimethylaminophenacyl bromide (DmPABr) targeting the carboxyl group (R-COOH) under mild basic conditions. Derivatization enhanced sensitivity, mass fragmentation, and chromatographic separation for LC-tandem mass spectrometric quantification. The method was analytically optimized and demonstrated excellent linearity for individual DCAs (R2>0.99), as well as an exceptionally lower limit of detection (LLOD<266 fg) and lower limit of quantification (LLOQ<805 fg) for all DCAs. Furthermore, most derivatized DCAs were stable at room temperature and after ten repeated freeze-thaw cycles. After DCA extraction and quantification detection, we found differences in their distribution in plasma and urine. The rank order for DCAs in plasma is C4>C6>C7>C9>C5>C8>C22, whereas in the urine sample, the order is C4>C7>C6>C9>C5>C8>C10. For longer chains (C > 16), their proportions were >10x higher in plasma than in urine. Our optimized method using LC-MS/MS enables the quantification of DCAs with excellent sensitivity. The method will help in future studies investigating dicarboxylic acids' crucial role in health and biomarker discovery studies using targeted metabolomics.
Collapse
Affiliation(s)
- Joby Jose
- Biomarker and Neuro-disease Mechanism Lab, Neuroscience Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Alfred N Fonteh
- Biomarker and Neuro-disease Mechanism Lab, Neuroscience Department, Huntington Medical Research Institutes, Pasadena, CA, USA.
| |
Collapse
|
4
|
Wang Z, Liu C, Wu Y, Yao H, He S, Zhao L, Zeng X. A Mitochondria-Targeting Water-Soluble Fluorescent Probe for Selective Detection of Glyoxal in Living Cells. J Fluoresc 2024:10.1007/s10895-024-03994-1. [PMID: 39441259 DOI: 10.1007/s10895-024-03994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Glyoxal (GL) is a physiological reactive α-oxoaldehyde metabolite, produced by lipid peroxidation and autoxidation of glucose. In this work, a specific mitochondria-targeting fluorescent probe Z-GL for glyoxal has been developed by an introducing isopropyl group on the recognition site to tune the selectivity toward glyoxal. The probe showed high selectivity and sensitivity for glyoxal in an aqueous system. Importantly, the probe was able to visualize exogenous and endogenous glyoxal in living cells. Furthermore, the probe was mitochondria-targetable, and could be used for monitoring the level of intracellular glyoxal.
Collapse
Affiliation(s)
- Zhiming Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuanyuan Wu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Huirong Yao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Liancheng Zhao
- School of Materials Science & Engineering, Institute of Information Functional Materials & Devices, Harbin Institute of Technology, Harbin, 150001, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
5
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Ohno R, Auditore A, Gensberger-Reigl S, Saller J, Stützer J, Weigel I, Pischetsrieder M. Qualitative and Quantitative Profiling of Fructose Degradation Products Revealed the Formation of Thirteen Reactive Carbonyl Compounds and Higher Reactivity Compared to Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19131-19142. [PMID: 39145730 DOI: 10.1021/acs.jafc.4c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Fructose occurs in foods and as a metabolite in vivo. It can be degraded, leading to the formation of reactive carbonyl compounds, which may influence food properties and have an impact on health. The present study performed an in-depth qualitative and quantitative profiling of fructose degradation products. Thus, the α-dicarbonyl compounds 3-deoxyglucosone, glucosone, methylglyoxal, glyoxal, hydroxypyruvaldehyde, threosone, 3-deoxythreosone, and 1-desoxypentosone and the monocarbonyl compounds formaldehyde, acetaldehyde, glycolaldehyde, glyceraldehyde, and dihydroxyacetone were detected in fructose solutions incubated at 37 °C. Quantitative profiling after 7 days revealed 4.6-271.6-fold higher yields of all degradation products from fructose compared to glucose. Except for 3-deoxyglucosone, the product formation appeared to be metal dependent, indicating oxidative pathways. CaCl2 and MgCl2 partially reduced fructose degradation. Due to its high reactivity compared to glucose, particularly toward metal-catalyzed pathways, fructose may be a strong contributor to sugar degradation and Maillard reaction in foods and in vivo.
Collapse
Affiliation(s)
- Reiichi Ohno
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Andrea Auditore
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Sabrina Gensberger-Reigl
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Julia Saller
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Joachim Stützer
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Ingrid Weigel
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| |
Collapse
|
7
|
Parwani K, Mandal P. Advanced glycation end products and insulin resistance in diabetic nephropathy. VITAMINS AND HORMONES 2024; 125:117-148. [PMID: 38997162 DOI: 10.1016/bs.vh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Insulin resistance is a central hallmark that connects the metabolic syndrome and diabetes to the resultant formation of advanced glycation end products (AGEs), which further results in the complications of diabetes, including diabetic nephropathy. Several factors play an important role as an inducer to diabetic nephropathy, and AGEs elicit their harmful effects via interacting with the receptor for AGEs Receptor for AGEs, by induction of pro-inflammatory cytokines, oxidative stress, endoplasmic reticulum stress and fibrosis in the kidney tissues leading to the loss of renal function. Insulin resistance results in the activation of other alternate pathways governed by insulin, which results in the hypertrophy of the renal cells and tissue remodeling. Apart from the glucose uptake and disposal, insulin dependent PI3K and Akt also upregulate the expression of endothelial nitric oxide synthase, that results in increasing the bioavailability of nitric oxide in the vascular endothelium, which further results in tissue fibrosis. Considering the global prevalence of diabetic nephropathy, and the impact of protein glycation, various inhibitors and treatment avenues are being developed, to prevent the progression of diabetic complications. In this chapter, we discuss the role of glycation in insulin resistance and further its impact on the kidney.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India.
| |
Collapse
|
8
|
Brings S, Mier W, Beijer B, Kliemank E, Herzig S, Szendroedi J, Nawroth PP, Fleming T. Non-cross-linking advanced glycation end products affect prohormone processing. Biochem J 2024; 481:33-44. [PMID: 38112318 DOI: 10.1042/bcj20230321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Advanced glycation end products (AGEs) are non-enzymatic post-translational modifications of amino acids and are associated with diabetic complications. One proposed pathomechanism is the impaired processing of AGE-modified proteins or peptides including prohormones. Two approaches were applied to investigate whether substrate modification with AGEs affects the processing of substrates like prohormones to the active hormones. First, we employed solid-phase peptide synthesis to generate unmodified as well as AGE-modified protease substrates. Activity of proteases towards these substrates was quantified. Second, we tested the effect of AGE-modified proinsulin on the processing to insulin. Proteases showed the expected activity towards the unmodified peptide substrates containing arginine or lysine at the C-terminal cleavage site. Indeed, modification with Nε-carboxymethyllysine (CML) or methylglyoxal-hydroimidazolone 1 (MG-H1) affected all proteases tested. Cysteine cathepsins displayed a reduction in activity by ∼50% towards CML and MG-H1 modified substrates. The specific proteases trypsin, proprotein convertases subtilisin-kexins (PCSKs) type proteases, and carboxypeptidase E (CPE) were completely inactive towards modified substrates. Proinsulin incubation with methylglyoxal at physiological concentrations for 24 h resulted in the formation of MG-modified proinsulin. The formation of insulin was reduced by up to 80% in a concentration-dependent manner. Here, we demonstrate the inhibitory effect of substrate-AGE modifications on proteases. The finding that PCSKs and CPE, which are essential for prohormone processing, are inactive towards modified substrates could point to a yet unrecognized pathomechanism resulting from AGE modification relevant for the etiopathogenesis of diabetes and the development of obesity.
Collapse
Affiliation(s)
- Sebastian Brings
- Department of Endocrinology, Metabolism and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbro Beijer
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeth Kliemank
- Department of Endocrinology, Metabolism and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Herzig
- German Centre of Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Metabolism and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Centre of Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
- Center for Molecular Biology Heidelberg (ZMBH), Heidelberg, Germany
- Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter P Nawroth
- Department of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Metabolism and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Centre of Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
- Center for Molecular Biology Heidelberg (ZMBH), Heidelberg, Germany
- Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Sutkowska E, Fecka I, Marciniak D, Bednarska K, Sutkowska M, Hap K. Analysis of Methylglyoxal Concentration in a Group of Patients with Newly Diagnosed Prediabetes. Biomedicines 2023; 11:2968. [PMID: 38001968 PMCID: PMC10669086 DOI: 10.3390/biomedicines11112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The abnormal serum concentration of methylglyoxal (MGO) has been presented as an indicator of chronic complications in diabetes (DM). Because such complications are also found in pre-DM, we decided to assess the concentration of this compound in individuals with pre-DM, without cardio-vascular diseases. METHODS Frozen samples from individuals newly diagnosed with pre-DM (N = 31) and healthy subjects (N = 11) were prepared and MGO concentration was determined using UHPLC-ESI-QqTOF-MS. RESULTS Statistical significance was established when the groups were compared for body weight, BMI, fasting glucose level, fatty liver and use of statins but not for the other descriptive parameters. The positive linear correlation showed that the higher HbA1c, the higher MGO concentration (p = 0.01). The values of MGO were within the normal range in both groups (mean value for pre-DM: 135.44 nM (±SD = 32.67) and for the control group: 143.25 nM (±SD = 17.93); p = 0.46 (±95% CI)), with no statistical significance between the groups. CONCLUSIONS We did not confirm the elevated MGO levels in the group of patients with pre-DM. The available data suggests a possible effect of statin intake on MGO levels. This thesis requires confirmation on a larger number of patients with an assessment of MGO levels before and after the introduction of statins.
Collapse
Affiliation(s)
- Edyta Sutkowska
- University Rehabilitation Centre, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.F.); (K.B.)
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, pl. Defilad 1, 00-901 Warszawa, Poland
| | - Dominik Marciniak
- Department of Drugs Form Technology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.F.); (K.B.)
| | - Magdalena Sutkowska
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże Ludwika Pasteura 1, 50-367 Wroclaw, Poland;
| | - Katarzyna Hap
- University Rehabilitation Centre, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
10
|
Bednarska K, Fecka I, Scheijen JLJM, Ahles S, Vangrieken P, Schalkwijk CG. A Citrus and Pomegranate Complex Reduces Methylglyoxal in Healthy Elderly Subjects: Secondary Analysis of a Double-Blind Randomized Cross-Over Clinical Trial. Int J Mol Sci 2023; 24:13168. [PMID: 37685975 PMCID: PMC10488144 DOI: 10.3390/ijms241713168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.
Collapse
Affiliation(s)
- Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, Pl. Defilad 1, 00-901 Warsaw, Poland
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- BioActor BV, 6229 GS Maastricht, The Netherlands
| | - Philippe Vangrieken
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
11
|
Volmer J, Arabi SH, Henning C, Glomb MA, Hinderberger D. Tuning Human Serum Albumin (HSA) Hydrogels through Albumin Glycation. Macromol Biosci 2023; 23:e2200487. [PMID: 36543753 DOI: 10.1002/mabi.202200487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The changes of technological properties of albumin-based hydrogels induced by increasing degrees of post-translational modification of the protein are reported. Maillard-type modification of amino acids arginine and lysine of albumin is achieved through glyoxal as an α-dicarbonyl compound. The degrees of modification are fine-tuned using different molar ratios of glyoxal. Hydrogels are thermally induced by heating highly concentrated precursor solutions above the protein's denaturation temperature. While the post-translational modifications are determined and quantified with mass spectrometry, continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy shed light on the protein fatty acid binding capacity and changes thereof in solution and in the gel state. The viscoelastic behavior is characterized as a measure of the physical strength of the hydrogels. On the nanoscopic level, the modified albumins in low concentration solution reveal lower binding capacities with increasing degrees of modification. On the contrary, in the gel state, the binding capacity remains constant at all degrees of modifications. This indicates that the loss of fatty acid binding capacity for individual albumin molecules is partially compensated by new binding sites in the gel state, potentially formed by modified amino acids. Such, albumin glycation offers a fine-tuning method of technological and nanoscopic properties of these gels.
Collapse
Affiliation(s)
- Jonas Volmer
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Physikalische Chemie - Komplexe Selbstorganisierende Systeme, Von-Danckelmann-Platz 4, 06120, Halle (Saale), Germany
| | - S Hamidreza Arabi
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Physikalische Chemie - Komplexe Selbstorganisierende Systeme, Von-Danckelmann-Platz 4, 06120, Halle (Saale), Germany
| | - Christian Henning
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Lebensmittelchemie, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany
| | - Marcus A Glomb
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Lebensmittelchemie, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany
| | - Dariush Hinderberger
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Physikalische Chemie - Komplexe Selbstorganisierende Systeme, Von-Danckelmann-Platz 4, 06120, Halle (Saale), Germany
| |
Collapse
|
12
|
Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy. Arch Physiol Biochem 2023; 129:95-107. [PMID: 32730131 DOI: 10.1080/13813455.2020.1797106] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS), i.e. a cluster of physiological and biochemical abnormalities can lead to diabetic nephropathy (DN). Insulin resistance, impaired fasting glucose are the main signs and symptoms of MetS. Excess sugar can induce various substantial structural changes like formation of advanced glycation end products (AGEs). AGEs are formed due to reaction of reducing sugars with amino groups of proteins, lipids and nucleic acids. AGEs when bound to the receptor for advanced glycation end products (RAGE) activate increased production of pro-inflammatory markers like interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) along with induction of endoplasmic reticulum (ER) stress. Accumulation of AGEs, enhanced reactive oxygen species (ROS) generation and activation of protein kinase C (PKC), are considered to induce glomerular hypertrophy, podocyte apoptosis, therefore contributing to the development and progression of DN. In this review, we decipher different biochemical and physiological factors that link AGEs and DN.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
13
|
Study on the Mechanism of Phenylacetaldehyde Formation in a Chinese Water Chestnut-Based Medium during the Steaming Process. Foods 2023; 12:foods12030498. [PMID: 36766028 PMCID: PMC9914596 DOI: 10.3390/foods12030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The white pulp of the Chinese water chestnut (CWC) is crisp and sweet with delicious flavours and is an important ingredient in many Chinese dishes. Phenylacetaldehyde is a characteristic flavoured substance produced in the steaming and cooking process of CWC. The steaming process and conditions were simulated to construct three Maillard reaction systems which consisted of glucose and phenylalanine, and of both alone. The simulation results showed that glucose and phenylalanine were the reaction substrates for the formation of phenylacetaldehyde. The intermediate α-dicarbonyl compounds (α-DCs) and the final products of the simulated system were detected by solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) methods. Through the above methods the formation mechanism of phenylacetaldehyde is clarified; under the conditions of the steaming process, glucose is caramelized to produce Methylglyoxal (MGO), 2,3-Butanedione (BD), Glyoxal (GO) and other α-DCs. α-DCs and phenylalanine undergo a Strecker degradation reaction to generate phenylacetaldehyde. The optimal ratio of the amount of substance of glucose to phenylalanine for Maillard reaction is 1:4. The results can provide scientific reference for the regulation of flavour substances and the evaluation of flavour quality in the steaming process of fruits and vegetables.
Collapse
|
14
|
Shallan AI, Abdel-Hakim A, Hammad MA, Abou El-Alamin MM. Highly sensitive spectrofluorimetric method for the determination of the genotoxic methylglyoxal in glycerol-containing pharmaceuticals and dietary supplements. LUMINESCENCE 2023; 38:39-46. [PMID: 36482153 DOI: 10.1002/bio.4419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MGO) is a genotoxic α-dicarbonyl compound. Recently, it was found to be formed in glycerol preparations during storage through auto-oxidation. A simple fluorimetric determination of the carcinogenic degradation product of glycerol, MGO, was developed and validated. The proposed method is based on the derivatization of MGO with 4-carbomethoxybenzaldehyde (CMBA) and ammonium acetate to yield a fluorescent imidazole derivative that can be measured at 415 nm after excitation at 322 nm. The optimized conditions were determined to be 0.2 M CMBA, 1.0 M ammonium acetate and a reaction time of 40 min at 90°C using ethanol as diluting solvent. The linear range was 10.0-200.0 ng/ml. Detection and quantification limits were 2.22 and 6.72 ng/ml, respectively. The proposed method was validated according to International Council for Harmonisation (ICH) guidelines and compared with the reported method and no significant difference was found. It was successfully applied for the determination of MGO in six different glycerol-containing pharmaceutical preparations and dietary supplements.
Collapse
Affiliation(s)
- Aliaa I Shallan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ali Abdel-Hakim
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mohamed A Hammad
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Maha M Abou El-Alamin
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
15
|
Ferreira SS, Domingues MR, Barros C, Santos SA, Silvestre AJ, Silva AM, Nunes FM. Major anthocyanins in elderberry effectively trap methylglyoxal and reduce cytotoxicity of methylglyoxal in HepG2 cell line. Food Chem X 2022; 16:100468. [PMID: 36281231 PMCID: PMC9587298 DOI: 10.1016/j.fochx.2022.100468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/25/2022] [Accepted: 10/08/2022] [Indexed: 11/08/2022] Open
Abstract
The antiglycation effect of elderberries by methylglyoxal (MGO) trapping was studied. Cyanidin-3-glucoside and cyanidin-3-sambubioside were almost totally reacted with MGO. Quercetin-3-glucoside and quercetin-3-rutinoside trap MGO in less extent. Cyanidin-3,5-diglucoside and cyanidin-5-glucoside-3-sambubioside did not react. Elderberries phenols trap MGO decreasing the induced MGO cytotoxicity in HepG2 cells.
The accumulation of advanced glycation end-products (AGEs) in the body is implicated in numerous diseases, being methylglyoxal (MGO) one of the main precursors. One of the strategies to reduce AGEs accumulation might be acting in an early stage of glycation by trapping MGO. Thus, this work aimed to evaluate, for the first time, the potential of elderberries polyphenols to trap MGO, access the formation of MGO adducts, and evaluate the cytoprotection effect in HepG2 and Caco-2 cells. The results demonstrated that monoglycosylated anthocyanins (cyanidin-3-glucoside and cyanidin-3-sambubioside) are very efficient in trapping MGO, forming mono- and di-adducts. Quercetin-3-glucoside and quercetin-3-rutinoside reacted slowly, while diglycosylated anthocyanins did not react. The trapping of MGO by elderberry monoglycosylated anthocyanins significantly decreased the MGO cytotoxicity in HepG2 cells (∼70 % of cell viability), while the effect in Caco-2 cells was lower (∼50 %). Thus, elderberry phenolics present antiglycation potential by trapping MGO.
Collapse
Affiliation(s)
- Sandrine S. Ferreira
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal,Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Cristina Barros
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Sónia A.O. Santos
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando J.D. Silvestre
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal,Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal,Corresponding authors at: Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal (A. M. Silva). CQ-VR, Chemistry Research Centre, Food and Wine Chemistry Lab., Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801; Vila Real, Portugal (F. M. Nunes).
| | - Fernando M. Nunes
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal,Department of Chemistry, UTAD, 5001-801 Vila Real, Portugal,Corresponding authors at: Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal (A. M. Silva). CQ-VR, Chemistry Research Centre, Food and Wine Chemistry Lab., Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801; Vila Real, Portugal (F. M. Nunes).
| |
Collapse
|
16
|
Cruz N, Flores M, Urquiaga I, Ávila F. Modulation of 1,2-Dicarbonyl Compounds in Postprandial Responses Mediated by Food Bioactive Components and Mediterranean Diet. Antioxidants (Basel) 2022; 11:1513. [PMID: 36009232 PMCID: PMC9405221 DOI: 10.3390/antiox11081513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Glycoxidative stress with the consequent generation of advanced glycation end products has been implied in the etiology of numerous non-communicable chronic diseases. During the postprandial state, the levels of 1,2-dicarbonyl compounds can increase, depending on numerous factors, including characteristics of the subjects mainly related to glucose metabolism disorders and nutritional status, as well as properties related to the chemical composition of meals, including macronutrient composition and the presence of dietary bioactive molecules and macromolecules. In this review, we examine the chemical, biochemical, and physiological pathways that contribute to postprandial generation of 1,2-dicarbonyl compounds. The modulation of postprandial 1,2-dicarbonyl compounds is discussed in terms of biochemical pathways regulating the levels of these compounds, as well as the effect of phenolic compounds, dietary fiber, and dietary patterns, such as Mediterranean and Western diets.
Collapse
Affiliation(s)
- Nadia Cruz
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| | - Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Talca 3460000, Chile;
| | - Inés Urquiaga
- Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile;
| | - Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| |
Collapse
|
17
|
Nomi Y, Sato T, Mori Y, Matsumoto H. Evaluation of Fructo-, Inulin-, and Galacto-Oligosaccharides on the Maillard Reaction Products in Model Systems with Whey Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9154-9165. [PMID: 35849535 DOI: 10.1021/acs.jafc.2c03197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study aimed to investigate the effects of fructo-, inulin-, and galacto-oligosaccharides (FOS, IOS, and GOS) on forming the Maillard reaction products such as browning, α-dicarbonyl compounds, and advanced glycation end products (AGEs). The model solutions at pH 6.8 containing each carbohydrate (mono-, di-, and oligosaccharides) and whey protein were incubated at 50 °C for 8 weeks. In the IOS model, sugars of DP3 or larger were significantly decreased at 4 weeks, whereas at 6 weeks in the FOS model. The residual amount of GOS after 8 weeks was higher than FOS and IOS; however, a large amount of 3-deoxyglucosone was formed compared to the other models. Nε-Carboxymethyllysine (CML) concentrations in oligosaccharide models were about half of those in monosaccharide and lactose models. The highest concentrations of glyoxal- and methylglyoxal-derived hydroimidazolones 3 (G-H3 and MG-H3) were observed in the IOS model, indicating the involvement of fructose units linked by β-2 → 1 bonds. G-H3 and MG-H3 quantification could be a useful indicator to reflect the modification of an arginine residue by fructose if used acid-hydrolysis for AGE analysis. CML, G-H3, and MG-H3 were considerably formed even in the FOS model, which has no reducing terminal site, suggesting that degradation products of oligosaccharides probably participated in the formation of AGEs.
Collapse
Affiliation(s)
- Yuri Nomi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Tae Sato
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Yuki Mori
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Hitoshi Matsumoto
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| |
Collapse
|
18
|
Henning C, Stübner C, Arabi SH, Reichenwallner J, Hinderberger D, Fiedler R, Girndt M, Di Sanzo S, Ori A, Glomb MA. Glycation Alters the Fatty Acid Binding Capacity of Human Serum Albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3033-3046. [PMID: 35194998 DOI: 10.1021/acs.jafc.1c07218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycation significantly alters the physicochemical and biofunctional properties of proteins in foods and in vivo. In the present study, human serum albumin (HSA) as the major transporter of fatty acids was modified with glyoxal under physiological conditions. Reversibly albumin-bound glyoxal was removed, and advanced glycation end products were quantitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total modification of protein-bound lysine and arginine residues reached up to 4.2 and 9.6%, respectively. The impact of these modifications on the transport capacity of long-chain fatty acids was characterized by spin-labeled fatty acid probes via electron paramagnetic resonance spectroscopy. With increasing degree of glycation, the equivalence of the seven binding sites of native HSA with a dissociation constant of 0.74 ± 0.09 μM was set off with only the three high-affinity sites 2, 4, and 5 remaining (0.46 ± 0.07 μM). The other four sites were shifted to low affinities with significantly higher dissociation constants (1.32 ± 0.35 μM). Tryptic peptide mapping enabled us to relate these findings to molecular changes at specific binding sites. Modification hotspots identified were lysine 351, 286, 159 and arginine 144, 485, 117. Further investigation of plasma protein samples of uremic patients vs healthy controls gave first insights into the in vivo situation.
Collapse
Affiliation(s)
- Christian Henning
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Christine Stübner
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Seyed Hamidreza Arabi
- Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Jörg Reichenwallner
- Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany
| | - Simone Di Sanzo
- Leibniz Institute on Aging─Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging─Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| |
Collapse
|
19
|
Lund P, Bechshøft MR, Ray CA, Lund MN. Effect of Processing of Whey Protein Ingredient on Maillard Reactions and Protein Structural Changes in Powdered Infant Formula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:319-332. [PMID: 34967606 DOI: 10.1021/acs.jafc.1c05612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The most widely used whey protein ingredient in an infant formula (IF) is the whey protein concentrate (WPC). The processing steps used in the manufacturing of both a powdered IF and a WPC introduce protein modifications that may decrease the nutritional quality. A gently processed whey protein ingredient (serum protein concentrate; SPC) was manufactured and used for the production of a powdered IF. The SPC and the SPC-based IF were compared to the WPC and the powdered WPC-based IF. Structural protein modifications were evaluated, and Maillard reaction products, covering furosine, α-dicarbonyls, furans, and advanced glycation end products, were quantified in the IFs and their protein ingredients. IF processing was responsible for higher levels of protein modifications compared to the levels observed in the SPC and WPC. Furosine levels and aggregation were most pronounced in the WPC, but the SPC contained a high level of methylglyoxal, revealing that other processing factors should be considered in addition to thermal processing.
Collapse
Affiliation(s)
- Pernille Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | | | - Colin A Ray
- Arla Foods Ingredients Group P/S, Sønderhøj 10-12, 8260 Viby J, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Eggen MD, Glomb MA. Analysis of Glyoxal- and Methylglyoxal-Derived Advanced Glycation End Products during Grilling of Porcine Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15374-15383. [PMID: 34905354 DOI: 10.1021/acs.jafc.1c06835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reaction of the N6-amino group of lysine residues and 1,2-dicarbonyl compounds during Maillard processes leads to advanced glycation end products (AGEs). In the present work, we deliver a comprehensive analysis of changes of carbohydrates, dicarbonyl structures, and 11 AGEs during the grilling of porcine meat patties. While raw meat contained mainly glyoxal-derived N6-carboxymethyl lysine (CML), grilling led to an increase of predominantly methylglyoxal-derived AGEs N6-carboxyethyl lysine (CEL), N6-lactoyl lysine, methylglyoxal lysine dimer (MOLD), and methylglyoxal lysine amide (MOLA). Additionally, we identified and quantitated a novel methylglyoxal-derived amidine compound N1,N2-di-(5-amino-5-carboxypentyl)-2-lactoylamidine (methylglyoxal lysine amide, MGLA) in heated meat. Analysis of carbohydrates suggested that approximately 50% of the methylglyoxal stemmed from the fragmentation of triosephosphates during the heat treatment. Surprisingly, N6-lactoyl lysine was the major AGE, and based on model incubations, we propose that approximately 90% must be explained by the nonenzymatic acylation of lysine through S-lactoylglutathione, which was quantitated for the first time in meat herein.
Collapse
Affiliation(s)
- Michael D Eggen
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| |
Collapse
|
21
|
Di Sanzo S, Spengler K, Leheis A, Kirkpatrick JM, Rändler TL, Baldensperger T, Dau T, Henning C, Parca L, Marx C, Wang ZQ, Glomb MA, Ori A, Heller R. Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation. Nat Commun 2021; 12:6743. [PMID: 34795246 PMCID: PMC8602705 DOI: 10.1038/s41467-021-26982-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Posttranslational mechanisms play a key role in modifying the abundance and function of cellular proteins. Among these, modification by advanced glycation end products has been shown to accumulate during aging and age-associated diseases but specific protein targets and functional consequences remain largely unexplored. Here, we devise a proteomic strategy to identify sites of carboxymethyllysine modification, one of the most abundant advanced glycation end products. We identify over 1000 sites of protein carboxymethylation in mouse and primary human cells treated with the glycating agent glyoxal. By using quantitative proteomics, we find that protein glycation triggers a proteotoxic response and indirectly affects the protein degradation machinery. In primary endothelial cells, we show that glyoxal induces cell cycle perturbation and that carboxymethyllysine modification reduces acetylation of tubulins and impairs microtubule dynamics. Our data demonstrate the relevance of carboxymethyllysine modification for cellular function and pinpoint specific protein networks that might become compromised during aging.
Collapse
Affiliation(s)
- Simone Di Sanzo
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Katrin Spengler
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Anja Leheis
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Joanna M. Kirkpatrick
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany ,grid.451388.30000 0004 1795 1830Present Address: Proteomics Science Technology Platform, The Francis Crick Institute, MW1 1AT London, UK
| | - Theresa L. Rändler
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Tim Baldensperger
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Therese Dau
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Christian Henning
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Luca Parca
- grid.413503.00000 0004 1757 9135Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Christian Marx
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Zhao-Qi Wang
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Marcus A. Glomb
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743, Jena, Germany.
| |
Collapse
|
22
|
AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation 2021; 45:477-496. [PMID: 34787800 DOI: 10.1007/s10753-021-01589-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.
Collapse
|
23
|
Herpich C, Kochlik B, Weber D, Ott C, Grune T, Norman K, Raupbach J. Fasting concentrations and postprandial response of 1,2-dicarbonyl compounds 3-deoxyglucosone, glyoxal and methylglyoxal are not increased in healthy older adults. J Gerontol A Biol Sci Med Sci 2021; 77:934-940. [PMID: 34726231 PMCID: PMC9071428 DOI: 10.1093/gerona/glab331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/04/2022] Open
Abstract
Dicarbonyl stress describes the increased formation of 1,2-dicarbonyl compounds and is associated with age-related pathologies. The role of dicarbonyl stress in healthy aging is poorly understood. In a preliminary study, we analyzed 1,2-dicarbonyl compounds, namely 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) in plasma of older (25 months, n = 11) and younger (5 months, n = 14) male C57BL/6J (B6) mice via ultra performance liquid chromatography tandem mass spectrometry. Postprandial 3-DG was higher in younger compared to older mice, whereas no differences were found for GO and MGO. Subsequently, in the main study, we analyzed fasting serum of older women (OW, 72.4 ± 6.14 years, n = 19) and younger women (YW, 27.0 ± 4.42 years, n = 19) as well as older men (OM, 74.3 ± 5.20 years, n = 15) and younger men (YM, 27.0 ± 3.34, n = 15). Serum glucose, insulin, 1,2-dicarbonyl concentrations, and markers of oxidative stress were quantified. In a subgroup of this cohort, an oral dextrose challenge was performed, and postprandial response of 1,2-dicarbonyl compounds, glucose, and insulin were measured. In women, there were no age differences regarding fasting 1,2-dicarbonyl concentrations nor the response after the oral dextrose challenge. In men, fasting MGO was significantly higher in OM compared to YM (median: 231 vs 158 nM, p = .006), whereas no age differences in fasting 3-DG and GO concentrations were found. Glucose (310 ± 71.8 vs 70.8 ± 11.9 min·mmol/L) and insulin (7 149 ± 1 249 vs 2 827 ± 493 min·µIU/mL) response were higher in OM compared to YM, which did not translate into a higher 1,2-dicarbonyl response in older individuals. Overall, aging does not necessarily result in dicarbonyl stress, indicating that strategies to cope with 1,2-dicarbonyl formation can remain intact.
Collapse
Affiliation(s)
- Catrin Herpich
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Bastian Kochlik
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany
| | - Daniela Weber
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Molecular Toxicology, Nuthetal, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Molecular Toxicology, Nuthetal, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Tilman Grune
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany.,German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Molecular Toxicology, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Kristina Norman
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Geriatrics and Medical Gerontology, Berlin, Germany
| | - Jana Raupbach
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Molecular Toxicology, Nuthetal, Germany
| |
Collapse
|
24
|
Wang M, Liu Y, Guo B, Zhang F, Chou F, Ma M, Huang L, Luo Z, Chen B, Chen X. Isotope-Coding Derivatization for Quantitative Profiling of Reactive α-Dicarbonyl Species in Processed Botanicals by Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10379-10393. [PMID: 34436879 DOI: 10.1021/acs.jafc.1c04122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
α-Dicarbonyls (α-DCs) are key reactive Maillard intermediates with structural diversity and are widely found in foods and in vivo, but little is known regarding the complete molecular profiles of these potentially harmful electrophiles. Herein, we reported a novel isotope-coding derivatization (ICD) strategy for the broad-spectrum, quantitative profiling of (non)target α-DC species in natural foodstuffs. It utilized differential isotope labeling (DIOL) with a reagent pair o-phenylenediamine (OPD)/OPD-d4 (deuterated) to form stable quinoxalines for class-specific fragmentation-dependent acquisition using liquid chromatography-hybrid quadrupole linear ion trap mass spectrometry (LC-QqLIT). A combination of facile one-pot quantitative labeling and convenient cleanup protocol afforded satisfactory sensitivity, linearity, accuracy (81-116%), and process recovery (86-109% with RSDs < 10%) by matrix-matched ICD-internal standard calibration, without significant matrix interference (-9 to 5%), isotopic effect (<0.5%), and cocktail effect. A more generic DIOL-based LC-QqLIT algorithm integrated double precursor ion and neutral loss scan to trigger enhanced product ions with the unique isobaric doublet tags (4 Da shift), enabling simultaneous screening and relative quantitation of nontarget α-DC analogues in a single analysis. This study has widened the vision on complex α-DC profiles in traditional botanicals, which revealed a wide occurrence of α-DCs in such processed sugar-rich products, yet their abundance varied greatly among different samples.
Collapse
Affiliation(s)
- Meiling Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- China Certification & Inspection Group Hunan Co., Ltd., Changsha 410021, China
| | - Yaxuan Liu
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Fan Zhang
- Changsha Environmental Protection College, Changsha 410004, China
- Hunan Academy of Science and Technology for Inspection and Quarantine, Changsha 410004, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Ziwei Luo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
25
|
Nomi Y, Yamazaki K, Mori Y, Matsumoto H, Sato S. Identification of dipyrrolone pigments and their precursors formed in the Maillard reaction of carnosine and pentose under weakly acidic conditions. Biosci Biotechnol Biochem 2021; 85:2042-2053. [PMID: 34191004 DOI: 10.1093/bbb/zbab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022]
Abstract
Colored compounds formed by the Maillard reaction of carnosine with xylose or glucose were investigated in this study. Yellow pigments showing an absorption maximum at 450 nm were found in a heated solution of carnosine with xylose at pH 5.0. These pigments were then isolated and identified as dicarnosyl-dipyrrolones A and B. The generation of dipyrrolones in the absence of lysine suggests that dipyrrolone pigments can be formed by pentose as well as every amino compound such as amino acids, peptides and proteins possessing a free amino group. Analysis of α-dicarbonyls using LC-MS/MS showed that pentosone, 1-deoxypentosone, 3-deoxypentosone (3-DP), and methylglyoxal were predominantly generated via degradation of Amadori compounds. Also, a potential formation pathway of dypyrrolones was established, indicating that an Amadori compound that could form 3-DP is likely to play a role as a main precursor for dipyrrolones.
Collapse
Affiliation(s)
- Yuri Nomi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Kento Yamazaki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yuki Mori
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Hitoshi Matsumoto
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Shinji Sato
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
26
|
Serin Y, Akbulut G, Uğur H, Yaman M. Recent developments in in-vitro assessment of advanced glycation end products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Leitzen S, Vogel M, Engels A, Zapf T, Brandl M. Identification and quantification of glucose degradation products in heat-sterilized glucose solutions for parenteral use by thin-layer chromatography. PLoS One 2021; 16:e0253811. [PMID: 34214128 PMCID: PMC8253424 DOI: 10.1371/journal.pone.0253811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
During heat sterilization of glucose solutions, a variety of glucose degradation products (GDPs) may be formed. GDPs can cause cytotoxic effects after parenteral administration of these solutions. The aim of the current study therefore was to develop a simple and quick high-performance thin-layer chromatography (HPTLC) method by which the major GDPs can be identified and (summarily) quantified in glucose solutions for parenteral administration. All GDPs were derivatized with o-phenylenediamine (OPD). The resulting GDP derivatives (quinoxalines) were applied to an HPTLC plate. After 20 minutes of chamber saturation with the solvent, the HPTLC plate was developed in a mixture of 1,4-dioxane-toluene-glacial acetic acid (49:49:2, v/v/v), treated with thymol-sulfuric acid spray reagent, and heated at 130°C for 10 minutes. Finally, the GDPs were quantified by using a TLC scanner. For validation, the identities of the quinoxaline derivatives were confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Glyoxal (GO)/methylglyoxal (MGO) and 3-deoxyglucosone (3-DG)/3-deoxygalactosone (3-DGal) could be identified and quantified in pairs, glucosone (2-KDG), 5-hydroxymethylfurfural (5-HMF), and 3,4-dideoxyglucosone-3-ene (3,4-DGE) each individually. For 2-KDG, the linearity of the method was demonstrated in the range of 1-50 μg/mL, for 5-HMF and 3,4-DGE 1-75 μg/mL, for GO/MGO 2-150 μg/mL, and for 3-DG/3-DGal 10-150 μg/mL. All GDPs achieved a limit of detection (LOD) of 2 μg/mL or less and a limit of quantification (LOQ) of 10 μg/mL or less. R2 was 0.982 for 3.4-DGE, 0.997 for 5-HMF, and 0.999 for 2-KDG, 3-DG/3-DGal, and GO/MGO. The intraday precision was between 0.4 and 14.2% and the accuracy, reported as % recovery, between 86.4 and 112.7%. The proposed HPTLC method appears to be an inexpensive, fast, and sufficiently sensitive approach for routine quantitative analysis of GDPs in heat-sterilized glucose solutions.
Collapse
Affiliation(s)
- Sarah Leitzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Anette Engels
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Thomas Zapf
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Parwani K, Patel F, Patel D, Mandal P. Protective Effects of Swertiamarin against Methylglyoxal-Induced Epithelial-Mesenchymal Transition by Improving Oxidative Stress in Rat Kidney Epithelial (NRK-52E) Cells. Molecules 2021; 26:2748. [PMID: 34067107 PMCID: PMC8125635 DOI: 10.3390/molecules26092748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
Increased blood glucose in diabetic individuals results in the formation of advanced glycation end products (AGEs), causing various adverse effects on kidney cells, thereby leading to diabetic nephropathy (DN). In this study, the antiglycative potential of Swertiamarin (SM) isolated from the methanolic extract of E. littorale was explored. The effect of SM on protein glycation was studied by incubating bovine serum albumin with fructose at 60 °C in the presence and absence of different concentrations of swertiamarin for 24 h. For comparative analysis, metformin was also used at similar concentrations as SM. Further, to understand the role of SM in preventing DN, in vitro studies using NRK-52E cells were done by treating cells with methylglyoxal (MG) in the presence and absence of SM. SM showed better antiglycative potential as compared to metformin. In addition, SM could prevent the MG mediated pathogenesis in DN by reducing levels of argpyrimidine, oxidative stress and epithelial mesenchymal transition in kidney cells. SM also downregulated the expression of interleukin-6, tumor necrosis factor-α and interleukin-1β. This study, for the first time, reports the antiglycative potential of SM and also provides novel insights into the molecular mechanisms by which SM prevents toxicity of MG on rat kidney cells.
Collapse
Affiliation(s)
| | | | | | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388421, India; (K.P.); (F.P.); (D.P.)
| |
Collapse
|
29
|
Akhter F, Chen D, Akhter A, Yan SF, Yan SS. Age-dependent accumulation of dicarbonyls and advanced glycation endproducts (AGEs) associates with mitochondrial stress. Free Radic Biol Med 2021; 164:429-438. [PMID: 33359687 PMCID: PMC8552367 DOI: 10.1016/j.freeradbiomed.2020.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/09/2023]
Abstract
Aging is a strong risk factor for brain dementia and cognitive decline. Age-related accumulation of metabolites such as advanced glycation end products (AGEs) could serve as danger signals to initiate and accelerate disease process and neurodegeneration. The underlying causes and consequences of cerebral AGEs accumulation remain largely unknown. Here, we comprehensively investigate age-related accumulation of AGEs and dicarbonyls, including methylglyoxal (MG), glyoxal (GO), and 3-deoxyglucosone (3-DG), and the effects of mitochondrial reactive oxygen species (ROS) on cerebral AGEs accumulation, mitochondrial function, and oxidative stress in the aging human and mouse brain. We demonstrate that AGEs, including arginine and lysine derived N(6)-carboxymethyl lysine (CML), Nε-(1-Carboxyethyl)-l-lysine (CEL), and methylglyoxal-derived hydroimidazolone-1 (MG-H1), were significantly elevated in the cerebral cortex and hippocampus with advanced age in mice. Accordingly, aging mouse and human brains revealed decrease in activities of mitochondrial respiratory chain complexes I & IV and ATP levels, and increased ROS. Notably, administration of mitoTEMPO (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mTEMPO), a scavenger of mitochondrial ROS, not only suppressed ROS production but also reduced aged-induced accumulation of AGEs and dicarbonyls. mTEMPO treatment improved mitochondrial respiratory function and restored ATP levels. Our findings provide evidence linking age-related accumulation of toxic metabolites (AGEs) to mitochondrial oxidative stress. This highlights a novel mechanism by which AGEs-dependent signaling promotes carbonyl stress and sustained mitochondrial dysfunction. Eliminating formation and accumulation of AGEs may represent a new therapeutic avenue for combating cognitive decline and mitochondrial degeneration relevant to aging and neurodegenerative diseases including Alzheimer's disease.
Collapse
Affiliation(s)
- Firoz Akhter
- Department of Surgery, Columbia University, New York, NY, 10032, USA
| | - Doris Chen
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, KS66047, USA
| | - Asma Akhter
- Department of Surgery, Columbia University, New York, NY, 10032, USA
| | - Shi Fang Yan
- Department of Surgery, Columbia University, New York, NY, 10032, USA.
| | - Shirley ShiDu Yan
- Department of Surgery, Columbia University, New York, NY, 10032, USA; Molecular Pharmacology & Therapeutics, Columbia University New York, NY, 10032, USA.
| |
Collapse
|
30
|
Zhao Q, Li H, Chen H, Wu C, Ei-Seedi H, Xu X, Du M. High throughput analysis and quantitation of α-dicarbonyls in biofluid by plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123580. [PMID: 33264850 DOI: 10.1016/j.jhazmat.2020.123580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/12/2023]
Abstract
Advanced analytical platforms are required for accurate detection and quantification of small molecular substances exhibiting certain toxicity. Small molecules detection in complex biological fluids are challenged by the complexity of the samples and the low throughput of the existing methods. In the present study, to detect a batch of samples (50) in 1 h, the plasmonic nanoshell enhanced matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) was tested. The limit of quantification (LOQ) was determined as 0.01 μg/mL (for α-dicarbonyl compounds) by vortex-assisted liquid-liquid microextraction (VALLME). The developed method can be adopted to study the high-throughput metabolomics and employed for clinical precision diagnosis with MALDI-TOF MS.
Collapse
Affiliation(s)
- Qiyue Zhao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Han Li
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Hui Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Hesham Ei-Seedi
- Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
31
|
Frolova N, Soboleva A, Nguyen VD, Kim A, Ihling C, Eisenschmidt-Bönn D, Mamontova T, Herfurth UM, Wessjohann LA, Sinz A, Birkemeyer C, Frolov A. Probing glycation potential of dietary sugars in human blood by an integrated in vitro approach. Food Chem 2020; 347:128951. [PMID: 33493836 DOI: 10.1016/j.foodchem.2020.128951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023]
Abstract
Glycation is referred to as the interaction of protein amino and guanidino groups with reducing sugars and carbonyl products of their degradation. Resulting advanced glycation end-products (AGEs) contribute to pathogenesis of diabetes mellitus and neurodegenerative disorders. Upon their intestinal absorption, dietary sugars and α-dicarbonyl compounds interact with blood proteins yielding AGEs. Although the differences in glycation potential of monosaccharides are well characterized, the underlying mechanisms are poorly understood. To address this question, d-glucose, d-fructose and l-ascorbic acid were incubated with human serum albumin (HSA). The sugars and α-dicarbonyl intermediates of their degradation were analyzed in parallel to protein glycation patterns (exemplified with hydroimidazolone modifications of arginine residues and products of their hydrolysis) by bottom-up proteomics and computational chemistry. Glycation of HSA with sugars revealed 9 glyoxal- and 14 methylglyoxal-derived modification sites. Their dynamics was sugar-specific and depended on concentrations of α-dicarbonyls, their formation kinetics, and presence of stabilizing residues in close proximity to the glycation sites.
Collapse
Affiliation(s)
- Nadezhda Frolova
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany
| | - Alena Soboleva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia.
| | - Viet Duc Nguyen
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Germany
| | | | - Tatiana Mamontova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia
| | - Uta M Herfurth
- Department of Food Safety, German Federal Institute for Risk Assessment, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Germany
| | - Claudia Birkemeyer
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia.
| |
Collapse
|
32
|
Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease. Essays Biochem 2020; 64:97-110. [PMID: 31939602 DOI: 10.1042/ebc20190057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.
Collapse
|
33
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Guad RM, Udupa K, Fuloria NK. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants (Basel) 2020; 9:1075. [PMID: 33147856 PMCID: PMC7692604 DOI: 10.3390/antiox9111075] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Bedong 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Kaviraja Udupa
- Department of Neurophysiology, NIMHANS, Bangalore 560029, India;
| | | |
Collapse
|
34
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: Physical, chemical and molecular biology aspects. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Brás IC, König A, Outeiro TF. Glycation in Huntington's Disease: A Possible Modifier and Target for Intervention. J Huntingtons Dis 2020; 8:245-256. [PMID: 31322580 PMCID: PMC6839463 DOI: 10.3233/jhd-190366] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycation is the non-enzymatic reaction between reactive dicarbonyls and amino groups, and gives rise to a variety of different reaction products known as advanced glycation end products (AGEs). Accumulation of AGEs on proteins is inevitable, and is associated with the aging process. Importantly, glycation is highly relevant in diabetic patients that experience periods of hyperglycemia. AGEs also play an important role in neurodegenerative diseases including Alzheimer’s (AD) and Parkinson’s disease (PD). Huntington’s disease (HD) is a hereditary neurodegenerative disease caused by an expansion of a CAG repeat in the huntingtin gene. The resulting expanded polyglutamine stretch in the huntingtin (HTT) protein induces its misfolding and aggregation, leading to neuronal dysfunction and death. HD patients exhibit chorea and psychiatric disturbances, along with abnormalities in glucose and energy homeostasis. Interestingly, an increased prevalence of diabetes mellitus has been reported in HD and in other CAG triplet repeat disorders. However, the mechanisms underlying the connection between glycation and HD progression remain unclear. In this review, we explore the possible connection between glycation and proteostasis imbalances in HD, and posit that it may contribute to disease progression, possibly by accelerating protein aggregation and deposition. Finally, we review therapeutic interventions that might be able to alleviate the negative impact of glycation in HD.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
36
|
Feskens E, Brennan L, Dussort P, Flourakis M, Lindner LME, Mela D, Rabbani N, Rathmann W, Respondek F, Stehouwer C, Theis S, Thornalley P, Vinoy S. Potential Markers of Dietary Glycemic Exposures for Sustained Dietary Interventions in Populations without Diabetes. Adv Nutr 2020; 11:1221-1236. [PMID: 32449931 PMCID: PMC7490172 DOI: 10.1093/advances/nmaa058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
There is considerable interest in dietary and other approaches to maintaining blood glucose concentrations within the normal range and minimizing exposure to postprandial hyperglycemic excursions. The accepted marker to evaluate the sustained maintenance of normal blood glucose concentrations is glycated hemoglobin A1c (HbA1c). However, although this is used in clinical practice to monitor glycemic control in patients with diabetes, it has a number of drawbacks as a marker of efficacy of dietary interventions that might beneficially affect glycemic control in people without diabetes. Other markers that reflect shorter-term glycemic exposures have been studied and proposed, but consensus on the use and relevance of these markers is lacking. We have carried out a systematic search for studies that have tested the responsiveness of 6 possible alternatives to HbA1c as markers of sustained variation in glycemic exposures and thus their potential applicability for use in dietary intervention trials in subjects without diabetes: 1,5-anhydroglucitol (1,5-AG), dicarbonyl stress, fructosamine, glycated albumin (GA), advanced glycated end products (AGEs), and metabolomic profiles. The results suggest that GA may be the most promising for this purpose, but values may be confounded by effects of fat mass. 1,5-AG and fructosamine are probably not sensitive enough to the range of variation in glycemic exposures observed in healthy individuals. Use of measures based on dicarbonyls, AGEs, or metabolomic profiles would require further research into possible specific molecular species of interest. At present, none of the markers considered here is sufficiently validated and sensitive for routine use in substantiating the effects of sustained variation in dietary glycemic exposures in people without diabetes.
Collapse
Affiliation(s)
- Edith Feskens
- Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lorraine Brennan
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Republic of Ireland
| | - Pierre Dussort
- International Life Sciences Institute-ILSI Europe a.i.s.b.l., Brussels, Belgium
| | - Matthieu Flourakis
- International Life Sciences Institute-ILSI Europe a.i.s.b.l., Brussels, Belgium,Address correspondence to MF (e-mail: )
| | - Lena M E Lindner
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research , Munich, Germany
| | | | - Naila Rabbani
- Department of Basic Medical Sciences, College of Medicine, Qatar University Health, Qatar University, Doha, Qatar,Clinical Sciences Research Laboratories, University of Warwick, Coventry, United Kingdom
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research , Munich, Germany
| | | | - Coen Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Paul Thornalley
- Clinical Sciences Research Laboratories, University of Warwick, Coventry, United Kingdom,Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sophie Vinoy
- Nutrition Department, Mondelez Int R&D, Saclay, France
| |
Collapse
|
37
|
Sergi D, Boulestin H, Campbell FM, Williams LM. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction. Mol Nutr Food Res 2020; 65:e1900934. [PMID: 32246887 DOI: 10.1002/mnfr.201900934] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of molecules produced, non-enzymatically, from the interaction between reducing sugars and the free amino groups of proteins, nucleic acids, and lipids. AGEs are formed as a normal consequence of metabolism but can also be absorbed from the diet. They have been widely implicated in the complications of diabetes affecting cardiovascular health, the nervous system, eyes, and kidneys. Increased levels of AGEs are also detrimental to metabolic health and may contribute to the metabolic abnormalities induced by the Western diet, which is high in processed foods and represents a significant source of AGEs. While increased AGE levels are a consequence of diabetic hyperglycaemia, AGEs themselves activate signaling pathways, which compromise insulin signaling and pancreatic β-cell function, thus, contributing to the development of type 2 diabetes mellitus (T2DM). Furthermore, AGEs may also contribute to the obesogenic effects of the Western diet by promoting hypothalamic inflammation and disrupting the central control of energy balance. Here, the role of dietary AGEs in metabolic dysfunction is reviewed with a focus on the mechanisms underpinning their detrimental role in insulin resistance, pancreatic β-cell dysfunction, hypothalamic control of energy balance, and the pathogenesis of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, 5000, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Hakim Boulestin
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Fiona M Campbell
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
38
|
Nomi Y, Otsuka Y. Isolation, identification, and proposed formation mechanism of a novel hydrophilic compound formed by Maillard reaction between pyridoxamine and pentose. Sci Rep 2020; 10:1823. [PMID: 32019995 PMCID: PMC7000833 DOI: 10.1038/s41598-020-58727-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/19/2020] [Indexed: 11/09/2022] Open
Abstract
Pyridoxamine (PM) could competitively protect amino groups in proteins from glycating agents. Although PM is expected to react with saccharides, available data therein are limited. In this study, a novel hydrophilic compound from a model reaction solution containing PM and xylose was isolated and identified as (6aR,9aR)-1,8,9-trihydroxy-2,6a-dimethyl-6a,9a-dihydrocyclopenta[5,6]pyrano[3,4-c]pyridin-7(5H)-one with a tricyclic structure. This compound appeared to be specifically formed from pentose via 1-deoxypentosone, and its formation was facilitated over a pH range of 7.0-8.0. After heating at 90 °C for 5 h in a reaction mixture containing 30 mM PM and pentose at pH 7.4, this compound was obtained at a yield of 6.95-8.53 mM.
Collapse
Affiliation(s)
- Yuri Nomi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Niigata, Japan.
| | - Yuzuru Otsuka
- Faculty of Human Life and Environmental Sciences, Ochanomizu university, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
40
|
A new procedure to measure cysteine equivalent methylglyoxal scavenging activity (CEMSA) of foods under simulated physiological conditions. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
41
|
Wang XJ, Zhang HX, Li H, Zhu AH, Gao WY. Measurement of α-dicarbonyl compounds in human saliva by pre-column derivatization HPLC. Clin Chem Lab Med 2019; 57:1915-1922. [PMID: 31377732 DOI: 10.1515/cclm-2019-0350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/17/2019] [Indexed: 02/02/2023]
Abstract
Background α-Dicarbonyl compounds (α-DCs) have been detected in body fluids including plasma and urine and elevation of this sort of compounds in vivo has been associated with the development of many kinds of chronic diseases. However whether α-DCs are present in human saliva, and if their presence/absence can be related with various chronic diseases is yet to be determined. Methods In this study, a pre-column derivatization HPLC-UV method was developed to measure 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), diacetyl (DA), and pentane-2,3-dione (PD) in human saliva employing 4-(2,3-dimethyl-6-quinoxalinyl)-1,2-benzenediamine (DQB) as a derivatizing reagent. The derivatization of the α-DCs is fast and the conditions are facile. The method was evaluated and the results show that it is suitable for the quantification of α-DCs in human saliva. Results In the measurements of these α-DCs in the saliva of 15 healthy subjects and 23 type 2 diabetes mellitus (T2DM) patients, we found that the concentrations of GO and MGO in the saliva of the diabetic patients were significantly higher than those in healthy subjects. As far as we know, this is the first time that salivary α-DC concentrations have been determined and associated with T2DM. Conclusions The developed method would be useful for the measurement of the salivary α-DC levels and the data acquired could be informative in the early screening for diabetes.
Collapse
Affiliation(s)
- Xin-Jie Wang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Hong-Xia Zhang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Ai-Hua Zhu
- The Shaanxi Key Laboratory of Chinese Medicine Research and Development, Xi'an, P.R. China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
42
|
Kishikawa N, El-Maghrabey MH, Kuroda N. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. J Pharm Biomed Anal 2019; 175:112782. [DOI: 10.1016/j.jpba.2019.112782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
|
43
|
Kim NY, Goddard TN, Sohn S, Spiegel DA, Crawford JM. Biocatalytic Reversal of Advanced Glycation End Product Modification. Chembiochem 2019; 20:2402-2410. [PMID: 31013547 DOI: 10.1002/cbic.201900158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/01/2023]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of molecules that emerge from the condensation of sugars and proteins through the Maillard reaction. Despite a significant number of studies showing strong associations between AGEs and the pathologies of aging-related illnesses, it has been a challenge to establish AGEs as causal agents primarily due to the lack of tools in reversing AGE modifications at the molecular level. Herein, we show that MnmC, an enzyme involved in a bacterial tRNA-modification pathway, is capable of reversing the AGEs carboxyethyl-lysine (CEL) and carboxymethyl-lysine (CML) back to their native lysine structure. Combining structural homology analysis, site-directed mutagenesis, and protein domain dissection studies, we generated a variant of MnmC with improved catalytic properties against CEL in its free amino acid form. We show that this enzyme variant is also active on a CEL-modified peptidomimetic and an AGE-containing peptide that has been established as an authentic ligand of the receptor for AGEs (RAGE). Our data demonstrate that MnmC variants are promising lead catalysts toward the development of AGE-reversal tools and a better understanding of AGE biology.
Collapse
Affiliation(s)
- Nam Y Kim
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA.,Chemical Biology Institute, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA
| | - Tyler N Goddard
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA.,Chemical Biology Institute, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA
| | - Seungjung Sohn
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
| | - David A Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA.,Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA.,Chemical Biology Institute, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06536, USA
| |
Collapse
|
44
|
Han L, Lin Q, Liu G, Han D, Niu L, Su D. Lipids Promote Glycated Phospholipid Formation by Inducing Hydroxyl Radicals in a Maillard Reaction Model System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7961-7967. [PMID: 31260294 DOI: 10.1021/acs.jafc.9b02771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Food-derived glycated phospholipids is potentially hazardous to human health. However, there are few studies on the effects of lipids on the formation of glycated phospholipids. In this work, two model systems were established: (1) a model system including 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (PE), glucose, and Fenton reagent and (2) a model system including PE, glucose, and five kind of vegetable oils. The contents of carboxymethyl-PE, carboxyethyl-PE, Amadori-PE, hydroxyl radical (OH•), glyoxal, and methylglyoxal were determined with high-performance liquid chromatography mass spectrometry. The results of the first model system showed that OH• oxidized glucose to produce glyoxal and methylglyoxal, which then reacted with PE to form carboxymethyl-PE and carboxyethyl-PE. OH• also oxidized Amadori-PE to form carboxymethyl-PE. The results of the second model system showed that vegetable oils with higher number of moles of carbon-carbon unsaturated double bond in vegetable oil per kilogram could produce more OH•, which promote the formation of carboxymethyl-PE and carboxyethyl-PE by oxidizing glucose and oil. We elucidated the effects of oils on the formation of glycated phospholipids in terms of OH• and intermediates. This work will contribute to better understanding the formation mechanism of glycated phospholipids with oil.
Collapse
Affiliation(s)
- Lipeng Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Qingna Lin
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Guoqin Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Dongxiao Su
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| |
Collapse
|
45
|
Bioanalytical and Mass Spectrometric Methods for Aldehyde Profiling in Biological Fluids. TOXICS 2019; 7:toxics7020032. [PMID: 31167424 PMCID: PMC6630274 DOI: 10.3390/toxics7020032] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Human exposure to aldehydes is implicated in multiple diseases including diabetes, cardiovascular diseases, neurodegenerative disorders (i.e., Alzheimer’s and Parkinson’s Diseases), and cancer. Because these compounds are strong electrophiles, they can react with nucleophilic sites in DNA and proteins to form reversible and irreversible modifications. These modifications, if not eliminated or repaired, can lead to alteration in cellular homeostasis, cell death and ultimately contribute to disease pathogenesis. This review provides an overview of the current knowledge of the methods and applications of aldehyde exposure measurements, with a particular focus on bioanalytical and mass spectrometric techniques, including recent advances in mass spectrometry (MS)-based profiling methods for identifying potential biomarkers of aldehyde exposure. We discuss the various derivatization reagents used to capture small polar aldehydes and methods to quantify these compounds in biological matrices. In addition, we present emerging mass spectrometry-based methods, which use high-resolution accurate mass (HR/AM) analysis for characterizing carbonyl compounds and their potential applications in molecular epidemiology studies. With the availability of diverse bioanalytical methods presented here including simple and rapid techniques allowing remote monitoring of aldehydes, real-time imaging of aldehydic load in cells, advances in MS instrumentation, high performance chromatographic separation, and improved bioinformatics tools, the data acquired enable increased sensitivity for identifying specific aldehydes and new biomarkers of aldehyde exposure. Finally, the combination of these techniques with exciting new methods for single cell analysis provides the potential for detection and profiling of aldehydes at a cellular level, opening up the opportunity to minutely dissect their roles and biological consequences in cellular metabolism and diseases pathogenesis.
Collapse
|
46
|
Treibmann S, Spengler F, Degen J, Löbner J, Henle T. Studies on the Formation of 3-Deoxyglucosone- and Methylglyoxal-Derived Hydroimidazolones of Creatine during Heat Treatment of Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5874-5881. [PMID: 31050431 DOI: 10.1021/acs.jafc.9b01243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Dicarbonyl compounds such as methylglyoxal (MGO) and 3-deoxyglucosone (3-DG) are formed via caramelization and the Maillard reaction in food during heating or in vivo as byproducts of glycolysis. Recently, it was shown that creatine, an amino compound linked to the energy metabolism in vertebrate muscle, reacts rapidly with methylglyoxal under physiological conditions to form N-(4-methyl-5-oxo-1-imidazolin-2-yl)sarcosine (MG-HCr), a methylglyoxal-derived hydroimidazolone of creatine. Based on the observation that heated meat contains only small amounts of MGO and 3-DG when compared to many other foodstuffs, the aim of this study was to investigate a possible reaction of creatine with 3-DG and MGO in meat. From incubation mixtures consisting of 3-DG and creatine, a new hydroimidazolone of creatine, namely N-(4-butyl-1,2,3-triol-5-oxo-1-imidazolin-2-yl)sarcosine (3-DG-HCr), was isolated and characterized via spectroscopic means. To quantitate 3-DG-HCr and MG-HCr, meat and fish products were analyzed via HPLC-MS/MS using isotopically labeled standard material. Whereas samples of raw fish and meat contained only trace amounts of the hydroimidazolones (below 5 μg/kg), up to 28.3 mg/kg MG-HCr and up to 15.3 mg/kg 3-DG-HCr were found in meat and fish products. The concentrations were dependent on the heat treatment and presumably on the smoking process. In comparison to the lysine and arginine derivatives CEL, pyrraline, and MG-H1, the derivatization rate of creatine as MG-HCr and 3-DG-HCr was higher than of lysine and arginine, which clearly demonstrates the 1,2-dicarbonyl scavenging properties of creatine in meat.
Collapse
Affiliation(s)
- Stephanie Treibmann
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
| | - Franz Spengler
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
| | - Julia Degen
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
| | - Jürgen Löbner
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
| | - Thomas Henle
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
| |
Collapse
|
47
|
Shumilina J, Kusnetsova A, Tsarev A, Janse van Rensburg HC, Medvedev S, Demidchik V, Van den Ende W, Frolov A. Glycation of Plant Proteins: Regulatory Roles and Interplay with Sugar Signalling? Int J Mol Sci 2019; 20:E2366. [PMID: 31086058 PMCID: PMC6539852 DOI: 10.3390/ijms20092366] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Glycation can be defined as an array of non-enzymatic post-translational modifications of proteins formed by their interaction with reducing carbohydrates and carbonyl products of their degradation. Initial steps of this process rely on reducing sugars and result in the formation of early glycation products-Amadori and Heyns compounds via Schiff base intermediates, whereas their oxidative degradation or reactions of proteins with α-dicarbonyl compounds yield a heterogeneous group of advanced glycation end products (AGEs). These compounds accompany thermal processing of protein-containing foods and are known to impact on ageing, pathogenesis of diabetes mellitus and Alzheimer's disease in mammals. Surprisingly, despite high tissue carbohydrate contents, glycation of plant proteins was addressed only recently and its physiological role in plants is still not understood. Therefore, here we summarize and critically discuss the first steps done in the field of plant protein glycation during the last decade. We consider the main features of plant glycated proteome and discuss them in the context of characteristic metabolic background. Further, we address the possible role of protein glycation in plants and consider its probable contribution to protein degradation, methylglyoxal and sugar signalling, as well as interplay with antioxidant defense.
Collapse
Affiliation(s)
- Julia Shumilina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Alena Kusnetsova
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Biotechnology, St. Petersburg Chemical Pharmaceutical University, Saint Petersburg 197022, Russia.
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | | | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Belarusian State University, 220030 Minsk, Belarus.
- Department of Horticulture, Foshan University, Foshan 528231, China.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
48
|
Dhananjayan K, Irrgang F, Raju R, Harman DG, Moran C, Srikanth V, Münch G. Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection. Anal Biochem 2019; 573:51-66. [PMID: 30796906 DOI: 10.1016/j.ab.2019.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/16/2019] [Indexed: 01/17/2023]
Abstract
Glyoxal (GO) and methylglyoxal (MGO) are two important biomarkers in diabetes. Analytical methods for determination of GO and MGO in serum samples are either HPLC with UV-Vis (low sensitivity) or MS/MS (expensive) detection. These disadvantages have hampered the introduction of these biomarkers as a routine analyte for diabetes diagnostics into the clinical laboratory. In this study, we introduce a UHPLC method with fluorescence detection for the measurement of GO and MGO in serum samples by pre-column derivatization at neutral pH with 5, 6-diamino-2,4-dihydroxypyrimidine sulfate (DDP) to form lumazines. The method was validated as per FDA guidelines. Using this method, we have determined GO and MGO in a variety of animal serum samples, and for example, determined the GO and MGO concentration in adult bovine serum to be 852 ± 27 and 192 ± 10 nmol/L, respectively. In human serum, GO and MGO levels in non-diabetic subjects (n = 14) were determined to be 154 ± 88 and 98 ± 27 nmol/L, and in serum samples from subjects with diabetes (n = 14) 244 ± 137 and 190 ± 68 nmol/L, respectively. In addition, interference studies showed that physiological serum components did not lead to an artificial increase in the levels of GO and MGO.
Collapse
Affiliation(s)
- Karthik Dhananjayan
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Felix Irrgang
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Ritesh Raju
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David G Harman
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Chris Moran
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, Victoria, 3199, Australia
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, Victoria, 3199, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
49
|
Han L, Lin Q, Liu G, Han D, Niu L, Su D. Catechin inhibits glycated phosphatidylethanolamine formation by trapping dicarbonyl compounds and forming quinone. Food Funct 2019; 10:2491-2503. [DOI: 10.1039/c9fo00155g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catechin inhibits glycated phosphatidylethanolamine formation by trapping dicarbonyl compounds and forming quinone.
Collapse
Affiliation(s)
- Lipeng Han
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Qingna Lin
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Guoqin Liu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Dongxue Han
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Li Niu
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Dongxiao Su
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| |
Collapse
|
50
|
Wang XJ, Ma SB, Liu ZF, Li H, Gao WY. Elevated levels of α-dicarbonyl compounds in the plasma of type II diabetics and their relevance with diabetic nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1106-1107:19-25. [PMID: 30639946 DOI: 10.1016/j.jchromb.2018.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
The presence of α‑dicarbonyl compounds (α-DCs) in vivo has been associated with the development of complications of diabetes mellitus (DM) and also with other chronic diseases. Therefore, quantitative analysis of α-DCs in body fluids is crucial to understand their roles in the formation of these chronic diseases. We established in this study a practical HPLC-UV method to measure 3‑deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), diacetyl (DA), and pentane‑2,3‑dione (PD) in blood plasma using 4‑(2,3‑dimethyl‑6‑quinoxalinyl)‑1,2‑benzenediamine (DQB) as a derivatizing reagent. The derivatizing reaction could be carried out quickly under mild conditions and the HPLC determination is simple, sensitive, and easy to operate. The recoveries of the α-DCs are between 85.26% and 110.20% (intra-day) and 87.25% and 103.18% (inter-day); the RSDs are between 1.28% and 5.69% (intra-day) and 2.26% and 6.34% (inter-day). We found the plasma levels of 3-DG, GO, and MGO in the diabetic patients are all significantly higher than those in healthy subjects. The results also show that the contents of GO and MGO in diabetic nephropathy (DN) patients are both significantly higher than those in simple T2DM patients. Moreover, it is found for the first time that the plasma level of GO might be a potential predictor of DN. The developed method would be useful for the measurements of the plasma α-DCs and the data acquired could be informative in the diagnosis of DM complications.
Collapse
Affiliation(s)
- Xin-Jie Wang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Sheng-Bo Ma
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Zhuo-Feng Liu
- Friendship Hospital of Shaanxi Province, 227 West Youyi Road, Xi'an, Shaanxi 710000, China
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|