1
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
2
|
Bao H, Liu Y, Duan Y, Chen L, Yang Q. The beetle's structural protein CPCFC making elytra tough and rigid. INSECT SCIENCE 2024. [PMID: 39236247 DOI: 10.1111/1744-7917.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
The insect cuticle, which serves as both a protective barrier and an efficient lever system for locomotion, is an extracellular matrix primarily composed of chitin and protein. The cuticle protein CPCFC characterized by a "CFC" motif containing 2 Cys split by the insertion of 5 residues is distributed across most insect species and specifically localized in the hard part of the cuticle. However, their physiological function is not fully understood. Here, we report 2 CPCFC proteins, TcCPCFC1 and TcCPCFC2, derived from the Coleopteran insect Tribolium castaneum. We revealed that TcCPCFC1 and TcCPCFC2 were predominantly expressed during the larval and adult stages of T. castaneum, respectively. The transcription downregulation of TcCPCFC1 significantly decreased the modulus and toughness of the elytral cuticle. We found that TcCPCFC proteins have high binding affinity to chitin. We cloned and produced recombinant TcCPCFC proteins and demonstrated that the addition of TcCPCFC proteins to chitin hydrogel greatly enhanced the hydrogel's modulus and toughness by forming denser chitin fibrous networks. Our findings reveal the functional role of CPCFC proteins in enhancing mechanical properties of insect cuticle, and we validate this process in vitro, and offer a protein candidate for fabrication of advanced chitin-based materials.
Collapse
Affiliation(s)
- Han Bao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuantao Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanwei Duan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lei Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
3
|
Zeng MZ, Zhou W, Wen SS, Wu H, Zhang Q, Fu KY, Guo WC, Shi JF. Identification and Functional Insights of Knickkopf Genes in the Larval Cuticle of Leptinotarsa decemlineata. INSECTS 2024; 15:623. [PMID: 39194827 DOI: 10.3390/insects15080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest of potato crops. While Knickkopf (Knk) genes are essential for insect cuticle formation, their roles in pests like L. decemlineata remain unclear. This study aims to identify and characterize Knk genes in L. decemlineata and explore their functions in larval development and cuticle integrity. We used genomic and transcriptomic databases to identify LdKnk-family genes, validated through RT-PCR and RACE. Gene expression was analyzed at various developmental stages and tissues using qRT-PCR. RNA interference (RNAi) and Transmission electron microscopy (TEM) were applied to determine the functional roles of these genes. Four LdKnk-family genes were identified. Spatio-temporal expression analysis indicated significant gene expression during larval molting and pupal stages, especially in the epidermis. RNAi experiments showed that silencing LdKnk and LdKnk3-5' led to reduced larval weight, cuticle thinning, and increased mortality, while LdKnk3-FL knockdown caused abnormal cuticle thickening and molting disruptions. LdKnk2 knockdown increased epicuticle and endocuticle thickness without visible phenotypic changes. The study highlights the essential roles of LdKnk-family genes in maintaining cuticle structure and integrity, suggesting their potential as targets for RNAi-based pest control.
Collapse
Affiliation(s)
- Mu-Zi Zeng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Shan-Shan Wen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Hao Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Kai-Yun Fu
- Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Wen-Chao Guo
- Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Ji-Feng Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Wu N, Lin Q, Shao F, Chen L, Zhang H, Chen K, Wu J, Wang G, Wang H, Yang Q. Insect cuticle-inspired design of sustainably sourced composite bioplastics with enhanced strength, toughness and stretch-strengthening behavior. Carbohydr Polym 2024; 333:121970. [PMID: 38494224 DOI: 10.1016/j.carbpol.2024.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/19/2024]
Abstract
Insect cuticles that are mainly made of chitin, chitosan and proteins provide insects with rigid, stretchable and robust skins to defend harsh external environment. The insect cuticle therefore provides inspiration for engineering biomaterials with outstanding mechanical properties but also sustainability and biocompatibility. We herein propose a design of high-performance and sustainable bioplastics via introducing CPAP3-A1, a major structural protein in insect cuticles, to specifically bind to chitosan. Simply mixing 10w/w% bioengineered CPAP3-A1 protein with chitosan enables the formation of plastics-like, sustainably sourced chitosan/CPAP3-A1 composites with significantly enhanced strength (∼90 MPa) and toughness (∼20 MJ m -3), outperforming previous chitosan-based composites and most synthetic petroleum-based plastics. Remarkably, these bioplastics exhibit a stretch-strengthening behavior similar to the training living muscles. Mechanistic investigation reveals that the introduction of CPAP3-A1 induce chitosan chains to assemble into a more coarsened fibrous network with increased crystallinity and reinforcement effect, but also enable energy dissipation via reversible chitosan-protein interactions. Further uniaxial stretch facilitates network re-orientation and increases chitosan crystallinity and mechanical anisotropy, thereby resulting in stretch-strengthening behavior. In general, this study provides an insect-cuticle inspired design of high-performance bioplastics that may serve as sustainable and bio-friendly materials for a wide range of engineering and biomedical application potentials.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qiaoxia Lin
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fei Shao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haoyue Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Huanan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
5
|
Lehmann FO, Gorb S, Moussian B. Spatio-temporal distribution and genetic background of elastic proteins inside the chitin/chitosan matrix of insects including their functional significance for locomotion. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104089. [PMID: 38485097 DOI: 10.1016/j.ibmb.2024.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
In insects, cuticle proteins interact with chitin and chitosan of the exoskeleton forming crystalline, amorphic or composite material structures. The biochemical and mechanical composition of the structure defines the cuticle's physical properties and thus how the insect cuticle behaves under mechanical stress. The tissue-specific ratio between chitin and chitosan and its pattern of deacetylation are recognized and interpreted by cuticle proteins depending on their local position in the body. Despite previous research, the assembly of the cuticle composites in time and space including its functional impact is widely unexplored. This review is devoted to the genetics underlying the temporal and spatial distribution of elastic proteins and the potential function of elastic proteins in insects with a focus on Resilin in the fruit fly Drosophila. The potential impact and function of localized patches of elastic proteins is discussed for movements in leg joints, locomotion and damage resistance of the cuticle. We conclude that an interdisciplinary research approach serves as an integral example for the molecular mechanisms of generation and interpretation of the chitin/chitosan matrix, not only in Drosophila but also in other arthropod species, and might help to synthesize artificial material composites.
Collapse
Affiliation(s)
- Fritz-Olaf Lehmann
- Fritz-Olaf Lehmann, Department of Animal Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| | - Stanislav Gorb
- Stanislav Gorb, Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Bernard Moussian
- Bernard Moussian, Institute Sophia Agrobiotech, University of Nice Sophia Antipolis, 38 Av. Emile Henriot, 06000, Nice, France.
| |
Collapse
|
6
|
Flaven-Pouchon J, Froschauer C, Moussian B. Dynamics of cuticle-associated transcript profiles during moulting of the bed bug Cimexlectularius. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104112. [PMID: 38513961 DOI: 10.1016/j.ibmb.2024.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The bed bug Cimex lectularius is a worldwide human pest. The sequenced genome allows molecular analyses of all aspects of bed bug biology. The present work was conducted to contribute to bed bug cuticle biology. As in other insect species, the C. lectularius cuticle consists of the three horizontal layers procuticle, epicuticle and envelope. To analyse the genes needed for the establishment of the stratified cuticle, we studied the expression pattern of 42 key cuticle-related genes at the transition of the penultimate nymphal stage to adult animals when a new cuticle is formed. Based on gene expression dynamics, in simplified model, we distinguish two key events during cuticle renewal in C. lectularius. First, upon blood feeding, modulation of ecdysone signalling culminates in the transcriptional activation of the transcription factor Clec-Ftz-F1 that possibly controls the expression of 32 of the 42 genes tested. Second, timed expression of Clec-Ftz-F1 seems to depend also on the insulin signalling pathway as RNA interference against transcripts of the insulin receptor delays Clec-Ftz-F1 expression and stage transition. An important observation of our transcript survey is that genes needed for the construction of the three cuticle layers are largely expressed simultaneously. Based on these data, we hypothesise a considerable synchronous mechanism of layer formation rather than a strictly sequential one. Together, this work provides a basis for functional analyses of cuticle formation in C. lectularius.
Collapse
Affiliation(s)
- Justin Flaven-Pouchon
- Universität Tübingen, Interfaculty Institute for Cell Biology, Genetik der Tiere, Tübingen, Germany
| | | | | |
Collapse
|
7
|
Yu A, Beck M, Merzendorfer H, Yang Q. Advances in understanding insect chitin biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104058. [PMID: 38072083 DOI: 10.1016/j.ibmb.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Chitin, a natural polymer of N-acetylglucosamine chains, is a principal component of the apical extracellular matrix in arthropods. Chitin microfibrils serve as structural components of natural biocomposites present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes, fungi and arthropods. In this review, we summarize the frontier advances of insect chitin synthesis. More specifically, we focus on the chitin synthase (CHS), which catalyzes the key biosynthesis step. CHS is also known as an attractive insecticidal target in that this enzyme is absent in mammals, birds or plants. As no insect chitin synthase structure have been reported so far, we review recent studies on glycosyltransferase domain structures derived from fungi and oomycetes, which are conserved in CHS from all species containing chitin. Auxiliary proteins, which coordinate with CHS in chitin biosynthesis and assembly, are also discussed.
Collapse
Affiliation(s)
- Ailing Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Marius Beck
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany.
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Gong Q, Liu B, Yuan F, Tao R, Huang Y, Zeng X, Zhu X, Zhao Y, Zhang Y, Yang M, Wang J, Liu T, Zhang G. Controllably Self-Assembled Antibacterial Nanofibrils Based on Insect Cuticle Protein for Infectious Wound Healing. ACS NANO 2023; 17:23679-23691. [PMID: 37983051 DOI: 10.1021/acsnano.3c07131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Developing self-assembled biomedical materials based on insect proteins is highly desirable due to their advantages of green, rich, and sustainable characters as well as excellent biocompatibility, which has been rarely explored. Herein, salt-induced controllable self-assembly, antibacterial performance, and infectious wound healing performance of an insect cuticle protein (OfCPH-2) originating from the Ostrinia furnacalis larva head capsule are investigated. Interestingly, the addition of salts could trigger the formation of beaded nanofibrils with uniform diameter, whose length highly depends on the salt concentration. Surprisingly, the OfCPH-2 nanofibrils not only could form functional films with broad-spectrum antibacterial abilities but also could promote infectious wound healing. More importantly, a possible wound healing mechanism was proposed, and it is the strong abilities of OfCPH-2 nanofibrils in promoting vascular formation and antibacterial activity that facilitate the process of infectious wound healing. Our exciting findings put forward instructive thoughts for developing innovative bioinspired materials based on insect proteins for wound healing and related biomedical fields.
Collapse
Affiliation(s)
- Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Bohao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fenghou Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Runyi Tao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoyan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Xingzhuo Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yilong Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yanpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Mei Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jizhao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
9
|
Zheng X, Wan Y, Tao M, Yuan J, Zhang K, Wang J, Zhang Y, Liang P, Wu Q. Obstructor, a Frankliniella occidentalis protein, promotes transmission of tomato spotted wilt orthotospovirus. INSECT SCIENCE 2023; 30:741-757. [PMID: 36342042 DOI: 10.1111/1744-7917.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast β-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jing Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Peritrophin-like Genes Are Associated with Delousing Drug Response and Sensitivity in the Sea Louse Caligus rogercresseyi. Int J Mol Sci 2022; 23:ijms232113341. [DOI: 10.3390/ijms232113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Caligus rogercresseyi is the main ectoparasite that affects the salmon industry in Chile. The mechanisms used by the parasite to support its life strategy are of great interest for developing control strategies. Due to the critical role of insect peritrophins in host–parasite interactions and response to pest control drugs, this study aimed to identify and characterize the peritrophin-like genes present in C. rogercresseyi. Moreover, the expression of peritrophin-like genes was evaluated on parasites exposed to delousing drugs such as pyrethroids and azamethiphos. Peritrophin genes were identified by homology analysis among the sea louse transcriptome database and arthropods peritrophin-protein database obtained from GenBank and UniProt. Moreover, the gene loci in the parasite genome were located. Furthermore, peritrophin gene expression levels were evaluated by RNA-Seq analysis in sea louse developmental stages and sea lice exposed to delousing drugs deltamethrin, cypermethrin, and azamethiphos. Seven putative peritrophin-like genes were identified in C. rogercresseyi with high homology with other crustacean peritrophins. Differences in the presence of signal peptides, the number of chitin-binding domains, and the position of conserved cysteines were found. In addition, seven peritrophin-like gene sequences were identified in the C. rogercresseyi genome. Gene expression analysis revealed a stage-dependent expression profile. Notably, differential regulation of peritrophin genes in resistant and susceptible populations to delousing drugs was found. These data are the first report and characterization of peritrophin genes in the sea louse C. rogercresseyi, representing valuable knowledge to understand sea louse biology. Moreover, this study provides evidence for a deeper understanding of the molecular basis of C. rogercresseyi response to delousing drugs.
Collapse
|
11
|
Chen J, Zou X, Zhu W, Duan Y, Merzendorfer H, Zhao Z, Yang Q. Fatty acid binding protein is required for chitin biosynthesis in the wing of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103845. [PMID: 36165873 DOI: 10.1016/j.ibmb.2022.103845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Chitin, the major structural polysaccharide in arthropods such as insects and mites, is a linear polymer of N-acetylglucosamine units. The growth and development of insects are intimately coupled with chitin biosynthesis. The membrane-bound β-glycosyltransferase chitin synthase is known to catalyze the key polymerization step of N-acetylglucosamine. However, the additional proteins that might assist chitin synthase during chitin biosynthesis are not well understood. Recently, fatty acid binding protein (Fabp) has been suggested as a candidate that interacts with the chitin synthase Krotzkopf verkehrt (Kkv) in Drosophila melanogaster. Here, using split-ubiquitin membrane yeast two-hybrid and pull-down assays, we have demonstrated that the Fabp-B splice variant physically interacts with Kkv in vitro. The global knockdown of Fabp in D. melanogaster using RNA interference (RNAi) induced lethality at the larval stage. Moreover, in tissue-specific RNAi experiments, silenced Fabp expression in the epidermis and tracheal system caused a lethal larval phenotype. Fabp knockdown in the wings resulted in an abnormal wing development and uneven cuticular surface. In addition to reducing the chitin content in the first longitudinal vein of wings, Fabp silencing also caused the loss of procuticle laminate structures. This study revealed that Fabp plays an important role in chitin synthesis and contributes to a comprehensive understanding of the complex insect chitin biosynthesis.
Collapse
Affiliation(s)
- Jiqiang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China; Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xu Zou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Weixing Zhu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Yanwei Duan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7 Pengfei Road, Shenzhen, 518120, China
| | - Hans Merzendorfer
- Institute of Biology, University of Siegen, Adolf-Reichwein-Strasse 2, Siegen, 57068, Germany
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China; School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7 Pengfei Road, Shenzhen, 518120, China.
| |
Collapse
|
12
|
Zhu W, Duan Y, Chen J, Merzendorfer H, Zou X, Yang Q. SERCA interacts with chitin synthase and participates in cuticular chitin biogenesis in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103783. [PMID: 35525402 DOI: 10.1016/j.ibmb.2022.103783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The biogenesis of chitin, a major structural polysaccharide found in the cuticle and peritrophic matrix, is crucial for insect growth and development. Chitin synthase, a membrane-integral β-glycosyltransferase, has been identified as the core of the chitin biogenesis machinery. However, a yet unknown number of auxiliary proteins appear to assist in chitin biosynthesis, whose precise function remains elusive. Here, we identified a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), in the fruit fly Drosophila melanogaster, as a chitin biogenesis-associated protein. The physical interaction between DmSERCA and epidermal chitin synthase (Krotzkopf verkehrt, Kkv) was demonstrated and analyzed using split-ubiquitin membrane yeast two-hybrid, bimolecular fluorescent complementation, pull-down, and immunoprecipitation assays. The interaction involves N-terminal regions (aa 48-81 and aa 247-33) and C-terminal regions (aa 743-783 and aa 824-859) of DmSERCA and two N-terminal regions (aa 121-179 and aa 369-539) of Kkv, all of which are predicted be transmembrane helices. While tissue-specific knock-down of DmSERCA in the epidermis caused larval and pupal lethality, the knock-down of DmSERCA in wings resulted in smaller and crinkled wings, a significant decrease in chitin deposition, and the loss of chitin lamellar structure. Although DmSERCA is well-known for its role in muscular contraction, this study reveals a novel role in chitin synthesis, contributing to our knowledge on the machinery of chitin biogenesis.
Collapse
Affiliation(s)
- Weixing Zhu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Yanwei Duan
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Jiqiang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Hans Merzendorfer
- Institute of Biology, University of Siegen, Adolf-Reichwein-Strasse 2, Siegen, 57068, Germany
| | - Xu Zou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7 Pengfei Road, Shenzhen, 518120, China.
| |
Collapse
|
13
|
Gong Q, Chen L, Wang J, Yuan F, Ma Z, Chen G, Huang Y, Miao Y, Liu T, Zhang XX, Yang Q, Yu J. Coassembly of a New Insect Cuticular Protein and Chitosan via Liquid-Liquid Phase Separation. Biomacromolecules 2022; 23:2562-2571. [PMID: 35561014 DOI: 10.1021/acs.biomac.2c00261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insect cuticle is a fiber-reinforced composite material that consists of polysaccharide chitin fibers and a protein matrix. The molecular interactions between insect cuticle proteins and chitin that govern the assembly and evolution of cuticles are still not well understood. Herein, we report that Ostrinia furnacalis cuticular protein hypothetical-1 (OfCPH-1), a newly discovered and most abundant cuticular protein from Asian corn borer O. furnacalis, can form coacervates in the presence of chitosan. The OfCPH-1-chitosan coacervate microdroplets are initially liquid-like but become gel-like with increasing time or salt concentration. The liquid-to-gel transition is driven by hydrogen-bonding interactions, during which an induced β-sheet structure of OfCPH-1 is observed. Given the abundance of OfCPH-1 in the cuticle of O. furnacalis, this liquid-liquid phase separation process and its aging behavior could play critical roles in the formation of the cuticle.
Collapse
Affiliation(s)
- Qiuyu Gong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.,School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jining Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Fenghou Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guoxin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yinjuan Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin-Xing Zhang
- School of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qing Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
14
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
15
|
Hou QL, Chen EH, Dou W, Wang JJ. Knockdown of specific cuticular proteins analogous to peritrophin 3 genes disrupt larval and ovarian development in Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2021; 28:1326-1337. [PMID: 32856386 DOI: 10.1111/1744-7917.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cuticular proteins (CPs) are critical components of the insect cuticle and play important roles in maintaining normal insect development and defense against various environmental stresses. The oriental fruit fly (Bactrocera dorsalis) is one of the most destructive pests worldwide, and its eight CPs analogous to peritrophin 3 (BdCPAP3) family genes have been identified in our previous study. In the present study, we further explored the possible roles of CPAP3 genes in B. dorsalis development. Each sequence of BdCPAP3 genes contained three conserved ChtBD2 (chitin-binding) domains. Spatial and temporal expression patterns revealed that the four BdCPAP3 genes (BdCPAP3-A1, B, E, and E2) might play important roles in larval pupariation of B. dorsalis. Moreover, treatment with a juvenile hormone analog (methoprene) significantly restricted expression of these four CPAP3 genes, whereas treatment with 20-hydroxy-ecdysone induced expression. The RNA interference (RNAi) results revealed that down-regulated CPAP3 genes led to significant delay of pupariation, and injection of dsBdCPAP3-E into 5-d-old B. dorsalis larvae caused approximately 40% mortality. Interestingly, we also confirmed that BdCPAP3-D2 was involved in B. dorsalis ovarian development. This study showed that some specific CPAP3 genes had crucial roles in B. dorsalis development, and these CP genes could be used as potential targets to control this pest via RNAi.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| |
Collapse
|
16
|
Jiang LH, Mu LL, Jin L, Anjum AA, Li GQ. RNAi for chitin synthase 1 rather than 2 causes growth delay and molting defect in Henosepilachna vigintioctopunctata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104934. [PMID: 34446203 DOI: 10.1016/j.pestbp.2021.104934] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Chitin synthase (CHS) plays a critical role in chitin synthesis and excretion. In most insects, CHSs have been segregated into 1 and 2 classes. CHS1 is responsible for chitin production in the ectodermally-derived epidermal cells. CHS2 is dedicated to chitin biosynthesis in the midgut peritrophic matrix (PM). Henosepilachna vigintioctopunctata is a serious pest of Solanaceae and Cucurbitaceae plants. In this study, we identified HvCHS1 and HvCHS2. We found that HvCHS1 was abundantly transcribed in the larval tracheae and epidermis, whereas HvCHS2 was mainly expressed in the guts. Escherichia coli HT115 expressed double stranded RNAs targeting HvCHS1 and HvCHS2 (dsCHS1 and dsCHS2) were used to immerse potato foliage and the treated leaves were provided to the newly-molted fourth- and third-instar larvae. Ingestion of dsCHS1 by the fourth-instar larvae significantly diminished the target mRNA level and had slight influence on the expression of HvCHS2. In contrast, consumption of dsCHS2 significantly lowered the target mRNA level but triggered the transcription of HvCHS1. Knockdown of HvCHS1, rather than HvCHS2, arrested larval development and impaired larva-pupa-adult transition. A large proportion of HvCHS1 hypomorphs became stunting prepupae, deformed pupae or misshapen adults. Moreover, knockdown of HvCHS1 damaged gut integrity, decreased cuticle thickness, and delayed the formation of newly-generated cuticle layer during ecdysis. Furthermore, depletion of HvCHS1 inhibited the development of trachea system and thinned tracheal taenidia. Ingestion of dsCHS1 at the third-instar stage caused similar but severe negative effects. Our results demonstrated that HvCHS1 is responsible for chitin biosynthesis during ecdysis. Moreover, HvCHS1 is a potential amenable target gene and young larvae are more susceptible to dsRNA.
Collapse
Affiliation(s)
- Lin-Hong Jiang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ahmad Ali Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Hou Y, Yang L, Xu S, Zhang Y, Cheng Y, Li Y, Gong J, Xia Q. Trypsin-type serine protease p37k hydrolyzes CPAP3-type cuticle proteins in the molting fluid of the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103610. [PMID: 34182106 DOI: 10.1016/j.ibmb.2021.103610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Cuticular proteins analogous to peritrophin 3 (CPAP3)-type cuticle proteins constitute a family of proteins with three chitin-binding domains (CBDs) that play an important role in cuticle formation by associating with chitin. In our previous study, we identified CPAP3-type cuticle proteins in the silkworm genome, of which we characterized CPAP3-A2 (BmCBP1), a protein highly expressed in the epidermis. In this study, to elucidate the digestion mechanism of CPAP3-type cuticle proteins, we incubated CPAP3-A2 with molting fluid in vitro and found that its hydrolysis, which was inhibited by serine and cysteine protease inhibitors, produced two major bands with a molecular weight of approximately 22 kD and 11 kD. A trypsin-type serine protease, p37k, was presumed to be responsible for hydrolyzing CPAP3-A2 based on liquid chromatography-tandem mass spectrometry analysis of naturally purified molting fluid. To verify this, p37k was subsequently expressed in Sf9 cells using the Bac-to-Bac baculovirus expression system. In its active form, the recombinant protease could successfully hydrolyze CPAP3-A2. Finally, we analyzed the CPAP3-A2 molting fluid digestion site. When arginine 169 of CPAP3-A2 was mutated to alanine, a weaker hydrolysis of mutant CPAP3-A2 was observed compared to that of normal CPAP3-A2. Collectively, we identified a trypsin-type serine protease that is involved in the degradation of CPAP3-type cuticle proteins, including CPAP3-A2, suggesting that this protease plays an important role during molting in Bombyx mori. These findings provide the basis for further elucidation of the mechanisms underlying insect molting and metamorphosis.
Collapse
Affiliation(s)
- Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Lingzhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Shuping Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuhao Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuejing Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Jing Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
18
|
Politi Y, Bertinetti L, Fratzl P, Barth FG. The spider cuticle: a remarkable material toolbox for functional diversity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200332. [PMID: 34334021 PMCID: PMC8326826 DOI: 10.1098/rsta.2020.0332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 06/13/2023]
Abstract
Engineered systems are typically based on a large variety of materials differing in composition and processing to provide the desired functionality. Nature, however, has evolved materials that are used for a wide range of functional challenges with minimal compositional changes. The exoskeletal cuticle of spiders, as well as of other arthropods such as insects and crustaceans, is based on a combination of chitin, protein, water and small amounts of organic cross-linkers or minerals. Spiders use it to obtain mechanical support structures and lever systems for locomotion, protection from adverse environmental influences, tools for piercing, cutting and interlocking, auxiliary structures for the transmission and filtering of sensory information, structural colours, transparent lenses for light manipulation and more. This paper illustrates the 'design space' of a single type of composite with varying internal architecture and its remarkable capability to serve a diversity of functions. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Yael Politi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Luca Bertinetti
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Friedrich G. Barth
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Molecular characterization and function of chitin deacetylase-like from the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110612. [PMID: 33992769 DOI: 10.1016/j.cbpb.2021.110612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Chitin deacetylases are essential enzymes in the chitin-modifying process and play vital roles in arthropod molting. In this study, we identified and characterized a chitin deacetylase-like (EsCDA-l) gene in the Chinese mitten crab, Eriocheir sinensis. The open reading frame of EsCDA-l was 2555 bp and encoded 554 amino acid residues that contained typical domain structure of carbohydrate esterase family 4. Phylogenetic analysis reveal that EsCDA-l belongs to the group I chitin deacetylase family. Quantitative real-time PCR analyses showed that EsCDA-l was highly expressed in exoskeletal tissues and megalopa stages. During the molting cycle, EsCDA-l was up-regulated periodically in the post-molt stage. Knockdown of EsCDA-l resulted in the abnormal ultrastructure of cuticle, prevented molting to high mortality suggesting EsCDA-l is indispensable for molting. The characterization and function analysis of the EsCDA-l should provide useful reference for further research on the utility of key genes involved in the chitin metabolic pathway in the molting process of the Chinese mitten crab as well as other crustaceans.
Collapse
|
20
|
Molina Palacios D, Stoffolano JG, Fausto AM, Gambellini G, Burand J. The Effect of the Hypertrophy Virus (MdSGHV) on the Ultrastructure of the Salivary Glands of Musca domestica (Diptera: Muscidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6209919. [PMID: 33822129 PMCID: PMC8023384 DOI: 10.1093/jisesa/ieab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The salivary glands of insects play a key role in the replication cycle and vectoring of viral pathogens. Consequently, Musca domestica (L.) (Diptera: Muscidae) and the Salivary Gland Hypertrophy Virus (MdSGHV) serve as a model to study insect vectoring of viruses. A better understanding of the structural changes of the salivary glands by the virus will help obtain a better picture of the pathological impact the virus has on adult flies. The salivary glands are a primary route for viruses to enter a new host. As such, studying the viral effect on the salivary glands is particularly important and can provide insights for the development of strategies to control the transmission of vector-borne diseases, such as dengue, malaria, Zika, and chikungunya virus. Using scanning and transmission electron microscopic techniques, researchers have shown the effects of infection by MdSGHV on the salivary glands; however, the exact location where the infection was found is unclear. For this reason, this study did a close examination of the effects of the hypertrophy virus on the salivary glands to locate the specific sites of infection. Here, we report that hypertrophy is present mainly in the secretory region, while other regions appeared unaffected. Moreover, there is a disruption of the cuticular, chitinous lining that separates the secretory cells from the lumen of the internal duct, and the disturbance of this lining makes it possible for the virus to enter the lumen. Thus, we report that the chitinous lining acts as an exit barrier of the salivary gland.
Collapse
Affiliation(s)
- D Molina Palacios
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - J G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - A M Fausto
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - G Gambellini
- Centro Grandi Attrezzature (CGA), Sezione di Microscopia Elettronica Università degli Studi della Tuscia, Viterbo, Italy
| | - J Burand
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
21
|
Wang Y, Gao L, Moussian B. Drosophila, Chitin and Insect Pest Management. Curr Pharm Des 2021; 26:3546-3553. [PMID: 32693764 DOI: 10.2174/1381612826666200721002354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/31/2020] [Indexed: 11/22/2022]
Abstract
Insects are a great menace in agriculture and vectors of human diseases. Hence, controlling insect populations is an important issue worldwide. A common strategy to control insects is the application of insecticides. However, insecticides entail three major problems. First, insecticides are chemicals that stress ecosystems and may even be harmful to humans. Second, insecticides are often unspecific and also eradicate beneficial insect species like the honeybee. Third, insects are able to develop resistance to insecticides. Therefore, the efficient generation of new potent insecticides and their intelligent delivery are the major tasks in agriculture. In addition, acceptance or refusal in society is a major issue that has to be considered in the application of a pest management strategy. In this paper, we unify two issues: 1) we illustrate that our molecular knowledge of the chitin synthesis and organization pathways may offer new opportunities to design novel insecticides that are environmentally harmless at the same time being specific to a pest species; and 2) we advocate that the fruit fly Drosophila melanogaster may serve as an excellent model of insect to study the effects of insecticides at the genetic, molecular and histology level in order to better understand their mode of action and to optimize their impact. Especially, chitin synthesis and organization proteins and enzymes are excellently dissected in the fruit fly, providing a rich source for new insecticide targets. Thus, D. melanogaster offers a cheap, efficient and fast assay system to address agricultural questions, as has been demonstrated to be the case in bio-medical research areas.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Dong W, Gao YH, Zhang XB, Moussian B, Zhang JZ. Chitinase 10 controls chitin amounts and organization in the wing cuticle of Drosophila. INSECT SCIENCE 2020; 27:1198-1207. [PMID: 32129536 DOI: 10.1111/1744-7917.12774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Wings are essential for insect fitness. A number of proteins and enzymes have been identified to be involved in wing terminal differentiation, which is characterized by the formation of the wing cuticle. Here, we addressed the question whether chitinase 10 (Cht10) may play an important role in chitin organization in the wings of the fruit fly Drosophila melanogaster. Initially, we first found that Cht10 expression coincides with the expression of the chitin synthase coding gene kkv. This suggests that the respective proteins may cooperate during wing differentiation. In tissue-specific RNA interference experiments, we demonstrate that suppression of Cht10 causes an excess in chitin amounts in the wing cuticle. Chitin organization is severely disrupted in these wings. Based on these data, we hypothesize that Cht10 restricts chitin amounts produced by Kkv in order to ensure normal chitin organization and wing cuticle formation. In addition, we found by scanning electron microscopy that Cht10 suppression also affects the cuticle surface. In turn, cuticle inward permeability is enhanced in Cht10-less wings. Moreover, flies with reduced Cht10 function are unable to fly. In conclusion, Cht10 is essential for wing terminal differentiation and function.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Ying-Hao Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xu-Bo Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, Nice, CEDEX 2, France
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
23
|
Rice C, Macdonald SJ, Wang X, Ward RE. The Broad Transcription Factor Links Hormonal Signaling, Gene Expression, and Cellular Morphogenesis Events During Drosophila Imaginal Disc Development. Genetics 2020; 216:1137-1152. [PMID: 33115752 PMCID: PMC7768262 DOI: 10.1534/genetics.120.303717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Imaginal disc morphogenesis during metamorphosis in Drosophila melanogaster provides an excellent model to uncover molecular mechanisms by which hormonal signals effect physical changes during development. The broad (br) Z2 isoform encodes a transcription factor required for disc morphogenesis in response to 20-hydroxyecdysone, yet how it accomplishes this remains largely unknown. Here, we use functional studies of amorphic br5 mutants and a transcriptional target approach to identify processes driven by br and its regulatory targets in leg imaginal discs. br5 mutants fail to properly remodel their basal extracellular matrix (ECM) between 4 and 7 hr after puparium formation. Additionally, br5 mutant discs do not undergo the cell shape changes necessary for leg elongation and fail to elongate normally when exposed to the protease trypsin. RNA-sequencing of wild-type and br5 mutant leg discs identified 717 genes differentially regulated by br, including a large number of genes involved in glycolysis, and genes that encode proteins that interact with the ECM. RNA interference-based functional studies reveal that several of these genes are required for adult leg formation, particularly those involved in remodeling the ECM. Additionally, brZ2 expression is abruptly shut down at the onset of metamorphosis, and expressing it beyond this time results in failure of leg development during the late prepupal and pupal stages. Taken together, our results suggest that brZ2 is required to drive ECM remodeling, change cell shape, and maintain metabolic activity through the midprepupal stage, but must be switched off to allow expression of pupation genes.
Collapse
Affiliation(s)
- Clinton Rice
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Xiaochen Wang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Robert E Ward
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
24
|
Volovych O, Lin Z, Du J, Jiang H, Zou Z. Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, Microplitis mediator. INSECT SCIENCE 2020; 27:998-1018. [PMID: 31317624 PMCID: PMC7497268 DOI: 10.1111/1744-7917.12711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 05/10/2023]
Abstract
Recently, parasitoid wasp species Microplitis mediator has evoked increasing research attention due to its possible use in the control of Lepidoptera insects. Because insect development involves changes in cuticle composition, identification and expression analysis of M. mediator cuticular proteins may clarify the mechanisms involved in parasite development processes. We found 70 cuticular proteins from the M. mediator transcriptome and divided them into seven distinct families. Expression profiling indicated that most of these cuticular protein genes have expression peaks specific for one particular developmental stage of M. mediator. Eggs and pupae have the highest number of transcriptionally active cuticular protein genes (47 and 52 respectively). Only 12 of these genes maintained high expression activity during late larval development. Functional analysis of two larval proteins, MmCPR3 and MmCPR14, suggested their important role in the proper organization of the cuticle layers of larvae. During M. mediator larval development, normal cuticle formation can be supported by a limited number of cuticular proteins.
Collapse
Affiliation(s)
- Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
25
|
Behr M, Riedel D. Glycosylhydrolase genes control respiratory tubes sizes and airway stability. Sci Rep 2020; 10:13377. [PMID: 32770153 PMCID: PMC7414880 DOI: 10.1038/s41598-020-70185-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Tight barriers are crucial for animals. Insect respiratory cells establish barriers through their extracellular matrices. These chitinous-matrices must be soft and flexible to provide ventilation, but also tight enough to allow oxygen flow and protection against dehydration, infections, and environmental stresses. However, genes that control soft, flexible chitin-matrices are poorly known. We investigated the genes of the chitinolytic glycosylhydrolase-family 18 in the tracheal system of Drosophila melanogaster. Our findings show that five chitinases and three chitinase-like genes organize the tracheal chitin-cuticles. Most of the chitinases degrade chitin from airway lumina to enable oxygen delivery. They further improve chitin-cuticles to enhance tube stability and integrity against stresses. Unexpectedly, some chitinases also support chitin assembly to expand the tube lumen properly. Moreover, Chitinase2 plays a decisive role in the chitin-cuticle formation that establishes taenidial folds to support tube stability. Chitinase2 is apically enriched on the surface of tracheal cells, where it controls the chitin-matrix architecture independently of other known cuticular proteins or chitinases. We suppose that the principle mechanisms of chitin-cuticle assembly and degradation require a set of critical glycosylhydrolases for flexible and not-flexible cuticles. The same glycosylhydrolases support thick laminar cuticle formation and are evolutionarily conserved among arthropods.
Collapse
Affiliation(s)
- Matthias Behr
- Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| | - Dietmar Riedel
- Max-Planck-Institute for Biophysical Chemistry, Electron Microscopy Group, 37077, Göttingen, Germany
| |
Collapse
|
26
|
Muthukrishnan S, Mun S, Noh MY, Geisbrecht ER, Arakane Y. Insect Cuticular Chitin Contributes to Form and Function. Curr Pharm Des 2020; 26:3530-3545. [PMID: 32445445 DOI: 10.2174/1381612826666200523175409] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Chitin contributes to the rigidity of the insect cuticle and serves as an attachment matrix for other cuticular proteins. Deficiency of chitin results in abnormal embryos, cuticular structural defects and growth arrest. When chitin is not turned over during molting, the developing insect is trapped inside the old cuticle. Partial deacetylation of cuticular chitin is also required for proper laminar organization of the cuticle and vertical pore canals, molting, and locomotion. Thus, chitin and its modifications strongly influence the structure of the exoskeleton as well as the physiological functions of the insect. Internal tendons and specialized epithelial cells called "tendon cells" that arise from the outer layer of epidermal cells provide attachment sites at both ends of adult limb muscles. Membrane processes emanating from both tendon and muscle cells interdigitate extensively to strengthen the attachment of muscles to the extracellular matrix (ECM). Protein ligands that bind to membrane-bound integrin complexes further enhance the adhesion between muscles and tendons. Tendon cells contain F-actin fiber arrays that contribute to their rigidity. In the cytoplasm of muscle cells, proteins such as talin and other proteins provide attachment sites for cytoskeletal actin, thereby increasing integrin binding and activation to mechanically couple the ECM with actin in muscle cells. Mutations in integrins and their ligands, as well as depletion of chitin deacetylases, result in defective locomotion and muscle detachment from the ECM. Thus, chitin in the cuticle and chitin deacetylases strongly influence the shape and functions of the exoskeleton as well as locomotion of insects.
Collapse
Affiliation(s)
- Subbaratnam Muthukrishnan
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju 500-757, Korea
| | - Mi Y Noh
- Department of Forestry, Chonnam National University, Gwangju, 500-757, Korea
| | - Erika R Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
27
|
Deshoux M, Masson V, Arafah K, Voisin S, Guschinskaya N, van Munster M, Cayrol B, Webster CG, Rahbé Y, Blanc S, Bulet P, Uzest M. Cuticular Structure Proteomics in the Pea Aphid Acyrthosiphon pisum Reveals New Plant Virus Receptor Candidates at the Tip of Maxillary Stylets. J Proteome Res 2020; 19:1319-1337. [PMID: 31991085 PMCID: PMC7063574 DOI: 10.1021/acs.jproteome.9b00851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Aphids are phloem-feeding insects known as major pests in agriculture that are able to transmit hundreds of plant viruses. The majority of these viruses, classified as noncirculative, are retained and transported on the inner surface of the cuticle of the needle-like mouthparts while the aphids move from plant to plant. Identification of receptors of viruses within insect vectors is a key challenge because they are promising targets for alternative control strategies. The acrostyle, an organ discovered earlier within the common food/salivary canal at the tip of aphid maxillary stylets, displays proteins at the cuticle-fluid interface, some of which are receptors of noncirculative viruses. To assess the presence of stylet- and acrostyle-specific proteins and identify putative receptors, we have developed a comprehensive comparative analysis of the proteomes of four cuticular anatomical structures of the pea aphid, stylets, antennae, legs, and wings. In addition, we performed systematic immunolabeling detection of the cuticular proteins identified by mass spectrometry in dissected stylets. We thereby establish the first proteome of stylets of an insect and determine the minimal repertoire of the cuticular proteins composing the acrostyle. Most importantly, we propose a short list of plant virus receptor candidates, among which RR-1 proteins are remarkably predominant. The data are available via ProteomeXchange (PXD016517).
Collapse
Affiliation(s)
- Maëlle Deshoux
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Victor Masson
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
- CR
University of Grenoble-Alpes, Institute
for Advances Biosciences, Inserm U1209, CNRS UMR 5309, 38058 Grenoble, France
| | - Karim Arafah
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
| | | | | | - Manuella van Munster
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Bastien Cayrol
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Craig G. Webster
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Yvan Rahbé
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
- INRAE,
INSA Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France
- University
of Lyon, 69007 Lyon, France
| | - Stéphane Blanc
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Philippe Bulet
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
- CR
University of Grenoble-Alpes, Institute
for Advances Biosciences, Inserm U1209, CNRS UMR 5309, 38058 Grenoble, France
| | - Marilyne Uzest
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| |
Collapse
|
28
|
Liu X, Cooper AMW, Yu Z, Silver K, Zhang J, Zhu KY. Progress and prospects of arthropod chitin pathways and structures as targets for pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:33-46. [PMID: 31685194 DOI: 10.1016/j.pestbp.2019.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Chitin is a structural component of the arthropod cuticular exoskeleton and the peritrophic matrix of the gut, which play crucial roles in growth and development. In the past few decades, our understanding of the composition, biosynthesis, assembly, degradation, and regulation of chitinous structures has increased. Many chemicals have been developed that target chitin biosynthesis (benzoyphenyl ureas, etoxazole), chitin degradation (allosamidin, psammaplin), and chitin regulation (benzoyl hydrazines), thus resulting in molting deformities and lethality. In addition, proteins that disrupt chitin structures, such as lectins, proteases, and chitinases have been utilized to halt feeding and induce mortality. Chitin-degrading enzymes, such as chitinases are also useful for improving the efficacy of bio-insecticides. Transgenic plants, baculoviruses, fungi, and bacteria have been engineered to express chitinases from a variety of organisms for control of arthropod pests. In addition, RNA interference targeting genes involved in chitin pathways and structures are now being investigated for the development of environmentally friendly pest management strategies. This review describes the chemicals and proteins used to target chitin structures and enzymes for arthropod pest management, as well as pest management strategies based upon these compounds, such as plant-incorporated-protectants and recombinant entomopathogens. Recent advances in RNA interference-based pest management, and how this technology can be used to target chitin pathways and structures are also discussed.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | | | - Zhitao Yu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
29
|
Li Z, Tian S, Yang H, Zhou X, Xu S, Zhang Z, Gong J, Hou Y, Xia Q. Genome-wide identification of chitin-binding proteins and characterization of BmCBP1 in the silkworm, Bombyx mori. INSECT SCIENCE 2019; 26:400-412. [PMID: 29087606 PMCID: PMC7379184 DOI: 10.1111/1744-7917.12552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/16/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
The insect cuticle plays important roles in numerous physiological functions to protect the body from invasion of pathogens, physical injury and dehydration. In this report, we conducted a comprehensive genome-wide search for genes encoding proteins with peritrophin A-type (ChtBD2) chitin-binding domain (CBD) in the silkworm, Bombyx mori. One of these genes, which encodes the cuticle protein BmCBP1, was additionally cloned, and its expression and location during the process of development and molting in B. mori were investigated. In total, 46 protein-coding genes were identified in the silkworm genome, including those encoding 15 cuticle proteins analogous to peritrophins with one CBD (CPAP1s), nine cuticle proteins analogous to peritrophins with three CBD (CPAP3s), 15 peritrophic membrane proteins (PMPs), four chitinases, and three chitin deacetylases, which contained at least one ChtBD2 domain. Microarray analysis indicated that CPAP-encoding genes were widely expressed in various tissues, whereas PMP genes were highly expressed in the midgut. Quantitative polymerase chain reaction and western blotting showed that the cuticle protein BmCBP1 was highly expressed in the epidermis and head, particularly during molting and metamorphosis. An immunofluorescence study revealed that chitin co-localized with BmCBP1 at the epidermal surface during molting. Additionally, BmCBP1 was notably up-regulated by 20-hydroxyecdysone treatment. These results provide a genome-level view of the chitin-binding protein in silkworm and suggest that BmCBP1 participates in the formation of the new cuticle during molting.
Collapse
Affiliation(s)
- Zhi‐Lang Li
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Sha Tian
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Huan Yang
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Xia Zhou
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Shu‐Ping Xu
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Zi‐Yu Zhang
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Jing Gong
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Yong Hou
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Qing‐You Xia
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| |
Collapse
|
30
|
Yu RR, Liu WM, Zhao XM, Zhang M, Li DQ, Zuber R, Ma EB, Zhu KY, Moussian B, Zhang JZ. LmCDA1 organizes the cuticle by chitin deacetylation in Locusta migratoria. INSECT MOLECULAR BIOLOGY 2019; 28:301-312. [PMID: 30471154 DOI: 10.1111/imb.12554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cells produce an extracellular matrix (ECM) with a stereotypic organization that is important for tissue function. The insect cuticle is a layered ECM that mainly consists of the polysaccharide chitin and associated proteins adopting a quasi-crystalline structure. Our understanding of the molecular mechanisms deployed during construction of the highly ordered protein-chitin ECM so far is limited. In this study, we report on the role of the chitin deacetylase 1 (LmCDA1) in the organization of the protein-chitin ECM in the migratory locust Locusta migratoria, and LmCDA1 localizes predominantly to the apical tier of the protein-chitin ECM, but it is also found in lower regions. Reduction of LmCDA1 function correlates with lower amounts of chitin and impedes conversion of chitin to chitosan by deacetylation. Establishment of the quasi-crystalline architecture of the protein-chitin ECM is, however, independent of LmCDA1 activity, but it is dependent on another chitin deacetylase, LmCDA2, which has no detectable effects on chitin deacetylation and, as shown previously, no influence on chitin content. Our data reveal that LmCDA1 and LmCDA2 act in parallel and independently from each other in defining the dimensions of the cuticle. Both enzymes are non-uniformly distributed within the protein-chitin matrix, suggesting a site-autonomous function.
Collapse
Affiliation(s)
- R-R Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - W-M Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - X-M Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - M Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - D-Q Li
- Institute of Plant Protection, Shanxi Academy of Agricultural Science, Taiyuan, China
| | - R Zuber
- Angewandte Zoologie, Technische Universität Dresden, Dresden, Germany
| | - E-B Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - K Y Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - B Moussian
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, Nice CEDEX 2, France
| | - J-Z Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
31
|
Muthukrishnan S, Merzendorfer H, Arakane Y, Yang Q. Chitin Organizing and Modifying Enzymes and Proteins Involved In Remodeling of the Insect Cuticle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:83-114. [DOI: 10.1007/978-981-13-7318-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Wang Y, Maier A, Gehring N, Moussian B. Inhibition of fatty acid desaturation impairs cuticle differentiation in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21535. [PMID: 30672604 DOI: 10.1002/arch.21535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Previously, we showed that inhibition of the activity of fatty acid desaturases (Desat) perturbs signalling of the developmental timing hormone ecdysone in the fruit fly Drosophila melanogaster. To understand the impact of this effect on cuticle differentiation, a process regulated by ecdysone, we analysed the cuticle of D. melanogaster larvae fed with the Desat inhibitor CA10556. In these larvae, the expression of most of the key cuticle genes is normal or slightly elevated at day one of CA10556 feeding. As an exception, expression of twdlM coding for a yet uncharacterised cuticle protein is completely suppressed. The cuticle of these larvae appears to be normal at the morphological level. However, these animals are sensitive to desiccation, a trait that according to our data, among others, may be associated with reduced TwdlM amounts. At day two of CA10556 feeding, expression of most of the cuticle genes tested including twdlM is suppressed. Expression of cpr47Eb coding for a chitin-binding protein is, by contrast, highly elevated suggesting that Cpr47Eb participates at a specific compensation program. Overall, the cuticle of these larvae is thinner than the cuticle of control larvae. Taken together, lipid desaturation is necessary for a coordinated deployment of a normal cuticle differentiation program.
Collapse
Affiliation(s)
- Yiwen Wang
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Annette Maier
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Nicole Gehring
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice, France
| |
Collapse
|
33
|
Zuber R, Shaik KS, Meyer F, Ho HN, Speidel A, Gehring N, Bartoszewski S, Schwarz H, Moussian B. The putative C-type lectin Schlaff ensures epidermal barrier compactness in Drosophila. Sci Rep 2019; 9:5374. [PMID: 30926832 PMCID: PMC6440989 DOI: 10.1038/s41598-019-41734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
The stability of extracellular matrices is in general ensured by cross-linking of its components. Previously, we had shown that the integrity of the layered Drosophila cuticle relies on the presence of a covalent cuticular dityrosine network. Production and composition of this structure remained unstudied. In this work, we present our analyses of the schlaff (slf) gene coding for a putative C-type lectin that is needed for the adhesion between the horizontal cuticle layers. The Slf protein mainly localizes between the two layers called epicuticle and procuticle that separate from each other when the function of Slf is reduced or eliminated paralleling the phenotype of a cuticle with reduced extracellular dityrosine. Localisation of the dityrosinylated protein Resilin to the epicuticle-procuticle interface suggests that the dityrosine network mediates the adhesion of the epicuticle to the procuticle. Ultimately, compromised Slf function is associated with massive water loss. In summary, we propose that Slf is implied in the stabilisation of a dityrosine layer especially between the epicuticle and the procuticle that in turn constitutes an outward barrier against uncontrolled water flow.
Collapse
Affiliation(s)
- Renata Zuber
- Applied Zoology, Technical University of Dresden, Zellescher Weg 20b, 01217, Dresden, Germany.,University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Khaleelulla Saheb Shaik
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Frauke Meyer
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Hsin-Nin Ho
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Anna Speidel
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Nicole Gehring
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Slawomir Bartoszewski
- Rzeszow University, Department of Biochemistry and Cell Biology, ul. Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Heinz Schwarz
- Max-Planck-Institut für Entwicklungsbiologie, Microscopy Unit, Spemannstr. 35, 72076, Tübingen, Germany
| | - Bernard Moussian
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108, Nice CEDEX 2, France.
| |
Collapse
|
34
|
Liu X, Zhang J, Zhu KY. Chitin in Arthropods: Biosynthesis, Modification, and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:169-207. [PMID: 31102247 DOI: 10.1007/978-981-13-7318-3_9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chitin is a structural constituent of extracellular matrices including the cuticle of the exoskeleton and the peritrophic matrix (PM) of the midgut in arthropods. Chitin chains are synthesized through multiple biochemical reactions, organized in several hierarchical levels and associated with various proteins that give their unique physicochemical characteristics of the cuticle and PM. Because, arthropod growth and morphogenesis are dependent on the capability of remodeling chitin-containing structures, chitin biosynthesis and degradation are highly regulated, allowing ecdysis and regeneration of the cuticle and PM. Over the past 20 years, much progress has been made in understanding the physiological functions of chitinous matrices. In this chapter, we mainly discussed the biochemical processes of chitin biosynthesis, modification and degradation, and various enzymes involved in these processes. We also discussed cuticular proteins and PM proteins, which largely determine the physicochemical properties of the cuticle and PM. Although rapid advances in genomics, proteomics, RNA interference, and other technologies have considerably facilitated our research in chitin biosynthesis, modification, and metabolism in recent years, many aspects of these processes are still partially understood. Further research is needed in understanding how the structural organization of chitin synthase in plasma membrane accommodate chitin biosynthesis, transport of chitin chain across the plasma membrane, and release of the chitin chain from the enzyme. Other research is also needed in elucidating the roles of chitin deacetylases in chitin organization and the mechanism controlling the formation of different types of chitin in arthropods.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
35
|
A cell surface protein controls endocrine ring gland morphogenesis and steroid production. Dev Biol 2018; 445:16-28. [PMID: 30367846 DOI: 10.1016/j.ydbio.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Identification of signals for systemic adaption of hormonal regulation would help to understand the crosstalk between cells and environmental cues contributing to growth, metabolic homeostasis and development. Physiological states are controlled by precise pulsatile hormonal release, including endocrine steroids in human and ecdysteroids in insects. We show in Drosophila that regulation of genes that control biosynthesis and signaling of the steroid hormone ecdysone, a central regulator of developmental progress, depends on the extracellular matrix protein Obstructor-A (Obst-A). Ecdysone is produced by the prothoracic gland (PG), where sensory neurons projecting axons from the brain integrate stimuli for endocrine control. By defining the extracellular surface, Obst-A promotes morphogenesis and axonal growth in the PG. This process requires Obst-A-matrix reorganization by Clathrin/Wurst-mediated endocytosis. Our data identifies the extracellular matrix as essential for endocrine ring gland function, which coordinates physiology, axon morphogenesis, and developmental programs. As Obst-A and Wurst homologs are found among all arthropods, we propose that this mechanism is evolutionary conserved.
Collapse
|
36
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
37
|
Muthukrishnan S, Arakane Y, Yang Q, Zhang CX, Zhang J, Zhang W, Moussian B. Future questions in insect chitin biology: A microreview. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21454. [PMID: 29479741 DOI: 10.1002/arch.21454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This microreview stems from the Second Symposium on Insect Molecular Toxicology and Chitin Metabolism held at Shanxi University in Taiyuan, China (June 27 to 30, 2017) at the institute for Applied Biology headed by Professor Enbo Ma and Professor Jianzhen Zhang.
Collapse
Affiliation(s)
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, South Korea
| | - Qing Yang
- School of Life Science & Biotechnology, Dalian University of Technology, Dalian, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Bernard Moussian
- Applied Zoology, TU Dresden, Dresden, Germany
- iBV, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
38
|
A comprehensive omics analysis and functional survey of cuticular proteins in the brown planthopper. Proc Natl Acad Sci U S A 2018; 115:5175-5180. [PMID: 29712872 PMCID: PMC5960286 DOI: 10.1073/pnas.1716951115] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cuticle, mainly composed of chitin and cuticular proteins (CPs), is a multifunctional structure of arthropods. CPs usually account for >1% of the total insect proteins encoded in the genome. Why does an insect need so many different CPs? In this study, we use comprehensive large-scale technologies to study the full complement of CPs and their functions in the brown planthopper (BPH). A total of 32 of the 140 BPH CP genes are found to be essential for nymph/adult development, egg production, or embryo development; in addition, redundant and complementary functions of CPs are revealed. Cuticle, mainly composed of chitin and cuticular proteins (CPs), is a multifunctional structure of arthropods. CPs usually account for >1% of the total insect proteins. Why does an insect encode so many different CP genes in the genome? In this study, we use comprehensive large-scale technologies to study the full complement of CPs (i.e., the CP-ome) of the brown planthopper (BPH), Nilaparvata lugens, a major rice plant pest. Eight CP families (CPR, CPF, TWDL, CPLCP, CPG, CPAP1, CPAP3, and CPAPn) including 140 proteins in BPH, in which CPAPn is a CP family that we discovered. The CPG family that was considered to be restricted to the Lepidoptera has also been identified in BPH. As reported here, CPLCP family members are characterized by three conserved sequence motifs. In addition, we identified a testis protein family with a peritrophin A domain that we named TPAP. We authenticated the real existence of 106 proteins among the 140 CPs. RNA interference (RNAi) experiments were conducted against 135 CP genes in early- and late-instar nymphs and newly emerged female adults, demonstrating that 32 CPs were essential for BPH normal development or egg production. Combined RNAi experiments suggested redundant and complementary functions of the large number of CPs. Transcriptomic data revealed that the CP genes were expressed in a tissue-specific manner, and there were four clusters of developmental expression patterns. This study gives a comprehensive understanding of the roles of CPs in an insect cuticle.
Collapse
|
39
|
Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y. Group I chitin deacetylases are essential for higher order organization of chitin fibers in beetle cuticle. J Biol Chem 2018; 293:6985-6995. [PMID: 29567838 DOI: 10.1074/jbc.ra117.001454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Indexed: 11/06/2022] Open
Abstract
Roles in the organization of the cuticle (exoskeleton) of two chitin deacetylases (CDAs) belonging to group I, TcCDA1 and TcCDA2, as well as two alternatively spliced forms of the latter, TcCDA2a and TcCDA2b, from the red flour beetle, Tribolium castaneum, were examined in different body parts using transmission EM and RNAi. Even though all TcCDAs are co-expressed in cuticle-forming cells from the hardened forewing (elytron) and ventral abdomen, as well as in the softer hindwing and dorsal abdomen, there are significant differences in the tissue specificity of expression of the alternatively spliced transcripts. Loss of either TcCDA1 or TcCDA2 protein by RNAi causes abnormalities in organization of chitinous horizontal laminae and vertical pore canals in all regions of the procuticle of both the hard and soft cuticles. Simultaneous RNAi for TcCDA1 and TcCDA2 produces the most serious abnormalities. RNAi of either TcCDA2a or TcCDA2b affects cuticle integrity to some extent. Following RNAi, there is accumulation of smaller disorganized fibers in both the horizontal laminae and pore canals, indicating that TcCDAs play a critical role in elongation/organization of smaller nanofibers into longer fibers, which is essential for structural integrity of both hard/thick and soft/thin cuticles. Immunolocalization of TcCDA1 and TcCDA2 proteins and effects of RNAi on their accumulation indicate that these two proteins function in concert exclusively in the assembly zone in a step involving the higher order organization of the procuticle.
Collapse
Affiliation(s)
- Mi Young Noh
- From the Department of Applied Biology, Chonnam National University, Gwangju 500-757, South Korea and
| | - Subbaratnam Muthukrishnan
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Karl J Kramer
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Yasuyuki Arakane
- From the Department of Applied Biology, Chonnam National University, Gwangju 500-757, South Korea and
| |
Collapse
|
40
|
An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun 2018; 9:756. [PMID: 29472725 PMCID: PMC5823890 DOI: 10.1038/s41467-018-03142-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
Thermobia domestica belongs to an ancient group of insects and has a remarkable ability to digest crystalline cellulose without microbial assistance. By investigating the digestive proteome of Thermobia, we have identified over 20 members of an uncharacterized family of lytic polysaccharide monooxygenases (LPMOs). We show that this LPMO family spans across several clades of the Tree of Life, is of ancient origin, and was recruited by early arthropods with possible roles in remodeling endogenous chitin scaffolds during development and metamorphosis. Based on our in-depth characterization of Thermobia's LPMOs, we propose that diversification of these enzymes toward cellulose digestion might have endowed ancestral insects with an effective biochemical apparatus for biomass degradation, allowing the early colonization of land during the Paleozoic Era. The vital role of LPMOs in modern agricultural pests and disease vectors offers new opportunities to help tackle global challenges in food security and the control of infectious diseases.
Collapse
|
41
|
Abehsera S, Zaccai S, Mittelman B, Glazer L, Weil S, Khalaila I, Davidov G, Bitton R, Zarivach R, Li S, Li F, Xiang J, Manor R, Aflalo ED, Sagi A. CPAP3 proteins in the mineralized cuticle of a decapod crustacean. Sci Rep 2018; 8:2430. [PMID: 29403068 PMCID: PMC5799365 DOI: 10.1038/s41598-018-20835-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/24/2018] [Indexed: 12/29/2022] Open
Abstract
The pancrustacean theory groups crustaceans and hexapods (once thought to comprise separate clades within the Arthropoda) into a single clade. A key feature common to all pancrustaceans is their chitinous exoskeleton, with a major contribution by cuticular proteins. Among these, are the CPAP3’s, a family of cuticular proteins, first identified in the hexapod Drosophila melanogaster and characterized by an N-terminal signaling peptide and three chitin-binding domains. In this study, CPAP3 proteins were mined from a transcriptomic library of a decapod crustacean, the crayfish Cherax quadricarinatus. Phylogenetic analysis of other CPAP3 proteins from hexapods and other crustaceans showed a high degree of conservation. Characterization of the crayfish proteins, designated CqCPAP3’s, suggested a major role for CPAP3’sin cuticle formation. Loss-of-function experiments using RNAi supported such a notion by demonstrating crucial roles for several CqCPAP3 proteins during molting. A putative mode of action for the CqCPAP3 proteins –theoretically binding three chitin strands– was suggested by the structural data obtained from a representative recombinant CqCPAP3. The similarities between the CqCPAP3 proteins and their hexapod homologues further demonstrated common genetic and proteinaceous features of cuticle formation in pancrustaceans, thereby reinforcing the linkage between these two highly important phylogenetic groups.
Collapse
Affiliation(s)
- Shai Abehsera
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shir Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Binyamin Mittelman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lilah Glazer
- Department of Psychiatry and Behavioral Science, Duke University Medical Center, Durham, USA
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Isam Khalaila
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronit Bitton
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. .,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
42
|
Li K, Zhang X, Zuo Y, Liu W, Zhang J, Moussian B. Timed Knickkopf function is essential for wing cuticle formation in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 89:1-10. [PMID: 28821399 DOI: 10.1016/j.ibmb.2017.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The insect cuticle is an extracellular matrix that consists of the polysaccharide chitin, proteins, lipids and organic molecules that are arranged in distinct horizontal layers. In Drosophila melanogaster, these layers are not formed sequentially, but, at least partially, at the same time. Timing of the underlying molecular mechanisms is conceivably crucial for cuticle formation. To study this issue, we determined the time period during which the function of Knickkopf (Knk), a key factor of chitin organization, is required for wing cuticle differentiation in D. melanogaster. Although knk is expressed throughout metamorphosis, we demonstrate that its expression 30 h prior and 48 h after pupariation is essential for correct wing cuticle formation. In other words, expression beyond this period is futile. Importantly, manipulation of Knk expression during this time causes wing bending suggesting an effect of Knk amounts on the physical properties of the wing cuticle. Manipulation of Knk expression also interferes with the structure and function of the cuticle surface. First, we show that the shape of surface nano-structures depends on the expression levels of knk. Second, we find that cuticle impermeability is compromised in wings with reduced knk expression. In summary, despite the extended supply of Knk during metamorphosis, controlled amounts of Knk are important for correct wing cuticle differentiation and function in a concise period of time.
Collapse
Affiliation(s)
- Kaixia Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China; College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xubo Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China
| | - Ying Zuo
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China.
| | - Bernard Moussian
- Institute of Biology Valrose, University of Nice, France & Applied Zoology, TU Dresden, Germany.
| |
Collapse
|
43
|
Qu M, Ren Y, Liu Y, Yang Q. Studies on the chitin/chitosan binding properties of six cuticular proteins analogous to peritrophin 3 from Bombyx mori. INSECT MOLECULAR BIOLOGY 2017; 26:432-439. [PMID: 28432772 DOI: 10.1111/imb.12308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chitin deacetylation is required to make the cuticle rigid and compact through chitin chain crosslinking. Thus it is presumed that specialized proteins are required to bind deacetylated chitin chains together. However, deacetylated-chitin binding proteins have not ever been reported. In a previous work, six cuticular proteins analogous to peritrophin 3 (CPAP3s) were found to be abundant in the moulting fluid of Bombyx mori. In this study, these BmCPAP3s (BmCPAP3-A1, BmCPAP3-A2, BmCPAP3-B, BmCPAP3-C, BmCPAP3-D1 and BmCPAP3-D2) were cloned and expressed in Escherichia coli and purified using metal-chelating affinity chromatography. Their binding activities demonstrated that although all of the BmCPAP3s showed similar binding abilities toward crystalline chitin and colloidal chitin, they differed in their affinities toward partially and fully deacetylated chitin. Amongst them, BmCPAP3-D1 exhibited the highest binding activity toward deacetylated chitin. The gene expression pattern of BmCPAP3-D1 was similar to BmCPAP3-A1 and BmCPAP3-C at most stages except that it was dramatically upregulated at the beginning of the pupa to adult transition stage. This work is the first report of a chitin-binding protein, BmCPAP3-D1, which exhibits high binding affinity to deacetylated chitin.
Collapse
Affiliation(s)
- M Qu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Y Ren
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Y Liu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Q Yang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
44
|
Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster. PLoS Genet 2017; 13:e1006548. [PMID: 28076349 PMCID: PMC5226733 DOI: 10.1371/journal.pgen.1006548] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton) covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium). Here we show that Drosophila melanogaster Obstructor-E (Obst-E) is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton. Shapes of objects, living or not, should depend on their material properties and forces acting on them. Mechanical processes that create whole body shapes of multicellular organisms, or genes that regulate such processes, are largely unknown. Insect bodies are coated by cuticle, a matrix composed of proteins and the polysaccharide chitin. We show that, during metamorphosis of the fruit fly Drosophila melanogaster, the cuticle covering the long and thin larva (maggot) undergoes longitudinal contraction and lateral expansion to become the short and stout puparium covering the pupa. Furthermore, we identify a single protein component of the larval cuticle that confers the oriented contractility/expandability, thereby determining the pupal body shape in a mechanical manner.
Collapse
|
45
|
Pesch YY, Riedel D, Behr M. Drosophila Chitinase 2 is expressed in chitin producing organs for cuticle formation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:4-12. [PMID: 27832982 DOI: 10.1016/j.asd.2016.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
The architecture of the outer body wall cuticle is fundamental to protect arthropods against invading pathogens and numerous other harmful stresses. Such robust cuticles are formed by parallel running chitin microfibrils. Molting and also local wounding leads to dynamic assembly and disassembly of the chitin-matrix throughout development. However, the underlying molecular mechanisms that organize proper chitin-matrix formation are poorly known. Recently we identified a key region for cuticle thickening at the apical cell surface, the cuticle assembly zone, where Obstructor-A (Obst-A) coordinates the formation of the chitin-matrix. Obst-A binds chitin and the deacetylase Serpentine (Serp) in a core complex, which is required for chitin-matrix maturation and preservation. Here we present evidence that Chitinase 2 (Cht2) could be essential for this molecular machinery. We show that Cht2 is expressed in the chitin-matrix of epidermis, trachea, and the digestive system. There, Cht2 is enriched at the apical cell surface and the dense chitin-matrix. We further show that in Cht2 knockdown larvae the assembly zone is rudimentary, preventing normal cuticle formation and pore canal organization. As sequence similarities of Cht2 and the core complex proteins indicate evolutionarily conserved molecular mechanisms, our findings suggest that Cht2 is involved in chitin formation also in other insects.
Collapse
Affiliation(s)
- Yanina-Yasmin Pesch
- Institute for Biology and Sächsischer Inkubator für klinische Translation (TRM/SIKT), University of Leipzig, 04103 Leipzig, Germany; Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Dietmar Riedel
- Max Planck Institute for Biophysical Chemistry, Electron Microscopy Group, 37077 Göttingen, Germany
| | - Matthias Behr
- Institute for Biology and Sächsischer Inkubator für klinische Translation (TRM/SIKT), University of Leipzig, 04103 Leipzig, Germany; Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
46
|
Mrak P, Bogataj U, Štrus J, Žnidaršič N. Cuticle morphogenesis in crustacean embryonic and postembryonic stages. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:77-95. [PMID: 27816526 DOI: 10.1016/j.asd.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
The crustacean cuticle is a chitin-based extracellular matrix, produced in general by epidermal cells and ectodermally derived epithelial cells of the digestive tract. Cuticle morphogenesis is an integrative part of embryonic and postembryonic development and it was studied in several groups of crustaceans, but mainly with a focus on one selected aspect of morphogenesis. Early studies were focused mainly on in vivo or histological observations of embryonic or larval molt cycles and more recently, some ultrastructural studies of the cuticle differentiation during development were performed. The aim of this paper is to review data on exoskeletal and gut cuticle formation during embryonic and postembryonic development in crustaceans, obtained in different developmental stages of different species and to bring together and discuss different aspects of cuticle morphogenesis, namely data on the morphology, ultrastructure, composition, connections to muscles and molt cycles in relation to cuticle differentiation. Based on the comparative evaluation of microscopic analyses of cuticle in crustacean embryonic and postembryonic stages, common principles of cuticle morphogenesis during development are discussed. Additional studies are suggested to further clarify this topic and to connect the new knowledge to related fields.
Collapse
Affiliation(s)
- Polona Mrak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Urban Bogataj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Jasna Štrus
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
47
|
Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 2016; 6:18340. [PMID: 26838602 PMCID: PMC4738247 DOI: 10.1038/srep18340] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022] Open
Abstract
The cuticle forms an apical extracellular-matrix (ECM) that covers exposed organs, such as epidermis, trachea and gut, for organizing morphogenesis and protection of insects. Recently, we reported that cuticle proteins and chitin are involved in ECM formation. However, molecular mechanisms that control assembly, maturation and replacement of the ECM and its components are not well known. Here we investigated the poorly described glyco-18-domain hydrolase family in Drosophila and identified the Chitinases (Chts) and imaginal-disc-growth-factors (Idgfs) that are essential for larval and adult molting. We demonstrate that Cht and idgf depletion results in deformed cuticles, larval and adult molting defects, and insufficient protection against wounding and bacterial infection, which altogether leads to early lethality. We show that Cht2/Cht5/Cht7/Cht9/Cht12 and idgf1/idgf3/idgf4/idgf5/idgf6 are needed for organizing proteins and chitin-matrix at the apical cell surface. Our data indicate that normal ECM formation requires Chts, which potentially hydrolyze chitin-polymers. We further suggest that the non-enzymatic idgfs act as structural proteins to maintain the ECM scaffold against chitinolytic degradation. Conservation of Chts and Idgfs proposes analogous roles in ECM dynamics across the insect taxa, indicating that Chts/Idgfs are new targets for species specific pest control.
Collapse
|
48
|
Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. Biosynthesis, Turnover, and Functions of Chitin in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:177-96. [PMID: 26982439 DOI: 10.1146/annurev-ento-010715-023933] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control.
Collapse
Affiliation(s)
| | | | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China;
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506; ,
| |
Collapse
|
49
|
Öztürk-Çolak A, Moussian B, Araújo SJ. Drosophila chitinous aECM and its cellular interactions during tracheal development. Dev Dyn 2015; 245:259-67. [PMID: 26442625 DOI: 10.1002/dvdy.24356] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/07/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
The morphology of organs, and hence their proper physiology, relies to a considerable extent on the extracellular matrix (ECM) secreted by their cells. The ECM is a structure contributed to and commonly shared by many cells in an organism that plays an active role in morphogenesis. Increasing evidence indicates that the ECM not only provides a passive contribution to organ shape but also impinges on cell behaviour and genetic programmes. The ECM is emerging as a direct modulator of many aspects of cell biology, rather than as a mere physical network that supports cells. Here, we review how the apical chitinous ECM is generated in Drosophila trachea and how cells participate in the formation of this supracellular structure. We discuss recent findings on the molecular and cellular events that lead to the formation of this apical ECM (aECM) and how it is influenced and affects tracheal cell biology.
Collapse
Affiliation(s)
- Arzu Öztürk-Çolak
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Barcelona, Spain.,Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany.,Institute of Biology Valrose (IBV), University of Nice-Sophia Antipolis, Université de Nice - Faculté des Sciences-Parc Valrose, Nice, France
| | - Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Barcelona, Spain.,Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
Vannini L, Bowen JH, Reed TW, Willis JH. The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:57-67. [PMID: 26164413 PMCID: PMC4628598 DOI: 10.1016/j.ibmb.2015.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/03/2023]
Abstract
Arthropod cuticles have, in addition to chitin, many structural proteins belonging to diverse families. Information is sparse about how these different cuticular proteins contribute to the cuticle. Most cuticular proteins lack cysteine with the exception of two families (CPAP1 and CPAP3), recently described, and the one other that we now report on that has a motif of 16 amino acids first identified in a protein, Bc-NCP1, from the cuticle of nymphs of the cockroach, Blaberus craniifer (Jensen et al., 1997). This motif turns out to be present as two or three copies in one or two proteins in species from many orders of Hexapoda. We have named the family of cuticular proteins with this motif CPCFC, based on its unique feature of having two cysteines interrupted by five amino acids (C-X(5)-C). Analysis of the single member of the family in Anopheles gambiae (AgamCPCFC1) revealed that its mRNA is most abundant immediately following ecdysis in larvae, pupae and adults. The mRNA is localized primarily in epidermis that secretes hard cuticle, sclerites, setae, head capsules, appendages and spermatheca. EM immunolocalization revealed the presence of the protein, generally in endocuticle of legs and antennae. A phylogenetic analysis found proteins bearing this motif in 14 orders of Hexapoda, but not in some species for which there are complete genomic data. Proteins were much longer in Coleoptera and Diptera than in other orders. In contrast to the 1 and occasionally 2 copies in other species, a dragonfly, Ladona fulva, has at least 14 genes coding for family members. CPCFC proteins were present in four classes of Crustacea with 5 repeats in one species, and motifs that ended C-X(7)-C in Malacostraca. They were not detected, except as obvious contaminants, in any other arthropod subphyla or in any other phylum. The conservation of CPCFC proteins throughout the Pancrustacea and the small number of copies in individual species indicate that, when present, these proteins are serving important functions worthy of further study.
Collapse
Affiliation(s)
- Laura Vannini
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - John Hunter Bowen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Tyler W Reed
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|