1
|
Cheong LYT, Saipuljumri EN, Loi GWZ, Zeng J, Lo CH. Autolysosomal Dysfunction in Obesity-induced Metabolic Inflammation and Related Disorders. Curr Obes Rep 2025; 14:43. [PMID: 40366502 PMCID: PMC12078456 DOI: 10.1007/s13679-025-00638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF REVIEW Obesity is a global health crisis affecting individuals across all age groups, significantly increasing the risk of metabolic disorders such as type 2 diabetes (T2D), metabolic dysfunction-associated fatty liver disease (MAFLD), and cardiovascular diseases. The World Health Organization reported in 2022 that 2.5 billion adults were overweight, with 890 million classified as obese, emphasizing the urgent need for effective interventions. A critical aspect of obesity's pathophysiology is meta-inflammation-a chronic, systemic low-grade inflammatory state driven by excess adipose tissue, which disrupts metabolic homeostasis. This review examines the role of autolysosomal dysfunction in obesity-related metabolic disorders, exploring its impact across multiple metabolic organs and evaluating potential therapeutic strategies that target autophagy and lysosomal function. RECENT FINDINGS Emerging research highlights the importance of autophagy in maintaining cellular homeostasis and metabolic balance. Obesity-induced lysosomal dysfunction impairs the autophagic degradation process, contributing to the accumulation of damaged organelles and toxic aggregates, exacerbating insulin resistance, lipotoxicity, and chronic inflammation. Studies have identified autophagic defects in key metabolic tissues, including adipose tissue, skeletal muscle, liver, pancreas, kidney, heart, and brain, linking autophagy dysregulation to the progression of metabolic diseases. Preclinical investigations suggest that pharmacological and nutritional interventions-such as AMPK activation, caloric restriction mimetics, and lysosomal-targeting compounds-can restore autophagic function and improve metabolic outcomes in obesity models. Autolysosomal dysfunction is a pivotal contributor to obesity-associated metabolic disorders , influencing systemic inflammation and metabolic dysfunction. Restoring autophagy and lysosomal function holds promise as a therapeutic strategy to mitigate obesity-driven pathologies. Future research should focus on translating these findings into clinical applications, optimizing targeted interventions to improve metabolic health and reduce obesity-associated complications.
Collapse
Affiliation(s)
- Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | | | - Gavin Wen Zhao Loi
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
2
|
He F, Zheng Y, Elsabagh M, Fan K, Zha X, Zhang B, Wang M, Zhang H. Gut microbiota modulate intestinal inflammation by endoplasmic reticulum stress-autophagy-cell death signaling axis. J Anim Sci Biotechnol 2025; 16:63. [PMID: 40312439 PMCID: PMC12046778 DOI: 10.1186/s40104-025-01196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/17/2025] [Indexed: 05/03/2025] Open
Abstract
The intestinal tract, a complex organ responsible for nutrient absorption and digestion, relies heavily on a balanced gut microbiome to maintain its integrity. Disruptions to this delicate microbial ecosystem can lead to intestinal inflammation, a hallmark of inflammatory bowel disease (IBD). While the role of the gut microbiome in IBD is increasingly recognized, the underlying mechanisms, particularly those involving endoplasmic reticulum (ER) stress, autophagy, and cell death, remain incompletely understood. ER stress, a cellular response to various stressors, can trigger inflammation and cell death. Autophagy, a cellular degradation process, can either alleviate or exacerbate ER stress-induced inflammation, depending on the specific context. The gut microbiome can influence both ER stress and autophagy pathways, further complicating the interplay between these processes. This review delves into the intricate relationship between ER stress, autophagy, and the gut microbiome in the context of intestinal inflammation. By exploring the molecular mechanisms underlying these interactions, we aim to provide a comprehensive theoretical framework for developing novel therapeutic strategies for IBD. A deeper understanding of the ER stress-autophagy axis, the gut microbial-ER stress axis, and the gut microbial-autophagy axis may pave the way for targeted interventions to restore intestinal health and mitigate the impact of IBD.
Collapse
Affiliation(s)
- Feiyang He
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
- Key Laboratory of Fujian Universities Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, 364012, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömermer Halisdemir University, Nigde, 51240, Turkey
| | - Kewei Fan
- Key Laboratory of Fujian Universities Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, 364012, P. R. China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
| |
Collapse
|
3
|
Cune D, Pitasi CL, Rubiola A, Jamma T, Simula L, Boucher C, Fortun A, Adoux L, Letourneur F, Saintpierre B, Donnadieu E, Terris B, Bossard P, Chassaing B, Romagnolo B. Inhibition of Atg7 in intestinal epithelial cells drives resistance against Citrobacter rodentium. Cell Death Dis 2025; 16:112. [PMID: 39971913 PMCID: PMC11840101 DOI: 10.1038/s41419-025-07422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Autophagy, a cytoprotective mechanism in intestinal epithelial cells, plays a crucial role in maintaining intestinal homeostasis. Beyond its cell-autonomous effects, the significance of autophagy in these cells is increasingly acknowledged in the dynamic interplay between the microbiota and the immune response. In the context of colon cancer, intestinal epithelium disruption of autophagy has been identified as a critical factor influencing tumor development. This disruption modulates the composition of the gut microbiota, eliciting an anti-tumoral immune response. Here, we report that Atg7 deficiency in intestinal epithelial cells shapes the intestinal microbiota leading to an associated limitation of colitis induced by Citrobacter rodentium infection. Mice with an inducible, intestinal epithelial-cell-specific deletion of the autophagy gene, Atg7, exhibited enhanced clearance of C. rodentium, mitigated hyperplasia, and reduced pathogen-induced goblet cell loss. This protective effect is linked to a higher proportion of neutrophils and phagocytic cells in the early phase of infection. At later stages, it is associated with the downregulation of pro-inflammatory pathways and an increase in Th17 and Treg responses-immune responses known for their protective roles against C. rodentium infection, modulated by specific gut microbiota. Fecal microbiota transplantation and antibiotic treatment approaches revealed that the Atg7-deficiency-shapped microbiota, especially Gram-positive bacteria, playing a central role in driving resistance to C. rodentium infection. In summary, our findings highlight that inhibiting autophagy in intestinal epithelial cells contributes to maintaining homeostasis and preventing detrimental intestinal inflammation through microbiota-mediated colonization resistance against C. rodentium. This underscores the central role played by autophagy in shaping the microbiota in promoting immune-mediated resistance against enteropathogens.
Collapse
Affiliation(s)
- David Cune
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Caterina Luana Pitasi
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Alessia Rubiola
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Trinath Jamma
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Luca Simula
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | - Camille Boucher
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Apolline Fortun
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Lucie Adoux
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Franck Letourneur
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Benjamin Saintpierre
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Benoît Terris
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Pathology Department, AP-HP, Hôpital Cochin, Paris, France
| | - Pascale Bossard
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Benoît Chassaing
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Béatrice Romagnolo
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| |
Collapse
|
4
|
Ibrahim D, Khater SI, Sherkawy HS, Elgamal A, Hasan AA, Muhammed AA, Farag MFM, Eissa SA, Ismail TA, Eissa HM, Eskandrani AA, Alansari WS, El-Emam MMA. Protective Role of Nano-encapsulated Bifidobacterium breve, Bacilllus coagulans, and Lactobacillus plantarum in Colitis Model: Insights Toward Propagation of Short-Chain Fatty Acids and Reduction of Exaggerated Inflammatory and Oxidative Response. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10472-y. [PMID: 39900879 DOI: 10.1007/s12602-025-10472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Irritable bowel disease (IBD), also known as ulcerative colitis and Crohn's disease, is a chronic inflammatory disorder affecting millions of people worldwide. Herein, nano-encapsulated multi-strain probiotics formulation, comprising Bifidobacterium breve DSM24732 and B. coagulans SANK 70258 and L. plantarum DSM24730 (BBLNPs) is used as an effective intervention technique for attenuating IBD through gut microenvironment regulation. The efficacy of the prophylactic role of BBLNPs in alleviating injury induced by dextran sulfate sodium (DSS) was evaluated by assessing oxidative and inflammatory responses, levels of short-chain fatty acids (SCFAs) and their regulation on GPR41/43 pathway, expression of genes related to tight-junctions and autophagy, immunohistochemistry of IL1β and GPR43, and histological examination of inflamed colonic tissue. The severity of clinical signs and paracellular permeability to FITC (fluorescein isothiocyanate)-labeled dextran was significantly decreased after BBLNP treatment. Reduction of oxidative stress-associated biomarkers (MDA, ROS, and H2O2) and acceleration of antioxidant enzyme activities (SOD, CAT, and GSH-Px) were noted in the BBLNP-treated group. Subsiding of inflammatory markers (TNF-α, IL-18, IL-6, TRL-4, CD-8, NLRP3, and caspase 1) and upregulation of tight-junction-related genes (occludin and JAM) was detected in BBLNPs. Administration of BBLNPs remarkably resulted in a higher level of SCFAs which parrel with colonic upregulation of GPR41 and GPR43 expression compared to DSS-treated rats. Notable modulation of autophagy-related genes (p62, mTOR, LC3, and Beclin-1) was identified post BBLNP treatment. The mRNA expressions of p62 and mTOR were significantly downregulated, while LC3 and Beclin-1 were upregulated after prophylactic treatment with BBLNPs. Immune-stained labeled cells showed lower expression of IL-1β and higher expression levels of GPR43 in BBLNPs compared to the DSS-induced group. The intestinal damage caused by DSSwas effectively mitigated by oral BBLNP treatment, as supported by the restoration of healthy colonic tissue architecture. The findings suggest that BBLNPs have a promising avenue in the remission of IBD by modulating inflammation, oxidative stress, microbial metabolites such as SCFAs, and autophagy.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hoda S Sherkawy
- Department of Medical Biochemistry, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Asmaa A Hasan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Asmaa A Muhammed
- Department of Medical Physiology, Faculty of Medicine, Aswan University, Aswan, 81511, Egypt
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samar A Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hemmat M Eissa
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Marwaha K, Cain R, Asmis K, Czaplinski K, Holland N, Mayer DCG, Chacon J. Exploring the complex relationship between psychosocial stress and the gut microbiome: implications for inflammation and immune modulation. J Appl Physiol (1985) 2025; 138:518-535. [PMID: 39813028 DOI: 10.1152/japplphysiol.00652.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
There is growing interest in understanding the complex relationship between psychosocial stress and the human gastrointestinal microbiome (GIM). This review explores the potential physiological pathways connecting these two and how they contribute to a proinflammatory environment that can lead to the development and progression of the disease. Exposure to psychosocial stress triggers the activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary axis (HPA), leading to various physiological responses essential for survival and coping with the stressor. However, chronic stress in susceptible individuals could cause sustained activation of HPA and SNS, leading to immune dysregulation consisting of redistribution of natural killer (NK) cells in the bloodstream, decreased function of T and B cells, and elevation of proinflammatory cytokines such as interleukin-1, interleukin-6, tumor necrotic factor-α, interferon-gamma. It also leads to disruption of the GIM composition and increased intestinal barrier permeability, contributing to GIM dysbiosis. The GIM dysbiosis and elevated cytokines can lead to reciprocal effects and further stimulate the HPA and SNS, creating a positive feedback loop that results in a proinflammatory state underlying the pathogenesis and progression of stress-associated cardiovascular, gastrointestinal, autoimmune, and psychiatric disorders. Understanding these relationships is critical for developing new strategies for managing stress-related health disorders.
Collapse
Affiliation(s)
- Komal Marwaha
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Ryan Cain
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Katherine Asmis
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Katya Czaplinski
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Nathan Holland
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Darly C Ghislaine Mayer
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Jessica Chacon
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| |
Collapse
|
6
|
Tian S, Goand UK, Paudel D, Le GV, Tiwari AK, Prabhu KS, Singh V. Processed Dietary Fiber Partially Hydrolyzed Guar Gum Increases Susceptibility to Colitis and Colon Tumorigenesis in Mice. RESEARCH SQUARE 2024:rs.3.rs-5522559. [PMID: 39711544 PMCID: PMC11661293 DOI: 10.21203/rs.3.rs-5522559/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The vital role of naturally occurring dietary fibers (DFs) in maintaining intestinal health has fueled the incorporation of isolated DFs into processed foods. A select group of soluble DFs, such as partially hydrolyzed guar gum (Phgg), are being promoted as dietary supplements to meet recommended DF intake. However, the potential effects of regular consumption of these processed DFs on gastrointestinal health remain largely unknown. The present study assessed the impact of Phgg on the development of intestinal inflammation and colitis-associated colon carcinogenesis (CAC). Wild-type C57BL/6 mice were fed isocaloric diets containing either 7.5% Phgg and 2.5% cellulose (Phgg group) or 10% cellulose (control) for four weeks. To induce colitis, a subgroup of mice from each group was switched to 1.4% dextran sulfate sodium (DSS) in drinking water for seven days. CAC was induced in another subgroup through a single dose of azoxymethane (AOM, 7.5 mg/kg i.p.) followed by three DSS/water cycles. To our surprise, Phgg feeding exacerbated DSS-induced colitis, as evidenced by body weight loss, disrupted colonic crypt architecture, and increased pro-inflammatory markers accompanied by a decrease in anti-inflammatory markers. Additionally, Phgg feeding led to increased colonic expression of genes promoting cell proliferation. Accordingly, extensive colon tumorigenesis was observed in Phgg-fed mice in the AOM/DSS model, whereas the control group exhibited no visible tumors. To investigate whether reducing Phgg has a distinct effect on colitis and CAC development, mice were fed a low-Phgg diet (2.5% Phgg). The low-Phgg group also exhibited increased colitis and tumorigenesis compared to the control, although the severity was markedly lower than in the regular Phgg (7.5%) group, suggesting a dose-dependent effect of Phgg in colitis and CAC development. Our study reveals that Phgg supplementation exacerbates colitis and promotes colon tumorigenesis, warranting further investigation into the potential gastrointestinal health risks associated with processed Phgg consumption.
Collapse
|
7
|
Subramanian A, J A, T T, Kumarasamy V, Begum MY, Sekar M, Subramaniyan V, Wong LS, Al Fatease A. Exploring the Connections: Autophagy, Gut Microbiota, and Inflammatory Bowel Disease Pathogenesis. J Inflamm Res 2024; 17:10453-10470. [PMID: 39654856 PMCID: PMC11626960 DOI: 10.2147/jir.s483958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 12/12/2024] Open
Abstract
Inflammatory Bowel Disease (IBD), which includes Crohn's disease and ulcerative colitis, represents a complex and growing global health issue with a multifaceted origin. This review delves into the intricate relationship between gut microbiota, autophagy, and the development of IBD. The gut microbiota, a diverse community of microorganisms, plays a vital role in maintaining gut health, while imbalances in this microbial community, known as dysbiosis, are linked to IBD. Autophagy, a process by which cells recycle their components, is essential for gut homeostasis and the regulation of immune responses. When autophagy is impaired and dysbiosis occurs, they individually contribute to IBD, with their combined impact intensifying inflammation. The interconnectedness of gut microbiota, autophagy, and the host's immune system is central to the onset of IBD. The review also examines how diet influences gut microbiota and its subsequent effects on IBD. It highlights the therapeutic potential of targeting the microbiota and modulating autophagic pathways as treatment strategies for IBD. Understanding these interactions could lead to personalized therapies within the rapidly advancing fields of microbiome research and immunology.
Collapse
Affiliation(s)
- Arunkumar Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Afrarahamed J
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Tamilanban T
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Haririzadeh Jouriani F, Torfeh M, Torkamaneh M, Sepehr A, Rohani M, Aghamohammad S. The preventive and therapeutic role of Lactobacillus spp. in in vitro model of inflammation via affecting autophagy signaling pathway. Immun Inflamm Dis 2024; 12:e1336. [PMID: 39189796 PMCID: PMC11348509 DOI: 10.1002/iid3.1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Intestinal inflammation has various causes and leads to some inflammatory diseases, of which autophagy pathway dysfunction could be considered as one of them. Probiotics could have a positive effect on reducing inflammation by activating the autophagy pathway. To evaluate the precise effects of probiotics as preventive and therapeutic agents to control the symptoms of inflammatory diseases, we aimed to investigate the efficacy of Lactobacillus spp. in regulating the autophagy signaling pathway. METHODS A quantitative real-time polymerase chain reaction assay was used to analyze the expression of autophagy genes involved in the formation of phagophores, autophagosomes, and autolysosomes after exposing the HT-29 cell line to sonicated pathogens and adding Lactobacillus spp. before, after, and simultaneously with inflammation. A cytokine assay was also accomplished to evaluate the interleukin (IL)-6 and IL-1β level following the probiotic treatment. RESULTS Lactobacillus spp. generally increased autophagy gene expression and consumption of Lactobacillus spp. before, simultaneously, and after inflammation, ultimately leading to activate autophagy pathways. The proinflammatory cytokines including IL-6 and IL-1β decreased after probiotic treatment. CONCLUSIONS Our native probiotic Lactobacillus spp. showed beneficial effects on HT-29 cells by increasing autophagy gene expression and decreasing the proinflammatory cytokines production in all treatments. Therefore, this novel probiotic cocktail Lactobacillus spp. can prevent and treat inflammation-related diseases.
Collapse
Affiliation(s)
| | - Mahnaz Torfeh
- Department of BacteriologyPasteur Institute of IranTehranIran
| | | | - Amin Sepehr
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mahdi Rohani
- Department of BacteriologyPasteur Institute of IranTehranIran
| | | |
Collapse
|
9
|
Gu X, Liao S, Li M, Wang J, Tan B. Chloroquine Downregulation of Intestinal Autophagy Changed Intestinal Microbial Community Compositions and Metabolite Profiles in Piglets. Vet Sci 2024; 11:333. [PMID: 39195787 PMCID: PMC11360670 DOI: 10.3390/vetsci11080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024] Open
Abstract
Our previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation of autophagy in intestinal microbial community compositions and metabolite profiles in piglets. Eighteen 24-day-old weaned piglets were divided into three groups (each treatment of six piglets) and treated daily with rapamycin (RAPA), chloroquine (CQ) or a control volume of normal saline (CON group). Before the formal trial, the piglets were allowed to acclimatize for 3 days, and then the trial period was 14 days. Collected samples from the ileum and colon underwent 16S rRNA gene sequencing and metabolite analysis. Significant differences in microbial composition were observed in both the ileum and colon of the RAPA and CQ groups compared to the CON group (p < 0.05). In addition, the relative levels of abundance of Peptostreptococcus, Fusobacterium, Dialister, Selenomonas and Oceanobacillus in the ileum and Porphyromonas, Bacteroides, unidentified_Lachnospiraceae, Akkermansia, Sharpea, Peptococcus, Pseudoalteromonas, Peptoclostridium and unidentified_Acidobacteria in the colon were improved in piglets fed the RAPA diet, whereas the relative levels of abundance of Turicibacter, Rickettsiella and Sarcina in the ileum and Roseburia and Kroppenstedtia in the colon were enhanced in the CQ group (p < 0.05). Meanwhile, metabolomic analysis showed that there were significant differences in metabolites among all groups (p < 0.05), and KEGG enrichment analysis revealed that differential metabolites were mainly enriched in the ABC transporters and biosynthesis of amino acids pathways. Furthermore, these metabolites were closely related to differential microorganisms (p < 0.05). Overall, autophagy inhibition regulates the composition of intestinal microorganisms and their metabolites, and these differential metabolites are significantly correlated with differential intestinal microorganisms, which may in turn affect the production performance of weaned piglets.
Collapse
Affiliation(s)
- Xueling Gu
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Simeng Liao
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Meng Li
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Bie Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
10
|
Feng Y, Yang J, Wang Y, Wang X, Ma Q, Li Y, Zhang X, Wang S, Zhang Q, Mi F, Wang Y, Zhong D, Yin J. Cafestol inhibits colon cancer cell proliferation and tumor growth in xenograft mice by activating LKB1/AMPK/ULK1-dependent autophagy. J Nutr Biochem 2024; 129:109623. [PMID: 38492819 DOI: 10.1016/j.jnutbio.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Chemotherapy failure in colorectal cancer patients is the major cause of recurrence and poor prognosis. As a result, there is an urgent need to develop drugs that have a good chemotherapy effect while also being extremely safe. In this study, we found cafestol inhibited colon cancer growth and HCT116 proliferation in vivo and in vitro, and improved the composition of intestinal flora. Further metabolomic data showed that autophagy and AMPK pathways were involved in the process of cafestol's anti-colon cancer effects. The functional validation studies revealed that cafestol increased autophagy vesicles and LC3B-II levels. The autophagic flux induced by cafestol was prevented by using BafA1. The autophagy inhibitor 3-MA blocked the cafestol-induced increase in LC3B-II and cell proliferation inhibition. Then we found that cafestol induced the increased expressions of LKB1, AMPK, ULK1, p-LKB1, p-AMPK, and p-ULK1 proteins in vivo and in vitro. Using the siRNA targeted to the Lkb1 gene, the levels of AMPK, ULK1, and LC3B-II were suppressed under cafestol treatment. These results indicated that the effect of cafestol is through regulating LKB1/AMPK/ULK1 pathway-mediated autophagic death. Finally, a correlation matrix of the microbiome and autophagy-related proteins was conducted. We found that cafestol-induced autophagic protein expression was positively correlated with the beneficial intestinal bacteria (Muribaculaceae, Bacteroides, Prevotellacece, and Alloprevotella) and negatively correlated with the hazardous bacteria. Conclusions: This study found that cafestol inhibited colon cancer in vitro and in vivo by the mechanism that may be related to LKB1/AMPK/ULK1 pathway-mediated autophagic cell death and improved intestinal microenvironment.
Collapse
Affiliation(s)
- Yuemei Feng
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, China; Key Laboratory of Public Health & Disease Prevention and Control of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China.
| | - JiZhuo Yang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Department of prevention and health care, Guiyang Second People's Hospital, Guiyang, China
| | - Yihan Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Department of Nutrition, Weifang Second People's Hospital, Weifang, China
| | - Xue Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Qian Ma
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Yalin Li
- Department of Gastroenterology, Yunnan First People's Hospital, Kunming, China
| | - Xuehui Zhang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Songmei Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Fei Mi
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Yanjiao Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Dubo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming, China.
| | - Jianzhong Yin
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, China; Baoshan College of Traditional Chinese Medicine, Baoshan, China.
| |
Collapse
|
11
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
12
|
Zhao Y, Zhao X, Jiang T, Xi H, Jiang Y, Feng X. A Retrospective Review on Dysregulated Autophagy in Polycystic Ovary Syndrome: From Pathogenesis to Therapeutic Strategies. Horm Metab Res 2024. [PMID: 38565184 DOI: 10.1055/a-2280-7130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The main purpose of this article is to explore the relationship between autophagy and the pathological mechanism of PCOS, and to find potential therapeutic methods that can alleviate the pathological mechanism of PCOS by targeting autophagy. Relevant literatures were searched in the following databases, including: PubMed, MEDLINE, Web of Science, Scopus. The search terms were "autophagy", "PCOS", "polycystic ovary syndrome", "ovulation", "hyperandrogenemia", "insulin resistance", "inflammatory state", "circadian rhythm" and "treatment", which were combined according to the retrieval methods of different databases. Through analysis, we uncovered that abnormal levels of autophagy were closely related to abnormal ovulation, insulin resistance, hyperandrogenemia, and low-grade inflammation in patients with PCOS. Lifestyle intervention, melatonin, vitamin D, and probiotics, etc. were able to improve the pathological mechanism of PCOS via targeting autophagy. In conclusion, autophagy disorder is a key pathological mechanism in PCOS and is also a potential target for drug development and design.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianyue Jiang
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyan Xi
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Yin Y, Ahmed N, Hassan MF, Guo K, Shakir Y, Zang J, Lyu J. Effect of Nano-selenium on Biological Mechanism of Goblet Cells of the Small Intestine Within Laying Hen. Biol Trace Elem Res 2024; 202:1699-1710. [PMID: 37454307 DOI: 10.1007/s12011-023-03770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.
Collapse
Affiliation(s)
- Yongxiang Yin
- Department of Pathology, Wuxi Maternal and Child Health Care Hospital, Womens Hospital of Jiangnan University, Jiangsu, 214002, China
| | - Nisar Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Mohammad Farooque Hassan
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Kai Guo
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, 21300, Pakistan
| | - Jia Zang
- Department of Laboratory Medicine, Wuxi Maternal and Child Health Care Hospital, Womens Hospital of Jiangnan University, Jiangsu, 214002, China.
| | - Jue Lyu
- Department of Laboratory Medicine, Wuxi No.2 Peoples Hospital, Jiangnan University Medical Center, Jiangsu, 214002, China.
| |
Collapse
|
14
|
Liu J, Xiao Y, Cao L, Lu S, Zhang S, Yang R, Wang Y, Zhang N, Yu Y, Wang X, Guo W, Wang Z, Xu H, Xing C, Song X, Cao L. Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Commun Biol 2024; 7:382. [PMID: 38553562 PMCID: PMC10980737 DOI: 10.1038/s42003-024-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Cardiology, First Hospital of China Medical University, Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Zhuo Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Grondin JA, Khan WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol 2024; 7:88-96. [PMID: 38314177 PMCID: PMC10836984 DOI: 10.1093/jcag/gwad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, genetic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient molecule on biology and health in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Shi Y, Jiang B, Zhao J. Induction mechanisms of autophagy and endoplasmic reticulum stress in intestinal ischemia-reperfusion injury, inflammatory bowel disease, and colorectal cancer. Biomed Pharmacother 2024; 170:115984. [PMID: 38070244 DOI: 10.1016/j.biopha.2023.115984] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
In recent years, the incidence of intestinal ischemia-reperfusion injury (II/RI), inflammatory bowel disease (IBD), and colorectal cancer (CRC) has been gradually increasing, posing significant threats to human health. Autophagy and endoplasmic reticulum stress (ERS) play important roles in II/RI. Damage caused by ischemia and cellular stress can activate ERS, which in turn initiates autophagy to clear damaged organelles and abnormal proteins, thereby alleviating ERS and maintaining the intestinal environment. In IBD, chronic inflammation damages intestinal tissues and activates autophagy and ERS. Autophagy is initiated by upregulating ATG genes and downregulating factors that inhibit autophagy, thereby clearing abnormal proteins, damaged organelles, and bacteria. Simultaneously, persistent inflammatory stimulation can also trigger ERS, leading to protein imbalance and abnormal folding in the ER lumen. The activation of ERS can maintain cellular homeostasis by initiating the autophagy process, thereby reducing inflammatory responses and cell apoptosis in the intestine. In CRC, excessive cell proliferation and protein synthesis lead to increased ERS. The activation of ERS, regulated by signaling pathways such as IRE1α and PERK, can initiate autophagy to clear abnormal proteins and damaged organelles, thereby reducing the negative effects of ERS. It can be seen that autophagy and ERS play a crucial regulatory role in the development of intestinal diseases. Therefore, the progress in targeted therapy for intestinal diseases based on autophagy and ERS provides novel strategies for managing intestinal diseases. In this paper, we review the advances in regulation of autophagy and ERS in intestinal diseases, emphasizing the potential molecular mechanisms for therapeutic applications.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Jingwen Zhao
- Department of Proctology, Baoji Traditional Chinese Medicine Hospital, Baoji 721001, Shanxi, PR China.
| |
Collapse
|
17
|
Bourragat A, Escoula Q, Bellenger S, Zemb O, Beaumont M, Chaumonnot K, Farine JP, Jacotot E, Bonnotte A, Avoscan L, Lherminier J, Luo K, Narce M, Bellenger J. The transplantation of the gut microbiome of fat-1 mice protects against colonic mucus layer disruption and endoplasmic reticulum stress induced by high fat diet. Gut Microbes 2024; 16:2356270. [PMID: 38797998 PMCID: PMC11135845 DOI: 10.1080/19490976.2024.2356270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
High-fat diets alter gut barrier integrity, leading to endotoxemia by impacting epithelial functions and inducing endoplasmic reticulum (ER) stress in intestinal secretory goblet cells. Indeed, ER stress, which is an important contributor to many chronic diseases such as obesity and obesity-related disorders, leads to altered synthesis and secretion of mucins that form the protective mucus barrier. In the present study, we investigated the relative contribution of omega-3 polyunsaturated fatty acid (PUFAs)-modified microbiota to alleviating alterations in intestinal mucus layer thickness and preserving gut barrier integrity. Male fat-1 transgenic mice (exhibiting endogenous omega-3 PUFAs tissue enrichment) and wild-type (WT) littermates were fed either an obesogenic high-fat diet (HFD) or a control diet. Unlike WT mice, HFD-fed fat-1 mice were protected against mucus layer alterations as well as an ER stress-mediated decrease in mucin expression. Moreover, cecal microbiota transferred from fat-1 to WT mice prevented changes in the colonic mucus layer mainly through colonic ER stress downregulation. These findings highlight a novel feature of the preventive effects of omega-3 fatty acids against intestinal permeability in obesity-related conditions.
Collapse
Affiliation(s)
- Amina Bourragat
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| | - Quentin Escoula
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
- Valorex, La Messayais, Combourtillé, France
| | - Sandrine Bellenger
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Killian Chaumonnot
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l’Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne, Dijon, France
| | - Emmanuel Jacotot
- L’Institut Agro Dijon, PAM UMR A 02.102, Université de Bourgogne, Dijon, France
| | - Aline Bonnotte
- Agroécologie, L’Institut Agro Dijon, CNRS, INRAE, Plateforme DimaCell, Dijon, France
| | - Laure Avoscan
- Agroécologie, L’Institut Agro Dijon, CNRS, INRAE, Plateforme DimaCell, Dijon, France
| | - Jeanine Lherminier
- Agroécologie, L’Institut Agro Dijon, CNRS, INRAE, Plateforme DimaCell, Dijon, France
| | - Kangjia Luo
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| | - Michel Narce
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| | - Jérôme Bellenger
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
18
|
Paudel D, Nair DVT, Tian S, Hao F, Goand UK, Joseph G, Prodes E, Chai Z, Robert CE, Chassaing B, Patterson AD, Singh V. Dietary fiber guar gum-induced shift in gut microbiota metabolism and intestinal immune activity enhances susceptibility to colonic inflammation. Gut Microbes 2024; 16:2341457. [PMID: 38630030 PMCID: PMC11028019 DOI: 10.1080/19490976.2024.2341457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V. T. Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eleni Prodes
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhi Chai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chloé E.M. Robert
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Shi YR, Hao WW, Zhang EX, Wang ZH, Li L. Role of autophagy in pathogenesis of ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2023; 31:1022-1028. [DOI: 10.11569/wcjd.v31.i24.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Ulcerative colitis is a chronic idiopathic inflammatory disease involving the colorectal mucosa. It is characterized by recurrent attacks, such as abdominal pain, diarrhea, mucus, and purulent stool. At present, the pathogenesis of ulcerative colitis is not fully understood. Most scholars generally believe that the pathogenesis of ulcerative colitis is affected by genetic susceptibility, environmental factors, immune system disorders, microflora and intestinal microflora disorders, and other factors. In recent years, the concept of autophagy has gradually attracted the attention of the scientific community, and more and more scholars have begun to study the pathogenesis of ulcerative colitis on the basis of autophagy theory. This review will give an overview of cellular autophagy and discuss its role in the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Yi-Rong Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Wei-Wei Hao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Er-Xin Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Zhu-Huan Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Le Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
20
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Guo X, Xu J, Huang C, Zhang Y, Zhao H, Zhu M, Wang J, Nie Y, Xu H, Zhou Y, Zhou Y. Rapamycin extenuates experimental colitis by modulating the gut microbiota. J Gastroenterol Hepatol 2023; 38:2130-2141. [PMID: 37916431 DOI: 10.1111/jgh.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND AIM Autophagy and gut microbiota correlates closely with the inflammatory bowel disease. Herein, we aimed to study the roles of rapamycin on the gut microbiota in inflammatory bowel disease. METHODS Acute colitis was induced with dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzenesulfonic acid solution in mice. Mice were administered with rapamycin or hydroxychloroquine. Weight loss, disease activity index scores, histopathological score, serum inflammatory cytokines, intestinal permeability, and colonic autophagy-related proteins were detected. Cecal content was also preserved in liquid nitrogen and subsequently analyzed following the 16S DNA sequencing. The antibiotic cocktail-induced microbiome depletion was performed to further investigate the relationship between autophagy activation and gut microbiota. RESULTS Compared with the control group, the colonic autophagy-related proteins of P62, mTOR, and p-mTOR increased significantly, while the levels of LC3B and ATG16L1 decreased (all P < 0.05) in the model group. After rapamycin intervention, the colonic pathology of mice improved, while the disease activity index score decreased substantially; the colon length increased, and the expression of IL-6 and TNF-α decreased. Following hydroxychloroquine treatment, some indicators suggested aggravation of colitis. Principal coordinates analysis showed that the DSS group was located on a separate branch from the rapamycin group but was closer to the hydroxychloroquine group. Compared with the DSS group, the rapamycin group was associated with higher abundances of f_Lactobacillaceae (P = 0.0151), f_Deferribacteraceae (P = 0.0290), g_Lactobacillus (P = 0.0151), g_Mucispirillum (P = 0.0137), s_Lactobacillus_reuteri (P = 0.0028), and s_Clostridium_sp_Culture_Jar-13 (P = 0.0082) and a lower abundance of s_Bacteroides_sartorii (P = 0.0180). Linear discriminant analysis effect size showed that rapamycin increased the abundances of Lactobacillus-reuteri, Prevotellaceae, Paraprevotella, Christensenella and Streptococcus and decreased those of Peptostreptococcaceae and Romboutsia Bacteroides-sartorii. Besides, the improvement effect of autophagy activation on colitis disappears following gut microbiome depletion. CONCLUSION The therapeutic effects of rapamycin on extenuating experimental colitis may be related to the gut microbiota.
Collapse
Affiliation(s)
- Xue Guo
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yan Zhang
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Minzheng Zhu
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jiaqi Wang
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
22
|
Lucaciu LA, Seicean R, Uifălean A, Iacobescu M, Iuga CA, Seicean A. Unveiling Distinct Proteomic Signatures in Complicated Crohn's Disease That Could Predict the Disease Course. Int J Mol Sci 2023; 24:16966. [PMID: 38069288 PMCID: PMC10707401 DOI: 10.3390/ijms242316966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Crohn's disease (CD) is characterized by a chronic, progressive inflammation of the gastrointestinal tract often leading to complications, such as strictures and fistulae. Currently, there are no validated tools anticipating short- and long-term outcomes at an early stage. This investigation aims to elucidate variations in protein abundance across distinct CD phenotypes with the objective of uncovering potential biomarkers implicated in disease advancement. Serum samples collected from 30 CD patients and 15 healthy age-matched controls (HC) were subjected to depletion of highly abundant proteins and to a label-free mass spectrometry analysis. Twenty-four proteins were shown to be significantly different when comparing CD with HC. Of these, WD repeat-containing protein 31 (WDR31), and proteins involved in the acute inflammatory response, leucine-rich alpha-2-glycoprotein (LRG1) and serum amyloid A1 (SAA1), were more abundant in the aggressive subgroup. Against standard biomarkers, a positive correlation between SAA1 and WDR31 and C-reactive protein (CRP) was found. In this study, a unique serum biomarker panel for aggressive CD was identified, which could aid in predicting the disease course.
Collapse
Affiliation(s)
- Laura A. Lucaciu
- Department of Gastroenterology and Hepatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Croitorilor 19-21, 400162 Cluj-Napoca, Romania; (L.A.L.); (A.S.)
| | - Radu Seicean
- Department of General Surgery, First Surgical Clinic, “Iuliu Haţieganu” University of Medicine and Pharmacy, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania; (A.U.); (C.A.I.)
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE-Research Centre for Advanced Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4, 400349 Cluj-Napoca, Romania
| | - Cristina A. Iuga
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania; (A.U.); (C.A.I.)
- Department of Proteomics and Metabolomics, MEDFUTURE-Research Centre for Advanced Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4, 400349 Cluj-Napoca, Romania
| | - Andrada Seicean
- Department of Gastroenterology and Hepatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Croitorilor 19-21, 400162 Cluj-Napoca, Romania; (L.A.L.); (A.S.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street No. 19-21, 400162 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Ling C, Versloot CJ, Arvidsson Kvissberg ME, Hu G, Swain N, Horcas-Nieto JM, Miraglia E, Thind MK, Farooqui A, Gerding A, van Eunen K, Koster MH, Kloosterhuis NJ, Chi L, ChenMi Y, Langelaar-Makkinje M, Bourdon C, Swann J, Smit M, de Bruin A, Youssef SA, Feenstra M, van Dijk TH, Thedieck K, Jonker JW, Kim PK, Bakker BM, Bandsma RHJ. Rebalancing of mitochondrial homeostasis through an NAD +-SIRT1 pathway preserves intestinal barrier function in severe malnutrition. EBioMedicine 2023; 96:104809. [PMID: 37738832 PMCID: PMC10520344 DOI: 10.1016/j.ebiom.2023.104809] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The intestine of children with severe malnutrition (SM) shows structural and functional changes that are linked to increased infection and mortality. SM dysregulates the tryptophan-kynurenine pathway, which may impact processes such as SIRT1- and mTORC1-mediated autophagy and mitochondrial homeostasis. Using a mouse and organoid model of SM, we studied the repercussions of these dysregulations on malnutrition enteropathy and the protective capacity of maintaining autophagy activity and mitochondrial health. METHODS SM was induced through feeding male weanling C57BL/6 mice a low protein diet (LPD) for 14-days. Mice were either treated with the NAD+-precursor, nicotinamide; an mTORC1-inhibitor, rapamycin; a SIRT1-activator, resveratrol; or SIRT1-inhibitor, EX-527. Malnutrition enteropathy was induced in enteric organoids through amino-acid deprivation. Features of and pathways to malnutrition enteropathy were examined, including paracellular permeability, nutrient absorption, and autophagic, mitochondrial, and reactive-oxygen-species (ROS) abnormalities. FINDINGS LPD-feeding and ensuing low-tryptophan availability led to villus atrophy, nutrient malabsorption, and intestinal barrier dysfunction. In LPD-fed mice, nicotinamide-supplementation was linked to SIRT1-mediated activation of mitophagy, which reduced damaged mitochondria, and improved intestinal barrier function. Inhibition of mTORC1 reduced intestinal barrier dysfunction and nutrient malabsorption. Findings were validated and extended using an organoid model, demonstrating that resolution of mitochondrial ROS resolved barrier dysfunction. INTERPRETATION Malnutrition enteropathy arises from a dysregulation of the SIRT1 and mTORC1 pathways, leading to disrupted autophagy, mitochondrial homeostasis, and ROS. Whether nicotinamide-supplementation in children with SM could ameliorate malnutrition enteropathy should be explored in clinical trials. FUNDING This work was supported by the Bill and Melinda Gates Foundation, the Sickkids Research Institute, the Canadian Institutes of Health Research, and the University Medical Center Groningen.
Collapse
Affiliation(s)
- Catriona Ling
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christian J Versloot
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Matilda E Arvidsson Kvissberg
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Guanlan Hu
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nathan Swain
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - José M Horcas-Nieto
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Emily Miraglia
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mehakpreet K Thind
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Albert Gerding
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Karen van Eunen
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Mirjam H Koster
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Lijun Chi
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - YueYing ChenMi
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam Langelaar-Makkinje
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Celine Bourdon
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan Swann
- Faculty of Medicine, School of Human Development and Health, University of Southampton, United Kingdom; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Marieke Smit
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sameh A Youssef
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Janssen Pharmaceutica Research and Development, 2340, Beerse, Belgium
| | - Marjon Feenstra
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Theo H van Dijk
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Kathrin Thedieck
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria; Freiburg Materials Research Center (FMF), University Freiburg, Freiburg, Germany
| | - Johan W Jonker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Peter K Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Barbara M Bakker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands.
| | - Robert H J Bandsma
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
24
|
Nabavi-Rad A, Yadegar A, Sadeghi A, Aghdaei HA, Zali MR, Klionsky DJ, Yamaoka Y. The interaction between autophagy, Helicobacter pylori, and gut microbiota in gastric carcinogenesis. Trends Microbiol 2023; 31:1024-1043. [PMID: 37120362 PMCID: PMC10523907 DOI: 10.1016/j.tim.2023.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Chronic infection with Helicobacter pylori is the primary risk factor for the development of gastric cancer. Hindering our ability to comprehend the precise role of autophagy during H. pylori infection is the complexity of context-dependent autophagy signaling pathways. Recent and ongoing progress in understanding H. pylori virulence allows new frontiers of research for the crosstalk between autophagy and H. pylori. Novel approaches toward discovering autophagy signaling networks have further revealed their critical influence on the structure of gut microbiota and the metabolome. Here we intend to present a holistic view of the perplexing role of autophagy in H. pylori pathogenesis and carcinogenesis. We also discuss the intermediate role of autophagy in H. pylori-mediated modification of gut inflammatory responses and microbiota structure.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA; Research Center for Global and Local Infectious Diseases, Oita University, Oita, Japan.
| |
Collapse
|
25
|
Gan T, Qu S, Zhang H, Zhou X. Modulation of the immunity and inflammation by autophagy. MedComm (Beijing) 2023; 4:e311. [PMID: 37405276 PMCID: PMC10315166 DOI: 10.1002/mco2.311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Autophagy, a highly conserved cellular self-degradation pathway, has emerged with novel roles in the realms of immunity and inflammation. Genome-wide association studies have unveiled a correlation between genetic variations in autophagy-related genes and heightened susceptibility to autoimmune and inflammatory diseases. Subsequently, substantial progress has been made in unraveling the intricate involvement of autophagy in immunity and inflammation through functional studies. The autophagy pathway plays a crucial role in both innate and adaptive immunity, encompassing various key functions such as pathogen clearance, antigen processing and presentation, cytokine production, and lymphocyte differentiation and survival. Recent research has identified novel approaches in which the autophagy pathway and its associated proteins modulate the immune response, including noncanonical autophagy. This review provides an overview of the latest advancements in understanding the regulation of immunity and inflammation through autophagy. It summarizes the genetic associations between variants in autophagy-related genes and a range of autoimmune and inflammatory diseases, while also examining studies utilizing transgenic animal models to uncover the in vivo functions of autophagy. Furthermore, the review delves into the mechanisms by which autophagy dysregulation contributes to the development of three common autoimmune and inflammatory diseases and highlights the potential for autophagy-targeted therapies.
Collapse
Affiliation(s)
- Ting Gan
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Shu Qu
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Hong Zhang
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Xu‐jie Zhou
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| |
Collapse
|
26
|
Chen K, McCulloch J, Das Neves R, Rodrigues G, Hsieh WT, Gong W, Yoshimura T, Huang J, O'hUigin C, Difilippantonio S, McCollum M, Jones G, Durum SK, Trinchieri G, Wang JM. The beneficial effects of commensal E. coli for colon epithelial cell recovery are related with Formyl peptide receptor 2 (Fpr2) in epithelial cells. Gut Pathog 2023; 15:28. [PMID: 37322488 PMCID: PMC10268441 DOI: 10.1186/s13099-023-00557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells. The aim of the study was to investigate the connection between E. coli and Fpr2 in the recovery of colon epithelial cells. RESULTS The deficiency of Fpr2 was associated with impaired integrity of the colon mucosa and an imbalance of microbiota, characterized by the enrichment of Proteobacteria in the colon. Two serotypes of E. coli, O22:H8 and O91:H21, were identified in the mouse colon through complete genome sequencing. E. coli O22:H8 was found to be prevalent in the gut of mice and exhibited lower virulence compared to O91:H21. Germ-free (GF) mice that were pre-orally inoculated with E. coli O22:H8 showed reduced susceptibility to chemically induced colitis, increased proliferation of epithelial cells, and improved mouse survival. Following infection with E. coli O22:H8, the expression of Fpr2 in colon epithelial cells was upregulated, and the products derived from E. coli O22:H8 induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency increased susceptibility to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened inflammatory responses. Additionally, the population of E. coli was observed to increase in the colons of Fpr2-/- mice with colitis. CONCLUSION Commensal E. coli O22:H8 stimulated the upregulation of Fpr2 expression in colon epithelial cells, and the products from E. coli induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency led to an increased E. coli population in the colon and delayed recovery of damaged colon epithelial cells in mice with colitis. Therefore, Fpr2 is essential for the effects of commensal E. coli on colon epithelial cell recovery.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| | - John McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Rodrigo Das Neves
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gisele Rodrigues
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Wang-Ting Hsieh
- Animal Health Diagnostic Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Jiaqiang Huang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- College of Life Sciences, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Colm O'hUigin
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Simone Difilippantonio
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew McCollum
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Georgette Jones
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Scott K Durum
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
27
|
Bi M, Liu C, Wang Y, Liu SJ. Therapeutic Prospect of New Probiotics in Neurodegenerative Diseases. Microorganisms 2023; 11:1527. [PMID: 37375029 DOI: 10.3390/microorganisms11061527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing clinical and preclinical evidence implicates gut microbiome (GM) dysbiosis as a key susceptibility factor for neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). In recent years, neurodegenerative diseases have been viewed as being driven not solely by defects in the brain, and the role of GM in modulating central nervous system function via the gut-brain axis has attracted considerable interest. Encouraged by current GM research, the development of new probiotics may lead to tangible impacts on the treatment of neurodegenerative disorders. This review summarizes current understandings of GM composition and characteristics associated with neurodegenerative diseases and research demonstrations of key molecules from the GM that affect neurodegeneration. Furthermore, applications of new probiotics, such as Clostridium butyricum, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Bacteroides fragilis, for the remediation of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Mingxia Bi
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Chang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Ray N, Park SJ, Jung H, Kim J, Korcsmaros T, Moon Y. Stress-responsive Gdf15 counteracts renointestinal toxicity via autophagic and microbiota reprogramming. Commun Biol 2023; 6:602. [PMID: 37270567 DOI: 10.1038/s42003-023-04965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
The integrated stress response (ISR) plays a pivotal role in the cellular stress response, primarily through global translational arrest and the upregulation of cellular adaptation-linked molecules. Growth differentiation factor 15 (Gdf15) is a potent stress-responsive biomarker of clinical inflammatory and metabolic distress in various types of diseases. Herein, we assess whether ISR-driven cellular stress contributes to pathophysiological outcomes by modulating Gdf15. Clinical transcriptome analysis demonstrates that PKR is positively associated with Gdf15 expression in patients with renal injury. Gdf15 expression is dependent on protein kinase R (PKR)-linked ISR during acute renointestinal distress in mice and genetic ablation of Gdf15 aggravates chemical-induced lesions in renal tissues and the gut barrier. An in-depth evaluation of the gut microbiota indicates that Gdf15 is associated with the abundance of mucin metabolism-linked bacteria and their enzymes. Moreover, stress-responsive Gdf15 facilitates mucin production and cellular survival via the reorganization of the autophagy regulatory network. Collectively, ISR-activated Gdf15 counteracts pathological processes via the protective reprogramming of the autophagic network and microbial community, thereby providing robust predictive biomarkers and interventions against renointestinal distress.
Collapse
Affiliation(s)
- Navin Ray
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Seung Jun Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Hoyung Jung
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea.
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Korea.
| |
Collapse
|
29
|
Tran S, Juliani J, Fairlie WD, Lee EF. The emerging roles of autophagy in intestinal epithelial cells and its links to inflammatory bowel disease. Biochem Soc Trans 2023; 51:811-826. [PMID: 37052218 PMCID: PMC10212545 DOI: 10.1042/bst20221300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Landmark genome-wide association studies (GWAS) identified that mutations in autophagy genes correlated with inflammatory bowel disease (IBD), a heterogenous disease characterised by prolonged inflammation of the gastrointestinal tract, that can reduce a person's quality of life. Autophagy, the delivery of intracellular components to the lysosome for degradation, is a critical cellular housekeeping process that removes damaged proteins and turns over organelles, recycling their amino acids and other constituents to supply cells with energy and necessary building blocks. This occurs under both basal and challenging conditions such as nutrient deprivation. An understanding of the relationship between autophagy, intestinal health and IBD aetiology has improved over time, with autophagy having a verified role in the intestinal epithelium and immune cells. Here, we discuss research that has led to an understanding that autophagy genes, including ATG16L, ATG5, ATG7, IRGM, and Class III PI3K complex members, contribute to innate immune defence in intestinal epithelial cells (IECs) via selective autophagy of bacteria (xenophagy), how autophagy contributes to the regulation of the intestinal barrier via cell junctional proteins, and the critical role of autophagy genes in intestinal epithelial secretory subpopulations, namely Paneth and goblet cells. We also discuss how intestinal stem cells can utilise autophagy. Importantly, mouse studies have provided evidence that autophagy deregulation has serious physiological consequences including IEC death and intestinal inflammation. Thus, autophagy is now established as a key regulator of intestinal homeostasis. Further research into how its cytoprotective mechanisms can prevent intestinal inflammation may provide insights into the effective management of IBD.
Collapse
Affiliation(s)
- Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Juliani Juliani
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - W. Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
30
|
Saha K, Subramenium Ganapathy A, Wang A, Michael Morris N, Suchanec E, Ding W, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. Autophagy Reduces the Degradation and Promotes Membrane Localization of Occludin to Enhance the Intestinal Epithelial Tight Junction Barrier against Paracellular Macromolecule Flux. J Crohns Colitis 2023; 17:433-449. [PMID: 36219473 PMCID: PMC10069622 DOI: 10.1093/ecco-jcc/jjac148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Functional loss of the gut epithelium's paracellular tight junction [TJ] barrier and defective autophagy are factors potentiating inflammatory bowel disease [IBD]. Previously, we showed the role of autophagy in enhancing the intestinal TJ barrier via pore-forming claudin-2 degradation. How autophagy regulates the TJ barrier-forming proteins remains unknown. Here, we investigated the role of autophagy in the regulation of occludin, a principal TJ component involved in TJ barrier enhancement. RESULTS Autophagy induction using pharmacological activators and nutrient starvation increased total occludin levels in intestinal epithelial cells, mouse colonocytes and human colonoids. Autophagy induction enriched membrane occludin levels and reduced paracellular permeability of macromolecules. Autophagy-mediated TJ barrier enhancement was contingent on the presence of occludin as OCLN-/- nullified its TJ barrier-enhancing effect against macromolecular flux. Autophagy inhibited the constitutive degradation of occludin by preventing its caveolar endocytosis from the membrane and protected against inflammation-induced TJ barrier loss. Autophagy enhanced the phosphorylation of ERK-1/2 and inhibition of these kinases in Caco-2 cells and human colonic mucosa prevented the macromolecular barrier-enhancing effects of autophagy. In vivo, autophagy induction by rapamycin enhanced occludin levels in wild-type mouse intestines and protected against lipopolysaccharide- and tumour necrosis factor-α-induced TJ barrier loss. Disruption of autophagy with acute Atg7 knockout in adult mice decreased intestinal occludin levels, increasing baseline colonic TJ permeability and exacerbating the effect of experimental colitis. CONCLUSION Our data suggest a novel role of autophagy in promoting the intestinal TJ barrier by increasing occludin levels in an ERK1/2 mitogen-activated protein kinase-dependent mechanism.
Collapse
Affiliation(s)
- Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ashwinkumar Subramenium Ganapathy
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathan Michael Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
31
|
The role of lysosomes in metabolic and autoimmune diseases. Nat Rev Nephrol 2023; 19:366-383. [PMID: 36894628 DOI: 10.1038/s41581-023-00692-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Lysosomes are catabolic organelles that contribute to the degradation of intracellular constituents through autophagy and of extracellular components through endocytosis, phagocytosis and macropinocytosis. They also have roles in secretory mechanisms, the generation of extracellular vesicles and certain cell death pathways. These functions make lysosomes central organelles in cell homeostasis, metabolic regulation and responses to environment changes including nutrient stresses, endoplasmic reticulum stress and defects in proteostasis. Lysosomes also have important roles in inflammation, antigen presentation and the maintenance of long-lived immune cells. Their functions are tightly regulated by transcriptional modulation via TFEB and TFE3, as well as by major signalling pathways that lead to activation of mTORC1 and mTORC2, lysosome motility and fusion with other compartments. Lysosome dysfunction and alterations in autophagy processes have been identified in a wide variety of diseases, including autoimmune, metabolic and kidney diseases. Deregulation of autophagy can contribute to inflammation, and lysosomal defects in immune cells and/or kidney cells have been reported in inflammatory and autoimmune pathologies with kidney involvement. Defects in lysosomal activity have also been identified in several pathologies with disturbances in proteostasis, including autoimmune and metabolic diseases such as Parkinson disease, diabetes mellitus and lysosomal storage diseases. Targeting lysosomes is therefore a potential therapeutic strategy to regulate inflammation and metabolism in a variety of pathologies.
Collapse
|
32
|
Otte ML, Lama Tamang R, Papapanagiotou J, Ahmad R, Dhawan P, Singh AB. Mucosal healing and inflammatory bowel disease: Therapeutic implications and new targets. World J Gastroenterol 2023; 29:1157-1172. [PMID: 36926666 PMCID: PMC10011951 DOI: 10.3748/wjg.v29.i7.1157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Mucosal healing (MH) is vital in maintaining homeostasis within the gut and protecting against injury and infections. Multiple factors and signaling pathways contribute in a dynamic and coordinated manner to maintain intestinal homeostasis and mucosal regeneration/repair. However, when intestinal homeostasis becomes chronically disturbed and an inflammatory immune response is constitutively active due to impairment of the intestinal epithelial barrier autoimmune disease results, particularly inflammatory bowel disease (IBD). Many proteins and signaling pathways become dysregulated or impaired during these pathological conditions, with the mechanisms of regulation just beginning to be understood. Consequently, there remains a relative lack of broadly effective therapeutics that can restore MH due to the complexity of both the disease and healing processes, so tissue damage in the gastrointestinal tract of patients, even those in clinical remission, persists. With increased understanding of the molecular mechanisms of IBD and MH, tissue damage from autoimmune disease may in the future be ameliorated by developing therapeutics that enhance the body’s own healing response. In this review, we introduce the concept of mucosal healing and its relevance in IBD as well as discuss the mechanisms of IBD and potential strategies for altering these processes and inducing MH.
Collapse
Affiliation(s)
- Megan Lynn Otte
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Julia Papapanagiotou
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
33
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
34
|
Chen SL, Li CM, Li W, Liu QS, Hu SY, Zhao MY, Hu DS, Hao YW, Zeng JH, Zhang Y. How autophagy, a potential therapeutic target, regulates intestinal inflammation. Front Immunol 2023; 14:1087677. [PMID: 37168865 PMCID: PMC10165000 DOI: 10.3389/fimmu.2023.1087677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic inflammation in the intestines, with the primary types including ulcerative colitis and Crohn's disease. The link between autophagy, a catabolic mechanism in which cells clear protein aggregates and damaged organelles, and intestinal health has been widely studied. Experimental animal studies and human clinical studies have revealed that autophagy is pivotal for intestinal homeostasis maintenance, gut ecology regulation and other aspects. However, few articles have summarized and discussed the pathways by which autophagy improves or exacerbates IBD. Here, we review how autophagy alleviates IBD through the specific genes (e.g., ATG16L1, IRGM, NOD2 and LRRK2), crosstalk of multiple phenotypes with autophagy (e.g., Interaction of autophagy with endoplasmic reticulum stress, intestinal antimicrobial defense and apoptosis) and autophagy-associated signaling pathways. Moreover, we briefly discuss the role of autophagy in colorectal cancer and current status of autophagy-based drug research for IBD. It should be emphasized that autophagy has cell-specific and environment-specific effects on the gut. One of the problems of IBD research is to understand how autophagy plays a role in intestinal tract under specific environmental factors. A better understanding of the mechanism of autophagy in the occurrence and progression of IBD will provide references for the development of therapeutic drugs and disease management for IBD in the future.
Collapse
Affiliation(s)
- Shuang-Lan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Meng Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Song Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang-Yuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao-Yuan Zhao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong-Sen Hu
- Department of Reproductive Medicine, Chengdu Xinan Women’s Hospital, Chengdu, China
| | - Yan-Wei Hao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Hao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jin-Hao Zeng, ; Yi Zhang,
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jin-Hao Zeng, ; Yi Zhang,
| |
Collapse
|
35
|
Ang1 and Ang4 differentially affect colitis and carcinogenesis in an AOM-DSS mouse model. PLoS One 2023; 18:e0281529. [PMID: 36881568 PMCID: PMC9990929 DOI: 10.1371/journal.pone.0281529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION Angiogenin-1 (Ang1) and angiogenin-4 (Ang4) are 14-kDa ribonucleases with potent angiogenic and antimicrobial properties. The role of Ang1 and Ang4 in chronic colitis and colitis-associated cancer has not been previously studied. METHODS Wild-type (WT) and angiogenin-1 knock-out (Ang1-KO) C57BL/6 mice were given azoxymethane, a colon carcinogen, 2 days in advance of three cycles of 3.5% dextran sodium sulfate (DSS). Disease activity index (DAI) was recorded, a colonoscopy was performed after each DSS treatment, and mice were euthanized (colitis, recovery, cancer) with tissue evaluated by histopathology. Ang1, Ang4, TNF-α, Il-1F062, IL-6, IL-10, IL-23, IL-33 mRNA levels were analyzed by RT-PCR. RESULTS Ang1-KO mice exhibited more severe colitis compared to WT mice during both the acute (P<0.05) and recovery (P<0.05) phases of each DSS cycle. Consistent with these results, colonic TNF-α, IL1-β, IL-6, IL-10, and IL-33 mRNA levels were significantly upregulated in Ang1-KO mice (P<0.05). While Ang4 increased to similar levels in both WT and Ang1-KO mice during colitis and recovery phases, WT mice were distinguished by a significant upregulation of Ang1. Interestingly, despite the reduced colitis, WT mice developed significantly more tumors compared to Ang1-KO mice (P<0.05). 134 tumors formed in WT mice (4.6 tumors/mouse) while only 46 tumors formed (1.5 tumors/mice) in Ang1-KO mice, which were also characterized by a 34-fold decrease in Ang4 compared to WT mice and the complete absence of Ang1. CONCLUSIONS In a mouse model of colitis-associated cancer, Ang1-KO mice develop more severe colitis, but fewer tumors compared to WT mice. Ang1 levels correlate with the severity of colitis and the development of colitis-associated cancer, while Ang4 was upregulated during both colitis and cancer. Ang1 and Ang4 play important regulatory roles in the response to chronic colitis and the development of colitis-associated cancer and may serve as novel therapeutic targets.
Collapse
|
36
|
Wang H, Liu Z, Yu T, Zhang Y, Jiao Y, Wang X, Du H, Jiang R, Liu D, Xu Y, Guan Q, Lu M. The effect of tuina on ulcerative colitis model mice analyzed by gut microbiota and proteomics. Front Microbiol 2022; 13:976239. [PMID: 36523844 PMCID: PMC9745952 DOI: 10.3389/fmicb.2022.976239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 02/13/2024] Open
Abstract
Tuina can effectively alleviate ulcerative colitis-related symptoms, but the mechanism of action is unknown. The purpose of this research is to explore potential pathways for the treatment of tuina through gut microbiota and proteomics techniques. Thirty-two male BALB/c mice were divided into four groups, the control, model, mesalazine, and tuina groups. The ulcerative colitis model was established by freely drinking a 3% dextran sulphate sodium solution for 7 days. The mesalazine group and the tuina group, respectively, received 7 days of mesalazine and tuina treatment. Subsequently, their body weights, feces properties, colon length, histomorphological changes, gut microbiota, and colon proteomics were determined. Body weights, disease activity index score, colon histological scores, and microbiota diversity were restored in the tuina group. At the phylum level, Firmicutes was increased and Bacteroidota decreased. At the family level, Lachnospiraceae increased and Prevotellaceae decreased. At the genus level, the Lachnospiraceae_NK4A136_group was increased. Proteomics detected 370 differentially expressed proteins regulated by tuina, enriched to a total of 304 pathways, including biotin metabolism, Notch signaling pathway, linoleic acid metabolism, and autophagy. Tuina can effectively improve the symptoms of weight loss, fecal properties, and colon inflammation in ulcerative colitis mice and restore the gut microbiota diversity, adjusting the relative abundance of microbiota. The therapeutic effects of tuina may be achieved by modulating the signaling pathways of biotin metabolism, Notch signaling pathway, linoleic acid metabolism, and autophagy.
Collapse
Affiliation(s)
- Hourong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhifeng Liu
- Tuina and Pain Management Department, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Tianyuan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yingqi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyi Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongjin Du
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ruichen Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Di Liu
- Acupuncture Department, Oriental Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Guan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Mengqian Lu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Chen Y, Zhang H, Li Y, Ji S, Jia P, Wang T. Pterostilbene attenuates intrauterine growth retardation-induced colon inflammation in piglets by modulating endoplasmic reticulum stress and autophagy. J Anim Sci Biotechnol 2022; 13:125. [PMID: 36329539 PMCID: PMC9635184 DOI: 10.1186/s40104-022-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress and autophagy are implicated in the pathophysiology of intestinal inflammation; however, their roles in intrauterine growth retardation (IUGR)-induced colon inflammation are unclear. This study explored the protective effects of natural stilbene pterostilbene on colon inflammation using the IUGR piglets and the tumor necrosis factor alpha (TNF-α)-treated human colonic epithelial cells (Caco-2) by targeting ER stress and autophagy. Results Both the IUGR colon and the TNF-α-treated Caco-2 cells exhibited inflammatory responses, ER stress, and impaired autophagic flux (P < 0.05). The ER stress inducer tunicamycin and the autophagy inhibitor 3-methyladenine further augmented inflammatory responses and apoptosis in the TNF-α-treated Caco-2 cells (P < 0.05). Conversely, pterostilbene inhibited ER stress and restored autophagic flux in the IUGR colon and the TNF-α-treated cells (P < 0.05). Pterostilbene also prevented the release of inflammatory cytokines and nuclear translocation of nuclear factor kappa B p65, reduced intestinal permeability and cell apoptosis, and facilitated the expression of intestinal tight junction proteins in the IUGR colon and the TNF-α-treated cells (P < 0.05). Importantly, treatment with tunicamycin or autophagosome-lysosome binding inhibitor chloroquine blocked the positive effects of pterostilbene on inflammatory response, cell apoptosis, and intestinal barrier function in the TNF-α-exposed Caco-2 cells (P < 0.05). Conclusion Pterostilbene mitigates ER stress and promotes autophagic flux, thereby improving colon inflammation and barrier dysfunction in the IUGR piglets and the TNF-α-treated Caco-2 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00780-6.
Collapse
|
38
|
Hajdú B, Holczer M, Horváth G, Szederkényi G, Kapuy O. Fine-Tuning of mTORC1-ULK1-PP2A Regulatory Triangle Is Crucial for Robust Autophagic Response upon Cellular Stress. Biomolecules 2022; 12:1587. [PMID: 36358936 PMCID: PMC9687272 DOI: 10.3390/biom12111587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 05/19/2024] Open
Abstract
Autophagy-dependent cellular survival is tightly regulated by both kinases and phosphatases. While mTORC1 inhibits autophagy by phosphorylating ULK1, PP2A is able to remove this phosphate group from ULK1 and promotes the key inducer of autophagosome formation. However, ULK1 inhibits mTORC1, mTORC1 is able to down-regulate PP2A. In addition, the active ULK1 promotes PP2A via phosphorylation. We claim that these double-negative (mTORC1 -| PP2A -| mTORC1, mTORC1 -| ULK1 -| mTORC1) and positive (ULK1 -> PP2A -> ULK1) feedback loops are all necessary for the robust, irreversible decision making process between the autophagy and non-autophagy states. We approach our scientific analysis from a systems biological perspective by applying both theoretical and molecular biological techniques. For molecular biological experiments, HEK293T cell line is used, meanwhile the dynamical features of the regulatory network are described by mathematical modelling. In our study, we explore the dynamical characteristic of mTORC1-ULK1-PP2A regulatory triangle in detail supposing that the positive feedback loops are essential to manage a robust cellular answer upon various cellular stress events (such as mTORC1 inhibition, starvation, PP2A inhibition or ULK1 silencing). We confirm that active ULK1 can up-regulate PP2A when mTORC1 is inactivated. By using theoretical analysis, we explain the importance of cellular PP2A level in stress response mechanism. We proved both experimentally and theoretically that PP2A down-regulation (via addition of okadaic acid) might generate a periodic repeat of autophagy induction. Understanding how the regulation of the cell survival occurs with the precise molecular balance of ULK1-mTORC1-PP2A in autophagy, is highly relevant in several cellular stress-related diseases (such as neurodegenerative diseases or diabetes) and might help to promote advanced therapies in the near future, too.
Collapse
Affiliation(s)
- Bence Hajdú
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1083 Budapest, Hungary
| | - Marianna Holczer
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1083 Budapest, Hungary
| | - Gergely Horváth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Gábor Szederkényi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
39
|
Valdes J, Gagné-Sansfaçon J, Reyes V, Armas A, Marrero G, Moyo-Muamba M, Ramanathan S, Perreault N, Ilangumaran S, Rivard N, Fortier LC, Menendez A. Defects in the expression of colonic host defense factors associate with barrier dysfunction induced by a high-fat/high-cholesterol diet. Anat Rec (Hoboken) 2022; 306:1165-1183. [PMID: 36196983 DOI: 10.1002/ar.25083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022]
Abstract
The effect of Western diets in the gastrointestinal system is largely mediated by their ability to promote alterations in the immunity and physiology of the intestinal epithelium, and to affect the composition of the commensal microbiota. To investigate the response of the colonic epithelium to high-fat/high-cholesterol diets (HFHCDs), we evaluated the synthesis of host defense factors involved in the maintenance of the colonic homeostasis. C57BL/6 mice were fed an HFHCD for 3 weeks and their colons were evaluated for histopathology, gene expression, and microbiota composition. In addition, intestinal permeability and susceptibility to Citrobacter rodentium were also studied. HFHCD caused colonic hyperplasia, loss of goblet cells, thinning of the mucus layer, moderate changes in the composition of the intestinal microbiota, and an increase in intestinal permeability. Gene expression analyses revealed significant drops in the transcript levels of Muc1, Muc2, Agr2, Atoh1, Spdef, Ang4, Camp, Tff3, Dmbt1, Fcgbp, Saa3, and Retnlb. The goblet cell granules of HFHCD-fed mice were devoid of Relmβ and Tff3, indicating defective production of those two factors critical for intestinal epithelial defense and homeostasis. In correspondence with these defects, colonic bacteria were in close contact with, and invading the epithelium. Fecal shedding of C. rodentium showed an increased bacterial burden in HFHCD-fed animals accompanied by increased epithelial damage. Collectively, our results show that HFHCD perturbs the synthesis of colonic host defense factors, which associate with alterations in the commensal microbiota, the integrity of the intestinal barrier, and the host's susceptibility to enteric infections.
Collapse
Affiliation(s)
- Jennifer Valdes
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jessica Gagné-Sansfaçon
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vilcy Reyes
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anny Armas
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gisela Marrero
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mitterrand Moyo-Muamba
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
40
|
Kempski J, Huber S. [Role of the gut microbiome in the pathogenesis and treatment of inflammatory bowel diseases]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1022-1027. [PMID: 36044059 DOI: 10.1007/s00108-022-01396-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Inflammatory bowel diseases (IBD) are systemic diseases that mainly manifest in the gastrointestinal tract. Due to chronically impaired intestinal homeostasis, they often require permanent and in some cases systemic therapy. The exact causes of IBD are largely unknown. It is postulated that these complex diseases arise in genetically susceptible individuals through a misdirected immune response, promoted by barrier defects, environmental toxins, and the gut microbiome. In this regard, the importance of the microbiome and its pathogenic changes (dysbiosis) in the pathogenesis of IBD is increasingly coming into focus. This review article presents the current state of research on the role of the microbiome in the development of IBD. Therapeutic approaches aimed at correcting intestinal dysbiosis are also discussed.
Collapse
Affiliation(s)
- Jan Kempski
- I. Medizinische Klinik und Poliklinik, Zentrum für Innere Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - Samuel Huber
- I. Medizinische Klinik und Poliklinik, Zentrum für Innere Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| |
Collapse
|
41
|
Chen Z, Huang D, Yongyut P, Li G, Esteban MÁ, Jintasataporn O, Deng J, Zhang W, Ai Q, Mai K, Zhang Y. Vitamin D 3 deficiency induced intestinal inflammatory response of turbot through nuclear factor-κB/inflammasome pathway, accompanied by the mutually exclusive apoptosis and autophagy. Front Immunol 2022; 13:986593. [PMID: 36159807 PMCID: PMC9493454 DOI: 10.3389/fimmu.2022.986593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D3 (VD3) participated widely in the nuclear factor-κB (NF-κB)-mediated inflammation, apoptosis, and autophagy through the vitamin D receptor (VDR). However, the molecular mechanisms remain not understood in teleost. The present study investigated the functions of VD3/VDR on intestinal inflammation, autophagy, and apoptosis of turbot in vivo and in vitro. Triple replicates of 30 fish were fed with each of three diets with graded levels of 32.0 (D0), 1012.6 (D1), and 3978.2 (D2) IU/kg VD3. Obvious intestinal enteritis was observed in the D0 group and followed with dysfunction of intestinal mucosal barriers. The intestinal inflammatory response induced by VD3 deficiency was regulated by the NF-κB/inflammasome signalling. The promotion of intestinal apoptosis and suppression of intestinal autophagy were also observed in the D0 group. Similarly, VD3 deficiency in vitro induced more intense inflammation regulated by NF-κB/inflammasome signalling. The mutually exclusive apoptosis and autophagy were also observed in the group without 1,25(OH)2D3 in vitro, accompanied by similar changes in apoptosis and autophagy increased apoptosis. The gene expression of VDRs was significantly increased with the increasing VD3 supplementation both in vivo and in vitro. Moreover, VDR knockdown in turbot resulted in intestinal inflammation, and this process relied on the activation of inflammasome mediated by NF-κB signalling. Simultaneously, intestinal apoptosis was promoted, whereas intestinal autophagy was inhibited. In conclusion, VD3 deficiency could induce intestinal inflammation via activation of the NF-κB/inflammasome pathway, intestinal apoptosis, and autophagy formed a mutually exclusive relation in teleost. And VDR is the critical molecule in those processes.
Collapse
Affiliation(s)
- Zhichu Chen
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Prakaiwan Yongyut
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Guangbin Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Orapint Jintasataporn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| |
Collapse
|
42
|
Ganapathy AS, Saha K, Suchanec E, Singh V, Verma A, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. AP2M1 mediates autophagy-induced CLDN2 (claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability. Autophagy 2022; 18:2086-2103. [PMID: 34964704 PMCID: PMC9466623 DOI: 10.1080/15548627.2021.2016233] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelial tight junctions (TJs) provide barrier against paracellular permeation of lumenal antigens. Defects in TJ barrier such as increased levels of pore-forming TJ protein CLDN2 (claudin-2) is associated with inflammatory bowel disease. We have previously reported that starvation-induced macroautophagy/autophagy enhances the TJ barrier by degrading pore-forming CLDN2. In this study, we examined the molecular mechanism underlying autophagy-induced CLDN2 degradation. CLDN2 degradation was persistent in multiple modes of autophagy induction. Immunolocalization, membrane fractionation, and pharmacological inhibition studies showed increased clathrin-mediated CLDN2 endocytosis upon starvation. Inhibition of clathrin-mediated endocytosis negated autophagy-induced CLDN2 degradation and enhancement of the TJ barrier. The co-immunoprecipitation studies showed increased association of CLDN2 with clathrin and adaptor protein AP2 (AP2A1 and AP2M1 subunits) as well as LC3 and lysosomes upon starvation, signifying the role of clathrin-mediated endocytosis in autophagy-induced CLDN2 degradation. The expression and phosphorylation of AP2M1 was increased upon starvation. In-vitro, in-vivo (mouse colon), and ex-vivo (human colon) inhibition of AP2M1 activation prevented CLDN2 degradation. AP2M1 knockout prevented autophagy-induced CLDN2 degradation via reduced CLDN2-LC3 interaction. Site-directed mutagenesis revealed that AP2M1 binds to CLDN2 tyrosine motifs (YXXФ) (67-70 and 148-151). Increased baseline expression of CLDN2 and TJ permeability along with reduced CLDN2-AP2M1-LC3 interactions in ATG7 knockout cells validated the role of autophagy in modulation of CLDN2 levels. Acute deletion of Atg7 in mice increased CLDN2 levels and the susceptibility to experimental colitis. The autophagy-regulated molecular mechanisms linking CLDN2, AP2M1, and LC3 may provide therapeutic tools against intestinal inflammation.Abbreviations: Amil: amiloride; AP2: adaptor protein complex 2; AP2A1: adaptor related protein complex 2 subunit alpha 1; AP2M1: adaptor related protein complex 2 subunit mu 1; ATG7: autophagy related 7; CAL: calcitriol; Cas9: CRISPR-associated protein 9; Con: control; CPZ: chlorpromazine; DSS: dextran sodium sulfate; EBSS: Earle's balanced salt solution; IBD: inflammatory bowel disease; TER: trans-epithelial resistance; KD: knockdown; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MβCD: Methyl-β-cyclodextrin; MET: metformin; MG132: carbobenzoxy-Leu-Leu-leucinal; MTOR: mechanistic target of rapamycin kinase; NT: non target; RAPA: rapamycin; RES: resveratrol; SMER: small-molecule enhancer 28; SQSTM1: sequestosome 1; ST: starvation; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.
Collapse
Affiliation(s)
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Vikash Singh
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, Pa, USA
| | - Aayush Verma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA,CONTACT Prashant Nighot Department of Medicine, College of Medicine, Penn State University, Hershey, PA17033, USA
| |
Collapse
|
43
|
Tamura A, Ito G, Matsuda H, Nibe-Shirakihara Y, Hiraoka Y, Kitagawa S, Hiraguri Y, Nagata S, Aonuma E, Otsubo K, Nemoto Y, Nagaishi T, Watanabe M, Okamoto R, Oshima S. Zranb1-mutant mice display abnormal colonic mucus production and exacerbation of DSS-induced colitis. Biochem Biophys Res Commun 2022; 628:147-154. [DOI: 10.1016/j.bbrc.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
44
|
Kondo T, Uebanso T, Arao N, Shimohata T, Mawatari K, Takahashi A. Effect of T1R3 Taste Receptor Gene Deletion on Dextran Sulfate Sodium-Induced Colitis in Mice. J Nutr Sci Vitaminol (Tokyo) 2022; 68:204-212. [PMID: 35768251 DOI: 10.3177/jnsv.68.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Taste receptor type 1 member 3 (T1R3) recognize umami or sweet tastes and also contributes type 2 immunity and autophagy in small intestine and muscle cells, respectively. Since imbalance of type 1 and type 2 immunity and autophagy affect intestinal bowel disease (IBD), we hypothesized that T1R3 have a potential role in the incidence and progression of colitis. In the present study, we investigated whether genetic deletion of T1R3 impacted aggravation of DSS-induced colitis in mice. We found that T1R3-KO mice showed reduction in colon damage, including reduced inflammation and colon shrinking relative to those of WT mice following DSS treatment. mRNA expression of tight junction components, particularly claudin1 was significantly lower in T1R3-KO mice with trend to lower inflammation related gene mRNA expression in colon. Other parameters, such as response to microbial stimuli in splenic lymphocytes and peritoneal macrophages, gut microbiota composition, and expression of autophagy-related proteins, were similar between WT and KO mice. Together, these results indicated that deletion of T1R3 has a minor role in intestinal inflammation induced by DSS-induced acute colitis in mice.
Collapse
Affiliation(s)
- Tsubasa Kondo
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Natsuki Arao
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School.,Faculty of Marine Biosciences, Fukui Prefectural University
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
45
|
Liu H, Lou J, Liu Y, Liu Z, Xie J, Sun J, Pan H, Han W. Intestinal epithelial cell autophagy deficiency suppresses inflammation-associated colon tumorigenesis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:35-46. [PMID: 35317201 PMCID: PMC8924538 DOI: 10.1016/j.omtn.2022.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China
| | - Yunlong Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China
| | - Zhen Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiachun Sun
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China
- Corresponding author Hongming Pan, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang 310016, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China
- Corresponding author Weidong Han, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
46
|
Khan S, Mentrup HL, Novak EA, Siow VS, Wang Q, Crawford EC, Schneider C, Comerford TE, Firek B, Rogers MB, Loughran P, Morowitz MJ, Mollen KP. Cyclic GMP-AMP synthase contributes to epithelial homeostasis in intestinal inflammation via Beclin-1-mediated autophagy. FASEB J 2022; 36:e22282. [PMID: 35344224 PMCID: PMC9040047 DOI: 10.1096/fj.202200138r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel disease (IBD) represents a set of idiopathic and chronic inflammatory diseases of the gastrointestinal tract. Central to the pathogenesis of IBD is a dysregulation of normal intestinal epithelial homeostasis. cGAS is a DNA-sensing receptor demonstrated to promote autophagy, a mechanism that removes dysfunctional cellular components. Beclin-1 is a crucial protein involved in the initiation of autophagy. We hypothesized that cGAS plays a key role in intestinal homeostasis by upregulating Beclin-1-mediated autophagy. We evaluated intestinal cGAS levels in humans with IBD and in murine colonic tissue after performing a 2% dextran sulfate sodium (DSS) colitis model. Autophagy and cell death mechanisms were studied in cGAS KO and WT mice via qPCR, WB analysis, H&E, IF, and TUNEL staining. Autophagy was measured in stimulated intestinal epithelial cells (IECs) via WB analysis. Our data demonstrates cGAS to be upregulated during human and murine colitis. Furthermore, cGAS deficiency leads to worsened colitis and decreased levels of autophagy proteins including Beclin-1 and LC3-II. Co-IP demonstrates a direct binding between cGAS and Beclin-1 in IECs. Transfection of cGAS in stimulated HCT-116 cells leads to increased autophagy. IECs isolated from cGAS KO have diminished autophagic flux. cGAS KO mice subjected to DSS have increased cell death and cleaved caspase-3. Lastly, treatment of cGAS KO mice with rapamycin decreased the severity of colitis. Our data suggest that cGAS maintains intestinal epithelial homeostasis during human IBD and murine colitis by upregulating Beclin-1-mediated autophagy and preventing IEC death. Rescue of autophagy can attenuate the severity of colitis associated with cGAS deficiency.
Collapse
Affiliation(s)
- Sidrah Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Heather L Mentrup
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Elizabeth A Novak
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Vei Shaun Siow
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qian Wang
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Erin C Crawford
- Division of Gastroenterology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Corinne Schneider
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Thomas E Comerford
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Matt B Rogers
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kevin P Mollen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Targeting the endo-lysosomal autophagy pathway to treat inflammatory bowel diseases. J Autoimmun 2022; 128:102814. [PMID: 35298976 DOI: 10.1016/j.jaut.2022.102814] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/18/2023]
Abstract
Inflammatory bowel disease (IBD) is a serious public health problem in Western society with a continuing increase in incidence worldwide. Safe, targeted medicines for IBD are not yet available. Autophagy, a vital process implicated in normal cell homeostasis, provides a potential point of entry for the treatment of IBDs, as several autophagy-related genes are associated with IBD risk. We conducted a series of experiments in three distinct mouse models of colitis to test the effectiveness of therapeutic P140, a phosphopeptide that corrects autophagy dysfunctions in other autoimmune and inflammatory diseases. Colitis was experimentally induced in mice by administering dextran sodium sulfate and 2,4,6 trinitrobenzene sulfonic acid. Transgenic mice lacking both il-10 and iRhom2 - involved in tumor necrosis factor α secretion - were also used. In the three models investigated, P140 treatment attenuated the clinical and histological severity of colitis. Post-treatment, altered expression of several macroautophagy and chaperone-mediated autophagy markers, and of pro-inflammatory mediators was corrected. Our results demonstrate that therapeutic intervention with an autophagy modulator improves colitis in animal models. These findings highlight the potential of therapeutic peptide P140 for use in the treatment of IBD.
Collapse
|
48
|
Pimentel-Muiños FX. Autophagy in the gastrointestinal system and cross talk with microbiota. AUTOPHAGY IN HEALTH AND DISEASE 2022:321-333. [DOI: 10.1016/b978-0-12-822003-0.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Lapaquette P, Bizeau JB, Acar N, Bringer MA. Reciprocal interactions between gut microbiota and autophagy. World J Gastroenterol 2021; 27:8283-8301. [PMID: 35068870 PMCID: PMC8717019 DOI: 10.3748/wjg.v27.i48.8283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
A symbiotic relationship has set up between the gut microbiota and its host in the course of evolution, forming an interkingdom consortium. The gut offers a favorable ecological niche for microbial communities, with the whole body and external factors (e.g., diet or medications) contributing to modulating this microenvironment. Reciprocally, the gut microbiota is important for maintaining health by acting not only on the gut mucosa but also on other organs. However, failure in one or another of these two partners can lead to the breakdown in their symbiotic equilibrium and contribute to disease onset and/or progression. Several microbial and host processes are devoted to facing up the stress that could alter the symbiosis, ensuring the resilience of the ecosystem. Among these processes, autophagy is a host catabolic process integrating a wide range of stress in order to maintain cell survival and homeostasis. This cytoprotective mechanism, which is ubiquitous and operates at basal level in all tissues, can be rapidly down- or up-regulated at the transcriptional, post-transcriptional, or post-translational levels, to respond to various stress conditions. Because of its sensitivity to all, metabolic-, immune-, and microbial-derived stimuli, autophagy is at the crossroad of the dialogue between changes occurring in the gut microbiota and the host responses. In this review, we first delineate the modulation of host autophagy by the gut microbiota locally in the gut and in peripheral organs. Then, we describe the autophagy-related mechanisms affecting the gut microbiota. We conclude this review with the current challenges and an outlook toward the future interventions aiming at modulating host autophagy by targeting the gut microbiota.
Collapse
Affiliation(s)
- Pierre Lapaquette
- UMR PAM A 02.102, University Bourgogne Franche-Comté, Agrosup Dijon, Dijon 21000, France
| | - Jean-Baptiste Bizeau
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Marie-Agnès Bringer
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
50
|
Casado-Bedmar M, Viennois E. MicroRNA and Gut Microbiota: Tiny but Mighty-Novel Insights into Their Cross-talk in Inflammatory Bowel Disease Pathogenesis and Therapeutics. J Crohns Colitis 2021; 16:992-1005. [PMID: 34918052 PMCID: PMC9282881 DOI: 10.1093/ecco-jcc/jjab223] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
MicroRNAs [miRNAs], small non-coding RNAs, have recently been described as crucial contributors to intestinal homeostasis. They can interact with the gut microbiota in a reciprocal manner and deeply affect host health status, leading to several disorders when unbalanced. Inflammatory bowel disease [IBD] is a chronic inflammation of the gastrointestinal tract that co-occurs with alterations of the gut microbiota, and whose aetiology remains largely unclear. On one hand, host miRNA could be playing a relevant role in IBD pathophysiology by shaping the gut microbiota. The gut microbiome, on the other hand, may regulate the expression of host miRNAs, resulting in intestinal epithelial dysfunction, altered autophagy, and immune hyperactivation. Interestingly, it has been hypothesised that their reciprocal impact may be used for therapeutic goals. This review describes the latest research and suggests mechanisms through which miRNA and intestinal microbiota, as joint actors, may participate specifically in IBD pathophysiology. Furthermore, we discuss the diagnostic power and therapeutic potential resulting from their bidirectional communication after faecal transplantation, probiotics intake, or anti-miRNAs or miRNA mimics administration. The current literature is summarised in the present work in a comprehensive manner, hoping to provide a better understanding of the miRNA-microbiota cross-talk and to facilitate their application in IBD.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- INSERM, U1149, Center for Research on Inflammation, Université de Paris, Paris, France
| | - Emilie Viennois
- Corresponding author: Emilie Viennois, INSERM, U1149, Center for Research on Inflammation, Université de Paris, 75018 Paris, France.
| |
Collapse
|