1
|
Hwang Y, Kang SJ, Kang J, Choi J, Kim SJ, Jang S. DNA repair and disease: insights from the human DNA glycosylase NEIL family. Exp Mol Med 2025; 57:524-532. [PMID: 40033009 PMCID: PMC11958798 DOI: 10.1038/s12276-025-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025] Open
Abstract
The base excision repair pathway protects DNA from base damage via oxidation, deamination, alkylation and methylation. DNA glycosylases are key enzymes that recognize damaged bases in a lesion-specific manner and initiate the base excision repair process. Among these, the endonuclease VIII-like 1-3 (NEIL1-3) family, which is found in mammalian genomes, is a homolog of bacterial DNA glycosylases known as Fpg/Nei. NEIL enzymes have similar structures and substrates but with slight differences. When repair proteins are impaired, the accumulation of damaged bases can lead to increased genomic instability, which is implicated in various pathologies, including cancer and neurodegeneration. Notably, mutations in these proteins also influence a range of other diseases and inflammation. This review focuses on the influence of the NEIL family on human health across different organ systems. Investigating the relationship between NEIL mutations and diseases can improve our understanding of how these enzymes affect the human body. This information is crucial for understanding the basic mechanisms of DNA repair and enabling the development of novel inhibitors or gene therapies that target only these enzymes. Understanding the role of the NEIL family provides insights into novel therapies and improves our ability to combat genetic diseases.
Collapse
Affiliation(s)
- Yuna Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Jieun Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongwoo Choi
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Sunbok Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I exerts its anticancer effects by inducing cell cycle arrest via the KAT2a-ube2C/E2F1 pathway and inhibiting HepG2-induced macrophage M2 polarization. Biochem Biophys Res Commun 2024; 738:150508. [PMID: 39151295 DOI: 10.1016/j.bbrc.2024.150508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, particularly prevalent in China, where it accounts for nearly half of the world's new cases and deaths each year, but has limited therapeutic options. This study systematically investigated the impact of cucurbitacin I on HCC cell lines including SK-Hep-1, Huh-7, and HepG2. The results revealed that cucurbitacin I not only inhibited cell proliferation, cell migration and colony formation, but also induced apoptosis in HCC cells. The apoptotic induction was accompanied by a decrease in the expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl2), and an elevation in the expression levels of pro-apoptotic factors, including tumor protein p53 (P53), bcl2 associated X-apoptosis regulator (Bax), and caspase3 (Cas3). Additionally, cucurbitacin I caused cell cycle arrest by modulating the lysine acetyltransferase 2A (KAT2A)-E2F transcription factor 1 (E2F1)/Ubiquitin-conjugating enzyme E2 C (UBE2C) signaling axis. In terms of regulation on tumor microenvironment, cucurbitacin I was demonstrated the ability to inhibit HCC cell-induced M2 polarization of macrophages. This comprehensive study unveils the multifaceted anti-cancer mechanisms of cucurbitacin I, providing robust support for its potential application in the treatment of HCC, offering new avenues for the future development of HCC treatment strategies.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Yunfei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
3
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Wang X, Wu M, Liu Q, He W, Tian Y, Zhang Y, Li C, Liu Y, Yu A, Jin H. Impact of osteopenia and osteosarcopenia on the outcomes after surgery of hepatobiliary-pancreatic cancers. Front Oncol 2024; 14:1403822. [PMID: 39099698 PMCID: PMC11294096 DOI: 10.3389/fonc.2024.1403822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Objective The purpose of this study is to investigate potential associations between osteopenia, osteosarcopenia, and postoperative outcomes in patients with hepatobiliary-pancreatic cancer (HBPC). Methods Three online databases, including Embase, PubMed, and the Cochrane Library, were thoroughly searched for literature describing the relationship between osteopenia, osteosarcopenia, and outcomes of surgical treatment of HBPC patients from the start of each database to September 29, 2023. The Newcastle-Ottawa Scale was used to rate the quality of the studies. Results This analysis included a total of 16 articles with a combined patient cohort of 2,599 individuals. The results demonstrated that HBPC patients with osteopenia had significantly inferior OS (HR: 2.27, 95% CI: 1.70-3.03, p < 0.001) and RFS (HR: 1.96, 95% CI: 1.42-2.71, p < 0.001) compared to those without osteopenia. Subgroup analysis demonstrated that these findings were consistent across univariate and multivariate analyses, as well as hepatocellular carcinoma, biliary tract cancer, and pancreatic cancer. The risk of postoperative major complications was significantly higher in patients with osteopenia compared to those without osteopenia (OR: 1.66, 95% CI: 1.19-2.33, p < 0.001). Besides, we also found that the presence of osteosarcopenia in HBPC patients was significantly related to poorer OS (HR: 3.31, 95% CI: 2.00-5.48, p < 0.001) and PFS (HR: 2.50, 95% CI: 1.62-3.84, p < 0.001) in comparison to those without osteosarcopenia. Conclusion Preoperative osteopenia and osteosarcopenia can predict poorer OS and RFS with HBPC after surgery.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Min Wu
- Department of Oncology, Third People’s Hospital of Honghe Prefecture, Gejiu, China
| | - Qian Liu
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei He
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yong Tian
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Cuiping Li
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yanni Liu
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Anqi Yu
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hongyan Jin
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Salvadori L, Paiella M, Castiglioni B, Belladonna ML, Manenti T, Ercolani C, Cornioli L, Clemente N, Scircoli A, Sardella R, Tensi L, Astolfi A, Barreca ML, Chiappalupi S, Gentili G, Bosetti M, Sorci G, Filigheddu N, Riuzzi F. Equisetum arvense standardized dried extract hinders age-related osteosarcopenia. Biomed Pharmacother 2024; 174:116517. [PMID: 38574619 DOI: 10.1016/j.biopha.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Age-associated osteosarcopenia is an unresolved syndrome characterized by the concomitant loss of bone (osteopenia) and skeletal muscle (sarcopenia) tissues increasing falls, immobility, morbidity, and mortality. Unbalanced resorption of bone in the remodeling process and excessive protein breakdown, especially fast type II myosin heavy chain (MyHC-II) isoform and myofiber metabolic shift, are the leading causes of bone and muscle deterioration in the elderly, respectively. Equisetum arvense (EQ) is a plant traditionally recommended for many pathological conditions due to its anti-inflammatory properties. Thus, considering that a chronic low-grade inflammatory state predisposes to both osteoporosis and sarcopenia, we tested a standardized hydroalcoholic extract of EQ in in vitro models of muscle atrophy [C2C12 myotubes treated with proinflammatory cytokines (TNFα/IFNγ), excess glucocorticoids (dexamethasone), or the osteokine, receptor activator of nuclear factor kappa-B ligand (RANKL)] and osteoclastogenesis (RAW 264.7 cells treated with RANKL). We found that EQ counteracted myotube atrophy, blunting the activity of several pathways depending on the applied stimulus, and reduced osteoclast formation and activity. By in silico target fishing, IKKB-dependent nuclear factor kappa-B (NF-κB) inhibition emerges as a potential common mechanism underlying EQ's anti-atrophic effects. Consumption of EQ (500 mg/kg/day) by pre-geriatric C57BL/6 mice for 3 months translated into: i) maintenance of muscle mass and performance; ii) restrained myofiber oxidative shift; iii) slowed down age-related modifications in osteoporotic bone, significantly preserving trabecular connectivity density; iv) reduced muscle- and spleen-related inflammation. EQ can preserve muscle functionality and bone remodeling during aging, potentially valuable as a natural treatment for osteosarcopenia.
Collapse
Affiliation(s)
- Laura Salvadori
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Martina Paiella
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Beatrice Castiglioni
- Department Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | | | | | | | - Luca Cornioli
- Laboratori Biokyma srl, Anghiari, Arezzo 52031, Italy
| | - Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara 28100, Italy
| | - Andrea Scircoli
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | | | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Giulia Gentili
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Michela Bosetti
- Department Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Francesca Riuzzi
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy.
| |
Collapse
|
6
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Ebert SM, Nicolas CS, Schreiber P, Lopez JG, Taylor AT, Judge AR, Judge SM, Rasmussen BB, Talley JJ, Rème CA, Adams CM. Ursolic Acid Induces Beneficial Changes in Skeletal Muscle mRNA Expression and Increases Exercise Participation and Performance in Dogs with Age-Related Muscle Atrophy. Animals (Basel) 2024; 14:186. [PMID: 38254356 PMCID: PMC10812546 DOI: 10.3390/ani14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Muscle atrophy and weakness are prevalent and debilitating conditions in dogs that cannot be reliably prevented or treated by current approaches. In non-canine species, the natural dietary compound ursolic acid inhibits molecular mechanisms of muscle atrophy, leading to improvements in muscle health. To begin to translate ursolic acid to canine health, we developed a novel ursolic acid dietary supplement for dogs and confirmed its safety and tolerability in dogs. We then conducted a randomized, placebo-controlled, proof-of-concept efficacy study in older beagles with age-related muscle atrophy, also known as sarcopenia. Animals received placebo or ursolic acid dietary supplements once a day for 60 days. To assess the study's primary outcome, we biopsied the quadriceps muscle and quantified atrophy-associated mRNA expression. Additionally, to determine whether the molecular effects of ursolic acid might have functional correlates consistent with improvements in muscle health, we assessed secondary outcomes of exercise participation and T-maze performance. Importantly, in canine skeletal muscle, ursolic acid inhibited numerous mRNA expression changes that are known to promote muscle atrophy and weakness. Furthermore, ursolic acid significantly improved exercise participation and T-maze performance. These findings identify ursolic acid as a natural dietary compound that inhibits molecular mechanisms of muscle atrophy and improves functional performance in dogs.
Collapse
Affiliation(s)
- Scott M. Ebert
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Paul Schreiber
- Research & Development—Biopharmacy Department, Virbac SA, 06511 Carros, France
| | - Jaime G. Lopez
- US Petcare Innovation, Virbac NA, Westlake, TX 76262, USA
| | - Alan T. Taylor
- Innovation, Business Development, Virbac NA, Westlake, TX 76262, USA
| | - Andrew R. Judge
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Physical Therapy and Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M. Judge
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Physical Therapy and Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Blake B. Rasmussen
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Biochemistry and Structural Biology and Center for Metabolic Health, University of Texas Health Science Center, San Antonio, TX 77021, USA
| | - John J. Talley
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
| | | | - Christopher M. Adams
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Sheng R, Cao M, Song M, Wang M, Zhang Y, Shi L, Xie T, Li Y, Wang J, Rui Y. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J Orthop Translat 2023; 43:36-46. [PMID: 38021216 PMCID: PMC10654153 DOI: 10.1016/j.jot.2023.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Osteosarcopenia is a syndrome coexisting sarcopenia and osteopenia/osteoporosis, with a high fracture risk. Recently, skeletal muscle and bone have been recognized as endocrine organs capable of communication through secreting myokines and osteokines, respectively. With a deeper understanding of the muscle-bone crosstalk, these endocrine signals exhibit an important role in osteosarcopenia development and fracture healing. METHODS This review summarizes the role of myokines and osteokines in the development and treatment of osteosarcopenia and fracture, and discusses their potential for osteosarcopenia-related fracture treatment. RESULTS Several well-defined myokines (myostatin and irisin) and osteokines (RANKL and SOST) are found to not only regulate skeletal muscle and bone metabolism but also influence fracture healing processes. Systemic interventions targeting these biochemical signals has shown promising results in improving the mass and functions of skeletal muscle and bone, as well as accelerating fracture healing processes. CONCLUSION The regulation of muscle-bone crosstalk via biochemical signals presents a novel and promising strategy for treating osteosarcopenia and fracture by simultaneously enhancing bone and muscle anabolism. We propose that myostatin, irisin, RANKL, and SOST may serve as potential targets to treat fracture patients with osteosarcopenia. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Osteosarcopenia is an emerging geriatric syndrome where sarcopenia and osteoporosis coexist, with high fracture risk, delayed fracture healing, and increased mortality. However, no pharmacological agent is available to treat fracture patients with osteosarcopenia. This review summarizes the role of several myokines and osteokines in the development and treatment of osteosacropenia and fracture, as well as discusses their potential as intervention targets for osteosarcopenia-related fracture, which provides a novel and promising strategy for future osteosarcopenia-related fracture treatment.
Collapse
Affiliation(s)
- Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyuan Song
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Tian Xie
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
9
|
Miki A, Sakuma Y, Watanabe J, Endo K, Sasanuma H, Teratani T, Lefor AK, Kitayama J, Sata N. Osteopenia Is Associated with Shorter Survival in Patients with Intrahepatic Cholangiocarcinoma. Curr Oncol 2023; 30:1860-1868. [PMID: 36826105 PMCID: PMC9955432 DOI: 10.3390/curroncol30020144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prognostic importance of osteopenia in patients with intrahepatic cholangiocarcinoma (ICC) undergoing hepatectomy is unclear. The aim of this study was to evaluate the impact of osteopenia on survival in patients with ICC. METHODS A total of 71 patients who underwent hepatectomy at Jichi Medical University between July 2008 and June 2022 were included in this study. Non-contrast computed tomography scan images at the eleventh thoracic vertebra were used to assess bone mineral density. The cutoff value was calculated using a threshold value of 160 Hounsfield units. Overall survival curves were made using the Kaplan-Meier method and the log-rank test was used to evaluate survival. The hazard ratio (HR) and 95% confidence interval (CI) for overall survival were calculated using Cox's proportional hazard model. RESULTS In multivariable analysis, osteopenia (HR 3.66, 95%CI 1.16-14.1, p = 0.0258) and the platelet-lymphocyte ratio (HR 6.26, 95%CI 2.27-15.9, p = 0.0008) were significant independent factors associated with overall survival. There were no significant independent prognostic factors for recurrence-free survival. CONCLUSIONS Preoperative osteopenia is significantly associated with postoperative survival in patients with ICC undergoing hepatectomy.
Collapse
Affiliation(s)
- Atsushi Miki
- Correspondence: ; Tel.: +81-285-57-7371; Fax: +81-285-44-3234
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Meyer GA, Thomopoulos S, Abu-Amer Y, Shen KC. Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB. eLife 2022; 11:e82016. [PMID: 36508247 PMCID: PMC9873255 DOI: 10.7554/elife.82016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The nuclear factor-κB (NFκB) pathway is a major thoroughfare for skeletal muscle atrophy and is driven by diverse stimuli. Targeted inhibition of NFκB through its canonical mediator IKKβ effectively mitigates loss of muscle mass across many conditions, from denervation to unloading to cancer. In this study, we used gain- and loss-of-function mouse models to examine the role of NFκB in muscle atrophy following rotator cuff tenotomy - a model of chronic rotator cuff tear. IKKβ was knocked down or constitutively activated in muscle-specific inducible transgenic mice to elicit a twofold gain or loss of NFκB signaling. Surprisingly, neither knockdown of IKKβ nor overexpression of caIKKβ significantly altered the loss of muscle mass following tenotomy. This finding was consistent across measures of morphological adaptation (fiber cross-sectional area, fiber length, fiber number), tissue pathology (fibrosis and fatty infiltration), and intracellular signaling (ubiquitin-proteasome, autophagy). Intriguingly, late-stage tenotomy-induced atrophy was exacerbated in male mice compared with female mice. This sex specificity was driven by ongoing decreases in fiber cross-sectional area, which paralleled the accumulation of large autophagic vesicles in male, but not female muscle. These findings suggest that tenotomy-induced atrophy is not dependent on NFκB and instead may be regulated by autophagy in a sex-specific manner.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
- Department of Orthopaedic Surgery, Washington University School of MedicineSt LouisUnited States
- Departments of Neurology and Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Stavros Thomopoulos
- Departments of Orthopaedic Surgery and Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of MedicineSt LouisUnited States
- Department of Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
- Shriners Hospital for ChildrenSt. LouisUnited States
| | - Karen C Shen
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
11
|
Preoperative Osteopenia Is Associated with Significantly Shorter Survival in Patients with Perihilar Cholangiocarcinoma. Cancers (Basel) 2022; 14:cancers14092213. [PMID: 35565342 PMCID: PMC9103099 DOI: 10.3390/cancers14092213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Osteopenia is defined as low bone mineral density (BMD) and has been shown to be associated with outcomes of patients with various cancers. The association between osteopenia and perihilar cholangiocarcinoma is unknown. The aim of this study was to evaluate osteopenia as a prognostic factor in patients with perihilar cholangiocarcinoma. Methods: A total of 58 patients who underwent surgery for perihilar cholangiocarcinoma were retrospectively analyzed. The BMD at the 11th thoracic vertebra was measured using computed tomography scan within one month of surgery. Patients with a BMD < 160 HU were considered to have osteopenia and b BMD ≥ 160 did not have osteopenia. The log-rank test was performed for survival using the Kaplan−Meier method. After adjusting for confounding factors, overall survival was assessed by Cox′s proportional-hazards model. Results: The osteopenia group had 27 (47%) more females than the non-osteopenia group (p = 0.036). Median survival in the osteopenia group was 37 months and in the non-osteopenia group was 61 months (p = 0.034). In multivariable analysis, osteopenia was a significant independent risk factor associated with overall survival in patients with perihilar cholangiocarcinoma (hazard ratio 3.54, 95% confidence interval 1.09−11.54, p = 0.036), along with primary tumor stage. Conclusions: Osteopenia is associated with significantly shorter survival in patients with perihilar cholangiocarcinoma.
Collapse
|
12
|
Powrózek T, Pigoń-Zając D, Mazurek M, Ochieng Otieno M, Rahnama-Hezavah M, Małecka-Massalska T. TNF-α Induced Myotube Atrophy in C2C12 Cell Line Uncovers Putative Inflammatory-Related lncRNAs Mediating Muscle Wasting. Int J Mol Sci 2022; 23:ijms23073878. [PMID: 35409236 PMCID: PMC8998797 DOI: 10.3390/ijms23073878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Muscle atrophy is a complex catabolic condition developing under different inflammatory-related systemic diseases resulting in wasting of muscle tissue. While the knowledge of the molecular background of muscle atrophy has developed in recent years, how the atrophic conditions affect the long non-coding RNA (lncRNAs) machinery and the exact participation of the latter in the mediation of muscle loss are still unknown. The purpose of the study was to assess how inflammatory condition developing under the tumor necrosis factor alpha (TNF-α) treatment affects the lncRNAs’ expression in a mouse skeletal muscle cell line. Materials and method: A C2C12 mouse myoblast cell line was treated with TNF-α to develop atrophy, and inflammatory-related lncRNAs mediating muscle loss were identified. Bioinformatics was used to validate and analyze the discovered lncRNAs. The differences in their expression under different TNF-α concentrations and treatment times were investigated. Results: Five lncRNAs were identified in a discovery set as atrophy related and then validated. Three lncRNAs, Gm4117, Ccdc41os1, and 5830418P13Rik, were selected as being significant for inflammatory-related myotube atrophy. Dynamics changes in the expression of lncRNAs depended on both TNF-α concentration and treatment time. Bioinformatics analysis revealed the mRNA and miRNA target for selected lncRNAs and their putative involvement in the molecular processes related to muscle atrophy. Conclusions: The inflammatory condition developing in the myotube under the TNF-α treatment affects the alteration of lncRNAs’ expression pattern. Experimental and bioinformatics testing suggested the prospective role of lncRNAs in the mediation of muscle loss under an inflammatory state.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (T.M.-M.)
- Correspondence:
| | - Dominika Pigoń-Zając
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (T.M.-M.)
| | - Marcin Mazurek
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (T.M.-M.)
| | - Michael Ochieng Otieno
- Haematological Malignancies H12O Clinical Research Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Dental Surgery, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Teresa Małecka-Massalska
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (T.M.-M.)
| |
Collapse
|
13
|
Xiao J, Zheng Y, Zhang W, Zhang Y, Cao P, Liang Y, Bao L, Shi S, Feng X. General Control Nonrepressed Protein 5 Modulates Odontogenic Differentiation Through NF-κB Pathway in Tumor Necrosis Factor-α-Mediated Impaired Human Dental Pulp Stem Cells. Cell Reprogram 2022; 24:95-104. [PMID: 35172106 DOI: 10.1089/cell.2021.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dental pulp stem cells (DPSCs) from pulpitis patients showed defective osteogenic differentiation. However, as the most well-studied histone acetyltransferase, the impaired general control nonrepressed protein 5 (GCN5) plays essential roles in various developmental processes. The aim of this study was to investigate the effect of GCN5 on DPSCs odontogenic differentiation. The healthy dental pulp tissues were obtained from the extracted impacted third molar of patients with the informed consent. DPSCs were treated with a high concentration of tumor necrosis factor-alpha (TNF-α) (100 ng/mL) and odontogenic differentiation-related gene and GCN5 protein level by Western blot analysis. Proliferation of the DPSCs was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Immunofluorescence staining detected GCN5 and NF-κB signaling for p-p65. The mechanism of GCN5 regulating odontogenic differentiation of DPSCs was determined by small interfering RNA analysis. Our data suggested that TNF-α can significantly reduce mineralization and the expression of dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein at higher concentration (100 ng/mL). Meanwhile, it showed that the inflammation in microenvironment resulted in a downregulation of GCN5 expression and GCN5 knockdown caused decreased odontogenic differentiation of DPSCs was also found. In addition, the knockdown of GCN5 increased the expression of phosphorylation of p65, thus activating NF-κB pathway of DPSCs. Meanwhile, NF-κB pathway inhibitor pyrrolidinedithiocarbamic acid reversed the siGCN5 decreased odontogenic differentiation of DPSCs. Altogether, our findings indicated that in inflammatory microenvironments GCN5 plays a protective role in pulpitis impaired odontogenic differentiation of DPSCs by activating NF-κB pathway, which may provide a potential approach to dentin regeneration.
Collapse
Affiliation(s)
- Jingwen Xiao
- Department of Stomatology, Haimen District People's Hospital, Nantong, China
| | - Ya Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ye Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Peipei Cao
- Nantong Boyue Dentistry Out-patient Department, Nantong, China
| | - Yi Liang
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji University, Shanghai, China
| | - Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Suping Shi
- Department of Stomatology, Haimen District People's Hospital, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
14
|
Kirk B, Lieu N, Vogrin S, Sales M, Pasco JA, Duque G. Serum levels of C-terminal telopeptide (CTX) are associated with muscle function in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 2022; 77:2085-2092. [PMID: 35018430 DOI: 10.1093/gerona/glac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Markers of bone metabolism have been associated with muscle mass and function. Whether serum cross-linked C-terminal telopeptides of type I collagen (CTX) is also associated with these measures in older adults remains unknown. METHODS In community-dwelling older adults at high risk of falls and fractures, serum CTX (biochemical immunoassays) was used as the exposure, while appendicular lean mass (dual-energy x-ray absorptiometry) and muscle function (grip strength [hydraulic dynamometer], short physical performance battery [SPPB], gait speed, sit to stand, balance, Timed Up and Go [TUG]) were used as outcomes. Potential covariates including demographic, lifestyle and clinical factors were considered in statistical models. Areas under the ROC curves were calculated for significant outcomes. RESULTS 299 older adults (median age: 79 years, IQR: 73, 84; 75.6% women) were included. In multivariable models, CTX was negatively associated with SPPB (β = 0.95, 95% CI: 0.92, 0.98) and balance (β = 0.92, 0.86, 0.99) scores, and positively associated with sit to stand (β = 1.02, 95% CI: 1.00, 1.05) and TUG (β = 1.03, 95% CI: 1.00, 1.05). Trend line for gait speed (β = 0.99, 95% CI: 0.98, 1.01) was in the hypothesized direction but did not reach significance. AUC curves showed low diagnostic power (<0.7) of CTX in identifying poor muscle function (SPPB: 0.63; sit to stand: 0.64; TUG: 0.61). CONCLUSION In older adults, higher CTX levels were associated with poorer lower-limb muscle function (but showed poor diagnostic power for these measures). These clinical data build on the biomedical link between bone and muscle.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Nicky Lieu
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Sara Vogrin
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Myrla Sales
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Julie A Pasco
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, Geelong, VIC, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Ballato E, Deepika F, Prado M, Russo V, Fuenmayor V, Bathina S, Villareal DT, Qualls C, Armamento-Villareal R. Circulating osteogenic progenitors and osteoclast precursors are associated with long-term glycemic control, sex steroids, and visceral adipose tissue in men with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:936159. [PMID: 36171900 PMCID: PMC9511027 DOI: 10.3389/fendo.2022.936159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is well-known to be associated with normal bone density but, concurrently, low bone turnover and increased risk for fracture. One of the proposed mechanisms is possible derangement in bone precursor cells, which could be represented by deficiencies in circulating osteogenic progenitor (COP) cells and osteoclast precursors (OCP). The objective of our study is to understand whether extent of glycemic control has an impact on these cells, and to identify other factors that may as well. METHODS This was a secondary analysis of baseline data from 51 male participants, aged 37-65 in an ongoing clinical trial at Michael E. DeBakey VA Medical Center, Houston, Texas, USA. At study entry serum Hemoglobin A1c was measured by high-performance liquid chromatography osteocalcin (OCN) and C-terminal telopeptide of type 1 collagen (CTx) were measured by ELISA, and testosterone and estradiol by liquid-chromatography/mass-spectrometry. Areal bone mineral density (BMD), trabecular bone score and body composition were measured by dual energy x-ray absorptiometry, while COP and OCP were measured by flow cytometry. RESULTS When adjusted for serum testosterone, parathyroid hormone, and 25-hydroxyvitamin D, those with poor long-term glycemic control had significantly higher percentage of COP (p = 0.04). COP correlated positively with visceral adipose tissue (VAT) volume (r = 0.37, p = 0.01) and negatively with free testosterone (r = -0.28, p = 0.05) and OCN (r = -0.28, p = 0.07), although only borderline for the latter. OCP correlated positively with age, FSH, lumbar spine BMD, and COP levels, and negatively with glucose, triglycerides, and free estradiol. Multivariable regression analyses revealed that, in addition to being predictors for each other, another independent predictor for COP was VAT volume while age, glucose, and vitamin D for OCP. CONCLUSION Our results suggest that high COP could be a marker of poor metabolic control. However, given the complex nature and the multitude of factors influencing osteoblastogenesis/adipogenesis, it is possible that the increase in COP is a physiologic response of the bone marrow to increased osteoblast apoptosis from poor glycemic control. Alternatively, it is also likely that a metabolically unhealthy profile may retard the development of osteogenic precursors to fully mature osteoblastic cells.
Collapse
Affiliation(s)
- Elliot Ballato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Fnu Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Mia Prado
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Vittoria Russo
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Virginia Fuenmayor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Siresha Bathina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Dennis T. Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Clifford Qualls
- Biomedical Research Institute of New Mexico, Albuquerque, NM, United States
- Research Service Line, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
- *Correspondence: Reina Armamento-Villareal,
| |
Collapse
|
16
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021; 135:231-257. [PMID: 33443284 DOI: 10.1042/cs20200986] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
General control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification. Besides, GCN5 regulates a wide range of biological events such as gene regulation, cellular proliferation, metabolism and inflammation. Imbalance in the GCN5 activity has been reported in many disorders such as cancer, metabolic disorders, autoimmune disorders and neurological disorders. Therefore, unravelling the role of GCN5 in different diseases progression is a prerequisite for both understanding and developing novel therapeutic agents of these diseases. In this review, we have discussed the structural features, the biological function of GCN5 and the mechanical link with the diseases associated with its imbalance. Moreover, the present GCN5 modulators and their limitations will be presented in a medicinal chemistry perspective.
Collapse
|
18
|
Garibotto G, Saio M, Aimasso F, Russo E, Picciotto D, Viazzi F, Verzola D, Laudon A, Esposito P, Brunori G. How to Overcome Anabolic Resistance in Dialysis-Treated Patients? Front Nutr 2021; 8:701386. [PMID: 34458305 PMCID: PMC8387577 DOI: 10.3389/fnut.2021.701386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of "anabolic resistance." In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.
Collapse
Affiliation(s)
| | - Michela Saio
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Francesca Aimasso
- Clinical Nutrition Unit, Istituto di Ricerca a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elisa Russo
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Picciotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Alessandro Laudon
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuliano Brunori
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| |
Collapse
|
19
|
Li F, Yin C, Ma Z, Yang K, Sun L, Duan C, Wang T, Hussein A, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Shu G, Wang S, Jiang Q. PHD3 mediates denervation skeletal muscle atrophy through Nf-κB signal pathway. FASEB J 2021; 35:e21444. [PMID: 33749901 DOI: 10.1096/fj.202002049r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle is the largest organ of the body, the development of skeletal muscle is very important for the health of the animal body. Prolyl hydroxylases (PHDs) are the classical regulator of the hypoxia inducible factor (HIF) signal pathway, many researchers found that PHDs are involved in the muscle fiber type transformation, muscle regeneration, and myocyte differentiation. However, whether PHDs can impact the protein turnover of skeletal muscle is poorly understood. In this study, we constructed denervated muscle atrophy mouse model and found PHD3 was highly expressed in the atrophic muscles and there was a significant correlation between the expression level of PHD3 and skeletal muscle weight which was distinct from PHD1 and PHD2. Then, the similar results were getting from the different weight muscles of normal mice. To further verify the relationship between PHD3 and skeletal muscle protein turnover, we established a PHD3 interference model by injecting PHD3 sgRNA virus into tibialis anterior muscle (TA) muscle of MCK-Cre-cas9 mice and transfecting PHD3 shRNA lentivirus into primary satellite cells. It was found that the Knock-out of PHD3 in vivo led to a significant increase in muscle weight and muscle fiber area (P < .05). Besides, the activity of protein synthesis signal pathway increased significantly, while the protein degradation pathway was inhibited evidently (P < .05). In vitro, the results of 5-ethynyl-2'-deoxyuridine (EdU) and tetramethylrhodamine ethyl ester (TMRE) fluorescence detection showed that PHD3 interference could lead to a decrease in cell proliferation and an increase of cell apoptosis. After the differentiation of satellite cells, the production of puromycin in the interference group was higher than that in the control group, and the content of 3-methylhistidine in the interference group was lower than that in the control group (P < .05) which is consistent with the change of protein turnover signal pathway in the cell. Mechanistically, there is an interaction between PHD3, NF-κB, and IKBα which was detected by immunoprecipitation. With the interfering of PHD3, the expression of the inflammatory signal pathway also significantly decreased (P < .05). These results suggest that PHD3 may affect protein turnover in muscle tissue by mediating inflammatory signal pathway. Finally, we knocked out PHD3 in denervated muscle atrophy mice and LPS-induced myotubes atrophy model. Then, we found that the decrease of PHD3 protein level could alleviate the muscle weight and muscle fiber reduction induced by denervation in mice. Meanwhile, the protein level of the inflammatory signal pathway and the content of 3-methylhistidine in denervated atrophic muscle were also significantly reduced (P < .05). In vitro, PHD3 knock-out could alleviate the decrease of myotube diameter induced by LPS, and the expression of protein synthesis pathway was also significantly increased (P < .05). On the contrary, the expression level of protein degradation and inflammatory signal pathway was significantly decreased (P < .05). Through these series of studies, we found that the increased expression of PHD3 in denervated muscle might be an important regulator in inducing muscle atrophy, and this process is likely to be mediated by the inflammatory NF-κB signal pathway.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kelin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lijuan Sun
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chen Duan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Abdelaziz Hussein
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M. Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging. Int J Mol Sci 2021; 22:ijms22083974. [PMID: 33921444 PMCID: PMC8069861 DOI: 10.3390/ijms22083974] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Skin is the largest and most complex organ in the human body comprised of multiple layers with different types of cells. Different kinds of environmental stressors, for example, ultraviolet radiation (UVR), temperature, air pollutants, smoking, and diet, accelerate skin aging by stimulating inflammatory molecules. Skin aging caused by UVR is characterized by loss of elasticity, fine lines, wrinkles, reduced epidermal and dermal components, increased epidermal permeability, delayed wound healing, and approximately 90% of skin aging. These external factors can cause aging through reactive oxygen species (ROS)-mediated inflammation, as well as aged skin is a source of circulatory inflammatory molecules which accelerate skin aging and cause aging-related diseases. This review article focuses on the inflammatory pathways associated with UVR-mediated skin aging.
Collapse
|
21
|
Niță G, Niță O, Gherasim A, Arhire L, Herghelegiu A, Mihalache L, Tuchilus C, Graur M. The role of RANKL and FGF23 in Assessing Bone Turnover in Type 2 Diabetic Patients. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2021; 17:51-59. [PMID: 34539910 PMCID: PMC8417483 DOI: 10.4183/aeb.2021.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CONTEXT Type 2 diabetes is a chronic metabolic disease which affects bone. There is evidence in the literature about some serum markers that reflect the bone turnover metabolism, such as RANKL (Receptor Activator of Nuclear factor Kappa-b Ligand) and Fibroblast Growth Factor (FGF) 23. OBJECTIVE We aimed to investigate the correlations between RANKL and FGF23 and other diabetes-related factors possibly influencing early bone turnover changes. SUBJECTS AND METHOD We conducted a cross-sectional analytical study on a group of 171 patients with type 2 diabetes, without Charcot's arthropathy or a history of amputations, in which a complete history and anthropometric, clinical, biochemical and dietary evaluation were performed. We evaluated the serum level of RANKL and FGF 23. RESULTS RANKL was significantly lower in patients with macroangiopathy (0.42±0.15 pmol/L vs. 0.47±0.2 pmol/L, p=0.001). The level of FGF23 was lower in patients with neuropathy (0.37±0.36 pmol/L vs. 0.41±0.17 pmol/L, p=0.001). We found that FGF23 increased with age, but decreased with the duration of diabetes. We also found an inverse relationship between FGF23 levels and HbA1c, triglycerides, diastolic blood pressure, total proteins, albuminemia. CONCLUSIONS RANKL was significantly lower in patients with macroangiopathy, and FGF 23 in patients with neuropathy. Therefore, more studies are needed to elucidate their role in early bone turnover changes.
Collapse
Affiliation(s)
- G. Niță
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - O. Niță
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - A. Gherasim
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - L.I. Arhire
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - A.M Herghelegiu
- “Carol Davila” University of Medicine and Pharmacy, Faculty of Medicine, Bucharest, Romania
| | - L. Mihalache
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - C. Tuchilus
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - M. Graur
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| |
Collapse
|
22
|
de Souza DR, Vasconcelos DAAD, Murata GM, Fortes MAS, Marzuca-Nassr GN, Levada-Pires AC, Vitzel KF, Abreu P, Scervino MVM, Hirabara SM, Curi R, Pithon-Curi TC. Glutamine supplementation versus functional overload in extensor digitorum longus muscle hypertrophy. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Transcriptional Changes Involved in Atrophying Muscles during Prolonged Fasting in Rats. Int J Mol Sci 2020; 21:ijms21175984. [PMID: 32825252 PMCID: PMC7503389 DOI: 10.3390/ijms21175984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Food deprivation resulting in muscle atrophy may be detrimental to health. To better understand how muscle mass is regulated during such a nutritional challenge, the current study deciphered muscle responses during phase 2 (P2, protein sparing) and phase 3 (P3, protein mobilization) of prolonged fasting in rats. This was done using transcriptomics analysis and a series of biochemistry measurements. The main findings highlight changes for plasma catabolic and anabolic stimuli, as well as for muscle transcriptome, energy metabolism, and oxidative stress. Changes were generally consistent with the intense use of lipids as fuels during P2. They also reflected increased muscle protein degradation and repressed synthesis, in a more marked manner during P3 than P2 compared to the fed state. Nevertheless, several unexpected changes appeared to be in favor of muscle protein synthesis during fasting, notably at the level of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, transcription and translation processes, and the response to oxidative stress. Such mechanisms might promote protein sparing during P2 and prepare the restoration of the protein compartment during P3 in anticipation of food intake for optimizing the effects of an upcoming refeeding, thereby promoting body maintenance and survival. Future studies should examine relevance of such targets for improving nitrogen balance during catabolic diseases.
Collapse
|
24
|
Colaianni G, Storlino G, Sanesi L, Colucci S, Grano M. Myokines and Osteokines in the Pathogenesis of Muscle and Bone Diseases. Curr Osteoporos Rep 2020; 18:401-407. [PMID: 32514668 DOI: 10.1007/s11914-020-00600-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review we aim to summarize the latest findings on the network of molecules produced by muscle and bone under physiological and pathological conditions. RECENT FINDINGS The concomitant onset of osteoporosis and sarcopenia is currently one of the main threats that can increase the risk of falling fractures during aging, generating high health care costs due to hospitalization for bone fracture surgery. With the growing emergence of developing innovative therapies to treat these two age-related conditions that often have common onset, a broader understanding of molecular messengers regulating the communication between muscle and bone tissue became imperative. Recently it has been highlighted that two muscle-derived signals, such as the myokines Irisin and L-BAIBA, positively affect bone tissue. In parallel, there are signals derived from bone that affect either positively the skeletal muscle, such as osteocalcin, or negatively, such as RANKL.
Collapse
Affiliation(s)
- G Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - G Storlino
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - L Sanesi
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - S Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
25
|
Yu L, Xu J, Liu J, Zhang H, Sun C, Wang Q, Shi C, Zhou X, Hua D, Luo W, Bian X, Yu S. The novel chromatin architectural regulator SND1 promotes glioma proliferation and invasion and predicts the prognosis of patients. Neuro Oncol 2020; 21:742-754. [PMID: 30753603 DOI: 10.1093/neuonc/noz038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Upregulation of staphylococcal nuclease domain-containing protein 1 (SND1) is a common phenomenon in different human malignant tissues. However, little information is available on the underlying mechanisms through which SND1 affects glioma cell proliferation and invasion. METHODS SND1, Ras homolog family member A (RhoA), and marker of proliferation Ki-67 (MKI67) were analyzed in 187 gliomas by immunostaining. The correlation between those markers and patients' prognoses was assessed using the Kaplan-Meier estimator. Gene Ontology, chromatin immunoprecipitation, electrophoretic mobility shift assay, and chromosome conformation capture were applied to identify SND1-activated target genes. We also used MTT, colony formation, transwell and orthotopic implantation assays to investigate SND1 function in glioma cell proliferative and invasive activity. RESULTS We identified SND1 and RhoA as independent predictors of poor prognosis in glioma patients. SND1 knockdown significantly suppressed the proliferation and invasion of glioma cells. Mechanistically, we discovered that SND1 facilitated malignant glioma phenotypes by epigenetically inducing chromatin topological interaction, which activated downstream RhoA transcription. RhoA sequentially regulated expression of CCND1, CCNE1, CDK4, and CDKN1B and accelerated G1/S phase transition in glioma cell proliferation. CONCLUSIONS Our findings identify SND1 as a novel chromatin architectural modifier and promising prognostic indicator for glioma classification and treatment.
Collapse
Affiliation(s)
- Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Jinling Xu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jing Liu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Huibian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
26
|
Pezoa SA, Artinger KB, Niswander LA. GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol 2020; 464:24-34. [PMID: 32446700 DOI: 10.1016/j.ydbio.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Development of the craniofacial structures requires the precise differentiation of cranial neural crest cells into osteoblasts or chondrocytes. Here, we explore the epigenetic and non-epigenetic mechanisms that are required for the development of craniofacial chondrocytes. We previously demonstrated that the acetyltransferase activity of the highly conserved acetyltransferase GCN5, or KAT2A, is required for murine craniofacial development. We show that Gcn5 is required cell autonomously in the cranial neural crest. Moreover, GCN5 is required for chondrocyte development following the arrival of the cranial neural crest within the pharyngeal arches. Using a combination of in vivo and in vitro inhibition of GCN5 acetyltransferase activity, we demonstrate that GCN5 is a potent activator of chondrocyte maturation, acting to control chondrocyte maturation and size increase during pre-hypertrophic maturation to hypertrophic chondrocytes. Rather than acting as an epigenetic regulator of histone H3K9 acetylation, our findings suggest GCN5 primarily acts as a non-histone acetyltransferase to regulate chondrocyte development. Here, we investigate the contribution of GCN5 acetylation to the activity of the mTORC1 pathway. Our findings indicate that GCN5 acetylation is required for activation of this pathway, either via direct activation of mTORC1 or through indirect mechanisms. We also investigate one possibility of how mTORC1 activity is regulated through RAPTOR acetylation, which is hypothesized to enhance mTORC1 downstream phosphorylation. This study contributes to our understanding of the specificity of acetyltransferases, and the cell type specific roles in which these enzymes function.
Collapse
Affiliation(s)
- Sofia A Pezoa
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program. University of Colorado Anschutz School of Medicine, Aurora, CO, USA, 80045; Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz School of Dentistry, Aurora, CO, USA, 80045
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309.
| |
Collapse
|
27
|
Ma W, Zhang R, Huang Z, Zhang Q, Xie X, Yang X, Zhang Q, Liu H, Ding F, Zhu J, Sun H. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:440. [PMID: 31700876 DOI: 10.21037/atm.2019.08.101] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Skeletal muscle atrophy involves and requires widespread changes in skeletal muscle gene expression and signaling pathway, resulting in excessive loss of muscle mass and strength, which is associated with poor prognosis and the decline of life quality in several diseases. However, the treatment of skeletal muscle atrophy remains an unresolved challenge to this day. The aim of the present study was to investigate the influence of pyrroloquinoline quinone (PQQ), a redox-active o-quinone found in various foods and mammalian tissues, on skeletal muscle atrophy, and to explore the underlying molecular mechanism. Methods After denervation, mice were injected intraperitoneally with saline plus PQQ (5 mg/kg/d) or saline only for 14 days. The level of inflammatory cytokines in tibialis anterior (TA) muscles was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), and the level of signaling proteins of Janus kinase 2/signal transduction and activator of transcription 3 (Jak2/STAT3), TGF-β1/Smad3, JNK/p38 MAPK, and nuclear factor κB (NF-κB) signaling pathway were detected by Western blot. The skeletal muscle atrophy was evaluated by muscle wet weight ratio and cross-sectional areas (CSAs) of myofibers. The mitophagy was observed through transmission electron microscopy (TEM) analysis, and muscle fiber type transition was analyzed through fast myosin skeletal heavy chain antibody staining. Results The proinflammatory cytokines IL-6, IL-1β and TNF-α were largely induced in TA muscles after sciatic nerve transection. PQQ can significantly reverse this phenomenon, as evidenced by the decreased levels of proinflammatory cytokines IL-6, IL-1β and TNF-α. Moreover, PQQ could significantly attenuate the signal activation of Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB in skeletal muscles after sciatic nerve transection. Furthermore, PQQ alleviated skeletal muscle atrophy, mitigated mitophagy and inhibited slow-to-fast muscle fiber type transition. Conclusions These results suggested that PQQ could attenuate denervation-induced skeletal muscle atrophy, mitophagy and fiber type transition through suppressing the Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ru Zhang
- Department of Imaging, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoying Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian 226600, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
28
|
de Vasconcelos DAA, Giesbertz P, de Souza DR, Vitzel KF, Abreu P, Marzuca-Nassr GN, Fortes MAS, Murata GM, Hirabara SM, Curi R, Daniel H, Pithon-Curi TC. Oral L-glutamine pretreatment attenuates skeletal muscle atrophy induced by 24-h fasting in mice. J Nutr Biochem 2019; 70:202-214. [DOI: 10.1016/j.jnutbio.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
|
29
|
Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest 2019; 129:3214-3223. [PMID: 31120440 PMCID: PMC6668701 DOI: 10.1172/jci125915] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Receptor activator of Nfkb ligand (RANKL) activates, while osteoprotegerin (OPG) inhibits, osteoclastogenesis. In turn a neutralizing Ab against RANKL, denosumab improves bone strength in osteoporosis. OPG also improves muscle strength in mouse models of Duchenne's muscular dystrophy (mdx) and denervation-induce atrophy, but its role and mechanisms of action on muscle weakness in other conditions remains to be investigated. We investigated the effects of RANKL inhibitors on muscle in osteoporotic women and mice that either overexpress RANKL (HuRANKL-Tg+), or lack Pparb and concomitantly develop sarcopenia (Pparb-/-). In women, denosumab over 3 years improved appendicular lean mass and handgrip strength compared to no treatment, whereas bisphosphonate did not. HuRANKL-Tg+ mice displayed lower limb force and maximal speed, while their leg muscle mass was diminished, with a lower number of type I and II fibers. Both OPG and denosumab increased limb force proportionally to the increase in muscle mass. They markedly improved muscle insulin sensitivity and glucose uptake, and decrease anti-myogenic and inflammatory gene expression in muscle, such as myostatin and protein tyrosine phosphatase receptor-γ. Similarly, in Pparb-/-, OPG increased muscle volume and force, while also normalizing their insulin signaling and higher expression of inflammatory genes in skeletal muscle. In conclusions, RANKL deteriorates, while its inhibitor improves, muscle strength and insulin sensitivity in osteoporotic mice and humans. Hence denosumab could represent a novel therapeutic approach for sarcopenia.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Lucie Bourgoin
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Eleni Douni
- Biomedical Sciences Research Center “Alexander Fleming,” Athens, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Serge Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
30
|
Sin TK, Zhu JZ, Zhang G, Li YP. p300 Mediates Muscle Wasting in Lewis Lung Carcinoma. Cancer Res 2019; 79:1331-1342. [PMID: 30705122 PMCID: PMC6445764 DOI: 10.1158/0008-5472.can-18-1653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
C/EBPβ is a key mediator of cancer-induced skeletal muscle wasting. However, the signaling mechanisms that activate C/EBPβ in the cancer milieu are poorly defined. Here, we report cancer-induced muscle wasting requires the transcriptional cofactor p300, which is critical for the activation of C/EBPβ. Conditioned media from diverse types of tumor cells as well as recombinant HSP70 and HSP90 provoked rapid acetylation of C/EBPβ in myotubes, particularly at its Lys39 residue. Overexpression of C/EBPβ with mutated Lys39 impaired Lewis lung carcinoma (LLC)-induced activation of the C/EBPβ-dependent catabolic response, which included upregulation of E3 ligases UBR2 and atrogin1/MAFbx, increased LC3-II, and loss of muscle proteins both in myotubes and mouse muscle. Silencing p300 in myotubes or overexpressing a dominant negative p300 mutant lacking acetyltransferase activity in mouse muscle attenuated LLC tumor-induced muscle catabolism. Administration of pharmacologic p300 inhibitor C646, but not PCAF/GCN5 inhibitor CPTH6, spared LLC tumor-bearing mice from muscle wasting. Furthermore, mice with muscle-specific p300 knockout were resistant to LLC tumor-induced muscle wasting. These data suggest that p300 is a key mediator of LLC tumor-induced muscle wasting whose acetyltransferase activity may be targeted for therapeutic benefit in this disease. SIGNIFICANCE: These findings demonstrate that tumor-induced muscle wasting in mice is abrogated by knockout, mutation of Lys39 or Asp1399, and pharmacologic inhibition of p300.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/7/1331/F1.large.jpg.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James Z Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
31
|
Erekat N, Al-Jarrah MD. Interleukin-1 Beta and Tumor Necrosis Factor Alpha Upregulation and Nuclear Factor Kappa B Activation in Skeletal Muscle from a Mouse Model of Chronic/Progressive Parkinson Disease. Med Sci Monit 2018; 24:7524-7531. [PMID: 30344306 PMCID: PMC6402272 DOI: 10.12659/msm.909032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy has been reported in patients with Parkinson disease (PD). The purpose of this study was to examine the potential implication of interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and nuclear factor kappa B (NF kappa B) in skeletal muscle atrophy following PD induction. MATERIAL AND METHODS Chronic Parkinsonism was induced in 10 albino mice by MPTP/probenecid treatment, while 10 other albino mice remained without treatment and were subsequently used as controls. Gastrocnemius muscles were examined for the expression of IL-1β and TNF-α, as well as the nuclear localization of NF kappa B, indicative of its activation, using immunohistochemistry in the 2 different groups. RESULTS IL-1β and TNF-α expression and NF kappa B nuclear localization were significantly higher in the PD skeletal muscle compared with those in the controls (P value <0.01). CONCLUSIONS The present data are indicative of an association of PD with IL-1β and TNF-α upregulation and NF kappa B activation in gastrocnemius muscles, potentially promoting the atrophy frequently observed in PD.
Collapse
Affiliation(s)
- Nour Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammed D Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
32
|
Sun L, Si M, Liu X, Choi JM, Wang Y, Thomas SS, Peng H, Hu Z. Long-noncoding RNA Atrolnc-1 promotes muscle wasting in mice with chronic kidney disease. J Cachexia Sarcopenia Muscle 2018; 9:962-974. [PMID: 30043444 PMCID: PMC6204593 DOI: 10.1002/jcsm.12321] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is commonly associated with cachexia, a condition that causes skeletal muscle wasting and an unfavourable prognosis. Although mechanisms leading to cachexia have been intensively studied, the advance of biological knowledges and technologies encourages us to make progress in understanding the pathogenesis of this disorder. Long noncoding RNAs (lncRNAs) are defined as >200 nucleotides RNAs but lack the protein-coding potential. LncRNAs are involved in the pathogenesis of many diseases, but whether they functionally involve in muscle protein loss has not been investigated. METHODS We performed lncRNA array and identified an lncRNA, which we named Atrolnc-1, remarkably elevated in atrophying muscles from mice with cachexia. We examined how overexpression or knockdown of Atrolnc-1 could influence muscle protein synthesis and degradation. We also examined whether inhibition of Atrolnc-1 ameliorates muscle wasting in mice with CKD. RESULTS We documented that Atrolnc-1 expression is continuously increased in muscles of mice with fasting (5.4 fold), cancer (2.0 fold), or CKD (5.1 fold). We found that depressed insulin signalling stimulates the transcription factor C/EBP-α binding to the promoter of Atrolnc-1 and promotes the expression of Atrolnc-1. In cultured C2C12 myotubes, overexpression of Atrolnc-1 increases protein degradation (0.45±0.03 vs. 0.64±0.02, *p<0.05); Atrolnc-1 knockdown significantly reduces the rate of protein degradation stimulated by serum depletion (0.61±0.03 vs. 0.47±0.02, *p<0.05). Using mass spectrometry and a lncRNA pull-down assay, we identified that Atrolnc-1 interacts with A20 binding inhibitor of NF-κB-1 (ABIN-1). The interaction impairs function, resulting in enhanced NF-κB activity plus MuRF-1 transcription. This response is counteracted by CRISPR/dCas9 mediated overexpression. In muscles from normal mice, overexpression of Atrolnc-1 stimulates a 2.7-fold increase in MuRF-1 expression leading to myofibers atrophy. In contrast, Atrolnc-1 knockdown attenuates muscle wasting by 42% in mice with CKD via suppression of NF-κB activity and MuRF-1 expression. CONCLUSIONS Our findings provide evidence that lncRNAs initiates the pathophysiological process of muscle wasting. The interaction between Atrolnc-1 and NF-κB signalling modulates muscle mass and proteolysis in CKD and perhaps other catabolic conditions.
Collapse
Affiliation(s)
- Lijing Sun
- Nephrology DivisionXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
- Nephrology Division, Department of MedicineBaylor College of MedicineHoustonTXUSA
| | - Meijun Si
- Nephrology DivisionThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xinyan Liu
- Nephrology DivisionSecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jong Min Choi
- Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
| | - Yanlin Wang
- Nephrology Division, Department of MedicineBaylor College of MedicineHoustonTXUSA
| | - Sandhya S. Thomas
- Nephrology Division, Department of MedicineBaylor College of MedicineHoustonTXUSA
- Michael E. Debakey Veterans Affairs Medical CenterHoustonTXUSA
| | - Hui Peng
- Nephrology DivisionThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhaoyong Hu
- Nephrology Division, Department of MedicineBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
33
|
Wei Y, Gong L, Fu W, Xu S, Wang Z, Zhang J, Ning E, Chang H, Wang H, Gao Y. Unexpected regulation pattern of the IKKβ/NF‐κB/MuRF1 pathway with remarkable muscle plasticity in the Daurian ground squirrel (
Spermophilus dauricus
). J Cell Physiol 2018; 233:8711-8722. [DOI: 10.1002/jcp.26751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yanhong Wei
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Lingchen Gong
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Weiwei Fu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Shenhui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Zhe Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Jie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Er Ning
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| |
Collapse
|
34
|
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology 1. Biochem Cell Biol 2018; 97:30-45. [PMID: 29671337 DOI: 10.1139/bcb-2017-0297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a critical post-translation modification that can impact a protein's localization, stability, and function. Originally thought to only occur on histones, we now know thousands of nonhistone proteins are also acetylated. In conjunction with many other proteins, lysine acetyltransferases (KATs) are incorporated into large protein complexes that carry out these modifications. In this review we focus on the contribution of two KATs, KAT2A and KAT2B, and their potential roles in the development and progression of cancer. Systems biology demands that we take a broad look at protein function rather than focusing on individual pathways or targets. As such, in this review we examine KAT2A/2B-directed nonhistone protein acetylations in cancer in the context of the 10 "Hallmarks of Cancer", as defined by Hanahan and Weinberg. By focusing on specific examples of KAT2A/2B-directed acetylations with well-defined mechanisms or strong links to a cancer phenotype, we aim to reinforce the complex role that these enzymes play in cancer biology.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Yuka Sai
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| |
Collapse
|
35
|
Abstract
Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.
Collapse
MESH Headings
- Animals
- Humans
- Molecular Targeted Therapy/methods
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Muscular Diseases/therapy
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ryan D Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, United States of America
| | | |
Collapse
|
36
|
The nuclear phosphatase SCP4 regulates FoxO transcription factors during muscle wasting in chronic kidney disease. Kidney Int 2017; 92:336-348. [PMID: 28506762 DOI: 10.1016/j.kint.2017.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) and related inflammatory responses stimulate protein-energy wasting, a complication causing loss of muscle mass. Primarily, muscle wasting results from accelerated protein degradation via autophagic/lysosomal and proteasomal pathways, but mechanisms regulating these proteolysis pathways remain unclear. Since dephosphorylation of FoxOs regulates ubiquitin/proteasome protein metabolism, we tested whether a novel nuclear phosphatase, the small C-terminal domain phosphatase (SCP) 4, regulates FoxOs signaling and, in turn, muscle wasting. In cultured mouse myoblast cells, SCP4 overexpression stimulated proteolysis, while knockdown of SCP4 prevented the proteolysis stimulated by inflammatory cytokines. SCP4 overexpression led to nuclear accumulation of FoxO1/3a followed by increased expression of catabolic factors including myostatin, Atrogin-1, and MuRF-1, and induction of lysosomal-mediated proteolysis. Treatment of C2C12 myotubes with proinflammatory cytokines stimulated SCP4 expression in an NF-κB-dependent manner. In skeletal muscle of mice with CKD, SCP4 expression was up-regulated. Similarly, in skeletal muscle of patients with CKD, SCP4 expression was significantly increased. Knockdown of SCP4 significantly suppressed FoxO1/3a-mediated expression of Atrogin-1 and MuRF-1 and prevented muscle wasting in mice with CKD. Thus, SCP4 is a novel regulator of FoxO transcription factors and promotes cellular proteolysis. Hence, targeting SCP4 may prevent muscle wasting in CKD and possibly other catabolic conditions.
Collapse
|
37
|
Sirt1 ameliorates systemic sclerosis by targeting the mTOR pathway. J Dermatol Sci 2017; 87:149-158. [PMID: 28532580 DOI: 10.1016/j.jdermsci.2017.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/26/2017] [Accepted: 04/25/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by inflammation and fibrosis. Our previous research has indicated that Sirtuin1 (Sirt1) plays a role in the regulation of TNF-α-induced inflammation; however, whether Sirt1 may inhibit the progress of SSc by blocking inflammation remains unknown. OBJECTIVE We aimed to investigate the function of Sirt1 in SSc. METHODS The function and its mechanism of Sirt1 were evaluated in fibroblasts or scleroderma mice. The expression of Sirt1 and cytokines was analyzed using real-time PCR, western blot, ELISA and immunohistochemistry. RESULTS We determined that fibroblasts of SSc patients were activated to exhibit inflammation. Sirt1, activated by resveratrol (Res), ameliorated cutaneous inflammation and fibrosis in bleomycin (BLM)-induced scleroderma mice. An improvement in mammalian target of rapamycin (mTOR) was identified in the fibroblasts of SSc patients and the skin lesions of BLM mice. Rapamycin, an mTOR specific inhibitor, substantially inhibited the induced inflammation and fibrosis. The enhancement of mTOR expression in the skin lesions of the BLM-treated mice was significantly inhibited by Sirt1 activation. However, in both the BLM-treated cells and mice, Res exerted an inhibitory function on the expression of inflammatory factors, and collagen was diminished following mTOR knockdown. These findings suggest that Res may inhibit inflammation and fibrosis via mTOR. CONCLUSION The modulation of Sirt1 activity may represent a potential therapeutic method for SSc. The mechanism may involve the inhibition of mTOR phosphorylation, whereas mTOR activity was shown to be a pathogenic culprit of SSc.
Collapse
|
38
|
Flint TR, Fearon DT, Janowitz T. Connecting the Metabolic and Immune Responses to Cancer. Trends Mol Med 2017; 23:451-464. [PMID: 28396056 DOI: 10.1016/j.molmed.2017.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Separate research fields have advanced our understanding of, on the one hand, cancer immunology and, on the other hand, cachexia, the fatal tumor-induced wasting syndrome. A link between the host's immune and metabolic responses to cancer remained unexplored. Emerging work in preclinical models of colorectal and pancreatic cancer has unveiled tumor-induced reprogramming of liver metabolism in cachexia that leads to suppression of antitumor immunity and failure of immunotherapy. As research efforts in metabolism and immunology in cancer are rapidly expanding, it is timely to discuss the metabolic and immunological determinants of the cancer-host interaction. We also present the hypothesis that the convergence of host metabolism and antitumor immunity may offer a platform for biomarker-driven investigations of new combination therapies.
Collapse
Affiliation(s)
- Thomas R Flint
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK; School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, UK
| | - Douglas T Fearon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Weill Cornell Medical College, New York, NY 10021, USA
| | - Tobias Janowitz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK; Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
39
|
Lu Y, Bradley JS, McCoski SR, Gonzalez JM, Ealy AD, Johnson SE. Reduced skeletal muscle fiber size following caloric restriction is associated with calpain-mediated proteolysis and attenuation of IGF-1 signaling. Am J Physiol Regul Integr Comp Physiol 2017; 312:R806-R815. [PMID: 28228415 DOI: 10.1152/ajpregu.00400.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/24/2023]
Abstract
Caloric restriction decreases skeletal muscle mass in mammals, principally due to a reduction in fiber size. The effect of suboptimal nutrient intake on skeletal muscle metabolic properties in neonatal calves was examined. The longissimus muscle (LM) was collected after a control (CON) or caloric restricted (CR) diet was cosnumed for 8 wk and muscle fiber size, gene expression, and metabolic signal transduction activity were measured. Results revealed that CR animals had smaller (P < 0.05) LM fiber cross-sectional area than CON, as expected. Western blot analysis detected equivalent amounts of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) but reduced (P < 0.05) amounts of the splice-variant, PGC1α-4 in CR LM. Expression of IGF-1, a PGC1α-4 target gene, was 40% less (P < 0.05) in CR than CON. Downstream mediators of autocrine IGF-1 signaling also are attenuated in CR by comparison with CON. The amount of phosphorylated AKT1 was less (P < 0.05) in CR than CON. The ratio of p4EBP1T37/46 to total 4EBP1, a downstream mediator of AKT1, did not differ between CON and CR. By contrast, protein lysates from CR LM contained less (P < 0.05) total glycogen synthase kinase-3β (GSK3β) and phosphorylated GSK3β than CON LM, suggesting blunted protein synthesis. Smaller CR LM fiber size associates with increased (P < 0.05) calpain 1 (CAPN1) activity coupled with lower (P < 0.05) expression of calpastatin, the endogenous inhibitor of CAPN1. Atrogin-1 and MuRF expression and autophagy components were unaffected by CR. Thus CR suppresses the hypertrophic PGC1α-4/IGF-1/AKT1 pathway while promoting activation of the calpain system.
Collapse
Affiliation(s)
- Yue Lu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| | - Jennifer S Bradley
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| | - Sarah R McCoski
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| | - John M Gonzalez
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| |
Collapse
|
40
|
Chen C, Ju R, Zhu L, Li J, Chen W, Zhang DC, Ye CY, Guo L. Carboxyamidotriazole alleviates muscle atrophy in tumor-bearing mice by inhibiting NF-κB and activating SIRT1. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:423-433. [PMID: 28124088 DOI: 10.1007/s00210-017-1345-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022]
Abstract
Cancer cachexia is a complex disorder characterized by inflammatory responses, and it is associated with poor performance status and high mortality rate of cancer patients. Carboxyamidotriazole (CAI), a noncytotoxic chemotherapy agent, shows anti-inflammatory features in the treatment of many diseases. Here, we investigated the preventive and therapeutic effects of CAI on muscle loss that occurred in mice with advanced Lewis lung carcinoma (LLC). The carcass weights of CAI-treated mice were significantly higher than that of mice in the vehicle group from Day 19 to the end of the study. The gastrocnemius and epididymal adipose tissue weights were also increased by CAI treatment. The protective mechanisms might be attributed to the following points: CAI treatment inhibited the proteolysis in muscles by decreasing expressions of muscle-specific FoxO3 transcription factor and ubiquitin E3 ligases (MuRF1 and atrogin1). Moreover, CAI restricted the NF-κB signaling, downregulated the level of TNF-α in muscle and both TNF-α and IL-6 levels in serum, directly stimulated SIRT1 activity in vitro, and increased SIRT1 content in muscle. These results indicate that CAI can alleviate muscle wasting and is a promising drug against lung cancer cachexia.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - De-Chang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Cai-Ying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
41
|
Chacon-Cabrera A, Gea J, Barreiro E. Short- and Long-Term Hindlimb Immobilization and Reloading: Profile of Epigenetic Events in Gastrocnemius. J Cell Physiol 2016; 232:1415-1427. [DOI: 10.1002/jcp.25635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Alba Chacon-Cabrera
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Joaquim Gea
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| |
Collapse
|
42
|
Protein breakdown in cancer cachexia. Semin Cell Dev Biol 2016; 54:11-9. [DOI: 10.1016/j.semcdb.2015.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
|
43
|
Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mamm Genome 2016; 27:341-57. [PMID: 27215643 PMCID: PMC4935741 DOI: 10.1007/s00335-016-9643-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Ageing is associated with a progressive loss of skeletal muscle mass, quality and function—sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia.
Collapse
Affiliation(s)
- Katarzyna Goljanek-Whysall
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK.
| | - Lesley A Iwanejko
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Aphrodite Vasilaki
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Vanja Pekovic-Vaughan
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Brian McDonagh
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK.
| |
Collapse
|