1
|
Loyau J, Monney T, Montefiori M, Bokhovchuk F, Streuli J, Blackburn M, Goepfert A, Caro LN, Chakraborti S, De Angelis S, Grandclément C, Blein S, Mbow ML, Srivastava A, Perro M, Sammicheli S, Zhukovsky EA, Dyson M, Dreyfus C. Biparatopic binding of ISB 1442 to CD38 in trans enables increased cell antibody density and increased avidity. MAbs 2025; 17:2457471. [PMID: 39882744 PMCID: PMC11784651 DOI: 10.1080/19420862.2025.2457471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies. Here, we describe the discovery, optimization and characterization of the ISB 1442 antigen binding fragment (Fab) arms, their assembly to 2 + 1 format, and present the high-resolution co-crystal structures of the two anti-CD38 Fabs, in complex with CD38. This, with biophysical and functional assays, elucidated the underlying mechanism of action of ISB 1442. In solution phase, ISB 1442 forms a 2:2 complex with CD38 as determined by size-exclusion chromatography with multi-angle light scattering and electron microscopy. The predicted antibody-antigen stoichiometries at different CD38 surface densities were experimentally validated by surface plasmon resonance and cell binding assays. The specific design and structural features of ISB 1442 enable: 1) enhanced trans binding to adjacent CD38 molecules to increase Fc density at the cancer cell surface; 2) prevention of avid cis binding to monomeric CD38 to minimize blockade by soluble shed CD38; and 3) greater binding avidity, with a slower off-rate at high CD38 density, for increased specificity. The superior CD38 targeting of ISB 1442, at both high and low receptor densities, by its biparatopic design, will enhance proximal CD47 blockade and thus counteract a major tumor escape mechanism in multiple myeloma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mario Perro
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | | | | | | |
Collapse
|
2
|
Li Y. General strategies for IgG-like bispecific antibody purification. Biotechnol Prog 2025; 41:e3515. [PMID: 39410750 DOI: 10.1002/btpr.3515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 10/01/2024] [Indexed: 04/17/2025]
Abstract
Bispecific antibodies (bsAbs) can simultaneously bind two different antigens or epitopes. Their dual-targeting capability enables novel mechanisms of action, gaining therapeutic advantages over conventional monospecific mAbs. In recent years, the number of bsAbs grows rapidly and bsAbs under development are available in diverse formats. In particular, Fc-containing IgG-like bsAbs, which represent the major group, can be constructed in asymmetric or symmetric format. For asymmetric ones, whose assembly requires multiple distinct chains, although numerous strategies have been developed to promote desired chain pairing, product-related variants such as free chains, half molecules and mispaired species are usually present at various levels. For symmetric ones, increased level of aggregates and truncating variants is often associated with their production. In general, bsAbs pose greater challenges to the downstream team than regular mAbs. In the past few years, our team successfully developed the downstream process for over 70 bsAbs in greater than 30 different formats and accumulated substantial experience. This review introduces general strategies that we have used while purifying these challenging molecules.
Collapse
Affiliation(s)
- Yifeng Li
- Downstream Process Development (DSPD), WuXi Biologics, Shanghai, China
| |
Collapse
|
3
|
Carretero-Iglesia L, Hall OJ, Berret J, Pais D, Estoppey C, Chimen M, Monney T, Loyau J, Dreyfus C, Macoin J, Perez C, Menon V, Gruber I, Laurendon A, Caro LN, Gudi GS, Matsuura T, van der Graaf PH, Blein S, Mbow ML, Croasdale-Wood R, Srivastava A, Dyson MR, Matthes T, Kaya Z, Edwards CM, Edwards JR, Maiga S, Pellat-Deceunynck C, Touzeau C, Moreau P, Konto C, Drake A, Zhukovsky EA, Perro M, Pihlgren M. ISB 2001 trispecific T cell engager shows strong tumor cytotoxicity and overcomes immune escape mechanisms of multiple myeloma cells. NATURE CANCER 2024; 5:1494-1514. [PMID: 39261676 PMCID: PMC11505469 DOI: 10.1038/s43018-024-00821-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Despite recent advances in immunotherapies targeting single tumor-associated antigens, patients with multiple myeloma eventually relapse. ISB 2001 is a CD3+ T cell engager (TCE) co-targeting BCMA and CD38 designed to improve cytotoxicity against multiple myeloma. Targeting of two tumor-associated antigens by a single TCE resulted in superior cytotoxic potency across a variable range of BCMA and CD38 tumor expression profiles mimicking natural tumor heterogeneity, improved resistance to competing soluble factors and exhibited superior cytotoxic potency on patient-derived samples and in mouse models. Despite the broad expression of CD38 across human tissues, ISB 2001 demonstrated a reduced T cell activation profile in the absence of tumor cells when compared to TCEs targeting CD38 only. To determine an optimal first-in-human dose for the ongoing clinical trial ( NCT05862012 ), we developed an innovative quantitative systems pharmacology model leveraging preclinical data, using a minimum pharmacologically active dose approach, therefore reducing patient exposure to subefficacious doses of therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Vinu Menon
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | | | | | | | - Tomomi Matsuura
- Certara UK Limited, Canterbury Innovation Centre, University Road, Canterbury, United Kingdom
| | - Piet H van der Graaf
- Certara UK Limited, Canterbury Innovation Centre, University Road, Canterbury, United Kingdom
| | | | | | | | | | | | - Thomas Matthes
- Hematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, Geneva, Switzerland
| | - Zeynep Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Claire M Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - James R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Sophie Maiga
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | | | - Cyrille Touzeau
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - Philippe Moreau
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - Cyril Konto
- Ichnos Glenmark Innovation, New York, NY, USA
| | - Adam Drake
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | - Mario Perro
- Ichnos Glenmark Innovation, New York, NY, USA.
| | | |
Collapse
|
4
|
Peltret M, Vetsch P, Farvaque E, Mette R, Tsachaki M, Duarte L, Duret A, Vaxelaire E, Frank J, Moritz B, Aillerie C, Giovannini R, Bertschinger M. Development of a 10 g/L process for a difficult-to-express multispecific antibody format using a holistic process development approach. J Biotechnol 2024; 389:30-42. [PMID: 38685416 DOI: 10.1016/j.jbiotec.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Ichnos has developed a multi-specific antibody platform based on the BEAT® (Bispecific engagement by antibodies based on the T-cell receptor) interface. The increased complexity of the bi- and multi-specific formats generated with this platform makes these molecules difficult-to-express proteins compared to standard monoclonal antibodies (mAbs). This report describes how expression limitations of a bi-specific bi-paratopic BEAT antibody were improved in a holistic approach. An initial investigation allowed identification of a misbalance in the subunits composing the BEAT antibody as the potential root cause. This misbalance was then addressed by a signal peptide optimization, and the overall expression level was increased by the combination of two vector design elements on a single gene vector. Further improvements were made in the selection of cell populations and an upstream (USP) platform process was applied in combination with a cell culture temperature shift. This allowed titer levels of up to 6 g/L to be reached with these difficult-to-express proteins. Furthermore, a high-density seeding process was developed that allowed titers of around 11 g/L for the BEAT antibody, increasing the initial titer by a factor of 10. The approach was successfully applied to a tri-specific antibody with titer levels reaching 10 g/L. In summary, a platform process for difficult-to-express proteins was developed using molecular biology tools, cell line development, upstream process optimization and process intensification.
Collapse
Affiliation(s)
- Mégane Peltret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Patrick Vetsch
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | - Romain Mette
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Maria Tsachaki
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Lionel Duarte
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Anaïs Duret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | - Jana Frank
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Duret A, Duarte L, Cahuzac L, Rondepierre A, Lambercier M, Mette R, Recktenwald A, Giovannini R, Bertschinger M. Viral inactivation for pH-sensitive antibody formats such as multi-specific antibodies. J Biotechnol 2024; 384:45-54. [PMID: 38403131 DOI: 10.1016/j.jbiotec.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Recently developed multi-specific antibody formats enable new therapeutic concepts. Conveniently, formats with an Fc domain allow purification in well-established mAb platform processes. However, due to the structural complexity of the formats, the assembled molecules may be sensitive to extreme pH commonly used for viral inactivation. An alternative to low pH incubation for virus inactivation is the use of a mixture of tri-n-butyl phosphate (TnBP, solvent) and Polysorbate 80 (PS80, detergent). While TnBP is toxic, this combination has a long history of use in the manufacturing of human plasma-derived products that are sensitive to low or high pH incubation. Data are provided demonstrating that the solvent/detergent (S/D) treatment using TnBP and PS80 can be successfully used for pH-sensitive, multi-specific antibody formats in the clarified cell culture fluid (CCCF). A different placement of the S/D within the purification process, namely during the capture by Protein A (PA), has been evaluated. This alternative placement allows effective viral inactivation by S/D while preserving the viral reduction and viral inactivation achieved through the PA step itself, enabling the cumulation of these effects. Furthermore, the process alternative simplifies the liquid handling by reducing the added volumes of the required S/D liquids, thus reducing the amount of toxic TnBP to a minimum. Data are shown demonstrating a complete removal of TnBP and PS80 in the process.
Collapse
Affiliation(s)
- Anaïs Duret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Lionel Duarte
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Laure Cahuzac
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | | | - Romain Mette
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | | | | |
Collapse
|
6
|
Grandclément C, Estoppey C, Dheilly E, Panagopoulou M, Monney T, Dreyfus C, Loyau J, Labanca V, Drake A, De Angelis S, Rubod A, Frei J, Caro LN, Blein S, Martini E, Chimen M, Matthes T, Kaya Z, Edwards CM, Edwards JR, Menoret E, Kervoelen C, Pellat-Deceunynck C, Moreau P, Mbow ML, Srivastava A, Dyson MR, Zhukovsky EA, Perro M, Sammicheli S. Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma. Nat Commun 2024; 15:2054. [PMID: 38448430 PMCID: PMC10917784 DOI: 10.1038/s41467-024-46310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma.
Collapse
Affiliation(s)
| | - C Estoppey
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E Dheilly
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | | | - T Monney
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - C Dreyfus
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - J Loyau
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - V Labanca
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Drake
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - S De Angelis
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Rubod
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - J Frei
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - L N Caro
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - S Blein
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E Martini
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M Chimen
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - T Matthes
- Haematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, 1211, Geneva, Switzerland
| | - Z Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - C M Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - J R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - E Menoret
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - C Kervoelen
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - C Pellat-Deceunynck
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | - P Moreau
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - M L Mbow
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Srivastava
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M R Dyson
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E A Zhukovsky
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M Perro
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland.
| | - S Sammicheli
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland.
| |
Collapse
|
7
|
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations. Front Bioeng Biotechnol 2024; 12:1352014. [PMID: 38333084 PMCID: PMC10850309 DOI: 10.3389/fbioe.2024.1352014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Peltret M, Schmid A, Duarte L, Mette R, Giovannini R, Bertschinger M. Expression of Multispecific Antibodies. Methods Mol Biol 2024; 2810:161-180. [PMID: 38926279 DOI: 10.1007/978-1-0716-3878-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Bi- and multispecific antibody formats allow the development of new therapeutic strategies to address previously unmet medical needs. However, due to the increased complexity (e.g., the interface design and the presence of multiple binders), such molecules are generally more challenging to express and purify compared to standard monoclonal antibodies (mAbs). We describe here an optimized methodology to express and purify basic bispecific antibodies using the BEAT® interface. This interface allows to generate antibodies with very high levels of heterodimer product (reported titers exceed 10 g/L) and comes with a built-in purification strategy allowing removal of residual levels of undesired product-related impurities (e.g., homodimers and half molecules).
Collapse
Affiliation(s)
| | | | | | - Romain Mette
- Ichnos Sciences SA, La Chaux-de-Fonds, Switzerland
| | | | | |
Collapse
|
9
|
Aebischer-Gumy C, Moretti P, Brunstein Laplace T, Frank J, Grand Y, Mosbaoui F, Hily E, Galea A, Peltret M, Estoppey C, Ayoub D, Giovannini R, Bertschinger M. Alternative splicing for tuneable expression of protein subunits at desired ratios. MAbs 2024; 16:2342243. [PMID: 38650451 PMCID: PMC11042056 DOI: 10.1080/19420862.2024.2342243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
The controlled expression of two or more proteins at a defined and stable ratio remains a substantial challenge, particularly in the bi- and multispecific antibody field. Achieving an optimal ratio of protein subunits can facilitate the assembly of multimeric proteins with high efficiency and minimize the production of by-products. In this study, we propose a solution based on alternative splicing, enabling the expression of a tunable and predefined ratio of two distinct polypeptide chains from the same pre-mRNA under the control of a single promoter. The pre-mRNA used in this study contains two open reading frames situated on separate exons. The first exon is flanked by two copies of the chicken troponin intron 4 (cTNT-I4) and is susceptible to excision from the pre-mRNA by means of alternative splicing. This specific design enables the modulation of the splice ratio by adjusting the strength of the splice acceptor. To illustrate this approach, we developed constructs expressing varying ratios of GFP and dsRED and extended their application to multimeric proteins such as monoclonal antibodies, achieving industrially relevant expression levels (>1 g/L) in a 14-day fed-batch process. The stability of the splice ratio was confirmed by droplet digital PCR in a stable pool cultivated over a 28-day period, while product quality was assessed via intact mass analysis, demonstrating absence of product-related impurities resulting from undesired splice events. Furthermore, we showcased the versatility of the construct by expressing two subunits of a bispecific antibody of the BEAT® type, which contains three distinct subunits in total.
Collapse
Affiliation(s)
- Christel Aebischer-Gumy
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Pierre Moretti
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Timothee Brunstein Laplace
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Jana Frank
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Ysaline Grand
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Farid Mosbaoui
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Emilie Hily
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Anna Galea
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Megane Peltret
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Carole Estoppey
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Daniel Ayoub
- Analytical Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Roberto Giovannini
- Process Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Martin Bertschinger
- Drug Substance Development, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| |
Collapse
|
10
|
Pouleau B, Estoppey C, Suere P, Nallet E, Laurendon A, Monney T, Pais Ferreira D, Drake A, Carretero-Iglesia L, Macoin J, Berret J, Pihlgren M, Doucey MA, Gudi GS, Menon V, Udupa V, Maiti A, Borthakur G, Srivastava A, Blein S, Mbow ML, Matthes T, Kaya Z, Edwards CM, Edwards JR, Menoret E, Kervoëlen C, Pellat-Deceunynck C, Moreau P, Zhukovsky E, Perro M, Chimen M. Preclinical characterization of ISB 1342, a CD38 × CD3 T-cell engager for relapsed/refractory multiple myeloma. Blood 2023; 142:260-273. [PMID: 37192303 PMCID: PMC10644056 DOI: 10.1182/blood.2022019451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Although treatment of multiple myeloma (MM) with daratumumab significantly extends the patient's lifespan, resistance to therapy is inevitable. ISB 1342 was designed to target MM cells from patients with relapsed/refractory MM (r/r MM) displaying lower sensitivity to daratumumab. ISB 1342 is a bispecific antibody with a high-affinity Fab binding to CD38 on tumor cells on a different epitope than daratumumab and a detuned scFv domain affinity binding to CD3ε on T cells, to mitigate the risk of life-threatening cytokine release syndrome, using the Bispecific Engagement by Antibodies based on the TCR (BEAT) platform. In vitro, ISB 1342 efficiently killed cell lines with different levels of CD38, including those with a lower sensitivity to daratumumab. In a killing assay where multiple modes of action were enabled, ISB 1342 showed higher cytotoxicity toward MM cells compared with daratumumab. This activity was retained when used in sequential or concomitant combinations with daratumumab. The efficacy of ISB 1342 was maintained in daratumumab-treated bone marrow patient samples showing lower sensitivity to daratumumab. ISB 1342 induced complete tumor control in 2 therapeutic mouse models, unlike daratumumab. Finally, in cynomolgus monkeys, ISB 1342 displayed an acceptable toxicology profile. These data suggest that ISB 1342 may be an option in patients with r/r MM refractory to prior anti-CD38 bivalent monoclonal antibody therapies. It is currently being developed in a phase 1 clinical study.
Collapse
Affiliation(s)
- Blandine Pouleau
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Carole Estoppey
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | - Perrine Suere
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Emilie Nallet
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Amélie Laurendon
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | - Thierry Monney
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | | | - Adam Drake
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | | | - Julie Macoin
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Jérémy Berret
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Maria Pihlgren
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | | | - Girish S. Gudi
- Department of Pharmacokinetics and Translational Sciences, Ichnos Sciences Inc, New York, NY
| | - Vinu Menon
- Department of Pharmacokinetics and Translational Sciences, Ichnos Sciences Inc, New York, NY
| | - Venkatesha Udupa
- Department of Toxicology, Glenmark Pharmaceuticals Limited, Mumbai, India
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ankita Srivastava
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | - Stanislas Blein
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | - M. Lamine Mbow
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Thomas Matthes
- Hematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, Geneva, Switzerland
| | - Zeynep Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Claire M. Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - James R. Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Emmanuelle Menoret
- Nantes Université, INSERM, Centre national de la recherche scientifique, Université d'Angers, Nantes, France
- Therassay Core Facility, Department of Onco-Hematology, Capacités, Nantes Université, Nantes, France
| | - Charlotte Kervoëlen
- Nantes Université, INSERM, Centre national de la recherche scientifique, Université d'Angers, Nantes, France
- Therassay Core Facility, Department of Onco-Hematology, Capacités, Nantes Université, Nantes, France
| | - Catherine Pellat-Deceunynck
- Nantes Université, INSERM, Centre national de la recherche scientifique, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | - Philippe Moreau
- Nantes Université, INSERM, Centre national de la recherche scientifique, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU Nantes, Nantes, France
| | - Eugene Zhukovsky
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Mario Perro
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Myriam Chimen
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| |
Collapse
|
11
|
Liang X, He Q, Qin G, Li G, Li Q, Tan H, Wang Z, Fan M, Xu D. Effectively removing the homodimer in bispecific antibodies by weak partitioning mode of anion exchange chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123767. [PMID: 37270861 DOI: 10.1016/j.jchromb.2023.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
Small amounts of by-products are nevertheless created during the recombinant production of IgG-like bispecific antibodies due to imbalanced chain expression and improper chain pairing, despite the employment of molecular strategy techniques to promote accurate pairing. Among them, homodimers represent the species that are more difficult to remove due to their physical and chemical properties being similar to the target antibody. Homodimer by-products are always produced even though various technologies can significantly increase the expression of heterodimers, so a robust purification process to recover high-purity heterodimers is required. Most of the chromatography methods commonly adopt the bind-and-elute mode or two-step to separate homodimers, which has numerous drawbacks such as prolonged process times and limited dynamic binding capacity. Flow-through mode of anion exchange is a frequently-used polishing step for antibodies, but it is typically regarded as being more effective for host-cell protein or host-cell DNA removal rather than other product-related impurities such as homodimers and aggregates. This paper demonstrated that single-step anion exchange chromatography allows high capacity and effective clearance of the homodimer byproduct to be simultaneously achieved, suggesting that weak partitioning was a better polishing strategy for achieving a high level of heterodimer purity. And robust operation range of anion exchange chromatography steps for homodimer removal was also developed by leveraging the design of experiments.
Collapse
Affiliation(s)
- Xiaoying Liang
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Qingquan He
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Guohong Qin
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Guozhu Li
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Qian Li
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Huanghong Tan
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Zichen Wang
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Mengni Fan
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Dan Xu
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China.
| |
Collapse
|
12
|
Koga H, Yamano T, Betancur J, Nagatomo S, Ikeda Y, Yamaguchi K, Nabuchi Y, Sato K, Teranishi-Ikawa Y, Sato M, Hirayama H, Hayasaka A, Torizawa T, Haraya K, Sampei Z, Shiraiwa H, Kitazawa T, Igawa T, Kuramochi T. Efficient production of bispecific antibody by FAST-Ig TM and its application to NXT007 for the treatment of hemophilia A. MAbs 2023; 15:2222441. [PMID: 37339067 PMCID: PMC10283433 DOI: 10.1080/19420862.2023.2222441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Efficient production of bispecific antibodies (BsAbs) in single mammalian cells is essential for basic research and industrial manufacturing. However, preventing unwanted pairing of heavy chains (HCs) and light chains (LCs) is a challenging task. To address this, we created an engineering technology for preferential cognate HC/LC and HC/HC paring called FAST-Ig (Four-chain Assembly by electrostatic Steering Technology - Immunoglobulin), and applied it to NXT007, a BsAb for the treatment of hemophilia A. We introduced charged amino-acid substitutions at the HC/LC interface to facilitate the proper assembly for manufacturing a standard IgG-type BsAb. We generated CH1/CL interface-engineered antibody variants that achieved > 95% correct HC/LC pairing efficiency with favorable pharmacological properties and developability. Among these, we selected a design (C3) that allowed us to separate the mis-paired species with an unintended pharmacological profile using ion-exchange chromatography. Crystal structure analysis demonstrated that the C3 design did not affect the overall structure of both Fabs. To determine the final design for HCs-heterodimerization, we compared the stability of charge-based and knobs into hole-based Fc formats in acidic conditions and selected the more stable charge-based format. FAST-Ig was also applicable to stable CHO cell lines for industrial production and demonstrated robust chain pairing with different subclasses of parent BsAbs. Thus, it can be applied to a wide variety of BsAbs both preclinically and clinically.
Collapse
Affiliation(s)
- Hikaru Koga
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takashi Yamano
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Juan Betancur
- API Process Development Department, Chugai Pharmaceutical Co., Ltd, Ukima, Tokyo, Japan
| | - Satoko Nagatomo
- Analytical Development Department, Chugai Pharmaceutical Co, Ltd, Ukima, Tokyo, Japan
| | - Yousuke Ikeda
- Analytical Development Department, Chugai Pharmaceutical Co, Ltd, Ukima, Tokyo, Japan
| | - Kazuki Yamaguchi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Yoshiaki Nabuchi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kazuki Sato
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | | | - Motohiko Sato
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Hiroyuki Hirayama
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Akira Hayasaka
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takuya Torizawa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Hirotake Shiraiwa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Chuo-Ku, Tokyo, Japan
| | - Taichi Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| |
Collapse
|
13
|
Benedetti F, Stadlmayr G, Stadlbauer K, Rüker F, Wozniak-Knopp G. Selection of High-Affinity Heterodimeric Antigen-Binding Fc Fragments from a Large Yeast Display Library. Methods Mol Biol 2023; 2681:131-159. [PMID: 37405647 DOI: 10.1007/978-1-0716-3279-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Antigen-binding Fc (Fcab™) fragments, where a novel antigen binding site is introduced by the mutagenesis of the C-terminal loops of the CH3 domain, function as parts of bispecific IgG-like symmetrical antibodies when they replace their wild-type Fc. Their homodimeric structure typically leads to bivalent antigen binding. In particular, biological situations monovalent engagement, however, would be preferred, either for avoiding agonistic effects leading to safety issues, or the attractive option of combining a single chain (i.e., one half) of an Fcab fragment reactive with different antigens in one antibody. We present the strategies for construction and selection of yeast libraries displaying heterodimeric Fcab fragments and discuss the effects of altered thermostability of the basic Fc scaffold and novel library designs that lead to isolation of highly affine antigen binding clones.
Collapse
Affiliation(s)
- Filippo Benedetti
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Katharina Stadlbauer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Florian Rüker
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| |
Collapse
|
14
|
Chen SW, Hoi KM, Mahfut FB, Yang Y, Zhang W. Effective flow-through polishing strategies for knob-into-hole bispecific antibodies. BIORESOUR BIOPROCESS 2022; 9:98. [PMID: 38647877 PMCID: PMC10992779 DOI: 10.1186/s40643-022-00590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Bispecific antibodies (bsAbs), though possessing great therapeutic potential, are extremely challenging to obtain at high purity within a limited number of scalable downstream processing steps. Complementary to Protein A chromatography, polishing strategies play a critical role at removing the remaining high molecular weight (HMW) and low molecular weight (LMW) species, as well as host cell proteins (HCP) in order to achieve a final product of high purity. Here, we demonstrate using two knob-into-hole (KiH) bsAb constructs that two flow-through polishing steps utilising Capto Butyl ImpRes and Capto adhere resins, performed after an optimal Protein A affinity chromatography step can further reduce the HCP by 17- to 35-fold as well as HMW and LMW species with respect to monomer by ~ 4-6% and ~ 1%, respectively, to meet therapeutical requirement at 30-60 mg/mL-resin (R) load. This complete flow-through polishing strategy, guided by Design of Experiments (DoE), eliminates undesirable aggregation problems associated with the higher aggregation propensity of scFv containing bsAbs that may occur in the bind and elute mode, offering an improved ease of overall process operation without additional elution buffer preparation and consumption, thus aligning well with process intensification efforts. Overall, we demonstrate that through the employment of (1) Protein A chromatography step and (2) flow-through polishing steps, a final product containing < 1% HMW species, < 1% LMW species and < 100 ppm HCP can be obtained with an overall process recovery of 56-87%.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong Meng Hoi
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farouq Bin Mahfut
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
15
|
Chen SW, Hoi KM, Mahfut FB, Yang Y, Zhang W. Excellent removal of knob-into-hole bispecific antibody byproducts and impurities in a single-capture chromatography. BIORESOUR BIOPROCESS 2022; 9:72. [PMID: 38647639 PMCID: PMC10992212 DOI: 10.1186/s40643-022-00562-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 01/12/2023] Open
Abstract
Bispecific antibodies (bsAbs) are therapeutically promising due to their ability to bind to two different antigens. However, the bsAb byproducts and impurities, including mispaired homodimers, half-antibodies, light chain mispairings, antibody fragments and high levels of high molecular weight (HMW) species, all pose unique challenges to their downstream processing. Here, using two knob-into-hole (KiH) constructs of bsAbs as model molecules, we demonstrate the excellent removal of bsAb byproducts and impurities in a single Protein A chromatography under optimized conditions, including hole-hole homodimer mispaired products which are physicochemically very similar to the target bsAbs and still present even with the use of the KiH format, though at reduced levels. The removal occurs through the incorporation of an intermediate low-pH wash step and optimal elution conditions, achieving ~ 60% monomeric purity increase in a single Protein A step, without the introduction of sequence-specific bsAb modifications to specifically induce differential Protein A binding. Our results also suggest that the higher aggregation propensity of bsAbs may cause aggregation during the column process, hence an optimization of the appropriate loading amount, which may be lower than that of monoclonal antibodies (mAbs), is required. With the use of loading at 50% of 10% breakthrough (QB10) at 6-min residence time, we show that an overall high monomer purity of 92.1-93.2% can be achieved with good recovery of 78.4-90.6% within one capture step, which is a significant improvement from a monomer purity of ~ 30% in the cell culture supernatant (CCS). The results presented here would be an insightful guidance to all researchers working on the purification process development to produce bispecific antibodies, especially for knob-into-hole bispecific antibodies.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong Meng Hoi
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farouq Bin Mahfut
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
16
|
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151-2169. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigen. Teaser: This review provides an overview of the different strategies that can be exploited to improve the success rate of antibody phage display discovery campaigns, addressing key parameters, such as antigen presentation, selection methodologies, and specialized libraries.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - John McCafferty
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK; Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Heinkel F, Verstraete MM, Cao S, Li J, Farber P, Stangle E, Silva-Moreno B, Peng F, Dixit S, Boulanger MJ, Spreter Von Kreudenstein T, Escobar-Cabrera E. Engineering a pure and stable heterodimeric IgA for the development of multispecific therapeutics. MAbs 2022; 14:2141637. [PMID: 36343329 PMCID: PMC9645255 DOI: 10.1080/19420862.2022.2141637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ABBREVIATIONS CE-SDS: capillary electrophoresis sodium dodecyl sulfate; DSC: differential scanning calorimetry; FACS: fluorescence-activated cell sorting; FSA: full-sized antibody; Her2: human epidermal growth factor receptor 2; MFI: mean fluorescent intensity; OAA: one-armed antibody; PBS: phosphate-buffered saline; PDB: Protein Data Bank; SEC: size-exclusion chromatography; prepSEC (preparative SEC); RMSD: root-mean-square deviation; RU: resonance units; SPR: surface plasmon resonance; TAA: tumor-associated antigen; WT: wild-type.
Collapse
Affiliation(s)
| | - Meghan M. Verstraete
- Zymeworks Inc., Vancouver, BC, Canada,CONTACT Meghan M. Verstraete Zymeworks Inc, 114 East 4th Avenue, Suite 800, Vancouver, BCV5T 1G4, Canada
| | - Siran Cao
- Zymeworks Inc., Vancouver, BC, Canada
| | | | | | | | | | - Fangni Peng
- Department of Biochemistry and Microbiology; University of Victoria, Victoria, BC, Canada
| | | | - Martin J. Boulanger
- Department of Biochemistry and Microbiology; University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
18
|
Zhao C, Zhang W, Gong G, Xie L, Wang MW, Hu Y. A new approach to produce IgG 4-like bispecific antibodies. Sci Rep 2021; 11:18630. [PMID: 34545109 PMCID: PMC8452627 DOI: 10.1038/s41598-021-97393-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
While achieving rapid developments in recent years, bispecific antibodies are still difficult to design and manufacture, due to mispair of both heavy and light chains. Here we report a novel technology to make bispecific molecules. The knob-into-hole method was used to pair two distinct heavy chains as a heterodimer. IgG4 S228P CH1-CL interface was then partially replaced by T-cell receptor α/β constant domain to increase the efficiency of cognate heavy and light chain pairing. Following expression and purification, the bispecific antibody interface exchange was confirmed by Western blotting and LC–MS/MS. To ensure its validity, we combined a monovalent bispecific antibody against PD-1 (sequence from Pembrolizumab) and LAG3 (sequence from Relatlimab). The results showed that the molecule could be assembled correctly at a ratio of 95% in cells. In vitro functional assay demonstrated that the purified bispecific antibody exhibits an enhanced agonist activity compared to that of the parental antibodies. Low immunogenicity was predicted by an open-access software and ADA test.
Collapse
Affiliation(s)
- Caizhi Zhao
- School of Pharmacy, Fudan University, Shanghai, 201203, China.,China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Guihua Gong
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai, 201203, China.
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
19
|
Li Y. IgG-like bispecific antibody platforms with built-in purification-facilitating elements. Protein Expr Purif 2021; 188:105955. [PMID: 34416361 DOI: 10.1016/j.pep.2021.105955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023]
Abstract
Assembly of IgG-like asymmetric bispecific antibodies (bsAbs) requires heavy chain heterodimerization and cognate heavy-light chain pairings. Multiple strategies have been developed to solve these chain association issues. While these strategies greatly promote correct chain pairing, they normally cannot prevent low amount of chain mispaired byproducts from being generated. Besides, byproducts can also be generated as a result of discordant chain expression. The existence of various byproducts poses considerable challenges to downstream processing during the production of recombinant IgG-like bsAbs. In many cases, yield is greatly compromised for purity improvement. This mini review introduces eight IgG-like bsAb platforms, which share a common feature: they all contain built-in purification-facilitating elements in addition to chain pairing control designs. These platforms, by simultaneously providing solutions to the two issues associated with bsAb production (i.e., correct chain pairing and efficient purification), improve both efficiency and robustness of bsAb production.
Collapse
MESH Headings
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/isolation & purification
- Chromatography, Gel/methods
- Chromatography, Ion Exchange/methods
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/isolation & purification
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/chemistry
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/immunology
- Isoelectric Point
- Protein Binding
- Protein Engineering/methods
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Staphylococcal Protein A/chemistry
- Staphylococcal Protein A/metabolism
Collapse
Affiliation(s)
- Yifeng Li
- Technology and Process Development (TPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
20
|
Rahman S, Wineman-Fisher V, Nagy PR, Al-Hamdani Y, Tkatchenko A, Varma S. Methyl-Induced Polarization Destabilizes the Noncovalent Interactions of N-Methylated Lysines. Chemistry 2021; 27:11005-11014. [PMID: 33999467 PMCID: PMC9830558 DOI: 10.1002/chem.202100644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 01/12/2023]
Abstract
Lysine methylation can modify noncovalent interactions by altering lysine's hydrophobicity as well as its electronic structure. Although the ramifications of the former are documented, the effects of the latter remain largely unknown. Understanding the electronic structure is important for determining how biological methylation modulates protein-protein binding, and the impact of artificial methylation experiments in which methylated lysines are used as spectroscopic probes and protein crystallization facilitators. The benchmarked first-principles calculations undertaken here reveal that methyl-induced polarization weakens the electrostatic attraction of amines with protein functional groups - salt bridges, hydrogen bonds and cation-π interactions weaken by as much as 10.3, 7.9 and 3.5 kT, respectively. Multipole analysis shows that weakened electrostatics is due to the altered inductive effects, which overcome increased attraction from methyl-enhanced polarizability and dispersion. Due to their fundamental nature, these effects are expected to be present in many cases. A survey of methylated lysines in protein structures reveals several cases in which methyl-induced polarization is the primary driver of altered noncovalent interactions; in these cases, destabilizations are found to be in the 0.6-4.7 kT range. The clearest case of where methyl-induced polarization plays a dominant role in regulating biological function is that of the PHD1-PHD2 domain, which recognizes lysine-methylated states on histones. These results broaden our understanding of how methylation modulates noncovalent interactions.
Collapse
Affiliation(s)
- Sanim Rahman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
- Current Address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vered Wineman-Fisher
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, 1521, Budapest, Hungary
| | - Yasmine Al-Hamdani
- Department of Physics and Materials Science, University of Luxembourg Luxembourg, 1511, Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg Luxembourg, 1511, Luxembourg City, Luxembourg
| | - Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
- Department of Physics, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| |
Collapse
|
21
|
Chen SW, Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies. Antib Ther 2021; 4:73-88. [PMID: 34056544 PMCID: PMC8155696 DOI: 10.1093/abt/tbab007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (bsAbs) represent a highly promising class of biotherapeutic modality. The downstream processing of this class of antibodies is therefore of crucial importance in ensuring that these products can be obtained with high purity and yield. Due to the various fundamental structural similarities between bsAbs and monoclonal antibodies (mAbs), many of the current bsAb downstream purification methodologies are based on the established purification processes of mAbs, where affinity, charge, size, hydrophobicity and mixed-mode-based purification are frequently employed. Nevertheless, the downstream processing of bsAbs presents a unique set of challenges due to the presence of bsAb-specific byproducts, such as mispaired products, undesired fragments and higher levels of aggregates, that are otherwise absent or present in lower levels in mAb cell culture supernatants, thus often requiring the design of additional purification strategies in order to obtain products of high purity. Here, we outline the current major purification methods of bsAbs, highlighting the corresponding solutions that have been proposed to circumvent the unique challenges presented by this class of antibodies, including differential affinity chromatography, sequential affinity chromatography and the use of salt additives and pH gradients or multistep elutions in various modes of purification. Finally, a perspective towards future process development is offered.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| |
Collapse
|
22
|
|
23
|
Surowka M, Schaefer W, Klein C. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. MAbs 2021; 13:1967714. [PMID: 34491877 PMCID: PMC8425689 DOI: 10.1080/19420862.2021.1967714] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies have recently attracted intense interest. CrossMab technology was described in 2011 as novel approach enabling correct antibody light-chain association with their respective heavy chain in bispecific antibodies, together with methods enabling correct heavy-chain association using existing pairs of antibodies. Since the original description, CrossMab technology has evolved in the past decade into one of the most mature, versatile, and broadly applied technologies in the field, and nearly 20 bispecific antibodies based on CrossMab technology developed by Roche and others have entered clinical trials. The most advanced of these are the Ang-2/VEGF bispecific antibody faricimab, currently undergoing regulatory review, and the CD20/CD3 T cell bispecific antibody glofitamab, currently in pivotal Phase 3 trials. In this review, we introduce the principles of CrossMab technology, including its application for the generation of bi-/multispecific antibodies with different geometries and mechanisms of action, and provide an overview of CrossMab-based therapeutics in clinical trials.
Collapse
|
24
|
New insights into affinity proteins for HER2-targeted therapy: Beyond trastuzumab. Biochim Biophys Acta Rev Cancer 2020; 1874:188448. [PMID: 33039514 DOI: 10.1016/j.bbcan.2020.188448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is known as a potential target for both cancer treatment and diagnosis. One of the most interesting HER2-targeted therapeutics is an affinity protein which selectively recognizes and binds to a defined target. Trastuzumab is a monoclonal antibody which has been approved as the first affinity proteins for treatment of some HER2-positive cancers including breast cancer. Despite initial response to trastuzumab, the majority of patients with metastatic HER2-positive breast cancer still show resistance to the therapy. Recently, various anti-HER2 affinity proteins, including antibodies, antibody fragments (e.g., Fab and scFv) and other protein scaffolds (e.g., affibody and DARPin), alone or fused/conjugated with therapeutic agents (e.g., proteins, drugs and radioisotopes) have been developed to overcome the trastuzumab resistance. Here, we review these engineered affinity proteins which are either clinically approved or under evaluation. Modern technologies and future prospects for their clinical applications in cancer treatment are also discussed.
Collapse
|
25
|
Stutz C, Blein S. A single mutation increases heavy-chain heterodimer assembly of bispecific antibodies by inducing structural disorder in one homodimer species. J Biol Chem 2020; 295:9392-9408. [PMID: 32404368 PMCID: PMC7363136 DOI: 10.1074/jbc.ra119.012335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
We previously reported efficient heavy-chain assembly of heterodimeric bispecific antibodies by exchanging the interdomain protein interface of the human IgG1 CH3 dimer with the protein interface of the constant α and β domains of the human T-cell receptor, a technology known as bispecific engagement by antibodies based on the T-cell receptor (BEAT). Efficient heterodimerization in mammalian cell transient transfections was observed, but levels were influenced by the nature of the binding arms, particularly in the Fab-scFv-Fc format. In this study, we report a single amino acid change that significantly and consistently improved the heterodimerization rate of this format (≥95%) by inducing partial disorder in one homodimer species without affecting the heterodimer. Correct folding and assembly of the heterodimer were confirmed by the high-resolution (1.88-1.98 Å) crystal structure presented here. Thermal stability and 1-anilinonaphthalene-8-sulfonic acid-binding experiments, comparing original BEAT, mutated BEAT, and "knobs-into-holes" interfaces, suggested a cooperative assembly process of heavy chains in heterodimers. The observed gain in stability of the interfaces could be classified in the following rank order: mutated BEAT > original BEAT > knobs-into-holes. We therefore propose that the superior cooperativity found in BEAT interfaces is the key driver of their greater performance. Furthermore, we show how the mutated BEAT interface can be exploited for the routine preparation of drug candidates, with minimal risk of homodimer contamination using a single Protein A chromatography step.
Collapse
Affiliation(s)
- Cian Stutz
- Department of Antibody Engineering, Ichnos Sciences S.A., Biopôle Lausanne-Epalinges, Epalinges, Switzerland
| | - Stanislas Blein
- Department of Antibody Engineering, Ichnos Sciences S.A., Biopôle Lausanne-Epalinges, Epalinges, Switzerland
| |
Collapse
|
26
|
Nie S, Wang Z, Moscoso-Castro M, D'Souza P, Lei C, Xu J, Gu J. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther 2020; 3:18-62. [PMID: 33928225 PMCID: PMC7990219 DOI: 10.1093/abt/tbaa003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
A bispecific antibody (bsAb) is able to bind two different targets or two distinct epitopes on the same target. Broadly speaking, bsAbs can include any single molecule entity containing dual specificities with at least one being antigen-binding antibody domain. Besides additive effect or synergistic effect, the most fascinating applications of bsAbs are to enable novel and often therapeutically important concepts otherwise impossible by using monoclonal antibodies alone or their combination. This so-called obligate bsAbs could open up completely new avenue for developing novel therapeutics. With evolving understanding of structural architecture of various natural or engineered antigen-binding immunoglobulin domains and the connection of different domains of an immunoglobulin molecule, and with greatly improved understanding of molecular mechanisms of many biological processes, the landscape of therapeutic bsAbs has significantly changed in recent years. As of September 2019, over 110 bsAbs are under active clinical development, and near 180 in preclinical development. In this review article, we introduce a system that classifies bsAb formats into 30 categories based on their antigen-binding domains and the presence or absence of Fc domain. We further review the biology applications of approximately 290 bsAbs currently in preclinical and clinical development, with the attempt to illustrate the principle of selecting a bispecific format to meet biology needs and selecting a bispecific molecule as a clinical development candidate by 6 critical criteria. Given the novel mechanisms of many bsAbs, the potential unknown safety risk and risk/benefit should be evaluated carefully during preclinical and clinical development stages. Nevertheless we are optimistic that next decade will witness clinical success of bsAbs or multispecific antibodies employing some novel mechanisms of action and deliver the promise as next wave of antibody-based therapeutics.
Collapse
Affiliation(s)
- Siwei Nie
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and ,To whom correspondence should addressed. Jijie Guor Siwei Nie. or
| | - Zhuozhi Wang
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and
| | | | - Paul D'Souza
- Clarivate Analytics, Friars House, 160 Blackfriars Road, London SE1 8EZ, UK
| | - Can Lei
- Clarivate Analytics, Friars House, 160 Blackfriars Road, London SE1 8EZ, UK
| | - Jianqing Xu
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and
| | - Jijie Gu
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and ,To whom correspondence should addressed. Jijie Guor Siwei Nie. or
| |
Collapse
|
27
|
Buschhaus MJ, Becker S, Porter AJ, Barelle CJ. Isolation of highly selective IgNAR variable single-domains against a human therapeutic Fc scaffold and their application as tailor-made bioprocessing reagents. Protein Eng Des Sel 2019; 32:385-399. [PMID: 32119084 DOI: 10.1093/protein/gzaa002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 01/03/2023] Open
Abstract
The adaptive immune system of cartilaginous fish (Elasmobranchii), comprising of classical hetero-tetrameric antibodies, is enhanced through the presence of a naturally occurring homodimeric antibody-like immunoglobulin-the new antigen receptor (IgNAR). The binding site of the IgNAR variable single-domain (VNAR) offers advantages of reduced size (<1/10th of classical immunoglobulin) and extended binding topographies, making it an ideal candidate for accessing cryptic epitopes otherwise intractable to conventional antibodies. These attributes, coupled with high physicochemical stability and amenability to phage display, facilitate the selection of VNAR binders to challenging targets. Here, we explored the unique attributes of these single domains for potential application as bioprocessing reagents in the development of the SEED-Fc platform, designed to generate therapeutic bispecific antibodies. A panel of unique VNARs specific to the SEED homodimeric (monospecific) 'by-products' were isolated from a shark semi-synthetic VNAR library via phage display. The lead VNAR candidate exhibited low nanomolar affinity and superior selectivity to SEED homodimer, with functionality being retained upon exposure to extreme physicochemical conditions that mimic their applicability as purification agents. Ultimately, this work exemplifies the robustness of the semi-synthetic VNAR platform, the predisposition of the VNAR paratope to recognise novel epitopes and the potential for routine generation of tailor-made VNAR-based bioprocessing reagents.
Collapse
Affiliation(s)
- Magdalena J Buschhaus
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK
| | - Stefan Becker
- Merck Biopharma KGaA, Protein Engineering & Antibody Technologies, Global Research and Development, Frankfurter Str. 250 Darmstadt 64293, Germany
| | - Andrew J Porter
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK.,Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Caroline J Barelle
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK
| |
Collapse
|
28
|
Ollier R, Wassmann P, Monney T, Ries Fecourt C, Gn S, C A V, Ayoub D, Stutz C, Gudi GS, Blein S. Single-step Protein A and Protein G avidity purification methods to support bispecific antibody discovery and development. MAbs 2019; 11:1464-1478. [PMID: 31462177 PMCID: PMC6816383 DOI: 10.1080/19420862.2019.1660564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Heavy chain (Hc) heterodimers represent a majority of bispecific antibodies (bsAbs) under clinical development. Although recent technologies achieve high levels of Hc heterodimerization (HD), traces of homodimer contaminants are often present, and as a consequence robust purification techniques for generating highly pure heterodimers in a single step are needed. Here, we describe two different purification methods that exploit differences in Protein A (PA) or Protein G (PG) avidity between homo- and heterodimers. Differential elution between species was enabled by removing PA or PG binding in one of the Hcs of the bsAb. The PA method allowed the avidity purification of heterodimers based on the VH3 subclass, which naturally binds PA and interferes with separation, by using a combination of IgG3 Fc and a single amino acid change in VH3, N82aS. The PG method relied on a combination of three mutations that completely disrupts PG binding, M428G/N434A in IgG1 Fc and K213V in IgG1 CH1. Both methods achieved a high level of heterodimer purity as single-step techniques without Hc HD (93–98%). Since PA and PG have overlapping binding sites with the neonatal Fc receptor (FcRn), we investigated the effects of our engineering both in vitro and in vivo. Mild to moderate differences in FcRn binding and Fc thermal stability were observed, but these did not significantly change the serum half-lives of engineered control antibodies and heterodimers. The methods are conceptually compatible with various Hc HD platforms such as BEAT® (Bispecific Engagement by Antibodies based on the T cell receptor), in which the PA method has already been successfully implemented.
Collapse
Affiliation(s)
- Romain Ollier
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Paul Wassmann
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Thierry Monney
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Christelle Ries Fecourt
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Sunitha Gn
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre , Navi Mumbai , India
| | - Vinu C A
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre , Navi Mumbai , India
| | - Daniel Ayoub
- Department of Formulation and Analytical Development, Glenmark Pharmaceuticals SA , La Chaux-de-Fonds , Switzerland
| | - Cian Stutz
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Girish S Gudi
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Inc ., Paramus , NJ , USA
| | - Stanislas Blein
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| |
Collapse
|
29
|
Acheampong DO. Bispecific Antibody (bsAb) Construct Formats and their Application in Cancer Therapy. Protein Pept Lett 2019; 26:479-493. [DOI: 10.2174/0929866526666190311163820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/15/2022]
Abstract
Development of cancers mostly involves more than one signal pathways, because of the complicated nature of cancer cells. As such, the most effective treatment option is the one that stops the cancer cells in their tracks by targeting these signal pathways simultaneously. This explains why therapeutic monoclonal antibodies targeted at cancers exert utmost activity when two or more are used as combination therapy. This notwithstanding, studies elsewhere have proven that when bispecific antibody (bsAb) is engineered from two conventional monoclonal antibodies or their chains, it produces better activity than when used as combination therapy. This therefore presents bispecific antibody (bsAb) as the appropriate and best therapeutic agent for the treatment of such cancers. This review therefore discusses the various engineering formats for bispecific antibodies (bsAbs) and their applications.
Collapse
Affiliation(s)
- Desmond O. Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Science, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
30
|
Dietrich S, Gross AW, Becker S, Hock B, Stadlmayr G, Rüker F, Wozniak-Knopp G. Constant domain-exchanged Fab enables specific light chain pairing in heterodimeric bispecific SEED-antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140250. [PMID: 31295556 DOI: 10.1016/j.bbapap.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bispecific antibodies promise to broadly expand the clinical utility of monoclonal antibody technology. Several approaches for heterodimerization of heavy chains have been established to produce antibodies with two different Fab arms, but promiscuous pairing of heavy and light chains remains a challenge for their manufacturing. METHODS We have designed a solution in which the CH1 and CL domain pair in one of the Fab fragments is replaced with a CH3-domain pair and heterodimerized to facilitate correct modified Fab-chain pairing in bispecific heterodimeric antibodies based on a strand-exchange engineered domain (SEED) scaffold with specificity for epithelial growth factor receptor and either CD3 or CD16 (FcγRIII). RESULTS Bispecific antibodies retained binding to their target antigens and redirected primary T cells or NK cells to induce potent killing of target cells. All antibodies were expressed at a high yield in Expi293F cells, were detected as single sharp symmetrical peaks in size exclusion chromatography and retained high thermostability. Mass spectrometric analysis revealed specific heavy-to-light chain pairing for the bispecific SEED antibodies as well as for one-armed SEED antibodies co-expressed with two different competing light chains. CONCLUSION Incorporation of a constant domain-exchanged Fab fragment into a SEED antibody yields functional molecules with favorable biophysical properties. GENERAL SIGNIFICANCE Our results show that the novel engineered bispecific SEED antibody scaffold with an incorporated Fab fragment with CH3-exchanged constant domains is a promising tool for the generation of complete heterodimeric bispecific antibodies with correct light chain pairing.
Collapse
Affiliation(s)
- Sylvia Dietrich
- Christian Doppler Laboratory for Antibody Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Alec W Gross
- Protein Engineering and Antibody Technologies, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Björn Hock
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Rüker
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
31
|
Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019; 8:E41. [PMID: 31544847 PMCID: PMC6784091 DOI: 10.3390/antib8030041] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- William R Strohl
- BiStro Biotech Consulting, LLC, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA.
| | - Michael Naso
- Century Therapeutics, 3675 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18:585-608. [DOI: 10.1038/s41573-019-0028-1] [Citation(s) in RCA: 493] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Richter F, Seifert O, Herrmann A, Pfizenmaier K, Kontermann RE. Improved monovalent TNF receptor 1-selective inhibitor with novel heterodimerizing Fc. MAbs 2019; 11:653-665. [PMID: 30929560 DOI: 10.1080/19420862.2019.1596512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of alternative therapeutic strategies to tumor necrosis factor (TNF)-blocking antibodies for the treatment of inflammatory diseases has generated increasing interest. In particular, selective inhibition of TNF receptor 1 (TNFR1) promises a more precise intervention, tackling only the pro-inflammatory responses mediated by TNF while leaving regenerative and pro-survival signals transduced by TNFR2 untouched. We recently generated a monovalent anti-TNFR1 antibody fragment (Fab 13.7) as an efficient inhibitor of TNFR1. To improve the pharmacokinetic properties of Fab 13.7, the variable domains of the heavy and light chains were fused to the N-termini of newly generated heterodimerizing Fc chains. This novel Fc heterodimerization technology, designated "Fc-one/kappa" (Fc1κ) is based on interspersed constant Ig domains substituting the CH3 domains of a γ1 Fc. The interspersed immunoglobulin (Ig) domains originate from the per se heterodimerizing constant CH1 and CLκ domains and contain sequence stretches of an IgG1 CH3 domain, destined to enable interaction with the neonatal Fc receptor, and thus promote extended serum half-life. The resulting monovalent Fv-Fc1κ fusion protein (Atrosimab) retained strong binding to TNFR1 as determined by enzyme-linked immunosorbent assay and quartz crystal microbalance, and potently inhibited TNF-induced activation of TNFR1. Atrosimab lacks agonistic activity for TNFR1 on its own and in the presence of anti-human IgG antibodies and displays clearly improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Fabian Richter
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center Systems Biology , University of Stuttgart , Stuttgart , Germany
| | - Oliver Seifert
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center Systems Biology , University of Stuttgart , Stuttgart , Germany
| | | | - Klaus Pfizenmaier
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center Systems Biology , University of Stuttgart , Stuttgart , Germany
| | - Roland E Kontermann
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center Systems Biology , University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
34
|
Li Y. A brief introduction of IgG-like bispecific antibody purification: Methods for removing product-related impurities. Protein Expr Purif 2019; 155:112-119. [DOI: 10.1016/j.pep.2018.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023]
|
35
|
Chen S, Li L, Zhang F, Wang Y, Hu Y, Zhao L. Immunoglobulin Gamma-Like Therapeutic Bispecific Antibody Formats for Tumor Therapy. J Immunol Res 2019; 2019:4516041. [PMID: 30886871 PMCID: PMC6388348 DOI: 10.1155/2019/4516041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Bispecific antibodies (BsAbs) are a sort of dual functional proteins with specific binding to two distinct targets, which have become a focus of interest in antibody engineering and drug development research and have a promising future for wide applications in cancer immunotherapy and autoimmune disease. The key of clinical application and commercial-scale manufacturing of BsAbs is the amenability to assembly and purification of desired heterodimers. Advances in genetic engineering technology had resulted in the development of diverse BsAbs. Multiple recombinant strategies have been used to solve the mispairing problem between light and heavy chains, as well as to enforce accurate dimerization of heterologous heavy chains. There are 23 platforms available to generate 62 BsAbs which can be further divided into IgG-like ones and fragment-based ones, and more than 50 molecules are undergoing clinical trials currently. BsAbs with IgG-like architecture exhibit superior advantages in structure (similar to natural antibodies), pharmacokinetics, half-life, FcR-mediated function, and biological activity. This review considers various IgG-like BsAb generation approaches, summarizes the clinical applications of promising new BsAbs, and describes the mechanism of BsAbs in tumor therapy.
Collapse
Affiliation(s)
- Shixue Chen
- National Clinical Research Center for Normal Aging and Geriatric & Department of Oncology & Institute of Geriatric & The Key Lab of Normal Aging and Geriatric, The Second Medical Centre, PLA General Hospital, Beijing, China
| | - Lingling Li
- National Clinical Research Center for Normal Aging and Geriatric & Department of Oncology & Institute of Geriatric & The Key Lab of Normal Aging and Geriatric, The Second Medical Centre, PLA General Hospital, Beijing, China
- Medical of School & Graduate School, Nankai University, Tianjin, China
| | - Fan Zhang
- National Clinical Research Center for Normal Aging and Geriatric & Department of Oncology & Institute of Geriatric & The Key Lab of Normal Aging and Geriatric, The Second Medical Centre, PLA General Hospital, Beijing, China
| | - Yu Wang
- National Clinical Research Center for Normal Aging and Geriatric & Department of Oncology & Institute of Geriatric & The Key Lab of Normal Aging and Geriatric, The Second Medical Centre, PLA General Hospital, Beijing, China
| | - Yi Hu
- National Clinical Research Center for Normal Aging and Geriatric & Department of Oncology & Institute of Geriatric & The Key Lab of Normal Aging and Geriatric, The Second Medical Centre, PLA General Hospital, Beijing, China
| | - Lei Zhao
- National Clinical Research Center for Normal Aging and Geriatric & Department of Oncology & Institute of Geriatric & The Key Lab of Normal Aging and Geriatric, The Second Medical Centre, PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Moore GL, Bernett MJ, Rashid R, Pong EW, Nguyen DHT, Jacinto J, Eivazi A, Nisthal A, Diaz JE, Chu SY, Muchhal US, Desjarlais JR. A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats. Methods 2018; 154:38-50. [PMID: 30366098 DOI: 10.1016/j.ymeth.2018.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Bispecific monoclonal antibodies can bind two protein targets simultaneously and enable therapeutic modalities inaccessible by traditional mAbs. Bispecific formats containing a heterodimeric Fc region are of particular interest, as a heterodimeric Fc empowers both bispecificity and altered valencies while retaining the developability and druggability of a monoclonal antibody. We present a robust heterodimeric Fc platform, called the XmAb® bispecific platform, engineered for efficient development of bispecific antibodies and Fc fusions of multiple formats. First, we engineer a purification solution for proteins containing a heterodimeric Fc using engineered isoelectric point differences in the Fc region that enable straightforward purification of the heterodimeric species. Then, we combine this purification solution with a novel set of Fc substitutions capable of achieving heterodimer yields over 95% with little change in thermostability. Next, we illustrate the flexibility of our heterodimeric Fc with a case study in which a wide range of tumor-associated antigen × CD3 bispecifics are generated, differing in choice of tumor antigen, affinities for both tumor antigen and CD3, and tumor antigen valency. Finally, we present manufacturing data reinforcing the robustness of the heterodimeric Fc platform at scale.
Collapse
|
37
|
Wozniak-Knopp G, Stadlmayr G, Perthold JW, Stadlbauer K, Gotsmy M, Becker S, Rüker F. An antibody with Fab-constant domains exchanged for a pair of CH3 domains. PLoS One 2018; 13:e0195442. [PMID: 29630643 PMCID: PMC5891013 DOI: 10.1371/journal.pone.0195442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/22/2018] [Indexed: 12/29/2022] Open
Abstract
We have designed a complete antibody-like construct where the CH1 and Cκ domains are exchanged for a pair of the CH3 domains and efficient pairing of the heavy and light variable domain is achieved using “Knobs-into-Holes” strategy. This construct, composed of only naturally occurring immunoglobulin sequences without artificial linkers, expressed at a high level in mammalian cells, however exhibited low solubility. Rational mutagenesis aimed at the amino acid residues located at the interface of the variable domains and the exchanged CH3 domains was applied to improve the biophysical properties of the molecule. The domain-exchanged construct, including variable domains of the HER2/neu specific antibody trastuzumab, was able to bind to the surface of the strongly HER2/neu positive cell line SK-BR3 4-fold weaker than trastuzumab, but could nevertheless incite a more potent response in an antibody-dependent cell cytotoxicity (ADCC) reporter assay with FcγRIIIa-overexpressing T-cells. This could be explained with a stronger binding to the FcγRIIIa. Importantly, the novel construct could mediate a specific ADCC effect with natural killer cells similar to the parental antibody.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibody-Dependent Cell Cytotoxicity
- Cell Line
- Humans
- Immunoglobulin Constant Regions/chemistry
- Immunoglobulin Constant Regions/genetics
- Immunoglobulin Constant Regions/immunology
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin G/chemistry
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Killer Cells, Natural/immunology
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Domains
- Protein Engineering
- Receptor, ErbB-2/immunology
- Receptors, IgG/chemistry
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Trastuzumab/chemistry
- Trastuzumab/genetics
- Trastuzumab/immunology
Collapse
Affiliation(s)
- Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- * E-mail:
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Jan Walther Perthold
- Institute of Molecular Modeling and Simulation, Department of Material Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Katharina Stadlbauer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Mathias Gotsmy
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Florian Rüker
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
38
|
Godar M, de Haard H, Blanchetot C, Rasser J. Therapeutic bispecific antibody formats: a patent applications review (1994-2017). Expert Opin Ther Pat 2018; 28:251-276. [PMID: 29366356 DOI: 10.1080/13543776.2018.1428307] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Bispecific antibodies have become increasingly of interest by enabling new therapeutic applications such as retargeting cellular immunity towards tumor cells. About 23 bispecific antibody platforms have therefore been developed, generating about 62 molecules which are currently being evaluated for potential treatment of a variety of indications, such as cancer and inflammatory diseases, among which three molecules were approved. This class of drugs will represent a multi-million-dollar market over the coming years. Many companies have consequently invested in the development of bispecific antibody platforms, creating an important patent activity in this field. AREAS COVERED The present review gives an overview of the patent literature over the period 1994-2017 of different immunoglobulin gamma-based bispecific antibody platforms and the molecules approved or in clinical trials. EXPERT OPINION Bispecific antibodies are progressively accepted as potentially superior therapeutic molecules in a broad range of diseases. This frantic activity creates a maze of hundreds of patents that pose considerable legal risks for both newcomers and established companies. It can consecutively be anticipated that the number of patent conflicts will increase. Nevertheless, it can be expected that patents related to the use of a bispecific antibody will have tremendous commercial value.
Collapse
Affiliation(s)
- Marie Godar
- a argenx BVBA , Zwijnaarde , Belgium.,b VIB-UGent Center for Inflammation Research , Ghent , Belgium.,c Department of Internal Medicine , Ghent University , Ghent , Belgium
| | | | | | | |
Collapse
|