1
|
Oshika, Bari VK. Molecular mechanism of host-yeast interactions and prevention by nanoformulation approaches. Microb Pathog 2025; 205:107663. [PMID: 40339625 DOI: 10.1016/j.micpath.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Fungal infections are a major source of morbidity and mortality in people with compromised immune systems, such as those with human immunodeficiency virus, cancer, organ transplant recipients, and patients undergoing chemotherapy in healthcare settings. According to a recent World Health Organization (WHO) fungal priority pathogens list, Cryptococcus spp., Candida spp., Aspergillus spp., and Candida auris cause severe invasive infections in human. These opportunistic pathogens cause a significant number of mycoses, which affect over a billion people annually. Around two million infections can be fatal, especially for those with compromised immune systems. To diagnose and treat mycoses, we need to understand the complex interactions between the fungus and the host during pathogenesis, the virulence-causing traits of the fungus, and how the host fights infection through the immune system. Although several antifungal drugs are available against fungal infections, their effectiveness is highly variable, with adverse effects. In addition, the increasing resistance to traditional antifungal treatments poses serious risks to the healthcare industry. Therefore, new therapeutic strategies are required to combat these potentially fatal fungal infections. Nanostructure-based formulations can improve the therapeutic efficacy of conventional medications by broadening their activities, decreasing toxicity, enhancing bioactivity, and improving biodistribution. The review highlights host and fungus interaction and how nanoformulations can be targeted against fungal infections.
Collapse
Affiliation(s)
- Oshika
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India.
| |
Collapse
|
2
|
Roth C, Moroz OV, Miranda SAD, Jahn L, Blagova EV, Lebedev AA, Segura DR, Stringer MA, Friis EP, Franco Cairo JPL, Davies GJ, Wilson KS. Structures of α-galactosaminidases from the CAZy GH114 family and homologs defining a new GH191 family of glycosidases. Acta Crystallogr D Struct Biol 2025; 81:234-251. [PMID: 40232846 PMCID: PMC12054363 DOI: 10.1107/s2059798325002864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Endo-galactosaminidases are an underexplored family of enzymes involved in the degradation of galactosaminogalactan (GAG) and other galactosamine-containing cationic exopolysaccharides produced by fungi and bacteria. These exopolysaccharides are part of the cell wall and extracellular matrix of microbial communities. Currently, these galactosaminidases are found in three distinct CAZy families: GH114, GH135 and GH166. Despite the widespread occurrence of these enzymes in nearly all bacterial and fungal clades, only limited biochemical and structural data are available for these three groups. To expand our knowledge of endo-galactosaminidases, we selected several sequences predicted to encode endo-galactosaminidases and produced them recombinantly for structural and functional studies. Only very few predicted proteins could be produced in soluble form, and activity against bacterial Pel (pellicle) polysaccharide could only be confirmed for one enzyme. Here, we report the structures of two bacterial and one fungal enzyme. Whereas the fungal enzyme belongs to family GH114, the two bacterial enzymes do not lie in the current GH families but instead define a new family, GH191. During structure solution we realized that crystals of all three enzymes had various defects including twinning and partial disorder, which in the case of a more severe pathology in one of the structures required the design of a specialized refinement/model-building protocol. Comparison of the structures revealed several features that might be responsible for the described activity pattern and substrate specificity compared with other GAG-degrading enzymes.
Collapse
Affiliation(s)
- Christian Roth
- Department for Biomolecular Systems, Carbohydrates Structure and FunctionMax Planck Institute of Colloids and InterfacesArnimallee 2214195BerlinGermany
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Suzan A. D. Miranda
- Department for Biomolecular Systems, Carbohydrates Structure and FunctionMax Planck Institute of Colloids and InterfacesArnimallee 2214195BerlinGermany
| | - Lucas Jahn
- Department for Biomolecular Systems, Carbohydrates Structure and FunctionMax Planck Institute of Colloids and InterfacesArnimallee 2214195BerlinGermany
| | - Elena V. Blagova
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Andrey A. Lebedev
- CCP4STFC Rutherford Appleton LaboratoryHarwell OxfordDidcotOX11 0QXUnited Kingdom
| | | | | | - Esben P. Friis
- Novonesis A/S, Biologiens Vej 2, 2800Kgs Lyngby, Denmark
| | - João P. L. Franco Cairo
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| |
Collapse
|
3
|
Abe K. Biological and biochemical studies on cell surface functions in microorganisms used in brewing and fermentation industry. Biosci Biotechnol Biochem 2025; 89:649-667. [PMID: 39993924 DOI: 10.1093/bbb/zbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
When brewing microorganisms, which include bacteria and fungi, act on solid cereal substrates, the microbial cell surface interacts with the substrate. When microorganisms use sugars and amino acids released by hydrolysis of the substrate, this occurs on the cell surface. Throughout my career, I have focused on functional studies of cell surface molecules such as solute transporters, cell wall components, and bio-surfactants and applied the knowledge obtained to the development of fermentation technologies. In this review, I describe (i) catabolite control by sugar transporters and energy generation coupled with amino acid decarboxylation in lactic acid bacteria; (ii) recruitment of a polyesterase by the fungal bio-surfactant proteins to polyesters and subsequent promotion of polyester hydrolysis; and (iii) hyphal aggregation via cell wall α-1,3-glucan and galactosaminogalactan in aspergilli and the development of a novel liquid culture method with hyphal dispersed mutants lacking these two polysaccharides.
Collapse
Affiliation(s)
- Keietsu Abe
- Laboratory of Fermentation Microbiology, Department of Agrochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Cheng G, An X, Dai Y, Li C, Li Y. Genomic Insights into Cobweb Disease Resistance in Agaricus bisporus: A Comparative Analysis of Resistant and Susceptible Strains. J Fungi (Basel) 2025; 11:200. [PMID: 40137238 PMCID: PMC11942895 DOI: 10.3390/jof11030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Agaricus bisporus, a globally cultivated edible fungus, faces significant challenges from fungal diseases like cobweb disease caused by Cladobotryum mycophilum, which severely impacts yield. This study aimed to explore the genetic basis of disease resistance in A. bisporus by comparing the genomes of a susceptible strain (AB7) and a resistant strain (AB58). Whole-genome sequencing of AB7 was performed using PacBio Sequel SMRT technology, and comparative genomic analyses were conducted alongside AB58 and other fungal hosts of C. mycophilum. Comparative genomic analyses revealed distinct resistance features in AB58, including enriched regulatory elements, specific deletions in AB7 affecting carbohydrate-active enzymes (CAZymes), and unique cytochrome P450 (CYP) profiles. Notably, AB58 harbored more cytochrome P450 genes related to fatty acid metabolism and unique NI-siderophore synthetase genes, contributing to its enhanced environmental adaptability and disease resistance. Pan-genome analysis highlighted significant genetic diversity, with strain-specific genes enriched in pathways like aflatoxin biosynthesis and ether lipid metabolism, suggesting distinct evolutionary adaptations. These findings provide valuable insights into the genetic basis underlying disease resistance in A. bisporus, offering a foundation for future breeding strategies to improve fungal crop resilience.
Collapse
Affiliation(s)
- Guohui Cheng
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Xiaoya An
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Yu Li
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| |
Collapse
|
5
|
Chatrath A, Dey P, Greeley K, Maciel G, Huang L, Heiss C, Black I, Azadi P, Free SJ. Characterization of the Neurospora crassa Galactosaminogalactan Biosynthetic Pathway. Microorganisms 2024; 12:1509. [PMID: 39203353 PMCID: PMC11356417 DOI: 10.3390/microorganisms12081509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for N-acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1). Characterization of the polysaccharides found in the growth medium from the wild type and the GAG synthase mutant demonstrates that there is a major reduction in the levels of polysaccharides containing galactosamine and N-acetylgalactosamine in the mutant growth medium, providing evidence that the synthase is responsible for the production of a GAG. The analysis also indicates that there are other galactose-containing polysaccharides produced by the fungus. Phenotypic characterization of wild-type and mutant isolates showed that deacetylated GAG from the wild type can function as an adhesin to a glass surface and provides the fungal mat with tensile strength, demonstrating that the deacetylated GAG functions as an intercellular adhesive. The acetylated GAG produced by the deacetylase mutant was found to function as an adhesive for chitin, alumina, celite (diatomaceous earth), activated charcoal, and wheat leaf particulates.
Collapse
Affiliation(s)
- Apurva Chatrath
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| | - Protyusha Dey
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| | - Kevin Greeley
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| | - Gabriela Maciel
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| | - Lei Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (L.H.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (L.H.)
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (L.H.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (L.H.)
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| |
Collapse
|
6
|
Heilig L, Natasha F, Trinks N, Aimanianda V, Wong SSW, Fontaine T, Terpitz U, Strobel L, Le Mauff F, Sheppard DC, Schäuble S, Kurzai O, Hünniger K, Weiss E, Vargas M, Howell PL, Panagiotou G, Wurster S, Einsele H, Loeffler J. CD56-mediated activation of human natural killer cells is triggered by Aspergillus fumigatus galactosaminogalactan. PLoS Pathog 2024; 20:e1012315. [PMID: 38889192 PMCID: PMC11216564 DOI: 10.1371/journal.ppat.1012315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/01/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Invasive aspergillosis causes significant morbidity and mortality in immunocompromised patients. Natural killer (NK) cells are pivotal for antifungal defense. Thus far, CD56 is the only known pathogen recognition receptor on NK cells triggering potent antifungal activity against Aspergillus fumigatus. However, the underlying cellular mechanisms and the fungal ligand of CD56 have remained unknown. Using purified cell wall components, biochemical treatments, and ger mutants with altered cell wall composition, we herein found that CD56 interacts with the A. fumigatus cell wall carbohydrate galactosaminogalactan (GAG). This interaction induced NK-cell activation, degranulation, and secretion of immune-enhancing chemokines and cytotoxic effectors. Supernatants from GAG-stimulated NK cells elicited antifungal activity and enhanced antifungal effector responses of polymorphonuclear cells. In conclusion, we identified A. fumigatus GAG as a ligand of CD56 on human primary NK cells, stimulating potent antifungal effector responses and activating other immune cells.
Collapse
Affiliation(s)
- Linda Heilig
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Fariha Natasha
- Department of Biotechnology & Biophysics Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Nora Trinks
- Department of Biotechnology & Biophysics Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Vishukumar Aimanianda
- Department of Mycology, Immunobiology of Aspergillus, Institut Pasteur, Paris, France
| | - Sarah Sze Wah Wong
- Department of Mycology, Immunobiology of Aspergillus, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Fungal Biology and Pathogenicity laboratory, Paris, France
| | - Ulrich Terpitz
- Department of Biotechnology & Biophysics Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Lea Strobel
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - François Le Mauff
- Infectious Disease in Global Health Program, McGill University Health Centre, Montreal, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Canada
| | - Donald C. Sheppard
- Infectious Disease in Global Health Program, McGill University Health Centre, Montreal, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI), Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene und Microbiology, University of Wuerzburg, Wuerzburg, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans-Knöll-Institute Jena, Germany
| | - Kerstin Hünniger
- Institute for Hygiene und Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Esther Weiss
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mario Vargas
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - P. Lynne Howell
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
7
|
Miyazawa K, Umeyama T, Takatsuka S, Muraosa Y, Hoshino Y, Yano S, Abe K, Miyazaki Y. Real-time monitoring of mycelial growth in liquid culture using hyphal dispersion mutant of Aspergillus fumigatus. Med Mycol 2024; 62:myae011. [PMID: 38429972 DOI: 10.1093/mmy/myae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
Hyphal pellet formation by Aspergillus species in liquid cultures is one of the main obstacles to high-throughput anti-Aspergillus reagent screening. We previously constructed a hyphal dispersion mutant of Aspergillus fumigatus by disrupting the genes encoding the primary cell wall α-1,3-glucan synthase Ags1 and putative galactosaminogalactan synthase Gtb3 (Δags1Δgtb3). Mycelial growth of the mutant in liquid cultures monitored by optical density was reproducible, and the dose-response of hyphal growth to antifungal agents has been quantified by optical density. However, Δags1Δgtb3 still forms hyphal pellets in some rich growth media. Here, we constructed a disruptant lacking all three α-1,3-glucan synthases and galactosaminogalactan synthase (Δags1Δags2Δags3Δgtb3), and confirmed that its hyphae were dispersed in all the media tested. We established an automatic method to monitor hyphal growth of the mutant in a 24-well plate shaken with a real-time plate reader. Dose-dependent growth suppression and unique growth responses to antifungal agents (voriconazole, amphotericin B, and micafungin) were clearly observed. A 96-well plate was also found to be useful for the evaluation of mycelial growth by optical density. Our method is potentially applicable to high-throughput screening for anti-Aspergillus agents.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Takatsuka
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasunori Muraosa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasutaka Hoshino
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Yonezawa, Japan
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Contato AG, Borelli TC, Buckeridge MS, Rogers J, Hartson S, Prade RA, Polizeli MDLTDM. Secretome Analysis of Thermothelomyces thermophilus LMBC 162 Cultivated with Tamarindus indica Seeds Reveals CAZymes for Degradation of Lignocellulosic Biomass. J Fungi (Basel) 2024; 10:121. [PMID: 38392793 PMCID: PMC10890306 DOI: 10.3390/jof10020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
The analysis of the secretome allows us to identify the proteins, especially carbohydrate-active enzymes (CAZymes), secreted by different microorganisms cultivated under different conditions. The CAZymes are divided into five classes containing different protein families. Thermothelomyces thermophilus is a thermophilic ascomycete, a source of many glycoside hydrolases and oxidative enzymes that aid in the breakdown of lignocellulosic materials. The secretome analysis of T. thermophilus LMBC 162 cultivated with submerged fermentation using tamarind seeds as a carbon source revealed 79 proteins distributed between the five diverse classes of CAZymes: 5.55% auxiliary activity (AAs); 2.58% carbohydrate esterases (CEs); 20.58% polysaccharide lyases (PLs); and 71.29% glycoside hydrolases (GHs). In the identified GH families, 54.97% are cellulolytic, 16.27% are hemicellulolytic, and 0.05 are classified as other. Furthermore, 48.74% of CAZymes have carbohydrate-binding modules (CBMs). Observing the relative abundance, it is possible to state that only thirteen proteins comprise 92.19% of the identified proteins secreted and are probably the main proteins responsible for the efficient degradation of the bulk of the biomass: cellulose, hemicellulose, and pectin.
Collapse
Affiliation(s)
- Alex Graça Contato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tiago Cabral Borelli
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-901, SP, Brazil
| | - Marcos Silveira Buckeridge
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steven Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Rolf Alexander Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
9
|
Freeman EC, Emilson EJS, Dittmar T, Braga LPP, Emilson CE, Goldhammer T, Martineau C, Singer G, Tanentzap AJ. Universal microbial reworking of dissolved organic matter along environmental gradients. Nat Commun 2024; 15:187. [PMID: 38168076 PMCID: PMC10762207 DOI: 10.1038/s41467-023-44431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Soils are losing increasing amounts of carbon annually to freshwaters as dissolved organic matter (DOM), which, if degraded, can offset their carbon sink capacity. However, the processes underlying DOM degradation across environments are poorly understood. Here we show DOM changes similarly along soil-aquatic gradients irrespective of environmental differences. Using ultrahigh-resolution mass spectrometry, we track DOM along soil depths and hillslope positions in forest catchments and relate its composition to soil microbiomes and physico-chemical conditions. Along depths and hillslopes, we find carbohydrate-like and unsaturated hydrocarbon-like compounds increase in abundance-weighted mass, and the expression of genes essential for degrading plant-derived carbohydrates explains >50% of the variation in abundance of these compounds. These results suggest that microbes transform plant-derived compounds, leaving DOM to become increasingly dominated by the same (i.e., universal), difficult-to-degrade compounds as degradation proceeds. By synthesising data from the land-to-ocean continuum, we suggest these processes generalise across ecosystems and spatiotemporal scales. Such general degradation patterns can help predict DOM composition and reactivity along environmental gradients to inform management of soil-to-stream carbon losses.
Collapse
Affiliation(s)
- Erika C Freeman
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| | - Erik J S Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste, Marie, ON, P6A 2E5, Canada
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, 26129, Oldenburg, Germany
| | - Lucas P P Braga
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Caroline E Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste, Marie, ON, P6A 2E5, Canada
| | - Tobias Goldhammer
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm, 301, Berlin, Germany
| | - Christine Martineau
- Natural Resources Canada, Laurentian Forestry Centre, 1055 Du P.E.P.S. Street, P.O. Box 10380, Québec, G1V 4C7, Canada
| | - Gabriel Singer
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
10
|
Miyazawa K, Umeyama T, Yoshimi A, Abe K, Miyazaki Y. [Aspergillus Cell Surface Structural Analysis and Its Applications to Industrial and Medical Use]. Med Mycol J 2024; 65:75-82. [PMID: 39218650 DOI: 10.3314/mmj.24.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The hyphal surface of cells of filamentous fungi is covered with cell wall, which is mainly composed of polysaccharides. Since the cell wall is the first structure to come in contact with the infection host, the environment, and the fungus itself, the elucidation of the cell wall structure and biogenesis is essential for understanding fungal ecology. Among filamentous fungi, the genus Aspergillus is an important group in the industrial, food, and medical fields. It is known that Aspergillus species form hyphal pellets in shake liquid culture. The authors previously found the role of α-1,3-glucan in hyphal aggregation in Aspergillus species. In addition, extracellular polysaccharide galactosaminogalactan contributed to hyphal aggregation as well, and dual disruption of biosynthesis genes of α-1,3-glucan and galactosaminogalactan resulted in complete hyphal dispersion in shake liquid culture. The characteristic of mycelia to form pellets under liquid culture conditions was the main reason why the growth measurement methods used for unicellular organisms could not be applied. We reported that hyphal growth of the dual disruption mutant could be measured by optical density. A real-time plate reader could be used to determine the growth curve of the mycelial growth of the dual disruption mutant. This measurement approach not only provides basic microbiological insights in filamentous fungi, but also has the potential to be applied to high-throughput screening of anti-Aspergillus drugs.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases
| | - Akira Yoshimi
- Terrestrial Microbiology and Systematics, Graduate School of Global Environmental Studies, Kyoto University
- New Industry Creation Hatchery Center, Tohoku University
| | - Keietsu Abe
- New Industry Creation Hatchery Center, Tohoku University
- Department of Agricultural Chemistry, Graduate School of Agricultural Sciences, Tohoku University
| | | |
Collapse
|
11
|
Liu S, Lu X, Dai M, Zhang S. Transcription factor CreA is involved in the inverse regulation of biofilm formation and asexual development through distinct pathways in Aspergillus fumigatus. Mol Microbiol 2023; 120:830-844. [PMID: 37800624 DOI: 10.1111/mmi.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
The exopolysaccharide galactosaminogalactan (GAG) contributes to biofilm formation and virulence in the pathogenic fungus Aspergillus fumigatus. Increasing evidence indicates that GAG production is inversely linked with asexual development. However, the mechanisms underlying this regulatory relationship are unclear. In this study, we found that the dysfunction of CreA, a conserved transcription factor involved in carbon catabolite repression in many fungal species, causes abnormal asexual development (conidiation) under liquid-submerged culture conditions specifically in the presence of glucose. The loss of creA decreased GAG production independent of carbon sources. Furthermore, CreA contributed to asexual development and GAG production via distinct pathways. CreA promoted A. fumigatus GAG production by positively regulating GAG biosynthetic genes (uge3 and agd3). CreA suppressed asexual development in glucose liquid-submerged culture conditions via central conidiation genes (brlA, abaA, and wetA) and their upstream activators (flbC and flbD). Restoration of brlA expression to the wild-type level by flbC or flbD deletion abolished the abnormal submerged conidiation in the creA null mutant but did not restore GAG production. The C-terminal region of CreA was crucial for the suppression of asexual development, and the repressive domain contributed to GAG production. Overall, CreA is involved in GAG production and asexual development in an inverse manner.
Collapse
Affiliation(s)
- Shuai Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
12
|
Sheridan PO, Meng Y, Williams TA, Gubry-Rangin C. Genomics of soil depth niche partitioning in the Thaumarchaeota family Gagatemarchaeaceae. Nat Commun 2023; 14:7305. [PMID: 37951938 PMCID: PMC10640624 DOI: 10.1038/s41467-023-43196-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
Knowledge of deeply-rooted non-ammonia oxidising Thaumarchaeota lineages from terrestrial environments is scarce, despite their abundance in acidic soils. Here, 15 new deeply-rooted thaumarchaeotal genomes were assembled from acidic topsoils (0-15 cm) and subsoils (30-60 cm), corresponding to two genera of terrestrially prevalent Gagatemarchaeaceae (previously known as thaumarchaeotal Group I.1c) and to a novel genus of heterotrophic terrestrial Thaumarchaeota. Unlike previous predictions, metabolic annotations suggest Gagatemarchaeaceae perform aerobic respiration and use various organic carbon sources. Evolutionary divergence between topsoil and subsoil lineages happened early in Gagatemarchaeaceae history, with significant metabolic and genomic trait differences. Reconstruction of the evolutionary mechanisms showed that the genome expansion in topsoil Gagatemarchaeaceae resulted from extensive early lateral gene acquisition, followed by progressive gene duplication throughout evolutionary history. Ancestral trait reconstruction using the expanded genomic diversity also did not support the previous hypothesis of a thermophilic last common ancestor of the ammonia-oxidising archaea. Ultimately, this study provides a good model for studying mechanisms driving niche partitioning between spatially related ecosystems.
Collapse
Affiliation(s)
- Paul O Sheridan
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Yiyu Meng
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
13
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
14
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
15
|
Liu H, Luo Z, Rao Y. Manipulation of fungal cell wall integrity to improve production of fungal natural products. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:49-78. [PMID: 38783724 DOI: 10.1016/bs.aambs.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungi, as an important industrial microorganism, play an essential role in the production of natural products (NPs) due to their advantages of utilizing cheap raw materials as substrates and strong protein secretion ability. Although many metabolic engineering strategies have been adopted to enhance the biosynthetic pathway of NPs in fungi, the fungal cell wall as a natural barrier tissue is the final and key step that affects the efficiency of NPs synthesis. To date, many important progresses have been achieved in improving the synthesis of NPs by regulating the cell wall structure of fungi. In this review, we systematically summarize and discuss various strategies for modifying the cell wall structure of fungi to improve the synthesis of NPs. At first, the cell wall structure of different types of fungi is systematically described. Then, strategies to disrupt cell wall integrity (CWI) by regulating the synthesis of cell wall polysaccharides and binding proteins are summarized, which have been applied to improve the synthesis of NPs. In addition, we also summarize the studies on the regulation of CWI-related signaling pathway and the addition of exogenous components for regulating CWI to improve the synthesis of NPs. Finally, we propose the current challenges and essential strategies to usher in an era of more extensive manipulation of fungal CWI to improve the production of fungal NPs.
Collapse
Affiliation(s)
- Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China.
| |
Collapse
|
16
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
17
|
Seegers CII, Lee DJ, Zarnovican P, Kirsch SH, Müller R, Haselhorst T, Routier FH. Identification of Compounds Preventing A. fumigatus Biofilm Formation by Inhibition of the Galactosaminogalactan Deacetylase Agd3. Int J Mol Sci 2023; 24:ijms24031851. [PMID: 36768176 PMCID: PMC9915216 DOI: 10.3390/ijms24031851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates a physical barrier protecting the fungi from chemicals such as antifungal drugs. Novel therapeutic strategies aim at combining drugs that inhibit biofilm synthesis or disrupt existing biofilm with classical antimicrobials. One of the major constituents of A. fumigatus biofilm is the polysaccharide galactosaminogalactan (GAG) composed of α1,4-linked N-acetylgalactosamine, galactosamine, and galactose residues. GAG is synthesized on the cytosolic face of the plasma membrane and is extruded in the extracellular space, where it is partially deacetylated. The deacetylase Agd3 that mediates this last step is essential for the biofilm formation and full virulence of the fungus. In this work, a previously described enzyme-linked lectin assay, based on the adhesion of deacetylated GAG to negatively charged plates and quantification with biotinylated soybean agglutinin was adapted to screen microbial natural compounds, as well as compounds identified in in silico screening of drug libraries. Actinomycin X2, actinomycin D, rifaximin, and imatinib were shown to inhibit Agd3 activity in vitro. At a concentration of 100 µM, actinomycin D and imatinib showed a clear reduction in the biofilm biomass without affecting the fungal growth. Finally, imatinib reduced the virulence of A. fumigatus in a Galleria mellonella infection model in an Agd3-dependent manner.
Collapse
Affiliation(s)
- Carla I. I. Seegers
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Danielle J. Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Patricia Zarnovican
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Susanne H. Kirsch
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Françoise H. Routier
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
18
|
Understanding Aspergillus fumigatus galactosaminogalactan biosynthesis: A few questions remain. Cell Surf 2023; 9:100095. [PMID: 36691652 PMCID: PMC9860509 DOI: 10.1016/j.tcsw.2023.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
Half a century after their discovery, polymers of N-acetylgalactosamine produced by the Aspergilli have garnered new interest as mediators of fungal virulence. Recent work has focused on the Aspergillus fumigatus secreted and cell wall-associated heteropolymer, galactosaminogalactan (GAG). This polymer, composed of galactose (Gal) and partially deacetylated N-acetylgalactosamine (GalNAc), plays a role in a variety of pathogenic processes including biofilm formation, immune modulation and evasion, and resistance to antifungals. Given its many potential contributions to fungal pathogenesis, GAG is a promising therapeutic target for novel antifungal strategies. As such, several studies have sought to elucidate the biosynthetic pathways required for GAG production and secretion. Herein we review the progress made in the understanding of the molecular mechanisms underlying GAG synthesis and identify several gaps in our understanding of this process.
Collapse
|
19
|
Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification. PLoS Pathog 2022; 18:e1010976. [DOI: 10.1371/journal.ppat.1010976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The eukaryotic multisubunit Elongator complex has been shown to perform multiple functions in transcriptional elongation, histone acetylation and tRNA modification. However, the Elongator complex plays different roles in different organisms, and the underlying mechanisms remain unexplored. Moreover, the biological functions of the Elongator complex in human fungal pathogens remain unknown. In this study, we verified that the Elongator complex of the opportunistic fungal pathogen Aspergillus fumigatus consists of six subunits (Elp1-6), and the loss of any subunit results in similarly defective colony phenotypes with impaired hyphal growth and reduced conidiation. The catalytic subunit-Elp3 of the Elongator complex includes a S-adenosyl methionine binding (rSAM) domain and a lysine acetyltransferase (KAT) domain, and it plays key roles in the hyphal growth, biofilm-associated exopolysaccharide galactosaminogalactan (GAG) production, adhesion and virulence of A. fumigatus; however, Elp3 does not affect H3K14 acetylation levels in vivo. LC–MS/MS chromatograms revealed that loss of Elp3 abolished the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNA wobble uridine (U34), and the overexpression of tRNAGlnUUG and tRNAGluUUC, which normally harbor mcm5s2U modifications, mainly rescues the defects of the Δelp3 mutant, suggesting that tRNA modification rather than lysine acetyltransferase is responsible for the primary function of Elp3 in A. fumigatus. Strikingly, global proteomic comparison analyses showed significantly upregulated expression of genes related to amino acid metabolism in the Δelp3 mutant strain compared to the wild-type strain. Western blotting showed that deletion of elp3 resulted in overexpression of the amino acid starvation-responsive transcription factor CpcA, and deletion of CpcA markedly reversed the defective phenotypes of the Δelp3 mutant, including attenuated virulence. Therefore, the findings of this study demonstrate that A. fumigatus Elp3 functions as a tRNA-modifying enzyme in the regulation of growth, GAG production, adhesion and virulence by maintaining intracellular amino acid homeostasis. More broadly, our study highlights the importance of U34 tRNA modification in regulating cellular metabolic states and virulence traits of fungal pathogens.
Collapse
|
20
|
Lofgren LA, Ross BS, Cramer RA, Stajich JE. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol 2022; 20:e3001890. [PMID: 36395320 PMCID: PMC9714929 DOI: 10.1371/journal.pbio.3001890] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/01/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A. fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence-absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A. fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A. fumigatus, with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence-absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A. fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi.
Collapse
Affiliation(s)
- Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brandon S. Ross
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
21
|
Liu S, Le Mauff F, Sheppard DC, Zhang S. Filamentous fungal biofilms: Conserved and unique aspects of extracellular matrix composition, mechanisms of drug resistance and regulatory networks in Aspergillus fumigatus. NPJ Biofilms Microbiomes 2022; 8:83. [PMID: 36261442 PMCID: PMC9581972 DOI: 10.1038/s41522-022-00347-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The filamentous fungus Aspergillus fumigatus is an ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses, highlighting the importance of defining the mechanisms underlying biofilm development and associated emergent properties. A. fumigatus biofilms display a morphology and architecture that is distinct from bacterial and yeast biofilms. Moreover, A. fumigatus biofilms display unique characteristics in the composition of their extracellular matrix (ECM) and the regulatory networks governing biofilm formation. This review will discuss our current understanding of the form and function of A. fumigatus biofilms, including the unique components of ECM matrix, potential drug resistance mechanisms, the regulatory networks governing A. fumigatus biofilm formation, and potential therapeutics targeting these structures.
Collapse
Affiliation(s)
- Shuai Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Francois Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, QC, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, QC, Canada. .,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada.
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
22
|
Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J Biol Chem 2022; 298:102352. [PMID: 35940306 PMCID: PMC9478923 DOI: 10.1016/j.jbc.2022.102352] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Drug resistance by pathogenic microbes has emerged as a matter of great concern to mankind. Microorganisms such as bacteria and fungi employ multiple defense mechanisms against drugs and the host immune system. A major line of microbial defense is the biofilm, which comprises extracellular polymeric substances that are produced by the population of microorganisms. Around 80% of chronic bacterial infections are associated with biofilms. The presence of biofilms can increase the necessity of doses of certain antibiotics up to 1000-fold to combat infection. Thus, there is an urgent need for strategies to eradicate biofilms. Although a few physicochemical methods have been developed to prevent and treat biofilms, these methods have poor efficacy and biocompatibility. In this review, we discuss the existing strategies to combat biofilms and their challenges. Subsequently, we spotlight the potential of enzymes, in particular, polysaccharide degrading enzymes, for biofilm dispersion, which might lead to facile antimicrobial treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Reshma Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Simran Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
23
|
Preclinical Evaluation of Recombinant Microbial Glycoside Hydrolases as Antibiofilm Agents in Acute Pulmonary Pseudomonas aeruginosa Infection. Antimicrob Agents Chemother 2022; 66:e0005222. [PMID: 35862738 PMCID: PMC9380554 DOI: 10.1128/aac.00052-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterium Pseudomonas aeruginosa can colonize the airways of patients with chronic lung disease. Within the lung, P. aeruginosa forms biofilms that can enhance resistance to antibiotics and immune defenses. P. aeruginosa biofilm formation is dependent on the secretion of matrix exopolysaccharides, including Pel and Psl. In this study, recombinant glycoside hydrolases (GHs) that degrade Pel and Psl were evaluated alone and in combination with antibiotics in a mouse model of P. aeruginosa infection. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that, although GHs have short half-lives, administration of two GHs in combination resulted in increased GH persistence. Combining GH prophylaxis and treatment with the antibiotic ciprofloxacin resulted in greater reduction in pulmonary bacterial burden than that with either agent alone. This study lays the foundation for further exploration of GH therapy in bacterial infections.
Collapse
|
24
|
Tamimi R, Kyazze G, Keshavarz T. Antifungal effect of triclosan on Aspergillus fumigatus: quorum quenching role as a single agent and synergy with liposomal amphotericin-B. World J Microbiol Biotechnol 2022; 38:142. [PMID: 35718814 PMCID: PMC9206924 DOI: 10.1007/s11274-022-03325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
The purpose of this research was to determine Aspergillus fumigatus conidial viability and its biofilm formation upon treatment with triclosan and amphotericin-B loaded liposomes. A. fumigatus was treated with the antimicrobials, triclosan and liposomal amphotericin-B (L-AMB), in single and combined supplementation. To quantify the cells’ viability upon treatments, resazurin-based viability assay was performed. Confocal laser scanning microscopy was done by applying FUN-1 stain to screen the role of the agents on extracellular polymeric substances. Total A. fumigatus biomass upon treatments was estimated by using crystal violet-based assay. To study the agents’ effect on the conidial viability, flow cytometry analysis was performed. Expression levels of A. fumigatus genes encoding cell wall proteins, α-(1,3)-glucans and galactosaminogalactan were analysed by real-time polymerase chain reaction assay. A synergistic interaction occurred between triclosan and L-AMB when they were added sequentially (triclosan + L-AMB) at their sub-minimum inhibitory concentrations, the triclosan and L-AMB MICs were dropped to 0.6 and 0.2 mg/L, respectively, from 2 to 1 mg/L. Besides, L-AMB and triclosan contributed to the down-regulation of α-(1,3)-glucan and galactosaminogalactan in A. fumigatus conidia and resulted in less conidia aggregation and mycelia adhesion to the biotic/abiotic surfaces; A. fumigatus conidia-became hydrophilic upon treatment, as a result of rodlet layer being masked by a hydrophilic layer or modified by the ionic strength of the rodlet layer. In A. fumigatus, the potential mechanisms of action for L-AMB might be through killing the cells and for triclosan through interrupting the cells’ development as a consequence of quorum quenching.
Collapse
Affiliation(s)
- Roya Tamimi
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Godfrey Kyazze
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, UK
| | - Tajalli Keshavarz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
25
|
Yan K, Stanley M, Kowalski B, Raimi OG, Ferenbach AT, Wei P, Fang W, van Aalten DMF. Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. J Biol Chem 2022; 298:102003. [PMID: 35504355 PMCID: PMC9168620 DOI: 10.1016/j.jbc.2022.102003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/09/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 μM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.
Collapse
Affiliation(s)
- Kaizhou Yan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mathew Stanley
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bartosz Kowalski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pingzhen Wei
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
26
|
Miyazawa K, Umeyama T, Hoshino Y, Abe K, Miyazaki Y. Quantitative Monitoring of Mycelial Growth of Aspergillus fumigatus in Liquid Culture by Optical Density. Microbiol Spectr 2022; 10:e0006321. [PMID: 34985327 PMCID: PMC8729762 DOI: 10.1128/spectrum.00063-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023] Open
Abstract
Filamentous fungi form multicellular hyphae, which generally form pellets in liquid shake cultures, during the vegetative growth stage. Because of these characteristics, growth-monitoring methods commonly used in bacteria and yeast have not been applied to filamentous fungi. We have recently revealed that the cell wall polysaccharide α-1,3-glucan and extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae. Here, we tested whether Aspergillus fumigatus shows dispersed growth in liquid media that can be quantitatively monitored, similar to that of yeasts. We constructed a double disruptant mutant of both the primary α-1,3-glucan synthase gene ags1 and the putative GAG synthase gene gtb3 in A. fumigatus AfS35 and found that the hyphae of this mutant were fully dispersed. Although the mutant lost α-1,3-glucan and GAG, its growth and susceptibility to antifungal agents were not different from those of the parental strain. Mycelial weight of the mutant in shake-flask cultures was proportional to optical density for at least 18 h. We were also able to quantify the dose response of hyphal growth to antifungal agents by measuring optical density. Overall, we established a convenient strategy to monitor A. fumigatus hyphal growth. Our method can be directly used for screening for novel antifungals against Aspergillus species. IMPORTANCE Filamentous fungi generally form hyphal pellets in liquid culture. This property prevents filamentous fungi so that we may apply the methods used for unicellular organisms such as yeast and bacteria. In the present study, by using the fungal pathogen Aspergillus fumigatus strain with modified hyphal surface polysaccharides, we succeeded in monitoring the hyphal growth quantitatively by optical density. The principle of this easy measurement by optical density could lead to a novel standard of hyphal quantification such as those that have been used for yeasts and bacteria. Dose response of hyphal growth by antifungal agents could also be monitored. This method could be useful for screening for novel antifungal reagents against Aspergillus species.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasutaka Hoshino
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
27
|
Briard B, Fontaine T, Kanneganti TD, Gow NA, Papon N. Fungal cell wall components modulate our immune system. Cell Surf 2021; 7:100067. [PMID: 34825116 PMCID: PMC8603304 DOI: 10.1016/j.tcsw.2021.100067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
Invasive fungal infections remain highly problematic for human health. Collectively, they account for more than 1 million deaths a year in addition to more than 100 million mucosal infections and 1 billion skin infections. To be able to make progress it is important to understand the pathobiology of fungal interactions with the immune system. Here, we highlight new advancements pointing out the pivotal role of fungal cell wall components (β-glucan, mannan, galactosaminogalactan and melanin) in modulating host immunity and discuss how these open new opportunities for the development of immunomodulatory strategies to combat deadly fungal infectious diseases.
Collapse
Affiliation(s)
- Benoit Briard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thierry Fontaine
- Unité de Biologie et Pathogénicité Fongiques, Institut Pasteur, Paris, France
| | | | - Neil A.R. Gow
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
28
|
Preclinical Evaluation of Recombinant Microbial Glycoside Hydrolases in the Prevention of Experimental Invasive Aspergillosis. mBio 2021; 12:e0244621. [PMID: 34579578 PMCID: PMC8546845 DOI: 10.1128/mbio.02446-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses. Aspergillus biofilm formation requires the production of a cationic matrix exopolysaccharide, galactosaminogalactan (GAG). In this study, recombinant glycoside hydrolases (GH)s that degrade GAG were evaluated as antifungal agents in a mouse model of invasive aspergillosis. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that although GHs have short half-lives, GH prophylaxis resulted in reduced fungal burden in leukopenic mice and improved survival in neutropenic mice, possibly through augmenting pulmonary neutrophil recruitment. Combining GH prophylaxis with posaconazole treatment resulted in a greater reduction in fungal burden than either agent alone. This study lays the foundation for further exploration of GH therapy in invasive fungal infections. IMPORTANCE The biofilm-forming mold Aspergillus fumigatus is a common causative agent of invasive fungal airway disease in patients with a compromised immune system or chronic airway disease. Treatment of A. fumigatus infection is limited by the few available antifungals to which fungal resistance is becoming increasingly common. The high mortality rate of A. fumigatus-related infection reflects a need for the development of novel therapeutic strategies. The fungal biofilm matrix is in part composed of the adhesive exopolysaccharide galactosaminogalactan, against which antifungals are less effective. Previously, we demonstrated antibiofilm activity with recombinant forms of the glycoside hydrolase enzymes that are involved in galactosaminogalactan biosynthesis. In this study, prophylaxis with glycoside hydrolases alone or in combination with the antifungal posaconazole in a mouse model of experimental aspergillosis improved outcomes. This study offers insight into the therapeutic potential of combining biofilm disruptive agents to leverage the activity of currently available antifungals.
Collapse
|
29
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Mei L, Wang X, Yin Y, Tang G, Wang C. Conservative production of galactosaminogalactan in Metarhizium is responsible for appressorium mucilage production and topical infection of insect hosts. PLoS Pathog 2021; 17:e1009656. [PMID: 34125872 PMCID: PMC8224951 DOI: 10.1371/journal.ppat.1009656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/24/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) has been well characterized in Aspergilli, especially the human pathogen Aspergillus fumigatus. It has been found that a five-gene cluster is responsible for GAG biosynthesis in Aspergilli to mediate fungal adherence, biofilm formation, immunosuppression or induction of host immune defences. Herein, we report the presence of the conserved GAG biosynthetic gene cluster in the insect pathogenic fungus Metarhizium robertsii to mediate either similar or unique biological functions. Deletion of the gene cluster disabled fungal ability to produce GAG on germ tubes, mycelia and appressoria. Relative to the wild type strain, null mutant was impaired in topical infection but not injection of insect hosts. We found that GAG production by Metarhizium is partially acetylated and could mediate fungal adherence to hydrophobic insect cuticles, biofilm formation, and penetration of insect cuticles. In particular, it was first confirmed that this exopolymer is responsible for the formation of appressorium mucilage, the essential extracellular matrix formed along with the infection structure differentiation to mediate cell attachment and expression of cuticle degrading enzymes. In contrast to its production during A. fumigatus invasive growth, GAG is not produced on the Metarhizium cells harvested from insect hemocoels; however, the polymer can glue germ tubes into aggregates to form mycelium pellets in liquid culture. The results of this study unravel the biosynthesis and unique function of GAG in a fungal system apart from the aspergilli species.
Collapse
Affiliation(s)
- Lijuan Mei
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xuewen Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yin
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guirong Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
31
|
Irmscher T, Roske Y, Gayk I, Dunsing V, Chiantia S, Heinemann U, Barbirz S. Pantoea stewartii WceF is a glycan biofilm-modifying enzyme with a bacteriophage tailspike-like fold. J Biol Chem 2021; 296:100286. [PMID: 33450228 PMCID: PMC7949094 DOI: 10.1016/j.jbc.2021.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022] Open
Abstract
Pathogenic microorganisms often reside in glycan-based biofilms. Concentration and chain length distribution of these mostly anionic exopolysaccharides (EPS) determine the overall biophysical properties of a biofilm and result in a highly viscous environment. Bacterial communities regulate this biofilm state via intracellular small-molecule signaling to initiate EPS synthesis. Reorganization or degradation of this glycan matrix, however, requires the action of extracellular glycosidases. So far, these were mainly described for bacteriophages that must degrade biofilms for gaining access to host bacteria. The plant pathogen Pantoea stewartii (P. stewartii) encodes the protein WceF within its EPS synthesis cluster. WceF has homologs in various biofilm forming plant pathogens of the Erwinia family. In this work, we show that WceF is a glycosidase active on stewartan, the main P. stewartii EPS biofilm component. WceF has remarkable structural similarity with bacteriophage tailspike proteins (TSPs). Crystal structure analysis showed a native trimer of right-handed parallel β-helices. Despite its similar fold, WceF lacks the high stability found in bacteriophage TSPs. WceF is a stewartan hydrolase and produces oligosaccharides, corresponding to single stewartan repeat units. However, compared with a stewartan-specific glycan hydrolase of bacteriophage origin, WceF showed lectin-like autoagglutination with stewartan, resulting in notably slower EPS cleavage velocities. This emphasizes that the bacterial enzyme WceF has a role in P. stewartii biofilm glycan matrix reorganization clearly different from that of a bacteriophage exopolysaccharide depolymerase.
Collapse
Affiliation(s)
- Tobias Irmscher
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany; Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Yvette Roske
- Crystallography, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Igor Gayk
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany
| | - Valentin Dunsing
- Physikalische Zellbiochemie, Universität Potsdam, Potsdam, Germany
| | | | - Udo Heinemann
- Crystallography, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität, Berlin, Germany.
| | | |
Collapse
|
32
|
The Transcription Factor SomA Synchronously Regulates Biofilm Formation and Cell Wall Homeostasis in Aspergillus fumigatus. mBio 2020; 11:mBio.02329-20. [PMID: 33173002 PMCID: PMC7667024 DOI: 10.1128/mbio.02329-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell wall is essential for fungal viability and is absent from human hosts; thus, drugs disrupting cell wall biosynthesis have gained more attention. Caspofungin is a member of a new class of clinically approved echinocandin drugs to treat invasive aspergillosis by blocking β-1,3-glucan synthase, thus damaging the fungal cell wall. Here, we demonstrate that caspofungin and other cell wall stressors can induce galactosaminogalactan (GAG)-dependent biofilm formation in the human pathogen Aspergillus fumigatus. We further identified SomA as a master transcription factor playing a dual role in both biofilm formation and cell wall homeostasis. SomA plays this dual role by direct binding to a conserved motif upstream of GAG biosynthetic genes and genes involved in cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Collectively, these findings reveal a transcriptional control pathway that integrates biofilm formation and cell wall homeostasis and suggest SomA as an attractive target for antifungal drug development. Polysaccharides are key components of both the fungal cell wall and biofilm matrix. Despite having distinct assembly and regulation pathways, matrix exopolysaccharide and cell wall polysaccharides share common substrates and intermediates in their biosynthetic pathways. It is not clear, however, if the biosynthetic pathways governing the production of these polysaccharides are cooperatively regulated. Here, we demonstrate that cell wall stress promotes production of the exopolysaccharide galactosaminogalactan (GAG)-depend biofilm formation in the major fungal pathogen of humans Aspergillus fumigatus and that the transcription factor SomA plays a crucial role in mediating this process. A core set of SomA target genes were identified by transcriptome sequencing and chromatin immunoprecipitation coupled to sequencing (ChIP-Seq). We identified a novel SomA-binding site in the promoter regions of GAG biosynthetic genes agd3 and ega3, as well as its regulators medA and stuA. Strikingly, this SomA-binding site was also found in the upstream regions of genes encoding the cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Thus, SomA plays a direct regulation of both GAG and cell wall polysaccharide biosynthesis. Consistent with these findings, SomA is required for the maintenance of normal cell wall architecture and compositions in addition to its function in biofilm development. Moreover, SomA was found to globally regulate glucose uptake and utilization, as well as amino sugar and nucleotide sugar metabolism, which provides precursors for polysaccharide synthesis. Collectively, our work provides insight into fungal adaptive mechanisms in response to cell wall stress where biofilm formation and cell wall homeostasis were synchronously regulated.
Collapse
|
33
|
Miyazawa K, Yoshimi A, Abe K. The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species. Fungal Biol Biotechnol 2020; 7:10. [PMID: 32626592 PMCID: PMC7329490 DOI: 10.1186/s40694-020-00101-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are widely used for production of enzymes and chemicals, and are industrially cultivated both in liquid and solid cultures. Submerged culture is often used as liquid culture for filamentous fungi. In submerged culture, filamentous fungi show diverse macromorphology such as hyphal pellets and dispersed hyphae depending on culture conditions and genetic backgrounds of fungal strains. Although the macromorphology greatly affects the productivity of submerged cultures, the specific cellular components needed for hyphal aggregation after conidial germination have not been characterized. Recently we reported that the primary cell wall polysaccharide α-1,3-glucan and the extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae, and that a strain deficient in both α-1,3-glucan and GAG shows dispersed hyphae in liquid culture. In this review, we summarize our current understanding of the contribution of chemical properties of α-1,3-glucan and GAG to hyphal aggregation. Various ascomycetes and basidiomycetes have α-1,3-glucan synthase gene(s). In addition, some Pezizomycotina fungi, including species used in the fermentation industry, also have GAG biosynthetic genes. We also review here the known mechanisms of biosynthesis of α-1,3-glucan and GAG. Regulation of the biosynthesis of the two polysaccharides could be a potential way of controlling formation of hyphal pellets.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan.,ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579 Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan.,ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579 Japan.,Laboratory of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan
| |
Collapse
|
34
|
Jørgensen TR, Burggraaf AM, Arentshorst M, Schutze T, Lamers G, Niu J, Kwon MJ, Park J, Frisvad JC, Nielsen KF, Meyer V, van den Hondel CA, Dyer PS, Ram AF. Identification of SclB, a Zn(II)2Cys6 transcription factor involved in sclerotium formation in Aspergillus niger. Fungal Genet Biol 2020; 139:103377. [DOI: 10.1016/j.fgb.2020.103377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
|
35
|
Zhang Y, Gómez‐Redondo M, Jiménez‐Osés G, Arda A, Overkleeft HS, Marel GA, Jiménez‐Barbero J, Codée JDC. Synthesis and Structural Analysis of
Aspergillus fumigatus
Galactosaminogalactans Featuring α‐Galactose, α‐Galactosamine and α‐
N
‐Acetyl Galactosamine Linkages. Angew Chem Int Ed Engl 2020; 59:12746-12750. [DOI: 10.1002/anie.202003951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Yongzhen Zhang
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marcos Gómez‐Redondo
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Gonzalo Jiménez‐Osés
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Ana Arda
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
- Department Organic Chemistry II, Faculty Science & Technology EHU-UPV Leioa Spain
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
36
|
Zhang Y, Gómez‐Redondo M, Jiménez‐Osés G, Arda A, Overkleeft HS, Marel GA, Jiménez‐Barbero J, Codée JDC. Synthesis and Structural Analysis of
Aspergillus fumigatus
Galactosaminogalactans Featuring α‐Galactose, α‐Galactosamine and α‐
N
‐Acetyl Galactosamine Linkages. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongzhen Zhang
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marcos Gómez‐Redondo
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Gonzalo Jiménez‐Osés
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Ana Arda
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
- Department Organic Chemistry II, Faculty Science & Technology EHU-UPV Leioa Spain
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
37
|
Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nat Commun 2020; 11:2450. [PMID: 32415073 PMCID: PMC7229062 DOI: 10.1038/s41467-020-16144-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes.
Collapse
|
38
|
Deshmukh H, Rambach G, Sheppard DC, Lee M, Hagleitner M, Hermann M, Würzner R, Lass-Flörl C, Speth C. Galactosaminogalactan secreted from Aspergillus fumigatus and Aspergillus flavus induces platelet activation. Microbes Infect 2020; 22:331-339. [PMID: 31962135 DOI: 10.1016/j.micinf.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023]
Abstract
Platelets are meanwhile recognized as versatile elements within the immune system and appear to play a key role in the innate immune response to pathogens including fungi. Previous experiments revealed platelet activation by direct contact with the hyphal-associated polysaccharide galactosaminogalactan (GAG). Since secreted fungal products may also be relevant and trigger immune reactions or thrombosis, we screened culture supernatants (SN) of human-pathogenic fungi for their capacity to activate platelets. For that purpose, platelets were incubated with SN from various fungal species; platelet activation and GAG deposition on the surface of platelets were detected by flow cytometry and electron and confocal microscopy, Culture supernatants of Aspergillus fumigatus and flavus isolates were potent platelet stimulators in a dose- and time-dependent manner, while SN of other Aspergillus species and all tested mucormycete species did not significantly induce platelet activation. The capacity of culture SN to activate platelets was dependent on fungal production of GAG and deposition of secreted GAG on the platelet surface; supernatants from mucormycetes or mutants of A. fumigatus lacking GAG secretion did not affect platelet activity. These results suggest that invading fungi can stimulate platelets not only locally through direct interactions with fungal hyphae, but can also act over a certain distance through secreted GAG.
Collapse
Affiliation(s)
- Hemalata Deshmukh
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montréal, H3A 0G4, Canada
| | - Mark Lee
- Department of Microbiology and Immunology, McGill University, Montréal, H3A 0G4, Canada
| | - Magdalena Hagleitner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, 6020, Innsbruck, Austria
| | - Reinhard Würzner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
39
|
Chung KY, Brown JCS. Biology and function of exo-polysaccharides from human fungal pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:1-11. [PMID: 33042730 DOI: 10.1007/s40588-020-00137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Environmental fungi such as Cryptococcus neoformans and Aspergillus fumigatus must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings. Recent findings This review focuses on exo-polysaccharides, chains of sugars that transported out of the cell and spread to the local environment. Major exo-polysaccharides for C. neoformans and A. fumigatus are glucuronylxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients. Summary Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.
Collapse
Affiliation(s)
- Krystal Y Chung
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
40
|
Blatzer M, Beauvais A, Henrissat B, Latgé JP. Revisiting Old Questions and New Approaches to Investigate the Fungal Cell Wall Construction. Curr Top Microbiol Immunol 2020; 425:331-369. [PMID: 32418033 DOI: 10.1007/82_2020_209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The beginning of our understanding of the cell wall construction came from the work of talented biochemists in the 70-80's. Then came the era of sequencing. Paradoxically, the accumulation of fungal genomes complicated rather than solved the mystery of cell wall construction, by revealing the involvement of a much higher number of proteins than originally thought. The situation has become even more complicated since it is now recognized that the cell wall is an organelle whose composition continuously evolves with the changes in the environment or with the age of the fungal cell. The use of new and sophisticated technologies to observe cell wall construction at an almost atomic scale should improve our knowledge of the cell wall construction. This essay will present some of the major and still unresolved questions to understand the fungal cell wall biosynthesis and some of these exciting futurist approaches.
Collapse
Affiliation(s)
- Michael Blatzer
- Experimental Neuropathology Unit, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
| | - Anne Beauvais
- Mycology Department, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257-CNRS & Aix-Marseille Université, 13288, Marseille cedex 9, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece.
| |
Collapse
|
41
|
|
42
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
43
|
Rahfeld P, Wardman JF, Mehr K, Huff D, Morgan-Lang C, Chen HM, Hallam SJ, Withers SG. Prospecting for microbial α- N-acetylgalactosaminidases yields a new class of GH31 O-glycanase. J Biol Chem 2019; 294:16400-16415. [PMID: 31530641 DOI: 10.1074/jbc.ra119.010628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
α-Linked GalNAc (α-GalNAc) is most notably found at the nonreducing terminus of the blood type-determining A-antigen and as the initial point of attachment to the peptide backbone in mucin-type O-glycans. However, despite their ubiquity in saccharolytic microbe-rich environments such as the human gut, relatively few α-N-acetylgalactosaminidases are known. Here, to discover and characterize novel microbial enzymes that hydrolyze α-GalNAc, we screened small-insert libraries containing metagenomic DNA from the human gut microbiome. Using a simple fluorogenic glycoside substrate, we identified and characterized a glycoside hydrolase 109 (GH109) that is active on blood type A-antigen, along with a new subfamily of glycoside hydrolase 31 (GH31) that specifically cleaves the initial α-GalNAc from mucin-type O-glycans. This represents a new activity in this GH family and a potentially useful new enzyme class for analysis or modification of O-glycans on protein or cell surfaces.
Collapse
Affiliation(s)
- Peter Rahfeld
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jacob F Wardman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kevin Mehr
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Drew Huff
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia V6T 1Z3, Canada.,Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia V6T 1Z3, Canada.,Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
44
|
Miyazawa K, Yoshimi A, Sano M, Tabata F, Sugahara A, Kasahara S, Koizumi A, Yano S, Nakajima T, Abe K. Both Galactosaminogalactan and α-1,3-Glucan Contribute to Aggregation of Aspergillus oryzae Hyphae in Liquid Culture. Front Microbiol 2019; 10:2090. [PMID: 31572319 PMCID: PMC6753227 DOI: 10.3389/fmicb.2019.02090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
Filamentous fungi generally form aggregated hyphal pellets in liquid culture. We previously reported that α-1,3-glucan-deficient mutants of Aspergillus nidulans did not form hyphal pellets and their hyphae were fully dispersed, and we suggested that α-1,3-glucan functions in hyphal aggregation. However, Aspergillus oryzae α-1,3-glucan-deficient (AGΔ) mutants still form small pellets; therefore, we hypothesized that another factor responsible for forming hyphal pellets remains in these mutants. Here, we identified an extracellular matrix polysaccharide galactosaminogalactan (GAG) as such a factor. To produce a double mutant of A. oryzae (AG-GAGΔ), we disrupted the genes required for GAG biosynthesis in an AGΔ mutant. Hyphae of the double mutant were fully dispersed in liquid culture, suggesting that GAG is involved in hyphal aggregation in A. oryzae. Addition of partially purified GAG fraction to the hyphae of the AG-GAGΔ strain resulted in formation of mycelial pellets. Acetylation of the amino group in galactosamine of GAG weakened GAG aggregation, suggesting that hydrogen bond formation by this group is important for aggregation. Genome sequences suggest that α-1,3-glucan, GAG, or both are present in many filamentous fungi and thus may function in hyphal aggregation in these fungi. We also demonstrated that production of a recombinant polyesterase, CutL1, was higher in the AG-GAGΔ strain than in the wild-type and AGΔ strains. Thus, controlling hyphal aggregation factors of filamentous fungi may increase productivity in the fermentation industry.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Motoaki Sano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Fuka Tabata
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Asumi Sugahara
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shin Kasahara
- Department of Environmental Sciences, School of Food, Agricultural and Environmental Sciences, Miyagi University, Taiwa, Japan
| | - Ami Koizumi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Engineering, Yamagata University, Yonezawa, Japan
| | - Tasuku Nakajima
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.,Laboratory of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
45
|
Bamford NC, Le Mauff F, Subramanian AS, Yip P, Millán C, Zhang Y, Zacharias C, Forman A, Nitz M, Codée JDC, Usón I, Sheppard DC, Howell PL. Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1,4-galactosaminidase that disrupts microbial biofilms. J Biol Chem 2019; 294:13833-13849. [PMID: 31416836 DOI: 10.1074/jbc.ra119.009910] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes both chronic and acute invasive infections. Galactosaminogalactan (GAG) is an integral component of the A. fumigatus biofilm matrix and a key virulence factor. GAG is a heterogeneous linear α-1,4-linked exopolysaccharide of galactose and GalNAc that is partially deacetylated after secretion. A cluster of five co-expressed genes has been linked to GAG biosynthesis and modification. One gene in this cluster, ega3, is annotated as encoding a putative α-1,4-galactosaminidase belonging to glycoside hydrolase family 114 (GH114). Herein, we show that recombinant Ega3 is an active glycoside hydrolase that disrupts GAG-dependent A. fumigatus and Pel polysaccharide-dependent Pseudomonas aeruginosa biofilms at nanomolar concentrations. Using MS and functional assays, we demonstrate that Ega3 is an endo-acting α-1,4-galactosaminidase whose activity depends on the conserved acidic residues, Asp-189 and Glu-247. X-ray crystallographic structural analysis of the apo Ega3 and an Ega3-galactosamine complex, at 1.76 and 2.09 Å resolutions, revealed a modified (β/α)8-fold with a deep electronegative cleft, which upon ligand binding is capped to form a tunnel. Our structural analysis coupled with in silico docking studies also uncovered the molecular determinants for galactosamine specificity and substrate binding at the -2 to +1 binding subsites. The findings in this study increase the structural and mechanistic understanding of the GH114 family, which has >600 members encoded by plant and opportunistic human pathogens, as well as in industrially used bacteria and fungi.
Collapse
Affiliation(s)
- Natalie C Bamford
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - Adithya S Subramanian
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patrick Yip
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Claudia Millán
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer Baldiri Reixac 15, 3 A17, Barcelona 08028, Spain
| | - Yongzhen Zhang
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Caitlin Zacharias
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - Adam Forman
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Isabel Usón
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer Baldiri Reixac 15, 3 A17, Barcelona 08028, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, E-08003 Barcelona, Spain
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada .,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
46
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
47
|
Le Mauff F, Bamford NC, Alnabelseya N, Zhang Y, Baker P, Robinson H, Codée JDC, Howell PL, Sheppard DC. Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases. J Biol Chem 2019; 294:10760-10772. [PMID: 31167793 DOI: 10.1074/jbc.ra119.008511] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
During infection, the fungal pathogen Aspergillus fumigatus forms biofilms that enhance its resistance to antimicrobials and host defenses. An integral component of the biofilm matrix is galactosaminogalactan (GAG), a cationic polymer of α-1,4-linked galactose and partially deacetylated N-acetylgalactosamine (GalNAc). Recent studies have shown that recombinant hydrolase domains from Sph3, an A. fumigatus glycoside hydrolase involved in GAG synthesis, and PelA, a multifunctional protein from Pseudomonas aeruginosa involved in Pel polysaccharide biosynthesis, can degrade GAG, disrupt A. fumigatus biofilms, and attenuate fungal virulence in a mouse model of invasive aspergillosis. The molecular mechanisms by which these enzymes disrupt biofilms have not been defined. We hypothesized that the hydrolase domains of Sph3 and PelA (Sph3h and PelAh, respectively) share structural and functional similarities given their ability to degrade GAG and disrupt A. fumigatus biofilms. MALDI-TOF enzymatic fingerprinting and NMR experiments revealed that both proteins are retaining endo-α-1,4-N-acetylgalactosaminidases with a minimal substrate size of seven residues. The crystal structure of PelAh was solved to 1.54 Å and structure alignment to Sph3h revealed that the enzymes share similar catalytic site residues. However, differences in the substrate-binding clefts result in distinct enzyme-substrate interactions. PelAh hydrolyzed partially deacetylated substrates better than Sph3h, a finding that agrees well with PelAh's highly electronegative binding cleft versus the neutral surface present in Sph3h Our insight into PelAh's structure and function necessitate the creation of a new glycoside hydrolase family, GH166, whose structural and mechanistic features, along with those of GH135 (Sph3), are reported here.
Collapse
Affiliation(s)
- François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, H3A 2B4 Quebec, Canada,; Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, H4A 3J1 Quebec, Canada,; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, H3A 1Y2 Quebec, Canada
| | - Natalie C Bamford
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada,; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Noor Alnabelseya
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada,; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Yongzhen Zhang
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands, and
| | - Perrin Baker
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada
| | - Howard Robinson
- Photon Science Division, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands, and
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada,; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8 Ontario, Canada,.
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, H3A 2B4 Quebec, Canada,; Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, H4A 3J1 Quebec, Canada,; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, H3A 1Y2 Quebec, Canada,.
| |
Collapse
|
48
|
Speth C, Rambach G, Lass-Flörl C, Howell PL, Sheppard DC. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence 2019; 10:976-983. [PMID: 30667338 PMCID: PMC8647848 DOI: 10.1080/21505594.2019.1568174] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aspergillus spp and particularly the species Aspergillus fumigatus are the causative agents of invasive aspergillosis, a progressive necrotizing pneumonia that occurs in immunocompromised patients. The limited efficacy of currently available antifungals has led to interest in a better understanding of the molecular mechanisms underlying the pathogenesis of invasive aspergillosis in order to identify new therapeutic targets for this devastating disease. The Aspergillus exopolysaccharide galactosaminogalactan (GAG) plays an important role in the pathogenesis of experimental invasive aspergillosis. The present review article summarizes our current understanding of GAG composition and synthesis and the molecular mechanisms whereby GAG promotes virulence. Promising directions for future research and the prospect of GAG as both a therapy and therapeutic target are reviewed.
Collapse
Affiliation(s)
- Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Donald C Sheppard
- Departments of Medicine and of Microbiology and Immunology, McGill University, Montréal, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
| |
Collapse
|
49
|
Ostapska H, Howell PL, Sheppard DC. Deacetylated microbial biofilm exopolysaccharides: It pays to be positive. PLoS Pathog 2018; 14:e1007411. [PMID: 30589915 PMCID: PMC6307706 DOI: 10.1371/journal.ppat.1007411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Hanna Ostapska
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases in Global Health Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - P. Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PLH); (DCS)
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases in Global Health Program, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (PLH); (DCS)
| |
Collapse
|
50
|
|