1
|
Luperchio AM, Salamango DJ. Defining the Protein Phosphatase 2A (PP2A) Subcomplexes That Regulate FoxO Transcription Factor Localization. Cells 2025; 14:342. [PMID: 40072071 PMCID: PMC11899004 DOI: 10.3390/cells14050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has been well established that phosphorylation promotes FoxO cytoplasmic retention and inactivation, the mechanism underlying dephosphorylation and nuclear translocation is less clear. Here, we investigate the role of protein phosphatase 2A (PP2A) in regulating this process. We demonstrate that PP2A and AMP-activated protein kinase (AMPK) combine to regulate nuclear translocation of multiple FoxO family members following inhibition of metabolic signaling or induction of oxidative stress. Moreover, chemical inhibitor studies indicate that nuclear accumulation of FoxO proteins occurs through inhibition of nuclear export as opposed to promoting nuclear import as previously speculated. Functional, genetic, and biochemical studies combine to identify the PP2A complexes that regulate FoxO nuclear translocation, and the binding motif required. Mutating the FoxO-PP2A interface to enhance or diminish PP2A binding alters nuclear translocation kinetics accordingly. Together, these studies shed light on the molecular mechanisms regulating FoxO nuclear translocation and provide insights into how FoxO regulation is integrated with metabolic and stress-related stimuli.
Collapse
Affiliation(s)
| | - Daniel J. Salamango
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, TX 78229, USA;
| |
Collapse
|
2
|
Gojo S, Kami D, Sano A, Teruyama F, Ogata T, Matoba S. Sephin1 suppresses ER stress-induced cell death by inhibiting the formation of PP2A holoenzyme. Cell Death Dis 2025; 16:117. [PMID: 39971896 PMCID: PMC11840111 DOI: 10.1038/s41419-025-07450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Sephin1 was discovered as a protein phosphatase inhibitor, and its efficacy against neurodegenerative diseases has been confirmed. There are conflicting reports on whether inhibition of eIF2α dephosphorylation by PP1 holoenzyme with the protein phosphatase 1 regulatory subunit 15 A is the mechanism of action of Sephin1. In the present study, we found that Sephin1 significantly suppressed renal tubular cell death in an animal model of ER stress administered with tunicamycin. CHOP, which plays a central role in the ER stress-induced cell death pathway, requires nuclear translocation to act as a transcription factor to increase the expression of cell death-related genes. Sephin1 markedly suppressed this nuclear translocation of CHOP. To elucidate the molecular mechanism underlying the cell death suppressive effect of Sephin1, we used human renal tubular epithelial cells under ER stress with tunicamycin. Sephin1 reduced intracellular CHOP levels by promoting CHOP phosphorylation at Ser30, which led to protein degradation in UPS. Phosphorylated CHOP is generated by Thr172-phosphorylated activated AMPK, and Sephin1 increased phosphorylated AMPK. Phosphorylated AMPK is inactivated by PP2A through dephosphorylation of its Thr172, and Sephin1 inhibits the formation of the PP2A holoenzyme with the PP2A subunit B isoform delta. These results indicate that inhibition of PP2A holoenzyme formation is the molecular target of Sephin1 in this experimental system.
Collapse
Affiliation(s)
- Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Arata Sano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Tokyo New Drug Research Laboratories, Kowa Company Ltd., Tokyo, Japan
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Guerbette T, Ciesielski V, Brien M, Catheline D, Viel R, Bostoën M, Perrin JB, Burel A, Janvier R, Rioux V, Lan A, Boudry G. Bioenergetic adaptations of small intestinal epithelial cells reduce cell differentiation enhancing intestinal permeability in obese mice. Mol Metab 2025; 92:102098. [PMID: 39814101 PMCID: PMC11795564 DOI: 10.1016/j.molmet.2025.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVE Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function. However, diet-induced obesity (DIO) may impair mitochondrial activity of IEC and consequently, intestinal homeostasis. The aim of the project was to determine whether DIO alters the mitochondrial function of IEC, and what are the consequences on intestinal homeostasis. METHODS C57Bl/6J mice were fed a control diet for 22 weeks or a high fat diet (58 kcal% fat). Bioenergetic adaptations of IEC were evaluated on isolated crypts and villi from mouse jejunum. To determine the link between mitochondrial function and alterations of intestinal homeostasis in response to lipid overload, we used the jejunal epithelial cell line IPEC-J2 in vitro and mouse jejunum organoids. RESULTS Here, we report that DIO in mice induced lipid metabolism adaptations favoring lipid storage in IEC together with reduced number, altered dynamics and diminished oxidative phosphorylation activity of IEC mitochondria. Using the IPEC-J2 cell line, we showed that IEC lipid metabolism and oxidative stress machinery adaptations preceded mitochondrial bioenergetic ones. Moreover, we unraveled the intricate link between IEC energetic status and proliferation / differentiation balance since enhancing mitochondrial function with the AMPK activator AICAR in jejunal organoids reduced proliferation and initiated IEC differentiation and conversely. We confirmed that the reduced IEC mitochondrial function observed in DIO mice was associated with increased proliferation and reduced differentiation, promoting expression of the permissive Cldn2 in the jejunal epithelium of DIO mice. CONCLUSIONS Our study provides new insights into metabolic adaptations of IEC in obesity by revealing that excess lipid intake diminishes mitochondrial number in IEC, reducing IEC differentiation that contribute to increased epithelial permeability.
Collapse
Affiliation(s)
| | - Vincent Ciesielski
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Manon Brien
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Daniel Catheline
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Roselyne Viel
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, France-BioImaging (ANR-10-INBS-04), plateforme H2P2, Rennes, France
| | - Mégane Bostoën
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | | | - Agnès Burel
- Plateforme MRic, UMS 3480 BIOSIT, Rennes, France
| | - Régis Janvier
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Vincent Rioux
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Annaïg Lan
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Gaëlle Boudry
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France.
| |
Collapse
|
5
|
Swift NA, Yang Q, Jester HM, Zhou X, Manuel A, Kemp BE, Steinberg GR, Ma T. Suppression of neuronal AMPKβ2 isoform impairs recognition memory and synaptic plasticity. Neurobiol Dis 2024; 201:106664. [PMID: 39278510 PMCID: PMC11539201 DOI: 10.1016/j.nbd.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an αβγ heterotrimer protein kinase that functions as a molecular sensor to maintain energy homeostasis. Accumulating evidence suggests a role of AMPK signaling in the regulation of synaptic plasticity and cognitive function; however, isoform-specific roles of AMPK in the central nervous system (CNS) remain elusive. Regulation of the AMPK activities has focused on the manipulation of the α or γ subunit. Meanwhile, accumulating evidence indicates that the β subunit is critical for sensing nutrients such as fatty acids and glycogen to control AMPK activity. Here, we generated transgenic mice with conditional suppression of either AMPKβ1 or β2 in neurons and characterized potential isoform-specific roles of AMPKβ in cognitive function and underlying mechanisms. We found that AMPKβ2 (but not β1) suppression resulted in impaired recognition memory, reduced hippocampal synaptic plasticity, and altered structure of hippocampal postsynaptic densities and dendritic spines. Our study implicates a role for the AMPKβ2 isoform in the regulation of synaptic and cognitive function.
Collapse
Affiliation(s)
- Nathaniel A Swift
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Qian Yang
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Hannah M Jester
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Xueyan Zhou
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Adam Manuel
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne 3000, VIC, Australia
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA; Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| |
Collapse
|
6
|
Jalil AT, Zair MA, Hanthal ZR, Naser SJ, Aslandook T, Abosaooda M, Fadhil A. Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Indian J Clin Biochem 2024; 39:450-458. [PMID: 39346714 PMCID: PMC11436500 DOI: 10.1007/s12291-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by elevated androgen levels, menstrual irregularities, and polycystic morphology of the ovaries. Affecting 6-10% of women in childbearing age, PCOS is a leading cause of infertility worldwide. In recent years, there has been a growing acknowledgment of the involvement of adenosine monophosphate-activated protein kinase (AMPK) in the development of polycystic ovary syndrome (PCOS). The expression of AMPK is diminished in polycystic ovaries, and when AMPK is silenced in human granulosa cells, there is a rise in the expression of steroidogenic enzymes, resulting in increased production of estradiol and progesterone. Additionally, in mouse models, the inhibiting AMPK intensifies the polycystic appearance of ovaries and impairs the process of ovulation. Moreover, it has been shown that AMPK activators like metformin and resveratrol ameliorate PCOS associated signs and symptoms in experimental and clinical studies. These findings, collectively, indicate the key role of AMPK in the pathogenesis of PCOS. Understanding the role of AMPK in PCOS will offer rewarding information on details of PCOS pathogenesis and will provide novel more specific therapeutic approaches. The present review summarizes the latest findings regarding the role of AMPK in PCOS obtained in experimental and clinical studies.
Collapse
Affiliation(s)
- Abduldaheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon Iraq
| | - Mahdi Abd Zair
- Department of Pharmacy, Kut University College, Kut, Wasit Iraq
| | | | - Sarmad Jaafar Naser
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- Medical Laboratory Technology Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
7
|
Kim JS, Kehrl JH. Inhibition of WNK Kinases in NK Cells Disrupts Cellular Osmoregulation and Control of Tumor Metastasis. J Innate Immun 2024; 16:451-469. [PMID: 39265537 PMCID: PMC11521464 DOI: 10.1159/000540744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The serine/threonine with-no-lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood. METHODS Using the small-molecule WNK kinase inhibitors WNK463 and WNK-IN-11, we investigated how WNK kinase inhibition affects natural killer (NK) cell physiology. RESULTS WNK kinase inhibition with WNK463 or WNK-IN-11 significantly decreased IL-2-activated NK cell volume, motility, and cytolytic activity. Treatment of NK cells with these inhibitors induced autophagy by activating AMPK and inhibiting mTOR signaling. Moreover, WNK kinase inhibition increased phosphorylation of Akt and c-Myc by misaligning activity of activating kinases and inhibitory phosphatases. Treatment of tumor-bearing mice with WNK463 impaired tumor metastasis control by adoptively transferred NK cells. CONCLUSION The catalytic activity of WNK kinases has a critical role of multiple aspects of NK cell physiology and their pharmacologic inhibition negatively impacts NK cell function.
Collapse
Affiliation(s)
- Ji Sung Kim
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Avital-Cohen N, Chapnik N, Froy O. Resveratrol Induces Myotube Development by Altering Circadian Metabolism via the SIRT1-AMPK-PP2A Axis. Cells 2024; 13:1069. [PMID: 38920697 PMCID: PMC11201382 DOI: 10.3390/cells13121069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.
Collapse
Affiliation(s)
| | | | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (N.A.-C.); (N.C.)
| |
Collapse
|
9
|
Langer HT, Rohm M, Goncalves MD, Sylow L. AMPK as a mediator of tissue preservation: time for a shift in dogma? Nat Rev Endocrinol 2024:10.1038/s41574-024-00992-y. [PMID: 38760482 DOI: 10.1038/s41574-024-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcus DaSilva Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lykke Sylow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Xu X, Fang Y, Nowsheen S, Li YX, Lou Z, Deng M. Regulation of AMPK activation by extracellular matrix stiffness in pancreatic cancer. Genes Dis 2024; 11:101035. [PMID: 38292173 PMCID: PMC10825306 DOI: 10.1016/j.gendis.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 02/01/2024] Open
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) sits at a central node in the regulation of energy metabolism and tumor progression. AMPK is best known to sense high cellular ADP or AMP levels, which indicate the depletion of energy stores. Previous studies have shown that the low expression of phosphorylated AMPK is associated with a poor prognosis of pancreatic cancer. In this study, we report that AMPK is also highly sensitive to extracellular matrix (ECM) stiffness. We found that AMPK is activated in cells when cultured under low ECM stiffness conditions and is functionally required for the metabolic switch induced by ECM stiffness. This regulation of AMPK requires the Hippo kinases but not LKB1/CaMKKβ. Hippo kinases directly phosphorylate AMPKα at Thr172 to activate AMPK at low ECM stiffness. Furthermore, we found AMPK activity is inhibited in patients with pancreatic ductal adenocarcinoma (PDAC) with high ECM stiffness and is associated with a poor survival outcome. The activation of Hippo kinases by ROCK inhibitor Y-27632 in combination with the mitochondrial inhibitor metformin synergistically activates AMPK and dramatically inhibits PDAC growth. Together, these findings establish a novel model for AMPK regulation by the mechanical properties of ECMs and provide a rationale for simultaneously targeting the ECM stiffness-Hippo kinases-AMPK signaling and low glucose-LKB1-AMPK signaling pathways as an effective therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92093, USA
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
11
|
Choi S, Sarker MK, Yu MR, Lee H, Kwon SH, Jeon JS, Noh H, Kim H. MicroRNA-5010-5p ameliorates high-glucose induced inflammation in renal tubular epithelial cells by modulating the expression of PPP2R2D. BMJ Open Diabetes Res Care 2024; 12:e003784. [PMID: 38442987 PMCID: PMC11146382 DOI: 10.1136/bmjdrc-2023-003784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION We previously reported the significant upregulation of eight circulating exosomal microRNAs (miRNAs) in patients with diabetic kidney disease (DKD). However, their specific roles and molecular mechanisms in the kidney remain unknown. Among the eight miRNAs, we evaluated the effects of miR-5010-5p on renal tubular epithelial cells under diabetic conditions in this study. RESEARCH DESIGN AND METHODS We transfected the renal tubular epithelial cell line, HK-2, with an miR-5010-5p mimic using recombinant plasmids. The target gene of hsa-miR-5010-5p was identified using a dual-luciferase assay. Cell viability was assessed via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Moreover, mRNA and protein expression levels were determined via real-time PCR and western blotting, respectively. RESULTS High glucose levels did not significantly affect the intracellular expression of miR-5010-5p in HK-2 cells. Transfection of the miR-5010-5p mimic caused no change in cell viability. However, miR-5010-5p-transfected HK-2 cells exhibited significantly decreased expression levels of inflammatory cytokines, such as the monocyte chemoattractant protein-1, interleukin-1β, and tumor necrosis factor-ɑ, under high-glucose conditions. These changes were accompanied by the restored expression of phosphorylated AMP-activated protein kinase (AMPK) and decreased phosphorylation of nuclear factor-kappa B. Dual-luciferase assay revealed that miR-5010-5p targeted the gene, protein phosphatase 2 regulatory subunit B delta (PPP2R2D), a subunit of protein phosphatase 2A, which modulates AMPK phosphorylation. CONCLUSIONS Our findings suggest that increased miR-5010-5p expression reduces high glucose-induced inflammatory responses in renal tubular epithelial cells via the regulation of the target gene, PPP2R2D, which modulates AMPK phosphorylation. Therefore, miR-5010-5p may be a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Sunghee Choi
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
| | | | - Mi Ra Yu
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
| | - Haekyung Lee
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Soon Hyo Kwon
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Jin Seok Jeon
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Hyunjin Noh
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Hyoungnae Kim
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| |
Collapse
|
12
|
Braverman EL, McQuaid MA, Schuler H, Qin M, Hani S, Hippen K, Monlish DA, Dobbs AK, Ramsey MJ, Kemp F, Wittmann C, Ramgopal A, Brown H, Blazar B, Byersdorfer CA. Overexpression of AMPKγ2 increases AMPK signaling to augment human T cell metabolism and function. J Biol Chem 2024; 300:105488. [PMID: 38000657 PMCID: PMC10825059 DOI: 10.1016/j.jbc.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular therapies are currently employed to treat a variety of disease processes. For T cell-based therapies, success often relies on the metabolic fitness of the T cell product, where cells with enhanced metabolic capacity demonstrate improved in vivo efficacy. AMP-activated protein kinase (AMPK) is a cellular energy sensor which combines environmental signals with cellular energy status to enforce efficient and flexible metabolic programming. We hypothesized that increasing AMPK activity in human T cells would augment their oxidative capacity, creating an ideal product for adoptive cellular therapies. Lentiviral transduction of the regulatory AMPKγ2 subunit stably enhanced intrinsic AMPK signaling and promoted mitochondrial respiration with increased basal oxygen consumption rates, higher maximal oxygen consumption rate, and augmented spare respiratory capacity. These changes were accompanied by increased proliferation and inflammatory cytokine production, particularly within restricted glucose environments. Introduction of AMPKγ2 into bulk CD4 T cells decreased RNA expression of canonical Th2 genes, including the cytokines interleukin (IL)-4 and IL-5, while introduction of AMPKγ2 into individual Th subsets universally favored proinflammatory cytokine production and a downregulation of IL-4 production in Th2 cells. When AMPKγ2 was overexpressed in regulatory T cells, both in vitro proliferation and suppressive capacity increased. Together, these data suggest that augmenting intrinsic AMPK signaling via overexpression of AMPKγ2 can improve the expansion and functional potential of human T cells for use in a variety of adoptive cellular therapies.
Collapse
Affiliation(s)
- Erica L Braverman
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Margaret A McQuaid
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Herbert Schuler
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mengtao Qin
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Sophia Hani
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keli Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darlene A Monlish
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Manda J Ramsey
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Felicia Kemp
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher Wittmann
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Harrison Brown
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
13
|
Hatsuda A, Kurisu J, Fujishima K, Kawaguchi A, Ohno N, Kengaku M. Calcium signals tune AMPK activity and mitochondrial homeostasis in dendrites of developing neurons. Development 2023; 150:dev201930. [PMID: 37823352 DOI: 10.1242/dev.201930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Dendritic outgrowth in immature neurons is enhanced by neuronal activity and is considered one of the mechanisms of neural circuit optimization. It is known that calcium signals affect transcriptional regulation and cytoskeletal remodeling necessary for dendritic outgrowth. Here, we demonstrate that activity-dependent calcium signaling also controls mitochondrial homeostasis via AMP-activated protein kinase (AMPK) in growing dendrites of differentiating mouse hippocampal neurons. We found that the inhibition of neuronal activity induced dendritic hypotrophy with abnormally elongated mitochondria. In growing dendrites, AMPK is activated by neuronal activity and dynamically oscillates in synchrony with calcium spikes, and this AMPK oscillation was inhibited by CaMKK2 knockdown. AMPK activation led to phosphorylation of MFF and ULK1, which initiate mitochondrial fission and mitophagy, respectively. Dendritic mitochondria in AMPK-depleted neurons exhibited impaired fission and mitophagy and displayed multiple signs of dysfunction. Genetic inhibition of fission led to dendritic hypoplasia that was reminiscent of AMPK-deficient neurons. Thus, AMPK activity is finely tuned by the calcium-CaMKK2 pathway and regulates mitochondrial homeostasis by facilitating removal of damaged components of mitochondria in growing neurons during normal brain development.
Collapse
Affiliation(s)
- Akane Hatsuda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Alfaro GF, Palombo V, D’Andrea M, Cao W, Zhang Y, Beever J, Muntifering RB, Pacheco WJ, Rodning SP, Wang X, Moisá SJ. Hepatic transcript profiling in beef cattle: Effects of rumen-protected niacin supplementation. PLoS One 2023; 18:e0289409. [PMID: 37535643 PMCID: PMC10399858 DOI: 10.1371/journal.pone.0289409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
The objective of our study was to assess the effect of rumen-protected niacin supplementation on the transcriptome of liver tissue in growing Angus × Simmental steers and heifers through RNA-seq analysis. Consequently, we wanted to assess the known role of niacin in the physiological processes of vasodilation, detoxification, and immune function in beef hepatic tissue. Normal weaned calves (~8 months old) were provided either a control diet or a diet supplemented with rumen-protected niacin (6 g/hd/d) for a 30-day period, followed by a liver biopsy. We observed a significant list of changes at the transcriptome level due to rumen-protected niacin supplementation. Several metabolic pathways revealed potential positive effects to the animal's liver metabolism due to administration of rumen-protected niacin; for example, a decrease in lipolysis, apoptosis, inflammatory responses, atherosclerosis, oxidative stress, fibrosis, and vasodilation-related pathways. Therefore, results from our study showed that the liver transcriptional machinery switched several metabolic pathways to a condition that could potentially benefit the health status of animals supplemented with rumen-protected niacin. In conclusion, based on the results of our study, we can suggest the utilization of rumen-protected niacin supplementation as a nutritional strategy could improve the health status of growing beef cattle in different beef production stages, such as backgrounding operations or new arrivals to a feedlot.
Collapse
Affiliation(s)
- Gastón F. Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Mariasilvia D’Andrea
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Wenqi Cao
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Yue Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Jonathan Beever
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Russell B. Muntifering
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
- Cooperative Extension Service, University of Kentucky, Kentucky, Lexington, United States of America
| | - Wilmer J. Pacheco
- Department of Poultry Sciences, Auburn University, Auburn, AL, United States of America
| | - Soren P. Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Sonia J. Moisá
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
15
|
Vertyshev AY, Akberdin IR, Kolpakov FA. Numerous Trigger-like Interactions of Kinases/Protein Phosphatases in Human Skeletal Muscles Can Underlie Transient Processes in Activation of Signaling Pathways during Exercise. Int J Mol Sci 2023; 24:11223. [PMID: 37446402 DOI: 10.3390/ijms241311223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Optimizing physical training regimens to increase muscle aerobic capacity requires an understanding of the internal processes that occur during exercise that initiate subsequent adaptation. During exercise, muscle cells undergo a series of metabolic events that trigger downstream signaling pathways and induce the expression of many genes in working muscle fibers. There are a number of studies that show the dependence of changes in the activity of AMP-activated protein kinase (AMPK), one of the mediators of cellular signaling pathways, on the duration and intensity of single exercises. The activity of various AMPK isoforms can change in different directions, increasing for some isoforms and decreasing for others, depending on the intensity and duration of the load. This review summarizes research data on changes in the activity of AMPK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and other components of the signaling pathways in skeletal muscles during exercise. Based on these data, we hypothesize that the observed changes in AMPK activity may be largely related to metabolic and signaling transients rather than exercise intensity per se. Probably, the main events associated with these transients occur at the beginning of the exercise in a time window of about 1-10 min. We hypothesize that these transients may be partly due to putative trigger-like kinase/protein phosphatase interactions regulated by feedback loops. In addition, numerous dynamically changing factors, such as [Ca2+], metabolite concentration, and reactive oxygen and nitrogen species (RONS), can shift the switching thresholds and change the states of these triggers, thereby affecting the activity of kinases (in particular, AMPK and CaMKII) and phosphatases. The review considers the putative molecular mechanisms underlying trigger-like interactions. The proposed hypothesis allows for a reinterpretation of the experimental data available in the literature as well as the generation of ideas to optimize future training regimens.
Collapse
Affiliation(s)
| | - Ilya R Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fedor A Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Converting and hoarding driven by protein phosphorylation in Toxoplasma gondii. Trends Parasitol 2023; 39:232-234. [PMID: 36804381 DOI: 10.1016/j.pt.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023]
Abstract
Successful parasitism relies on the evasion of adversarial host responses. Wang et al. have recently shown that Toxoplasma gondii relies on the protein phosphatase 2A (PP2A) to cause persisting infections. The phosphatase controls the development of dormant parasite stages and the accumulation of sugar supplies.
Collapse
|
17
|
Livelo C, Guo Y, Abou Daya F, Rajasekaran V, Varshney S, Le HD, Barnes S, Panda S, Melkani GC. Time-restricted feeding promotes muscle function through purine cycle and AMPK signaling in Drosophila obesity models. Nat Commun 2023; 14:949. [PMID: 36810287 PMCID: PMC9944249 DOI: 10.1038/s41467-023-36474-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Obesity caused by genetic and environmental factors can lead to compromised skeletal muscle function. Time-restricted feeding (TRF) has been shown to prevent muscle function decline from obesogenic challenges; however, its mechanism remains unclear. Here we demonstrate that TRF upregulates genes involved in glycine production (Sardh and CG5955) and utilization (Gnmt), while Dgat2, involved in triglyceride synthesis is downregulated in Drosophila models of diet- and genetic-induced obesity. Muscle-specific knockdown of Gnmt, Sardh, and CG5955 lead to muscle dysfunction, ectopic lipid accumulation, and loss of TRF-mediated benefits, while knockdown of Dgat2 retains muscle function during aging and reduces ectopic lipid accumulation. Further analyses demonstrate that TRF upregulates the purine cycle in a diet-induced obesity model and AMPK signaling-associated pathways in a genetic-induced obesity model. Overall, our data suggest that TRF improves muscle function through modulations of common and distinct pathways under different obesogenic challenges and provides potential targets for obesity treatments.
Collapse
Affiliation(s)
- Christopher Livelo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Vasanthi Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shweta Varshney
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
18
|
Kashani E, Vassella E. Pleiotropy of PP2A Phosphatases in Cancer with a Focus on Glioblastoma IDH Wildtype. Cancers (Basel) 2022; 14:5227. [PMID: 36358647 PMCID: PMC9654311 DOI: 10.3390/cancers14215227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Serine/Threonine protein phosphatase 2A (PP2A) is a heterotrimeric (or occasionally, heterodimeric) phosphatase with pleiotropic functions and ubiquitous expression. Despite the fact that they all contribute to protein dephosphorylation, multiple PP2A complexes exist which differ considerably by their subcellular localization and their substrate specificity, suggesting diverse PP2A functions. PP2A complex formation is tightly regulated by means of gene expression regulation by transcription factors, microRNAs, and post-translational modifications. Furthermore, a constant competition between PP2A regulatory subunits is taking place dynamically and depending on the spatiotemporal circumstance; many of the integral subunits can outcompete the rest, subjecting them to proteolysis. PP2A modulation is especially important in the context of brain tumors due to its ability to modulate distinct glioma-promoting signal transduction pathways, such as PI3K/Akt, Wnt, Ras, NF-κb, etc. Furthermore, PP2A is also implicated in DNA repair and survival pathways that are activated upon treatment of glioma cells with chemo-radiation. Depending on the cancer cell type, preclinical studies have shown some promise in utilising PP2A activator or PP2A inhibitors to overcome therapy resistance. This review has a special focus on "glioblastoma, IDH wild-type" (GBM) tumors, for which the therapy options have limited efficacy, and tumor relapse is inevitable.
Collapse
Affiliation(s)
- Elham Kashani
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
19
|
Kim YS, Ko B, Kim DJ, Tak J, Han CY, Cho JY, Kim W, Kim SG. Induction of the hepatic aryl hydrocarbon receptor by alcohol dysregulates autophagy and phospholipid metabolism via PPP2R2D. Nat Commun 2022; 13:6080. [PMID: 36241614 PMCID: PMC9568535 DOI: 10.1038/s41467-022-33749-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Disturbed lipid metabolism precedes alcoholic liver injury. Whether and how AhR alters degradation of lipids, particularly phospho-/sphingo-lipids during alcohol exposure, was not explored. Here, we show that alcohol consumption in mice results in induction and activation of aryl hydrocarbon receptor (AhR) in the liver, and changes the hepatic phospho-/sphingo-lipids content. The levels of kynurenine, an endogenous AhR ligand, are elevated with increased hepatic tryptophan metabolic enzymes in alcohol-fed mice. Either alcohol or kynurenine treatment promotes AhR activation with autophagy dysregulation via AMPK. Protein Phosphatase 2 Regulatory Subunit-Bdelta (Ppp2r2d) is identified as a transcriptional target of AhR. Consequently, PPP2R2D-dependent AMPKα dephosphorylation causes autophagy inhibition and mitochondrial dysfunction. Hepatocyte-specific AhR ablation attenuates steatosis, which is associated with recovery of phospho-/sphingo-lipids content. Changes of AhR targets are corroborated using patient specimens. Overall, AhR induction by alcohol inhibits autophagy in hepatocytes through AMPKα, which is mediated by Ppp2r2d gene transactivation, revealing an AhR-dependent metabolism of phospho-/sphingo-lipids.
Collapse
Affiliation(s)
- Yun Seok Kim
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bongsub Ko
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea
| | - Da Jung Kim
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.412484.f0000 0001 0302 820XMetabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082 Korea
| | - Jihoon Tak
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea ,grid.255168.d0000 0001 0671 5021College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| | - Chang Yeob Han
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea ,grid.411545.00000 0004 0470 4320School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Korea
| | - Joo-Youn Cho
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Won Kim
- grid.31501.360000 0004 0470 5905Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sang Geon Kim
- grid.255168.d0000 0001 0671 5021College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| |
Collapse
|
20
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
21
|
Tarasiuk O, Miceli M, Di Domizio A, Nicolini G. AMPK and Diseases: State of the Art Regulation by AMPK-Targeting Molecules. BIOLOGY 2022; 11:biology11071041. [PMID: 36101419 PMCID: PMC9312068 DOI: 10.3390/biology11071041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an enzyme that regulates cellular energy homeostasis, glucose, fatty acid uptake, and oxidation at low cellular ATP levels. AMPK plays an important role in several molecular mechanisms and physiological conditions. It has been shown that AMPK can be dysregulated in different chronic diseases, such as inflammation, diabetes, obesity, and cancer. Due to its fundamental role in physiological and pathological cellular processes, AMPK is considered one of the most important targets for treating different diseases. Over decades, different AMPK targeting compounds have been discovered, starting from those that activate AMPK indirectly by altering intracellular AMP:ATP ratio to compounds that activate AMPK directly by binding to its activation sites. However, indirect altering of intracellular AMP:ATP ratio influences different cellular processes and induces side effects. Direct AMPK activators showed more promising results in eliminating side effects as well as the possibility to engineer drugs for specific AMPK isoforms activation. In this review, we discuss AMPK targeting drugs, especially concentrating on those compounds that activate AMPK by mimicking AMP. These compounds are poorly described in the literature and still, a lot of questions remain unanswered about the exact mechanism of AMP regulation. Future investigation of the mechanism of AMP binding will make it possible to develop new compounds that, in combination with others, can activate AMPK in a synergistic manner.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Correspondence:
| | - Matteo Miceli
- SPILLOproject—Innovative In Silico Solutions for Drug R&D and Pharmacology, 20037 Paderno Dugnano, Italy; (M.M.); (A.D.D.)
| | - Alessandro Di Domizio
- SPILLOproject—Innovative In Silico Solutions for Drug R&D and Pharmacology, 20037 Paderno Dugnano, Italy; (M.M.); (A.D.D.)
| | - Gabriella Nicolini
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
22
|
Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter. Nat Commun 2022; 13:3856. [PMID: 35790710 PMCID: PMC9256702 DOI: 10.1038/s41467-022-31190-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of cellular energetics which coordinates metabolism by phosphorylating a plethora of substrates throughout the cell. But how AMPK activity is regulated at different subcellular locations for precise spatiotemporal control over metabolism is unclear. Here we present a sensitive, single-fluorophore AMPK activity reporter (ExRai AMPKAR), which reveals distinct kinetic profiles of AMPK activity at the mitochondria, lysosome, and cytoplasm. Genetic deletion of the canonical upstream kinase liver kinase B1 (LKB1) results in slower AMPK activity at lysosomes but does not affect the response amplitude at lysosomes or mitochondria, in sharp contrast to the necessity of LKB1 for maximal cytoplasmic AMPK activity. We further identify a mechanism for AMPK activity in the nucleus, which results from cytoplasmic to nuclear shuttling of AMPK. Thus, ExRai AMPKAR enables illumination of the complex subcellular regulation of AMPK signaling.
Collapse
|
23
|
Trujillo-Del Río C, Tortajada-Pérez J, Gómez-Escribano AP, Casterá F, Peiró C, Millán JM, Herrero MJ, Vázquez-Manrique RP. Metformin to treat Huntington disease: a pleiotropic drug against a multi-system disorder. Mech Ageing Dev 2022; 204:111670. [DOI: 10.1016/j.mad.2022.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022]
|
24
|
Chatam O, Chapnik N, Froy O. Resveratrol Induces the Fasting State and Alters Circadian Metabolism in Hepatocytes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:128-134. [PMID: 35178649 DOI: 10.1007/s11130-022-00954-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Resveratrol is a nutritional substance that has both metabolic and circadian effects. While some studies indicate a correlation between resveratrol and reduced gluconeogenesis, others propose the opposite. Our aim was to study the metabolic effect of resveratrol around the circadian clock in order to determine more accurately the hepatic signaling pathways involved. AML-12 hepatocytes were treated with resveratrol and clock and metabolic markers were measured around the clock. Resveratrol-treated AML-12 hepatocytes showed reduced ratio of the following key metabolic factors: phosphorylated PP2A to total PP2A (pPP2A/PP2A), pAKT/AKT, pFOXO1/FOXO1 and pAMPK/AMPK, indicating inhibition of AKT and AMPK, but activation of PP2A and FOXO1. In addition, the levels of phosphorylated mTOR were low after resveratrol treatment. The levels of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) were significantly higher after resveratrol treatment. In accordance with the reduced mTOR activity, the ratio of pBMAL1/BMAL1, the clock transcription factor, also decreased. Bmal1 mRNA oscillated robustly in AML-12 hepatocytes, but resveratrol treatment led to a phase advance and a decrease in its amplitude, similarly to the effect on Srebp1c and Pgc1α mRNA. After resveratrol treatment, daily mRNA levels of Bmal1, Sirt1 and Srebp1c were significantly higher. Resveratrol changes the circadian expression of metabolic and clock genes activating the fasting state and inducing the PP2A-FOXO1-PEPCK pathway.
Collapse
Affiliation(s)
- Opal Chatam
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
25
|
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021; 14:nu14010107. [PMID: 35010981 PMCID: PMC8746862 DOI: 10.3390/nu14010107] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function. In this paper, we review astaxanthin’s well-known antioxidant activity, and expand on astaxanthin’s lesser-known molecular targets, and its role in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| |
Collapse
|
26
|
Multi-Omics Approach Profiling Metabolic Remodeling in Early Systolic Dysfunction and in Overt Systolic Heart Failure. Int J Mol Sci 2021; 23:ijms23010235. [PMID: 35008662 PMCID: PMC8745344 DOI: 10.3390/ijms23010235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023] Open
Abstract
Metabolic remodeling plays an important role in the pathophysiology of heart failure (HF). We sought to characterize metabolic remodeling and implicated signaling pathways in two rat models of early systolic dysfunction (MOD), and overt systolic HF (SHF). Tandem mass tag-labeled shotgun proteomics, phospho-(p)-proteomics, and non-targeted metabolomics analyses were performed in left ventricular myocardium tissue from Sham, MOD, and SHF using liquid chromatography–mass spectrometry, n = 3 biological samples per group. Mitochondrial proteins were predominantly down-regulated in MOD (125) and SHF (328) vs. Sham. Of these, 82% (103/125) and 66% (218/328) were involved in metabolism and respiration. Oxidative phosphorylation, mitochondrial fatty acid β-oxidation, Krebs cycle, branched-chain amino acids, and amino acid (glutamine and tryptophan) degradation were highly enriched metabolic pathways that decreased in SHF > MOD. Glycogen and glucose degradation increased predominantly in MOD, whereas glycolysis and pyruvate metabolism decreased predominantly in SHF. PKA signaling at the endoplasmic reticulum–mt interface was attenuated in MOD, whereas overall PKA and AMPK cellular signaling were attenuated in SHF vs. Sham. In conclusion, metabolic remodeling plays an important role in myocardial remodeling. PKA and AMPK signaling crosstalk governs metabolic remodeling in progression to SHF.
Collapse
|
27
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
28
|
Saha M, Deshpande N, Dubey A, Pal D, Atreya HS, Rangarajan A. Sustained AMPK Activation and Proline Metabolism Play Critical Roles in the Survival of Matrix-Deprived Transformed Cells. Front Cell Dev Biol 2021; 9:771366. [PMID: 34869367 PMCID: PMC8634847 DOI: 10.3389/fcell.2021.771366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Attachment to the matrix is critical for the survival of adherent cells, whereas detachment triggers death by apoptosis. Therefore, solid tumors must acquire the ability to survive the stress of matrix-detachment to transit through circulation and seed metastases. Although a central role for energy metabolism in cancer progression is well established, what distinguishes its role in the cellular state of the matrix-deprived form compared to the matrix-attached form is not fully understood yet. Using an in vitro transformation model dependent on simian virus 40 (SV40) small t (ST) antigen for cellular survival and proliferation in matrix-deprived conditions, we demonstrate that 5′-adenosine monophosphate-activated protein kinase (AMPK) activity is elevated and sustained under matrix-deprived conditions in ST-expressing fibroblasts. Additionally, these cells display elevated energy (ATP) levels under matrix-deprived conditions in contrast to cells lacking ST expression. The elevated ATP levels are coupled to increased levels of proline in ST-expressing cells, as revealed by metabolomics studies. The AMPK-dependent upregulation of proline oxidase, an enzyme of proline degradation, is a key link for elevated ATP levels. This functional link is further established by proline supplementation concomitant with AMPK activation in matrix-deprived cells lacking ST antigen, yielding ATP and enhancing survival. Thus, our data establishes a key role for AMPK-dependent regulation of proline metabolism in mediating energy homeostasis and promoting survival of matrix-deprived cells. These findings identify key markers that distinguish the metabolic states of matrix-detached and matrix-attached transformed cells and have implications in developing novel therapeutic strategies for specifically targeting matrix-detached metastasizing cancer cells.
Collapse
Affiliation(s)
- Manipa Saha
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Neha Deshpande
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Abhinav Dubey
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, India.,NMR Research Centre, Indian Institute of Science, Bangalore, India
| | - Debnath Pal
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, India.,Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, India.,Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Annapoorni Rangarajan
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
29
|
Yu LP, Shi TT, Li YQ, Mu JK, Yang YQ, Li WX, Yu J, Yang XX. The impact of Traditional Chinese Medicine on mitophagy in disease models. Curr Pharm Des 2021; 28:488-496. [PMID: 34620055 DOI: 10.2174/1381612827666211006150410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.
Collapse
Affiliation(s)
- Li-Ping Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Ting-Ting Shi
- Department of Pharmaceutical Preparation, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310023. China
| | - Yan-Qin Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Jian-Kang Mu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Ya-Qin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Wei-Xi Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| |
Collapse
|
30
|
Major E, Győry F, Horváth D, Keller I, Tamás I, Uray K, Fülöp P, Lontay B. Smoothelin-Like Protein 1 Regulates Development and Metabolic Transformation of Skeletal Muscle in Hyperthyroidism. Front Endocrinol (Lausanne) 2021; 12:751488. [PMID: 34675885 PMCID: PMC8524136 DOI: 10.3389/fendo.2021.751488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Hyperthyroidism triggers a glycolytic shift in skeletal muscle (SKM) by altering the expression of metabolic proteins, which is often accompanied by peripheral insulin resistance. Our previous results show that smoothelin-like protein 1 (SMTNL1), a transcriptional co-regulator, promotes insulin sensitivity in SKM. Our aim was to elucidate the role of SMTNL1 in SKM under physiological and pathological 3,3',5-Triiodo-L-thyronine (T3) concentrations. Human hyper- and euthyroid SKM biopsies were used for microarray analysis and proteome profiler arrays. Expression of genes related to energy production, nucleic acid- and lipid metabolism was changed significantly in hyperthyroid samples. The phosphorylation levels and activity of AMPKα2 and JNK were increased by 15% and 23%, respectively, in the hyperthyroid samples compared to control. Moreover, SMTNL1 expression showed a 6-fold decrease in the hyperthyroid samples and in T3-treated C2C12 cells. Physiological and supraphysiological concentrations of T3 were applied on differentiated C2C12 cells upon SMTNL1 overexpression to assess the activity and expression level of the elements of thyroid hormone signaling, insulin signaling and glucose metabolism. Our results demonstrate that SMTNL1 selectively regulated TRα expression. Overexpression of SMTNL1 induced insulin sensitivity through the inhibition of JNK activity by 40% and hampered the non-genomic effects of T3 by decreasing the activity of ERK1/2 through PKCδ. SMTNL1 overexpression reduced IRS1 Ser307 and Ser612 phosphorylation by 52% and 53%, respectively, in hyperthyroid model to restore the normal responsiveness of glucose transport to insulin. SMTNL1 regulated glucose phosphorylation and balances glycolysis and glycogen synthesis via the downregulation of hexokinase II by 1.3-fold. Additionally, mitochondrial respiration and glycolysis were measured by SeaHorse analysis to determine cellular metabolic function/phenotype of our model system in real-time. T3 overload strongly increased the rate of acidification and a shift to glycolysis, while SMTNL1 overexpression antagonizes the T3 effects. These lines of evidence suggest that SMTNL1 potentially prevents hyperthyroidism-induced changes in SKM, and it holds great promise as a novel therapeutic target in insulin resistance.
Collapse
Affiliation(s)
- Evelin Major
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Horváth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilka Keller
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Tamás
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Fülöp
- Department of Internal Medicine, Division of Metabolism, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
31
|
Phosphatase PHLPP2 regulates the cellular response to metabolic stress through AMPK. Cell Death Dis 2021; 12:904. [PMID: 34608126 PMCID: PMC8490465 DOI: 10.1038/s41419-021-04196-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
PHLPP2 is a member of the PHLPP family of phosphatases, known to suppress cell growth by inhibiting proliferation or promoting apoptosis. Oncogenic kinases Akt, S6K, and PKC, and pro-apoptotic kinase Mst1, have been recognized as functional targets of the PHLPP family. However, we observed that, in T-leukemia cells subjected to metabolic stress from glucose limitation, PHLPP2 specifically targets the energy-sensing AMP-activated protein kinase, pAMPK, rather than Akt or S6K. PHLPP2 dephosphorylates pAMPK in several other human cancer cells as well. PHLPP2 and pAMPK interact with each other, and the pleckstrin homology (PH) domain on PHLPP2 is required for their interaction, for dephosphorylating and inactivating AMPK, and for the apoptotic response of the leukemia cells to glucose limitation. Silencing PHLPP2 protein expression prolongs the survival of leukemia cells subjected to severe glucose limitation by promoting a switch to AMPK-mediated fatty acid oxidation for energy generation. Thus, this study reveals a novel role for PHLPP2 in suppressing a survival response mediated through AMPK signaling. Given the multiple ways in which PHLPP phosphatases act to oppose survival signaling in cancers and the pivotal role played by AMPK in redox homeostasis via glucose and fatty acid metabolism, the revelation that AMPK is a target of PHLPP2 could lead to better therapeutics directed both at cancer and at metabolic diseases.
Collapse
|
32
|
Human Placental Transcriptome Reveals Critical Alterations in Inflammation and Energy Metabolism with Fetal Sex Differences in Spontaneous Preterm Birth. Int J Mol Sci 2021; 22:ijms22157899. [PMID: 34360662 PMCID: PMC8347496 DOI: 10.3390/ijms22157899] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/29/2023] Open
Abstract
A well-functioning placenta is crucial for normal gestation and regulates the nutrient, gas, and waste exchanges between the maternal and fetal circulations and is an important endocrine organ producing hormones that regulate both the maternal and fetal physiologies during pregnancy. Placental insufficiency is implicated in spontaneous preterm birth (SPTB). We proposed that deficits in the capacity of the placenta to maintain bioenergetic and metabolic stability during pregnancy may ultimately result in SPTB. To explore our hypothesis, we performed a RNA-seq study in male and female placentas from women with SPTB (<36 weeks gestation) compared to normal pregnancies (≥38 weeks gestation) to assess the alterations in the gene expression profiles. We focused exclusively on Black women (cases and controls), who are at the highest risk of SPTB. Six hundred and seventy differentially expressed genes were identified in male SPTB placentas. Among them, 313 and 357 transcripts were increased and decreased, respectively. In contrast, only 61 differentially expressed genes were identified in female SPTB placenta. The ingenuity pathway analysis showed alterations in the genes and canonical pathways critical for regulating inflammation, oxidative stress, detoxification, mitochondrial function, energy metabolism, and the extracellular matrix. Many upstream regulators and master regulators important for nutrient-sensing and metabolism were also altered in SPTB placentas, including the PI3K complex, TGFB1/SMADs, SMARCA4, TP63, CDKN2A, BRCA1, and NFAT. The transcriptome was integrated with published human placental metabolome to assess the interactions of altered genes and metabolites. Collectively, significant and biologically relevant alterations in the transcriptome were identified in SPTB placentas with fetal sex disparities. Altered energy metabolism, mitochondrial function, inflammation, and detoxification may underly the mechanisms of placental dysfunction in SPTB.
Collapse
|
33
|
Luo J, Odaka Y, Huang Z, Cheng B, Liu W, Li L, Shang C, Zhang C, Wu Y, Luo Y, Yang S, Houghton PJ, Guo X, Huang S. Dihydroartemisinin Inhibits mTORC1 Signaling by Activating the AMPK Pathway in Rhabdomyosarcoma Tumor Cells. Cells 2021; 10:cells10061363. [PMID: 34205996 PMCID: PMC8226784 DOI: 10.3390/cells10061363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
Dihydroartemisinin (DHA), an anti-malarial drug, has been shown to possess potent anticancer activity, partly by inhibiting the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling. However, how DHA inhibits mTORC1 is still unknown. Here, using rhabdomyosarcoma (RMS) as a model, we found that DHA reduced cell proliferation and viability in RMS cells, but not those in normal cells, which was associated with inhibition of mTORC1. Mechanistically, DHA did not bind to mTOR or FK506 binding protein 12 (FKBP12). In addition, DHA neither inhibited insulin-like growth factor-1 receptor (IGF-1R), phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinase ½ (Erk1/2), nor activated phosphatase and tensin homolog (PTEN) in the cells. Rather, DHA activated AMP-activated protein kinase (AMPK). Pharmacological inhibition of AMPK, ectopic expression dominant negative or kinase-dead AMPK, or knockdown of AMPKα attenuated the inhibitory effect of DHA on mTORC1 in the cells. Additionally, DHA was able to induce dissociation of regulatory-associated protein of mTOR (raptor) from mTOR and inhibit mTORC1 activity. Moreover, treatment with artesunate, a prodrug of DHA, dose-dependently inhibited tumor growth and concurrently activated AMPK and suppressed mTORC1 in RMS xenografts. The results indicated that DHA inhibits mTORC1 by activating AMPK in tumor cells. Our finding supports that DHA or artesunate has a great potential to be repositioned for treatment of RMS.
Collapse
Affiliation(s)
- Jun Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yoshinobu Odaka
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Zhu Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing 246011, China
| | - Bing Cheng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Wang Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Lin Li
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Yang Wu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229-3000, USA;
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.G.); (S.H.); Tel.: +86-20-38295980 (X.G.); +1-318-675-7759 (S.H.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
- Correspondence: (X.G.); (S.H.); Tel.: +86-20-38295980 (X.G.); +1-318-675-7759 (S.H.)
| |
Collapse
|
34
|
Davuluri G, Welch N, Sekar J, Gangadhariah M, Alchirazi KA, Mohan ML, Kumar A, Kant S, Thapaliya S, Stine M, McMullen MR, McCullough RL, Stark GR, Nagy LE, Prasad SVN, Dasarathy S. Activated Protein Phosphatase 2A Disrupts Nutrient Sensing Balance Between Mechanistic Target of Rapamycin Complex 1 and Adenosine Monophosphate-Activated Protein Kinase, Causing Sarcopenia in Alcohol-Associated Liver Disease. Hepatology 2021; 73:1892-1908. [PMID: 32799332 PMCID: PMC8847884 DOI: 10.1002/hep.31524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Despite the high clinical significance of sarcopenia in alcohol-associated cirrhosis, there are currently no effective therapies because the underlying mechanisms are poorly understood. We determined the mechanisms of ethanol-induced impaired phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine monophosphate-activated protein kinase (AMPK) with consequent dysregulated skeletal muscle protein homeostasis (balance between protein synthesis and breakdown). APPROACH AND RESULTS Differentiated murine myotubes, gastrocnemius muscle from mice with loss and gain of function of regulatory genes following ethanol treatment, and skeletal muscle from patients with alcohol-associated cirrhosis were used. Ethanol increases skeletal muscle autophagy by dephosphorylating mTORC1, circumventing the classical kinase regulation by protein kinase B (Akt). Concurrently and paradoxically, ethanol exposure results in dephosphorylation and inhibition of AMPK, an activator of autophagy and inhibitor of mTORC1 signaling. However, AMPK remains inactive with ethanol exposure despite lower cellular and tissue adenosine triphosphate, indicating a "pseudofed" state. We identified protein phosphatase (PP) 2A as a key mediator of ethanol-induced signaling and functional perturbations using loss and gain of function studies. Ethanol impairs binding of endogenous inhibitor of PP2A to PP2A, resulting in methylation and targeting of PP2A to cause dephosphorylation of mTORC1 and AMPK. Activity of phosphoinositide 3-kinase-γ (PI3Kγ), a negative regulator of PP2A, was decreased in response to ethanol. Ethanol-induced molecular and phenotypic perturbations in wild-type mice were observed in PI3Kγ-/- mice even at baseline. Importantly, overexpressing kinase-active PI3Kγ but not the kinase-dead mutant reversed ethanol-induced molecular perturbations. CONCLUSIONS Our study describes the mechanistic underpinnings for ethanol-mediated dysregulation of protein homeostasis by PP2A that leads to sarcopenia with a potential for therapeutic approaches by targeting the PI3Kγ-PP2A axis.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | | | | | - Maradumane L Mohan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Sashi Kant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Samjhana Thapaliya
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - McKenzie Stine
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Megan R McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | | | - George R. Stark
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH,Address correspondence to: Srinivasan Dasarathy MD, Gastroenterology and Hepatology, NE4 208 Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, , Tel: 2164442980, Fax 2164453889; Sathyamangla V Naga Prasad PhD, Cardiovascular and Metabolic Sciences, NB50, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, , Tel: 2164443734, Fax: 2164458204
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH,Address correspondence to: Srinivasan Dasarathy MD, Gastroenterology and Hepatology, NE4 208 Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, , Tel: 2164442980, Fax 2164453889; Sathyamangla V Naga Prasad PhD, Cardiovascular and Metabolic Sciences, NB50, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, , Tel: 2164443734, Fax: 2164458204
| |
Collapse
|
35
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
36
|
Cairns J, Ly RC, Niu N, Kalari KR, Carlson EE, Wang L. CDC25B partners with PP2A to induce AMPK activation and tumor suppression in triple negative breast cancer. NAR Cancer 2020; 2:zcaa039. [PMID: 33385163 PMCID: PMC7751685 DOI: 10.1093/narcan/zcaa039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Cell division cycle 25 (CDC25) dual specificity phosphatases positively regulate the cell cycle by activating cyclin-dependent kinase/cyclin complexes. Here, we demonstrate that in addition to its role in cell cycle regulation, CDC25B functions as a regulator of protein phosphatase 2A (PP2A), a major cellular Ser/Thr phosphatase, through its direct interaction with PP2A catalytic subunit. Importantly, CDC25B alters the regulation of AMP-activated protein kinase signaling (AMPK) by PP2A, increasing AMPK activity by inhibiting PP2A to dephosphorylate AMPK. CDC25B depletion leads to metformin resistance by inhibiting metformin-induced AMPK activation. Furthermore, dual inhibition of CDC25B and PP2A further inhibits growth of 3D organoids isolated from patient derived xenograft model of breast cancer compared to CDC25B inhibition alone. Our study identifies CDC25B as a regulator of PP2A, and uncovers a mechanism of controlling the activity of a key energy metabolism marker, AMPK.
Collapse
Affiliation(s)
- Junmei Cairns
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Reynold C Ly
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nifang Niu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna R Kalari
- Division of Biostatistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Erin E Carlson
- Division of Biostatistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- To whom correspondence should be addressed. Tel: +1 507 284 5264; Fax: +1 507 284 4455;
| |
Collapse
|
37
|
Ayinde KS, Olaoba OT, Ibrahim B, Lei D, Lu Q, Yin X, Adelusi TI. AMPK allostery: A therapeutic target for the management/treatment of diabetic nephropathy. Life Sci 2020; 261:118455. [PMID: 32956662 DOI: 10.1016/j.lfs.2020.118455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a chronic complication of diabetes mellitus (DM) with approximately 30-40% of patients with DM developing nephropathy, and it is the leading cause of end-stage renal diseases and diabetic morbidity. The pathogenesis of DN is primarily associated with irregularities in the metabolism of glucose and lipid leading to hyperglycemia-induced oxidative stress, which has been a major target together with blood pressure regulation in the control of DN progression. However, the regulation of 5' adenosine monophosphate-activated protein kinase (AMPK), a highly conserved protein kinase for maintaining energy balance and cellular growth and repair has been implicated in the development of DM and its complications. Therefore, targeting AMPK pathway has been explored as a therapeutic strategy for the treatment of diabetes and its complication, although most of the mechanisms have not been fully elucidated. In this review, we discuss the structure of AMPK relevant to understanding its allosteric regulation and its role in the pathogenesis and progression of DN. We also identify therapeutic agents that modulate AMPK and its downstream targets with their specific mechanisms of action in the treatment of DN.
Collapse
Affiliation(s)
| | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Boyenle Ibrahim
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Du Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
38
|
Ehling M, Celus W, Martín-Pérez R, Alba-Rovira R, Willox S, Ponti D, Cid MC, Jones EAV, Di Conza G, Mazzone M. B55α/PP2A Limits Endothelial Cell Apoptosis During Vascular Remodeling: A Complementary Approach To Disrupt Pathological Vessels? Circ Res 2020; 127:707-723. [PMID: 32527198 PMCID: PMC7616433 DOI: 10.1161/circresaha.119.316071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE How endothelial cells (ECs) migrate and form an immature vascular plexus has been extensively studied. Yet, mechanisms underlying vascular remodeling remain poorly established. A better understanding of these processes may lead to the design of novel therapeutic strategies complementary to current angiogenesis inhibitors. OBJECTIVE Starting from our previous observations that PP2A (protein phosphatase 2) regulates the HIF (hypoxia-inducible factor)/PHD-2 (prolyl hydroxylase 2)-constituted oxygen machinery, we hypothesized that this axis could play an important role during blood vessel formation, tissue perfusion, and oxygen restoration. METHODS AND RESULTS We show that the PP2A regulatory subunit B55α is at the crossroad between vessel pruning and vessel maturation. Blood vessels with high B55α counter cell stress conditions and thrive for stabilization and maturation. When B55α is inhibited, ECs cannot cope with cell stress and undergo apoptosis, leading to massive pruning of nascent blood vessels. Mechanistically, we found that the B55α/PP2A complex restrains PHD-2 activity, promoting EC survival in a HIF-dependent manner, and furthermore dephosphorylates p38, altogether protecting ECs against cell stress occurring, for example, during the onset of blood flow. In tumors, EC-specific B55α deficiency induces pruning of immature-like tumor blood vessels resulting in delayed tumor growth and metastasis, without affecting nonpathological vessels. Consistently, systemic administration of a pan-PP2A inhibitor disrupts vascular network formation and tumor progression in vivo without additional effects on B55α-deficient vessels. CONCLUSIONS Our data underline a unique role of the B55α/PP2A phosphatase complex in vessel remodeling and suggest the use of PP2A-inhibitors as potent antiangiogenic drugs targeting specifically nascent blood vessels with a mode-of-action complementary to VEGF-R (vascular endothelial growth factor receptor)-targeted therapies. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Manuel Ehling
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Ward Celus
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Rosa Martín-Pérez
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Roser Alba-Rovira
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona (R.A.-R., M.C.C.)
| | - Sander Willox
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Donatella Ponti
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
- Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina (D.P.)
| | - Maria C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona (R.A.-R., M.C.C.)
| | | | - Giusy Di Conza
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Massimiliano Mazzone
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| |
Collapse
|
39
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
40
|
Luan M, Shi SS, Shi DB, Liu HT, Ma RR, Xu XQ, Sun YJ, Gao P. TIPRL, a Novel Tumor Suppressor, Suppresses Cell Migration, and Invasion Through Regulating AMPK/mTOR Signaling Pathway in Gastric Cancer. Front Oncol 2020; 10:1062. [PMID: 32719745 PMCID: PMC7350861 DOI: 10.3389/fonc.2020.01062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Invasion and metastasis of gastric cancer after curative resection remain the most common lethal outcomes. However, our current understanding of the molecular mechanism underlying gastric cancer metastasis is far from complete. Herein, we identified TOR signaling pathway regulator (TIPRL) as a novel metastasis suppressor in gastric cancer through genome-wide gene expression profiling analysis using mRNA microarray. Decreased TIPRL expression was detected in clinical gastric cancer specimens, and low TIPRL expression was correlated with more-advanced TNM stage, distant metastasis, and poor clinical outcome. Moreover, TIPRL was identified as a direct target of miR-216a-5p and miR-383-5p. Functional study revealed that re-expression of TIPRL in gastric cancer cell lines suppressed their migratory and invasive capacities, whereas inverse effects were observed in TIPRL-deficient models. Mechanistically, TIPRL downstream effectors and signaling pathways were investigated using mRNA microarray. Gene expression profiling revealed that TIPRL could not modulate the downstream genes at transcriptional levels, thereby implying that the regulation might occur at the post-transcriptional levels. We further demonstrated that TIPRL induced phosphorylation/activation of AMPK, which in turn attenuated phosphorylation of mTOR, p70S6K, and 4E-BP1, thereby leading to inactivation of mTOR signaling and subsequent suppression of cell migration/invasion in gastric cancer. Taken together, TIPRL acts as a novel metastasis suppressor in gastric cancer, at least in part, through regulating AMPK/mTOR signaling, likely representing a promising target for new therapies in gastric cancer.
Collapse
Affiliation(s)
- Meng Luan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shan-Shan Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Duan-Bo Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Ting Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran-Ran Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao-Qun Xu
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Jing Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
41
|
Chen X, Chen S, Shen T, Yang W, Chen Q, Zhang P, You Y, Sun X, Xu H, Tang Y, Mi J, Yang Y, Ling W. Adropin regulates hepatic glucose production via PP2A/AMPK pathway in insulin-resistant hepatocytes. FASEB J 2020; 34:10056-10072. [PMID: 32579277 DOI: 10.1096/fj.202000115rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/11/2022]
Abstract
Adropin as a secretory peptide has shown a protective role on the disorders of glucose and lipid metabolism. However, the role and mechanism of this peptide on the hepatic glucose production has remained unclear. Adropin knockout (KO) mice were generated to explore its effects on the enhanced hepatic glucose production in obesity. We found that compared to wild-type (WT) mice, adropin-KO mice developed the unbalanced enhanced hepatic glucose production in advance of the whole-body insulin resistance (IR) by high-fat diet (HFD). Mechanistically, adropin dissociated CREB-CRTC2 and FoxO1-PGC1α complex and reduced their binding to the promoters of G6Pase and PEPCK to decrease glucose production in IR. However, these effects were not observed in insulin-sensitive hepatocytes. Furthermore, in IR hepatocytes, dampened AMPK signaling was re-activated by adropin treatment via inhibition of PP2A. To further authenticate AMPK role in vivo, we administrated HFD-fed mice with AAV8-CA AMPKα and found that AMPK activation functionally restored the aberrant glucose production and IR induced by adropin-deficiency. This study provides evidence that adropin activates the AMPK pathway via inhibition of PP2A and decreases the liver glucose production in IR context. Therefore, adropin may represent a novel target for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Tianran Shen
- Department of Nutrition, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wenqi Yang
- Laboratory Center for Sport Science and Medicine, Guangzhou Institute of Physical Education, Guangzhou, PR China
| | - Qian Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, Guangzhou, PR China
| | - Peiwen Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Xiaoyuan Sun
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Huihui Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Jiaxin Mi
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Yan Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| |
Collapse
|
42
|
Ghosh Dastidar S, Das Sharma S, Chakraborty S, Chattarji S, Bhattacharya A, Muddashetty RS. Distinct regulation of bioenergetics and translation by group I mGluR and NMDAR. EMBO Rep 2020; 21:e48037. [PMID: 32351028 PMCID: PMC7271334 DOI: 10.15252/embr.201948037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is responsible for the high energy consumption in the brain. However, the cellular mechanisms draining ATP upon the arrival of a stimulus are yet to be explored systematically at the post-synapse. Here, we provide evidence that a significant fraction of ATP is consumed upon glutamate stimulation to energize mGluR-induced protein synthesis. We find that both mGluR and NMDAR alter protein synthesis and ATP consumption with distinct kinetics at the synaptic-dendritic compartments. While mGluR activation leads to a rapid and sustained reduction in neuronal ATP levels, NMDAR activation has no immediate impact on the same. ATP consumption correlates inversely with the kinetics of protein synthesis for both receptors. We observe a persistent elevation in protein synthesis within 5 minutes of mGluR activation and a robust inhibition of the same within 2 minutes of NMDAR activation, assessed by the phosphorylation status of eEF2 and metabolic labeling. However, a delayed protein synthesis-dependent ATP expenditure ensues after 15 minutes of NMDAR stimulation. We identify a central role for AMPK in the correlation between protein synthesis and ATP consumption. AMPK is dephosphorylated and inhibited upon mGluR activation, while it is phosphorylated upon NMDAR activation. Perturbing AMPK activity disrupts receptor-specific modulations of eEF2 phosphorylation and protein synthesis. Our observations, therefore, demonstrate that the regulation of the AMPK-eEF2 signaling axis by glutamate receptors alters neuronal protein synthesis and bioenergetics.
Collapse
Affiliation(s)
- Sudhriti Ghosh Dastidar
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Shreya Das Sharma
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- The University of Trans‐Disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Sumita Chakraborty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Sumantra Chattarji
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- National Center for Biological SciencesBangaloreIndia
| | - Aditi Bhattacharya
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Ravi S Muddashetty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| |
Collapse
|
43
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
44
|
Yuan D, Zhou S, Liu S, Li K, Zhao H, Long S, Liu H, Xie Y, Su Y, Yu F, Li S. The AMPK-PP2A axis in insect fat body is activated by 20-hydroxyecdysone to antagonize insulin/IGF signaling and restrict growth rate. Proc Natl Acad Sci U S A 2020; 117:9292-9301. [PMID: 32277029 PMCID: PMC7196814 DOI: 10.1073/pnas.2000963117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.
Collapse
Affiliation(s)
- Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shun Zhou
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Haigang Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Hanhan Liu
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongfang Xie
- Bioinformatic College, Chongqing University of Posts and Telecommunications, 400065 Chongqing, China
| | - Yunlin Su
- Key laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Science, 510650 Guangzhou, China
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, Research Link, National University of Singapore, 117604, Singapore
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China;
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
45
|
Kundu A, Shelar S, Ghosh AP, Ballestas M, Kirkman R, Nam H, Brinkley GJ, Karki S, Mobley JA, Bae S, Varambally S, Sudarshan S. 14-3-3 proteins protect AMPK-phosphorylated ten-eleven translocation-2 (TET2) from PP2A-mediated dephosphorylation. J Biol Chem 2020; 295:1754-1766. [PMID: 31901078 PMCID: PMC7008385 DOI: 10.1074/jbc.ra119.011089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 11/06/2022] Open
Abstract
Ten-eleven translocation-2 (TET2) is a member of the methylcytosine dioxygenase family of enzymes and has been implicated in cancer and aging because of its role as a global epigenetic modifier. TET2 has a large N-terminal domain and a catalytic C-terminal region. Previous reports have demonstrated that the TET2 catalytic domain remains active independently of the N-terminal domain. As such, the function of the N terminus of this large protein remains poorly characterized. Here, using yeast two-hybrid screening, co-immunoprecipitation, and several biochemical assays, we found that several isoforms of the 14-3-3 family of proteins bind TET2. 14-3-3 proteins bound TET2 when it was phosphorylated at Ser-99. In particular, we observed that AMP-activated protein kinase-mediated phosphorylation at Ser-99 promotes TET2 stability and increases global DNA 5-hydroxymethylcytosine levels. The interaction of 14-3-3 proteins with TET2 protected the Ser-99 phosphorylation, and disruption of this interaction both reduced TET2 phosphorylation and decreased TET2 stability. Furthermore, we noted that protein phosphatase 2A can interact with TET2 and dephosphorylate Ser-99. Collectively, these results provide detailed insights into the role of the TET2 N-terminal domain in TET2 regulation. Moreover, they reveal the dynamic nature of TET2 protein regulation that could have therapeutic implications for disease states resulting from reduced TET2 levels or activity.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - Sandeep Shelar
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - Arindam P Ghosh
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - Mary Ballestas
- Department of Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Richard Kirkman
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - Hyeyoung Nam
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | | | - Suman Karki
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Sejong Bae
- Department of Medicine, University of Alabama, Birmingham, Alabama 35294
| | | | - Sunil Sudarshan
- Department of Urology, University of Alabama, Birmingham, Alabama 35294; Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35233.
| |
Collapse
|
46
|
Gao X, Zhao L, Liu S, Li Y, Xia S, Chen D, Wang M, Wu S, Dai Q, Vu H, Zacharias L, DeBerardinis R, Lim E, Metallo C, Boggon TJ, Lonial S, Lin R, Mao H, Pan Y, Shan C, Chen J. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol Cell 2019; 76:857-871.e9. [PMID: 31586547 PMCID: PMC6925637 DOI: 10.1016/j.molcel.2019.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/15/2019] [Accepted: 09/04/2019] [Indexed: 01/30/2023]
Abstract
The oxidative pentose phosphate pathway (oxiPPP) contributes to cell metabolism through not only the production of metabolic intermediates and reductive NADPH but also inhibition of LKB1-AMPK signaling by ribulose-5-phosphate (Ru-5-P), the product of the third oxiPPP enzyme 6-phosphogluconate dehydrogenase (6PGD). However, we found that knockdown of glucose-6-phosphate dehydrogenase (G6PD), the first oxiPPP enzyme, did not affect AMPK activation despite decreased Ru-5-P and subsequent LKB1 activation, due to enhanced activity of PP2A, the upstream phosphatase of AMPK. In contrast, knockdown of 6PGD or 6-phosphogluconolactonase (PGLS), the second oxiPPP enzyme, reduced PP2A activity. Mechanistically, knockdown of G6PD or PGLS decreased or increased 6-phosphogluconolactone level, respectively, which enhanced the inhibitory phosphorylation of PP2A by Src. Furthermore, γ-6-phosphogluconolactone, an oxiPPP byproduct with unknown function generated through intramolecular rearrangement of δ-6-phosphogluconolactone, the only substrate of PGLS, bound to Src and enhanced PP2A recruitment. Together, oxiPPP regulates AMPK homeostasis by balancing the opposing LKB1 and PP2A.
Collapse
Affiliation(s)
- Xue Gao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liang Zhao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shuangping Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dong Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mei Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaoxiong Wu
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qing Dai
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Hieu Vu
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren Zacharias
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Esther Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaozhu Pan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changliang Shan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Alsemeh AE, Samak MA, El-Fatah SSA. Therapeutic prospects of hydroxytyrosol on experimentally induced diabetic testicular damage: potential interplay with AMPK expression. Cell Tissue Res 2019; 380:173-189. [PMID: 31838605 DOI: 10.1007/s00441-019-03143-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/14/2019] [Indexed: 01/13/2023]
Abstract
Male reproductive dysfunction represents one of the overlooked consequences of diabetes that still deserve more scientific attention. We designed this study to explore the therapeutic potential of hydroxytyrosol (HT) on diabetic testicular damage and to investigate its relationship with adenosine monophosphate-activated protein kinase (AMPK) expression. In this context, 30 adult male Wistar rats were utilized and subdivided into control, diabetic and HT-treated diabetic groups. Testicular sections were prepared for histopathological examination and immunohistochemical detection of 8-hydroxy-2'-deoxyguanosine, Sertoli cell vimentin, myoid cell α-SMA, androgen receptors and caspase-3. We also assessed oxidative enzymatic and lipid peroxidation biochemical profiles, sperm count, morphology and motility. Real-time PCR of AMPK expression in tissue homogenate was performed. We observed that HT restored testicular histopathological structure and significantly reduced oxidative DNA damage and the apoptotic index. The HT-treated group also exhibited significantly higher Sertoli cell vimentin, myoid cell α-SMA and androgen receptor immune expression than the diabetic group. A rescue of the oxidative enzymatic activity, lipid peroxidation profiles, sperm count, morphology and motility to control levels was also evident in the HT-treated group. Significant upregulation of AMPK mRNA expression in the HT-treated group clarified the role of AMPK as an underlying molecular interface of the ameliorative effects of HT. We concluded that HT exhibited tangible antioxidant and antiapoptotic impacts on the testicular cytomorphological and immunohistochemical effects of experimentally induced diabetes. Furthermore, AMPK has an impactful role in the molecular machinery of these effects.
Collapse
Affiliation(s)
- Amira E Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, alzhor, Zagazig, 44519, Egypt.
| | - Mai A Samak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, alzhor, Zagazig, 44519, Egypt
| |
Collapse
|
48
|
Chen XY, Cai CZ, Yu ML, Feng ZM, Zhang YW, Liu PH, Zeng H, Yu CH. LB100 ameliorates nonalcoholic fatty liver disease via the AMPK/Sirt1 pathway. World J Gastroenterol 2019; 25:6607-6618. [PMID: 31832001 PMCID: PMC6906208 DOI: 10.3748/wjg.v25.i45.6607] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is well known that nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance (IR). LB100, a serine/threonine protein phosphatase 2A (PP2A) inhibitor, is closely related to IR. However, there is little data regarding its direct influence on NAFLD. AIM To elucidate the effect and underlying mechanism of LB100 in NAFLD. METHODS After 10 wk of high fat diet (HFD) feeding, male C57BL/6 mice were injected intraperitoneally with vehicle or LB100 for an additional 6 wk (three times a week). The L02 cell line was treated with LB100 and free fatty acids (FFAs) for 24 h. Hematoxylin and eosin and oil red O staining were performed for histological examination. Western blot analysis was used to detect the protein expression of Sirtuin 1 (Sirt1), total and phosphorylated AMP-activated protein kinase α (AMPKα), and the proteins involved in lipogenesis and fatty acid oxidation. The mRNA levels were determined by qPCR. Pharmacological inhibition of AMPK was performed to further examine the exact mechanism of LB100 in NAFLD. RESULTS LB100 significantly ameliorated HFD-induced obesity, hepatic lipid accumulation and hepatic injury in mice. In addition, LB100 significantly downregulated the protein levels of acetyl-CoA carboxylase, sterol regulatory element-binding protein 1 and its lipogenesis target genes, including stearoyl-CoA desaturase-1 and fatty acid synthase, and upregulated the levels of proteins involved in fatty acid β-oxidation, such as peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), carnitine palmitoyltransferase 1α, acyl-CoA oxidase 1 and uncoupling protein 2, as well as the upstream mediators Sirt1 and AMPKα in the livers of HFD-fed mice. In vitro, LB100 alleviated FFA-induced lipid accumulation in L02 cells through the AMPK/Sirt1 signaling pathway. Further studies showed that the curative effect of LB100 on lipid accumulation was abolished by inhibiting AMPKα in L02 cells. CONCLUSION PP2A inhibition by LB100 significantly ameliorates hepatic steatosis by regulating hepatic lipogenesis and fatty acid oxidation via the AMPK/Sirt1 pathway. LB100 may be a potential therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Xue-Yang Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chang-Zhou Cai
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Li Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ze-Min Feng
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yu-Wei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Pei-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chao-Hui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Clinical Research Center for Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
49
|
Su KH, Dai S, Tang Z, Xu M, Dai C. Heat Shock Factor 1 Is a Direct Antagonist of AMP-Activated Protein Kinase. Mol Cell 2019; 76:546-561.e8. [PMID: 31561952 DOI: 10.1016/j.molcel.2019.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/03/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Through transcriptional control of the evolutionarily conserved heat shock, or proteotoxic stress, response, heat shock factor 1 (HSF1) preserves proteomic stability. Here, we show that HSF1, a physiological substrate for AMP-activated protein kinase (AMPK), constitutively suppresses this central metabolic sensor. By physically evoking conformational switching of AMPK, HSF1 impairs AMP binding to the γ subunits and enhances the PP2A-mediated de-phosphorylation, but it impedes the LKB1-mediated phosphorylation of Thr172, and retards ATP binding to the catalytic α subunits. These immediate and manifold regulations empower HSF1 to both repress AMPK under basal conditions and restrain its activation by diverse stimuli, thereby promoting lipogenesis, cholesterol synthesis, and protein cholesteroylation. In vivo, HSF1 antagonizes AMPK to control body fat mass and drive the lipogenic phenotype and growth of melanomas independently of its intrinsic transcriptional action. Thus, the physical AMPK-HSF1 interaction epitomizes a reciprocal kinase-substrate regulation whereby lipid metabolism and proteomic stability intertwine.
Collapse
Affiliation(s)
- Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Siyuan Dai
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zijian Tang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Graduate programs, Department of Molecular & Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Meng Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
50
|
Abstract
Nutrient overload occurs worldwide as a consequence of the modern diet pattern and the physical inactivity that sometimes accompanies it. Cells initiate multiple protective mechanisms to adapt to elevated intracellular metabolites and restore metabolic homeostasis, but irreversible injury to the cells can occur in the event of prolonged nutrient overload. Many studies have advanced the understanding of the different detrimental effects of nutrient overload; however, few reports have made connections and given the full picture of the impact of nutrient overload on cellular metabolism. In this review, detailed changes in metabolic and energy homeostasis caused by chronic nutrient overload, as well as their associations with the development of metabolic disorders, are discussed. Overnutrition-induced changes in key organelles and sensors rewire cellular bioenergetic pathways and facilitate the shift of the metabolic state toward biosynthesis, thereby leading to the onset of various metabolic disorders, which are essentially the downstream manifestations of a misbalanced metabolic equilibrium. Based on these mechanisms, potential therapeutic targets for metabolic disorders and new research directions are proposed.
Collapse
Affiliation(s)
- Haowen Qiu
- Department of Nutrition and Health Sciences and Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Vicki Schlegel
- Department of Nutrition and Health Sciences and Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|