1
|
Li Y, Wright NT, Bloch RJ. The juxtamembrane sequence of small ankyrin 1 mediates the binding of its cytoplasmic domain to SERCA1 and is required for inhibitory activity. J Biol Chem 2025; 301:108216. [PMID: 39863105 PMCID: PMC11927728 DOI: 10.1016/j.jbc.2025.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca2+ in skeletal muscle. Due to its vital importance in regulating Ca2+ homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.5), a 17 kDa muscle-specific isoform of ANK1, binds to SERCA1 directly via both its transmembrane and cytoplasmic domains and inhibits SERCA1's ATPase activity. Here, we characterize the interaction between the cytoplasmic domain of sAnk1 (sAnk1(29-155)) and SERCA1. The binding affinity for sAnk1 (29-155) to SERCA1 was 444 nM by blot overlay, about 7-fold weaker than the binding of sAnk1(29-155) to obscurin, a giant protein of the muscle cytoskeleton. Site-directed mutagenesis identified K38, H39, and H41, in the juxtamembrane region, as residues likely to mediate binding to SERCA1. These residues are not required for obscurin binding. Residues R64-K73, which do contribute to obscurin binding, are also required for binding to SERCA1, but only the hydrophobic residues in this sequence are required, not the positively charged residues necessary for obscurin binding. Circular dichroism analysis of sAnk1(29-155) indicates that most mutants show significant structural changes, with the exception of those containing alanines in place of K38, H39 and H41. Although the cytoplasmic domain of sAnk1 does not inhibit SERCA1's Ca2+-ATPase activity, with or without mutations in the juxtamembrane sequence, the inhibitory activity of full-length sAnk1 requires the WT juxtamembrane sequence. We used these data to model sAnk1 and the sAnk1-SERCA1 complex. Our results suggest that, in addition to its transmembrane domain, sAnk1 uses its juxtamembrane sequence and perhaps part of its obscurin binding site to bind to SERCA1, and that this binding contributes to their robust association in situ, as well as regulation of SERCA1's activity.
Collapse
Affiliation(s)
- Yi Li
- Program in Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Kasałka-Czarna N, Stachniuk A, Fornal E, Montowska M. Proteomic analysis of wild boar meat: Effect of storage method and time on muscle protein stability. Food Chem 2025; 464:141774. [PMID: 39486280 DOI: 10.1016/j.foodchem.2024.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Oxidation processes affect proteins from various molecular pathways and are crucial for wild boar meat quality, shelf life and human health. This study investigated the effects of different storage methods on the formation and composition of oxygen-induced protein aggregates in the muscles of European wild boar (Sus scrofa scrofa). Vacuum packaging (VAC), modified atmosphere packaging (MAP) and dry-ageing (DA) were compared over a 21-day storage period. The results showed significant differences in protein aggregation depending on the method and storage time. The most intense protein aggregation occurred in the MAP (80 % O2), while air DA (20.9 % O2) resulted in intermediate levels of protein aggregation. Crucial myofibrillar proteins involved in aggregate formation were titin, myosin isoforms (MYH1, MYH2 and MYH7) and nebulin, which were cross-linked with small sarcoplasmic enzymes, such as muscle creatine kinase, isocitrate dehydrogenase and ATPase 1. High‑oxygen storage conditions also promoted the oxidation of ATP synthase, beta-enolase 3, ADP/ATP translocase and myoglobin.
Collapse
Affiliation(s)
- Natalia Kasałka-Czarna
- Department of Meat Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Magdalena Montowska
- Department of Meat Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
3
|
Argall AD, Sucharski-Argall HC, Comisford LG, Jurs SJ, Seminetta JT, Wallace MJ, Crawford CA, Takenaka SS, Han M, El Refaey M, Hund TJ, Mohler PJ, Koenig SN. Novel Identification of Ankyrin-R in Cardiac Fibroblasts and a Potential Role in Heart Failure. Int J Mol Sci 2024; 25:8403. [PMID: 39125973 PMCID: PMC11313496 DOI: 10.3390/ijms25158403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Altered ankyrin-R (AnkR; encoded by ANK1) expression is associated with diastolic function, left ventricular remodeling, and heart failure with preserved ejection fraction (HFpEF). First identified in erythrocytes, the role of AnkR in other tissues, particularly the heart, is less studied. Here, we identified the expression of both canonical and small isoforms of AnkR in the mouse myocardium. We demonstrate that cardiac myocytes primarily express small AnkR (sAnkR), whereas cardiac fibroblasts predominantly express canonical AnkR. As canonical AnkR expression in cardiac fibroblasts is unstudied, we focused on expression and localization in these cells. AnkR is expressed in both the perinuclear and cytoplasmic regions of fibroblasts with considerable overlap with the trans-Golgi network protein 38, TGN38, suggesting a potential role in trafficking. To study the role of AnkR in fibroblasts, we generated mice lacking AnkR in activated fibroblasts (Ank1-ifKO mice). Notably, Ank1-ifKO mice fibroblasts displayed reduced collagen compaction, supportive of a novel role of AnkR in normal fibroblast function. At the whole animal level, in response to a heart failure model, Ank1-ifKO mice displayed an increase in fibrosis and T-wave inversion compared with littermate controls, while preserving cardiac ejection fraction. Collagen type I fibers were decreased in the Ank1-ifKO mice, suggesting a novel function of AnkR in the maturation of collagen fibers. In summary, our findings illustrate the novel expression of AnkR in cardiac fibroblasts and a potential role in cardiac function in response to stress.
Collapse
Affiliation(s)
- Aaron D. Argall
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Holly C. Sucharski-Argall
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Luke G. Comisford
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sallie J. Jurs
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Jack T. Seminetta
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Casey A. Crawford
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sarah S. Takenaka
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Mei Han
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Mona El Refaey
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sara N. Koenig
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Pierantozzi E, Raucci L, Buonocore S, Rubino EM, Ding Q, Laurino A, Fiore F, Soldaini M, Chen J, Rossi D, Vangheluwe P, Chen H, Sorrentino V. Skeletal muscle overexpression of sAnk1.5 in transgenic mice does not predispose to type 2 diabetes. Sci Rep 2023; 13:8195. [PMID: 37210436 PMCID: PMC10199891 DOI: 10.1038/s41598-023-35393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Genome-wide association studies (GWAS) and cis-expression quantitative trait locus (cis-eQTL) analyses indicated an association of the rs508419 single nucleotide polymorphism (SNP) with type 2 diabetes (T2D). rs508419 is localized in the muscle-specific internal promoter (P2) of the ANK1 gene, which drives the expression of the sAnk1.5 isoform. Functional studies showed that the rs508419 C/C variant results in increased transcriptional activity of the P2 promoter, leading to higher levels of sAnk1.5 mRNA and protein in skeletal muscle biopsies of individuals carrying the C/C genotype. To investigate whether sAnk1.5 overexpression in skeletal muscle might predispose to T2D development, we generated transgenic mice (TgsAnk1.5/+) in which the sAnk1.5 coding sequence was selectively overexpressed in skeletal muscle tissue. TgsAnk1.5/+ mice expressed up to 50% as much sAnk1.5 protein as wild-type (WT) muscles, mirroring the difference reported between individuals with the C/C or T/T genotype at rs508419. However, fasting glucose levels, glucose tolerance, insulin levels and insulin response in TgsAnk1.5/+ mice did not differ from those of age-matched WT mice monitored over a 12-month period. Even when fed a high-fat diet, TgsAnk1.5/+ mice only presented increased caloric intake, but glucose disposal, insulin tolerance and weight gain were comparable to those of WT mice fed a similar diet. Altogether, these data indicate that sAnk1.5 overexpression in skeletal muscle does not predispose mice to T2D susceptibility.
Collapse
Affiliation(s)
- E Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - L Raucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - S Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - E M Rubino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Q Ding
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - A Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - F Fiore
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - M Soldaini
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - J Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000, Leuven, Belgium
| | - D Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - P Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000, Leuven, Belgium
| | - H Chen
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - V Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy.
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.
| |
Collapse
|
5
|
Yang Y, Qin H, Ding M, Ji C, Chen W, Diao W, Yin H, Chen M, Gan W, Guo H. Small ankyrin 1 (sANK1) promotes docetaxel resistance in castration-resistant prostate cancer cells by enhancing oxidative phosphorylation. FEBS Open Bio 2022; 13:257-269. [PMID: 36508323 PMCID: PMC9900087 DOI: 10.1002/2211-5463.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/09/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
Docetaxel (DTX) plays an important role in treating advanced prostate cancer (PCa). However, nearly all patients receiving DTX therapy ultimately progress to DTX resistance. How to address DTX resistance in PCa remains a key challenge for all urologists. Small ankyrin 1 (sAnk1) is an integral membrane protein in the endoplasmic reticulum. In the present study, we identified that sAnk1 is upregulated in PCa tissues and is positively associated with DTX therapy resistance in PCa. Further investigation demonstrated that overexpression of sAnk1 can significantly increase the DTX-resistant ability of PCa cells in vitro and in vivo. In addition, overexpression of sAnk1 could enhance oxidative phosphorylation (OXPHOS) levels in PCa cells, which was consistent with the higher OXPHOS levels observed in DTX-resistant PCa cells as compared to DTX-sensitive PCa cells. sAnk1 was also found to interact with polypyrimidine-tract-binding protein (PTBP1), an alternative splicing factor, and suppressed PTBP1-mediated alternative splicing of the pyruvate kinase gene (PKM). Thus, overexpression of sAnk1 decreased the ratio of PKM2/PKM1, enhanced the OXPHOS level, and ultimately promoted the resistance of PCa cells to DTX. In summary, our data suggest that sAnk1 enhances DTX resistance in PCa cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Changwei Ji
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Haoli Yin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Mengxia Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Weidong Gan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| |
Collapse
|
6
|
Pierantozzi E, Szentesi P, Paolini C, Dienes B, Fodor J, Oláh T, Colombini B, Rassier DE, Rubino EM, Lange S, Rossi D, Csernoch L, Bagni MA, Reggiani C, Sorrentino V. Impaired Intracellular Ca 2+ Dynamics, M-Band and Sarcomere Fragility in Skeletal Muscles of Obscurin KO Mice. Int J Mol Sci 2022; 23:1319. [PMID: 35163243 PMCID: PMC8835721 DOI: 10.3390/ijms23031319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Obscurin is a giant sarcomeric protein expressed in striated muscles known to establish several interactions with other proteins of the sarcomere, but also with proteins of the sarcoplasmic reticulum and costameres. Here, we report experiments aiming to better understand the contribution of obscurin to skeletal muscle fibers, starting with a detailed characterization of the diaphragm muscle function, which we previously reported to be the most affected muscle in obscurin (Obscn) KO mice. Twitch and tetanus tension were not significantly different in the diaphragm of WT and Obscn KO mice, while the time to peak (TTP) and half relaxation time (HRT) were prolonged. Differences in force-frequency and force-velocity relationships and an enhanced fatigability are observed in an Obscn KO diaphragm with respect to WT controls. Voltage clamp experiments show that a sarcoplasmic reticulum's Ca2+ release and SERCA reuptake rates were decreased in muscle fibers from Obscn KO mice, suggesting that an impairment in intracellular Ca2+ dynamics could explain the observed differences in the TTP and HRT in the diaphragm. In partial contrast with previous observations, Obscn KO mice show a normal exercise tolerance, but fiber damage, the altered sarcomere ultrastructure and M-band disarray are still observed after intense exercise.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Cecilia Paolini
- Department of Neuroscience, Imaging and Clinical Sciences, University Gabriele d’ Annunzio of Chieti, 66100 Chieti, Italy;
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.C.); (M.A.B.)
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada;
| | - Egidio Maria Rubino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, La Jolla, CA 92093, USA;
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.C.); (M.A.B.)
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, 35121 Padova, Italy;
- Science and Research Center Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| |
Collapse
|
7
|
Chambers PJ, Juracic ES, Fajardo VA, Tupling AR. The role of SERCA and sarcolipin in adaptive muscle remodeling. Am J Physiol Cell Physiol 2022; 322:C382-C394. [PMID: 35044855 DOI: 10.1152/ajpcell.00198.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sarcolipin (SLN) is a small integral membrane protein that regulates the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump. When bound to SERCA, SLN reduces the apparent Ca2+ affinity of SERCA and uncouples SERCA Ca2+ transport from its ATP consumption. As such, SLN plays a direct role in altering skeletal muscle relaxation and energy expenditure. Interestingly, the expression of SLN is dynamic during times of muscle adaptation, where large increases in SLN content are found in response to development, atrophy, overload and disease. Several groups have suggested that increases in SLN, especially in dystrophic muscle, are deleterious to muscle function and exacerbate already abhorrent intracellular Ca2+ levels. However, there is also significant evidence to show that increased SLN content is a beneficial adaptive mechanism which protects the SERCA pump and activates Ca2+ signaling and adaptive remodeling during times of cell stress. In this review, we first discuss the role for SLN in healthy muscle during both development and overload, where SLN has been shown to activate Ca2+ signaling to promote mitochondrial biogenesis, fibre type shifts and muscle hypertrophy. Then, with respect to muscle disease, we summarize the discrepancies in the literature as to whether SLN upregulation is adaptive or maladaptive in nature. This review is the first to offer the concept of SLN hormesis in muscle disease, wherein both too much and too little SLN are detrimental to muscle health. Finally, the underlying mechanisms which activate SLN upregulation are discussed, specifically acknowledging a potential positive feedback loop between SLN and Ca2+ signaling molecules.
Collapse
Affiliation(s)
- Paige J Chambers
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Emma S Juracic
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Val A Fajardo
- Department Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
Sarcolipin Exhibits Abundant RNA Transcription and Minimal Protein Expression in Horse Gluteal Muscle. Vet Sci 2020; 7:vetsci7040178. [PMID: 33202832 PMCID: PMC7711957 DOI: 10.3390/vetsci7040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Ca2+ regulation in equine muscle is important for horse performance, yet little is known about this species-specific regulation. We reported recently that horse encode unique gene and protein sequences for the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) and the regulatory subunit sarcolipin (SLN). Here we quantified gene transcription and protein expression of SERCA and its inhibitory peptides in horse gluteus, as compared to commonly-studied rabbit skeletal muscle. RNA sequencing and protein immunoblotting determined that horse gluteus expresses the ATP2A1 gene (SERCA1) as the predominant SR Ca2+-ATPase isoform and the SLN gene as the most-abundant SERCA inhibitory peptide, as also found in rabbit skeletal muscle. Equine muscle expresses an insignificant level of phospholamban (PLN), another key SERCA inhibitory peptide expressed commonly in a variety of mammalian striated muscles. Surprisingly in horse, the RNA transcript ratio of SLN-to-ATP2A1 is an order of magnitude higher than in rabbit, while the corresponding protein expression ratio is an order of magnitude lower than in rabbit. Thus, SLN is not efficiently translated or maintained as a stable protein in horse muscle, suggesting a non-coding role for supra-abundant SLN mRNA. We propose that the lack of SLN and PLN inhibition of SERCA activity in equine muscle is an evolutionary adaptation that potentiates Ca2+ cycling and muscle contractility in a prey species domestically selected for speed.
Collapse
|
9
|
Hu LYR, Kontrogianni-Konstantopoulos A. Proteomic Analysis of Myocardia Containing the Obscurin R4344Q Mutation Linked to Hypertrophic Cardiomyopathy. Front Physiol 2020; 11:478. [PMID: 32528308 PMCID: PMC7247546 DOI: 10.3389/fphys.2020.00478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
Obscurin is a giant cytoskeletal protein with structural and regulatory roles encoded by the OBSCN gene. Recently, mutations in OBSCN were associated with the development of different forms of cardiomyopathies, including hypertrophic cardiomyopathy (HCM). We previously reported that homozygous mice carrying the HCM-linked R4344Q obscurin mutation develop arrhythmia by 1-year of age under sedentary conditions characterized by increased heart rate, frequent incidents of premature ventricular contractions, and episodes of spontaneous ventricular tachycardia. In an effort to delineate the molecular mechanisms that contribute to the observed arrhythmic phenotype, we subjected protein lysates prepared from left ventricles of 1-year old R4344Q and wild-type mice to comparative proteomics analysis using tandem mass spectrometry; raw data are available via ProteomeXchange with identifier PXD017314. We found that the expression levels of proteins involved in cardiac function and disease, cytoskeletal organization, electropotential regulation, molecular transport and metabolism were significantly altered. Moreover, phospho-proteomic evaluation revealed changes in the phosphorylation profile of Ca2+ cycling proteins, including sAnk1.5, a major binding partner of obscurin localized in the sarcoplasmic reticulum; notably, this is the first report indicating that sAnk1 undergoes phosphorylation. Taken together, our findings implicate obscurin in diverse cellular processes within the myocardium, which is consistent with its multiple binding partners, localization in different subcellular compartments, and disease association.
Collapse
Affiliation(s)
- Li-Yen R Hu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
10
|
Lange S, Pinotsis N, Agarkova I, Ehler E. The M-band: The underestimated part of the sarcomere. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118440. [PMID: 30738787 PMCID: PMC7023976 DOI: 10.1016/j.bbamcr.2019.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.
Collapse
Affiliation(s)
- Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, San Diego, Medical Sciences Research Bldg, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Irina Agarkova
- InSphero, Wagistrasse 27, CH-8952 Schlieren, Switzerland
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
11
|
Subramaniam J, Yang P, McCarthy MJ, Cunha SR. Identification and characterization of self-association domains on small ankyrin 1 isoforms. J Mol Cell Cardiol 2020; 139:225-237. [PMID: 32035138 PMCID: PMC11042479 DOI: 10.1016/j.yjmcc.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
In striated muscles, the large scaffolding protein obscurin and a small SR-integral membrane protein sAnk1.5 control the retention of longitudinal SR across the sarcomere. How a complex of these proteins facilitates localization of longitudinal SR has yet to be resolved, but we hypothesize that obscurin interacts with a complex of sAnk1.5 proteins. To begin to address this hypothesis, we demonstrate that sAnk1.5 interacts with itself and identify two domains mediating self-association. Specifically, we show by co-precipitation and FLIM-FRET analysis that sAnk1.5 and another small AnkR isoform (sAnk1.6) interact with themselves and each other. We demonstrate that obscurin interacts with a complex of sAnk1.5 proteins and that this complex formation is enhanced by obscurin-binding. Using FLIM-FRET analysis, we show that obscurin interacts with sAnk1.5 alone and with sAnk1.6 in the presence of sAnk1.5. We find that sAnk1.5 self-association is disrupted by mutagenesis of residues Arg64-Arg69, residues previously associated with obscurin-binding. Molecular modeling of two interacting sAnk1.5 monomers facilitated the identification of Gly31-Val36 as an additional site of interaction, which was subsequently corroborated by co-precipitation and FLIM-FRET analysis. In closing, these results support a model in which sAnk1.5 forms large oligomers that interact with obscurin to facilitate the retention of longitudinal SR throughout skeletal and cardiac myocytes.
Collapse
Affiliation(s)
- Janani Subramaniam
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Pu Yang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Michael J McCarthy
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Shane R Cunha
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
12
|
Pierantozzi E, Szentesi P, Al-Gaadi D, Oláh T, Dienes B, Sztretye M, Rossi D, Sorrentino V, Csernoch L. Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice. Int J Mol Sci 2019; 20:ijms20133361. [PMID: 31323924 PMCID: PMC6651408 DOI: 10.3390/ijms20133361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022] Open
Abstract
Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Péter Szentesi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Dána Al-Gaadi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, H-4002 Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Mónika Sztretye
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary.
| |
Collapse
|
13
|
Gamu D, Juracic ES, Hall KJ, Tupling AR. The sarcoplasmic reticulum and SERCA: a nexus for muscular adaptive thermogenesis. Appl Physiol Nutr Metab 2019; 45:1-10. [PMID: 31116956 DOI: 10.1139/apnm-2019-0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We are currently facing an "obesity epidemic" worldwide. Promoting inefficient metabolism in muscle represents a potential treatment for obesity and its complications. Sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA) pumps in muscle are responsible for maintaining low cytosolic Ca2+ concentration through the ATP-dependent pumping of Ca2+ from the cytosol into the SR lumen. SERCA activity has the potential to be a critical regulator of body mass and adiposity given that it is estimated to contribute upwards of 20% of daily energy expenditure. More interestingly, this fraction can be modified physiologically in the face of stressors, such as ambient temperature and diet, through its physical interaction with several regulators known to inhibit Ca2+ uptake and muscle function. In this review, we discuss advances in our understanding of Ca2+-cycling thermogenesis within skeletal muscle, focusing on SERCA and its protein regulators, which were thought previously to only modulate muscular contractility. Novelty ATP consumption by SERCA pumps comprises a large proportion of resting energy expenditure in muscle and is dynamically regulated through interactions with small SERCA regulatory proteins. SERCA efficiency correlates significantly with resting metabolism, such that individuals with a higher resting metabolic rate have less energetically efficient SERCA Ca2+ pumping in muscle (i.e., lower coupling ratio). Futile Ca2+ cycling is a versatile heat generating mechanism utilized by both skeletal muscle and beige fat.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Emma Sara Juracic
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Karlee J Hall
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
14
|
Markwardt ML, Snell NE, Guo M, Wu Y, Christensen R, Liu H, Shroff H, Rizzo MA. A Genetically Encoded Biosensor Strategy for Quantifying Non-muscle Myosin II Phosphorylation Dynamics in Living Cells and Organisms. Cell Rep 2018; 24:1060-1070.e4. [PMID: 30044973 PMCID: PMC6117825 DOI: 10.1016/j.celrep.2018.06.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
Complex cell behaviors require dynamic control over non-muscle myosin II (NMMII) regulatory light chain (RLC) phosphorylation. Here, we report that RLC phosphorylation can be tracked in living cells and organisms using a homotransfer fluorescence resonance energy transfer (FRET) approach. Fluorescent protein-tagged RLCs exhibit FRET in the dephosphorylated conformation, permitting identification and quantification of RLC phosphorylation in living cells. This approach is versatile and can accommodate several different fluorescent protein colors, thus enabling multiplexed imaging with complementary biosensors. In fibroblasts, dynamic myosin phosphorylation was observed at the leading edge of migrating cells and retracting structures where it persistently colocalized with activated myosin light chain kinase. Changes in myosin phosphorylation during C. elegans embryonic development were tracked using polarization inverted selective-plane illumination microscopy (piSPIM), revealing a shift in phosphorylated myosin localization to a longitudinal orientation following the onset of twitching. Quantitative analyses further suggested that RLC phosphorylation dynamics occur independently from changes in protein expression.
Collapse
Affiliation(s)
- Michele L Markwardt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole E Snell
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, US NIH, Bethesda, MD 20814, USA
| | - Yicong Wu
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, US NIH, Bethesda, MD 20814, USA
| | - Ryan Christensen
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, US NIH, Bethesda, MD 20814, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, US NIH, Bethesda, MD 20814, USA
| | - M A Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
O'Rourke AR, Lindsay A, Tarpey MD, Yuen S, McCourt P, Nelson DM, Perrin BJ, Thomas DD, Spangenburg EE, Lowe DA, Ervasti JM. Impaired muscle relaxation and mitochondrial fission associated with genetic ablation of cytoplasmic actin isoforms. FEBS J 2018; 285:481-500. [PMID: 29265728 DOI: 10.1111/febs.14367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
While α-actin isoforms predominate in adult striated muscle, skeletal muscle-specific knockouts (KOs) of nonmuscle cytoplasmic βcyto - or γcyto -actin each cause a mild, but progressive myopathy effected by an unknown mechanism. Using transmission electron microscopy, we identified morphological abnormalities in both the mitochondria and the sarcoplasmic reticulum (SR) in aged muscle-specific βcyto - and γcyto -actin KO mice. We found βcyto - and γcyto -actin proteins to be enriched in isolated mitochondrial-associated membrane preparations, which represent the interface between mitochondria and sarco-endoplasmic reticulum important in signaling and mitochondrial dynamics. We also measured significantly elongated and interconnected mitochondrial morphologies associated with a significant decrease in mitochondrial fission events in primary mouse embryonic fibroblasts lacking βcyto - and/or γcyto -actin. Interestingly, mitochondrial respiration in muscle was not measurably affected as oxygen consumption was similar in skeletal muscle fibers from 12 month-old muscle-specific βcyto - and γcyto -actin KO mice. Instead, we found that the maximal rate of relaxation after isometric contraction was significantly slowed in muscles of 12-month-old βcyto - and γcyto -actin muscle-specific KO mice. Our data suggest that impaired Ca2+ re-uptake may presage development of the observed SR morphological changes in aged mice while providing a potential pathological mechanism for the observed myopathy.
Collapse
Affiliation(s)
- Allison R O'Rourke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Angus Lindsay
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Tarpey
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Samantha Yuen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Preston McCourt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, IN, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Dawn A Lowe
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Desmond PF, Labuza A, Muriel J, Markwardt ML, Mancini AE, Rizzo MA, Bloch RJ. Interactions between small ankyrin 1 and sarcolipin coordinately regulate activity of the sarco(endo)plasmic reticulum Ca 2+-ATPase (SERCA1). J Biol Chem 2017; 292:10961-10972. [PMID: 28487373 PMCID: PMC5491780 DOI: 10.1074/jbc.m117.783613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
SERCA1, the sarco(endo)plasmic reticulum Ca2+-ATPase of skeletal muscle, is essential for muscle relaxation and maintenance of low resting Ca2+ levels in the myoplasm. We recently reported that small ankyrin 1 (sAnk1) interacts with the sarco(endo)plasmic reticulum Ca2+-ATPase in skeletal muscle (SERCA1) to inhibit its activity. We also showed that this interaction is mediated at least in part through sAnk1's transmembrane domain in a manner similar to that of sarcolipin (SLN). Earlier studies have shown that SLN and phospholamban, the other well studied small SERCA-regulatory proteins, oligomerize either alone or together. As sAnk1 is coexpressed with SLN in muscle, we sought to determine whether these two proteins interact with one another when coexpressed exogenously in COS7 cells. Coimmunoprecipitation (coIP) and anisotropy-based FRET (AFRET) assays confirmed this interaction. Our results indicated that sAnk1 and SLN can associate in the sarcoplasmic reticulum membrane and after exogenous expression in COS7 cells in vitro but that their association did not require endogenous SERCA2. Significantly, SLN promoted the interaction between sAnk1 and SERCA1 when the three proteins were coexpressed, and both coIP and AFRET experiments suggested the formation of a complex consisting of all three proteins. Ca2+-ATPase assays showed that sAnk1 ablated SLN's inhibition of SERCA1 activity. These results suggest that sAnk1 interacts with SLN both directly and in complex with SERCA1 and reduces SLN's inhibitory effect on SERCA1 activity.
Collapse
Affiliation(s)
- Patrick F Desmond
- From the Department of Physiology and
- Programs in Biochemistry and Molecular Biology
| | - Amanda Labuza
- From the Department of Physiology and
- Neuroscience, and
| | | | | | - Allison E Mancini
- Molecular Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Megan A Rizzo
- From the Department of Physiology and
- Neuroscience, and
- Molecular Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Robert J Bloch
- From the Department of Physiology and
- Programs in Biochemistry and Molecular Biology
- Neuroscience, and
- Molecular Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
17
|
Manring HR, Carter OA, Ackermann MA. Obscure functions: the location-function relationship of obscurins. Biophys Rev 2017; 9:245-258. [PMID: 28510116 DOI: 10.1007/s12551-017-0254-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022] Open
Abstract
The obscurin family of polypeptides is essential for normal striated muscle function and contributes to the pathogenesis of fatal diseases, including cardiomyopathies and cancers. The single mammalian obscurin gene, OBSCN, gives rise to giant (∼800 kDa) and smaller (∼40-500 kDa) proteins that are composed of tandem adhesion and signaling motifs. Mammalian obscurin proteins are expressed in a variety of cell types, including striated muscles, and localize to distinct subcellular compartments where they contribute to diverse cellular processes. Obscurin homologs in Caenorhabditis elegans and Drosophila possess a similar domain architecture and are also expressed in striated muscles. The long sought after question, "what does obscurin do?" is complex and cannot be addressed without taking into consideration the subcellular distribution of these proteins and local isoform concentration. Herein, we present an overview of the functions of obscurins and begin to define the intricate relationship between their subcellular distributions and functions in striated muscles.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA
| | - Olivia A Carter
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
18
|
Inhibitory action of linoleamide and oleamide toward sarco/endoplasmic reticulum Ca 2+-ATPase. Biochim Biophys Acta Gen Subj 2016; 1861:3399-3405. [PMID: 27595606 DOI: 10.1016/j.bbagen.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/30/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND SERCA maintains intracellular Ca2+ homeostasis by sequestering cytosolic Ca2+ into SR/ER stores. Two primary fatty acid amides (PFAAs), oleamide (18:19-cis) and linoleamide (18:29,12-cis), induce an increase in intracellular Ca2+ levels, which might be caused by their inhibition of SERCA. METHODS Three major SERCA isoforms, rSERCA1a, hSERCA2b, and hSERCA3a, were individually overexpressed in COS-1 cells, and the inhibitory action of PFAAs on Ca2+-ATPase activity of SERCA was examined. RESULTS The Ca2+-ATPase activity of each SERCA was inhibited in a concentration-dependent manner strongly by linoleamide (IC50 15-53μM) and partially by oleamide (IC50 8.3-34μM). Inhibition by other PFAAs, such as stearamide (18:0) and elaidamide (18:19-trans), was hardly or slightly observed. With increasing dose, linoleamide decreased the apparent affinity for Ca2+ and the apparent maximum velocity of Ca2+-ATPase activity of all SERCAs tested. Oleamide also lowered these values for hSERCA3a. Meanwhile, oleamide uniquely reduced the apparent Ca2+ affinity of rSERCA1a and hSERCA2b: the reduction was considerably attenuated above certain concentrations of oleamide. The dissociation constants for SERCA interaction varied from 6 to 45μM in linoleamide and from 1.6 to 55μM in oleamide depending on the isoform. CONCLUSIONS Linoleamide and oleamide inhibit SERCA activity in the micromolar concentration range, and in a different manner. Both amides mainly suppress SERCA activity by lowering the Ca2+ affinity of the enzyme. GENERAL SIGNIFICANCE Our findings imply a novel role of these PFAAs as modulators of intracellular Ca2+ homeostasis via regulation of SERCA activity.
Collapse
|