1
|
Kottom TJ, Carmona EM, Schaefbauer K, Stelzig KE, Pellegrino MR, Bindzus M, Limper AH. The importance of Fcγ and C-type lectin receptors in host immune responses during Pneumocystis pneumonia. Infect Immun 2025; 93:e0027624. [PMID: 39745390 PMCID: PMC11834440 DOI: 10.1128/iai.00276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/10/2024] [Indexed: 02/19/2025] Open
Abstract
Pneumocystis jirovecii pneumonia (PJP) remains a significant cause of morbidity and mortality during AIDS. In AIDS, the absence of CD4 immunity results in exuberant and often fatal PJP. In addition, organism clearance requires a balanced macrophage response since excessive inflammation promotes lung injury and respiratory failure. Corticosteroids given in addition to antibiotics significantly improve outcomes during PJP. However, concerns exist that corticosteroids further suppress immunity and increase co-infections. New strategies to promote killing and clearance of Pneumocystis while balancing lung inflammation are required. Prior studies have shown that innate immunity to Pneumocystis is mediated by C-type lectin receptors (CLRs) on macrophages and involves downstream CARD9 activation. CARD9 can be targeted by a novel specific small molecule inhibitor (BRD5529) that significantly reduces inflammatory signaling by macrophages. CARD9 serves as the central intracellular molecule through which Dectin-1, Dectin-2, Mincle, and other CLRs signal. Dectin-1 CLR is activated through its own intracytoplasmic domain, whereas other innate CLRs (e.g., Dectin-2 and Mincle) require interactions with a common Fc-gamma receptor (FcγR) accessory chain to mediate responses. We now observe that mice double deficient in both Dectin-1 and Fcer1g (which lack the FcγR gamma chain) exhibit markedly reduced organism clearance compared with Card9-/- infected animals. These mice also possess deficiencies in immunoglobulin (Ig) Fc receptors directly mediating antibody responses, further implicating altered humoral responses in Pneumocystis killing. We further demonstrate in the Pneumocystis pneumonia (PCP) mouse model that BRD5529 administration successfully suppresses inflammatory cytokines. Our data support that innate immune responses through the CLR-CARD9 axis and humoral response act together to mediate effective responses resulting in optimal organism killing and generation of host inflammatory responses. Furthermore, host lung inflammation during PCP may be successfully reduced with a novel CARD9 small molecule inhibitor.IMPORTANCEPneumocystis pneumonia (PCP) causes severe respiratory impairment in hosts with suppressed immunity, particularly those with CD4 deficiencies, such as HIV. In addition to lymphocytic immunity, both innate and humoral immunities also participate in host defense against Pneumocystis. In the current studies, we defined the relative roles of CLR receptor-mediated inflammation, as well as FcgR-related inflammation and clearance of Pneumocystis organisms. Our studies reveal important roles for CLR activities for inducing lung inflammation, which can be ameliorated with a novel small molecule inhibitor of the CARD9 adaptor protein that is necessary for CLR signaling. In contrast, FcgR has a dominant role in organism clearance, underscoring an integral role of humoral responses for the elimination of this infection.
Collapse
MESH Headings
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Animals
- Pneumonia, Pneumocystis/immunology
- Mice
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Pneumocystis carinii/immunology
- Immunity, Innate
- Mice, Inbred C57BL
- Macrophages/immunology
- CARD Signaling Adaptor Proteins/genetics
- CARD Signaling Adaptor Proteins/metabolism
- Disease Models, Animal
- Mice, Knockout
Collapse
Affiliation(s)
- Theodore J. Kottom
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kyle Schaefbauer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kimberly E. Stelzig
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Madeline R. Pellegrino
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marc Bindzus
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Wei HJ, Zhang J, Barbon J, Crosbie N, Dominguez E. Cellular effects and orientation of immobilized immunoglobulin are correlated to the charge-mediated influence of the antibody variable region. Biointerphases 2025; 20:011001. [PMID: 39902959 DOI: 10.1116/6.0004169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Ligand binding to a cell receptor often insufficiently triggers cellular immune responses. Receptor clustering through cross-linking occurs when a ligand binds to two or more receptors, amplifying cellular responses. This is required in certain monoclonal antibodies (mAbs), including effector mechanism activation [binding to fragment crystallizable receptors (FcRs)] or acting as agonists for therapeutic signaling. Therefore, immobilized immunoglobulin immunoassays were developed for efficient diagnostic and therapeutic approaches. The immobilized mAb density and orientation influence the sensitivity and accuracy of these assays. Limited evidence shows that different epitope motifs with the same target mAbs affect immobilized density and orientation in the solid-phase state. Here, we developed a series of fully humanized antidendritic cell immunoreceptor (DCIR) mAbs with different epitopes but the same Fc region. Immobilized anti-DCIR mAbs trigger the effector response from FcR through the Fc region and induce inhibitory pathways from the DCIR intracellular immunoreceptor tyrosine-based inhibitory motif through the fragment variable (Fv) region. In the immobilized immunoglobulin immunoassay, the isoelectric points (pI) of the DCIR mAb Fv region, not the total pI, significantly correlate to the surface density and orientation of immobilized mAbs on negatively charged plates. Cytokine production and protein phosphorylation in human monocytes were affected by vary binding abilities of immobilized mAbs to the plate. Methods, such as increasing hydrophobicity or ionic interactions, have improved the surface density and consistent orientation of immobilized anti-DCIR mAbs. Our study highlights the critical relationship between the net charge of the antibody Fv region and its immobilization potential in the solid-phase state.
Collapse
Affiliation(s)
- Hsi-Ju Wei
- AbbVie, Bay Area, 1000 Gateway Blvd., South San Francisco, California 94080
| | - Jun Zhang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605
| | - Jeffrey Barbon
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605
| | - Nancy Crosbie
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605
| | - Eric Dominguez
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605
| |
Collapse
|
3
|
Lefèbre J, Falk T, Ning Y, Rademacher C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry 2024; 30:e202400660. [PMID: 38527187 DOI: 10.1002/chem.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.
Collapse
Affiliation(s)
- Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Torben Falk
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Yunzhan Ning
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| |
Collapse
|
4
|
Kunanopparat A, Dinh TTH, Ponpakdee P, Padungros P, Kaewduangduen W, Ariya-anandech K, Tummamunkong P, Samaeng A, Sae-ear P, Leelahavanichkul A, Hirankarn N, Ritprajak P. Complement receptor 3-dependent engagement by Candida glabrata β-glucan modulates dendritic cells to induce regulatory T-cell expansion. Open Biol 2024; 14:230315. [PMID: 38806144 PMCID: PMC11293457 DOI: 10.1098/rsob.230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata β-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata β-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata β-glucan to CR3. Our data suggest that C. glabrata β-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.
Collapse
Affiliation(s)
- Areerat Kunanopparat
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Truc Thi Huong Dinh
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Pathophysiology and Immunology, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Pranpariya Ponpakdee
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Kasirapat Ariya-anandech
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Amanee Samaeng
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-ear
- Faculty of Dentistry, Oral Biology Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Torigoe S, Lowman DW, Sugiki T, Williams DL, Yamasaki S. Self-recognition through Dectin-1 exacerbates liver inflammation. Genes Cells 2024; 29:316-327. [PMID: 38385597 PMCID: PMC11000461 DOI: 10.1111/gtc.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
Dectin-1 is a well-characterized C-type lectin receptor involved in anti-fungal immunity through the recognition of polysaccharides; however, molecular mechanisms and outcomes initiated through self-recognition have not been fully understood. Here, we purified a water-soluble fraction from mouse liver that acts as a Dectin-1 agonist. To address the physiological relevance of this recognition, we utilized sterile liver inflammation models. The CCl4-induced hepatitis model showed that Dectin-1 deficiency led to reduced inflammation through decreased inflammatory cell infiltration and lower pro-inflammatory cytokine levels. Moreover, in a NASH model induced by streptozotocin and a high-fat diet, hepatic inflammation and fibrosis were ameliorated in Dectin-1-deficient mice. The Dectin-1 agonist activity was increased in the water-soluble fraction from NASH mice, suggesting a potential pathogenic cycle between Dectin-1 activation and hepatitis progression. In vivo administration of the fraction into mice induced hepatic inflammation. These results highlight a role of self-recognition through Dectin-1 that triggers hepatic innate immune responses and contributes to the exacerbation of inflammation in pathogenic settings. Thus, the blockade of this axis may provide a therapeutic option for liver inflammatory diseases.
Collapse
Affiliation(s)
- Shota Torigoe
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Management Department of Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Douglas W. Lowman
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Toshihiko Sugiki
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
7
|
Ellefsen CF, Struzek AM, Scherließ R, Hiorth M, Samuelsen ABC. Preparation of Albatrellus ovinus β-Glucan Microparticles with Dectin-1a Binding Properties. ACS APPLIED BIO MATERIALS 2023; 6:1863-1872. [PMID: 37075203 DOI: 10.1021/acsabm.3c00071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Fungal β-glucans are compounds with the potential to activate the innate immune system, in part through binding to the receptor dectin-1. In the present study, small-scale methods for preparing dectin-1a binding microparticles from Albatrellus ovinus alkali-soluble β-glucans were investigated. Mechanical milling was time-consuming and yielded large particles with wide size distributions. Precipitation was more successful: the β-glucan was dissolved in 1 M NaOH, diluted, and precipitated in 1:1 mol equiv HCl. This yielded particles in sizes ranging from 0.5-2 μm. The dectin-1a binding activity was determined using HEK-Blue reporter cells. The prepared particles were able to bind to dectin-1a to the same extent as baker's-yeast-derived β-glucan particles. The precipitation method was convenient as a quick method for small-scale preparation of β-glucan microparticle dispersions from mushroom β-glucans.
Collapse
Affiliation(s)
- Christiane F Ellefsen
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Anna-Maria Struzek
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, D-24118 Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, D-24118 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, D-24118 Kiel, Germany
| | - Marianne Hiorth
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Anne Berit C Samuelsen
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
8
|
Nishimura N, Tomiyasu N, Torigoe S, Mizuno S, Fukano H, Ishikawa E, Katano H, Hoshino Y, Matsuo K, Takahashi M, Izumi Y, Bamba T, Akashi K, Yamasaki S. Mycobacterial mycolic acids trigger inhibitory receptor Clec12A to suppress host immune responses. Tuberculosis (Edinb) 2023; 138:102294. [PMID: 36542980 DOI: 10.1016/j.tube.2022.102294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Mycobacteria often cause chronic infection. To establish persistence in the host, mycobacteria need to evade host immune responses. However, the molecular mechanisms underlying the evasion strategy are not fully understood. Here, we demonstrate that mycobacterial cell wall lipids trigger an inhibitory receptor to suppress host immune responses. Mycolic acids are major cell wall components and are essential for survival of mycobacteria. By screening inhibitory receptors that react with mycobacterial lipids, we found that mycolic acids from various mycobacterial species bind to mouse Clec12A, and more potently to human Clec12A. Clec12A is a conserved inhibitory C-type lectin receptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM). Innate immune responses, such as MCP-1 production, and PPD-specific recall T cell responses were augmented in Clec12A-deficient mice after infection. In contrast, human Clec12A transgenic mice were susceptible to infection with M. tuberculosis. These results suggest that mycobacteria dampen host immune responses by hijacking an inhibitory host receptor through their specific and essential lipids, mycolic acids. The blockade of this interaction might provide a therapeutic option for the treatment or prevention of mycobacterial infection.
Collapse
Affiliation(s)
- Naoya Nishimura
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shota Torigoe
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan; Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoru Mizuno
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University (CiDER), Suita, 565-0871, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan; Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Sosa Cuevas E, Valladeau-Guilemond J, Mouret S, Roubinet B, de Fraipont F, Landemarre L, Charles J, Bendriss-Vermare N, Chaperot L, Aspord C. Unique CLR expression patterns on circulating and tumor-infiltrating DC subsets correlated with clinical outcome in melanoma patients. Front Immunol 2022; 13:1040600. [PMID: 36353633 PMCID: PMC9638162 DOI: 10.3389/fimmu.2022.1040600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 08/15/2023] Open
Abstract
Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Stephane Mouret
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | | | - Florence de Fraipont
- Medical Unit of Molecular genetic (Hereditary Diseases and Oncology), Grenoble University Hospital, Grenoble, France
| | | | - Julie Charles
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Laurence Chaperot
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Caroline Aspord
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
10
|
Zhang Y, Liu X, Zhao J, Wang J, Song Q, Zhao C. The phagocytic receptors of β-glucan. Int J Biol Macromol 2022; 205:430-441. [PMID: 35202631 DOI: 10.1016/j.ijbiomac.2022.02.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Phagocytosis is a cellular process maintaining tissue balance and plays an essential role in initiating the innate immune response. The process of phagocytosis was triggered by the binding of pathogen-associated molecular patterns (PAMP) with their cell surface receptors on the phagocytes. These receptors not only perform phagocytic functions, but also bridge the gap between extracellular and intracellular communication, leading to signal transduction and the production of inflammatory mediators, which are crucial for clearing the invading pathogens and maintaining cell homeostasis. For the past few years, the application of β-glucan comes down to immunoregulation and anti-tumor territory. As a well-known PAMP, β-glucan is one of the most abundant polysaccharides in nature. By binding to specific receptors on immune cells and activating intracellular signal transduction pathways, it causes phagocytosis and promotes the release of cytokines. Further retrieval and straightening out literature related to β-glucan phagocytic receptors will help better elucidate their immunomodulatory functions. This review attempts to summarize physicochemical properties and specific processes involved in β-glucan induced phagocytosis, its phagocytic receptors, and cascade events triggered by β-glucan at the cellular and molecular levels.
Collapse
Affiliation(s)
- Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Xinning Liu
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Jun Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Jie Wang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
11
|
Khongthong S, Theapparat Y, Roekngam N, Tantisuwanno C, Otto M, Piewngam P. Characterization and immunomodulatory activity of sulfated galactan from the red seaweed Gracilaria fisheri. Int J Biol Macromol 2021; 189:705-714. [PMID: 34474051 PMCID: PMC10999990 DOI: 10.1016/j.ijbiomac.2021.08.182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Polysaccharides from the red seaweed Gracilaria fisheri possess many functions, which include antioxidant, antiviral, and antibacterial activities. However, detailed data on their immunomodulatory activities are scarce. Here, we isolated sulfated galactans (SG) from G. fisheri. We found that the predominant SG from G. fisheri, termed SG-1, had an estimated molecular mass of 100 kDa and activated murine J774A.1 macrophages via the dectin-1 signaling pathway. Furthermore, we observed enhancement of nitric oxide (NO) secretion, increased expression of inducible nitric oxide synthase (iNOS) mRNA, and increased mRNA levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukins IL-1β and IL-6 by SG-1 in macrophages. Moreover, there was higher expression of intercellular adhesion molecule 1 (ICAM-1) and co-stimulatory molecules (B7-1 and B7-2) mRNA. Treatment with G. fisheri SG-1 at 50 μg/mL generally achieved or exceeded the pro-inflammatory activities of 100 ng/mL lipopolysaccharide. Our study demonstrates immune-stimulatory activities of G. fisheri SG that may be of value for immune-potentiating treatment in humans or livestock.
Collapse
Affiliation(s)
- Sunisa Khongthong
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, Thailand
| | - Yongyuth Theapparat
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Natthrit Roekngam
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Prince of Songkla University, HatYai, Songkhla, Thailand
| | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA.
| | - Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Torigoe S, Schutt CR, Yamasaki S. Immune discrimination of environmental spectrum through C-type lectin receptors. Int Immunol 2021; 33:847-851. [PMID: 34599808 DOI: 10.1093/intimm/dxab074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Our bodies are continuously assaulted by infection and tissue damage; most of these injurious insults are primarily sensed by immune receptors to maintain tissue homeostasis. Although immune recognition of proteins or nucleic acids has been well characterized, the molecular mechanisms by which immune receptors discriminate lipids to elicit suitable immune responses remain elusive. Recent studies have demonstrated that the C-type lectin receptor (CLR) family functions as immune sensors for adjuvant lipids derived from pathogens and damaged-tissues, thereby promoting innate/acquired immunity. In this review, we will discuss how these receptors recognize lipid components to initiate appropriate, but sometimes deleterious, immune responses against environmental stimuli. We will also discuss an aspect of inhibitory CLRs; their ligands might reflect normal self which silences the immune response regarded as "silence"-associated molecular patterns or may be associated with escape strategies of pathogens as "evasion"-associated molecular patterns.
Collapse
Affiliation(s)
- Shota Torigoe
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Charles R Schutt
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Yamadaoka, Suita, Osaka, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Laboratory of Molecular Immunology, Center for Infectious Disease Education and Research (CiDER), Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
13
|
Ellefsen CF, Wold CW, Wilkins AL, Rise F, Samuelsen ABC. Water-soluble polysaccharides from Pleurotus eryngii fruiting bodies, their activity and affinity for Toll-like receptor 2 and dectin-1. Carbohydr Polym 2021; 264:117991. [PMID: 33910729 DOI: 10.1016/j.carbpol.2021.117991] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
The mushroom cell wall contains polysaccharides that can activate cells of the innate immune system through receptors such as Toll-like receptors (TLR) and dectin-1. In the present study, Pleurotus eryngii polysaccharide fractions containing a 3-O methylated mannogalactan and (1→3)/(1→6)-β-d-glucans were isolated and extensively characterized by 2D NMR and methylation analysis. Traces of a (1→3)-α-d-glucan and a (1→2)-α-d-mannan were also observed. Affinity for TLR2, TLR2-TLR6 and dectin-1 using HEK-cells expressing the relevant receptor genes was tested. PeWN, containing the 3-O methylated mannogalactan, was inactive towards TLR2, whereas fraction PeWB, containing more β-glucan, activated the TLR2-TLR6 heterodimer. Activation of the human β-glucan receptor dectin-1 correlated with the amount of β-glucan in each fraction. Nitric oxide and cytokine supernatant levels of D2SC/1 dendritic cells stimulated with the P. eryngii fractions and interferon-γ were low to moderate. The results indicate that the immunomodulatory activity of water-soluble P. eryngii polysaccharide fractions is modest.
Collapse
Affiliation(s)
| | - Christian Winther Wold
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, NO-0316, Oslo, Norway
| | - Alistair L Wilkins
- School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, NO-0315, Oslo, Norway
| | - Anne Berit C Samuelsen
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, NO-0316, Oslo, Norway
| |
Collapse
|
14
|
Dinh TTH, Tummamunkong P, Padungros P, Ponpakdee P, Boonprakong L, Saisorn W, Leelahavanichkul A, Kueanjinda P, Ritprajak P. Interaction Between Dendritic Cells and Candida krusei β-Glucan Partially Depends on Dectin-1 and It Promotes High IL-10 Production by T Cells. Front Cell Infect Microbiol 2021; 10:566661. [PMID: 33552998 PMCID: PMC7862133 DOI: 10.3389/fcimb.2020.566661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Host-Candida interaction has been broadly studied during Candida albicans infection, with a progressive shift in focus toward non-albicans Candida species. C. krusei is an emerging multidrug resistant pathogen causing rising morbidity and mortality worldwide. Therefore, understanding the interplay between the host immune system and C. krusei is critically important. Candia cell wall β-glucans play significant roles in the induction of host protective immune responses. However, it remains unclear how C. krusei β-glucan impacts dendritic cell (DC) responses. In this study, we investigated DC maturation and function in response to β-glucans isolated from the cell walls of C. albicans, C. tropicalis, and C. krusei. These three distinct Candida β-glucans had differential effects on expression of the DC marker, CD11c, and on DC maturation. Furthermore, bone-marrow derived DCs (BMDCs) showed enhanced cytokine responses characterized by substantial interleukin (IL)-10 production following C. krusei β-glucan stimulation. BMDCs stimulated with C. krusei β-glucan augmented IL-10 production by T cells in tandem with increased IL-10 production by BMDCs. Inhibition of dectin-1 ligation demonstrated that the interactions between dectin-1 on DCs and cell wall β-glucans varied depending on the Candida species. The effects of C. krusei β-glucan were partially dependent on dectin-1, and this dependence, in part, led to distinct DC responses. Our study provides new insights into immune regulation by C. krusei cell wall components. These data may be of use in the development of new clinical approaches for treatment of patients with C. krusei infection.
Collapse
Affiliation(s)
- Truc Thi Huong Dinh
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pranpariya Ponpakdee
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
16
|
Ouaguia L, Dufeu-Duchesne T, Leroy V, Decaens T, Reiser JB, Sosa Cuevas E, Durantel D, Valladeau-Guilemond J, Bendriss-Vermare N, Chaperot L, Aspord C. Hepatitis B virus exploits C-type lectin receptors to hijack cDC1s, cDC2s and pDCs. Clin Transl Immunology 2020; 9:e1208. [PMID: 33312564 PMCID: PMC7723857 DOI: 10.1002/cti2.1208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Objectives C‐type lectin receptors (CLRs) are key receptors used by DCs to orchestrate responses to pathogens. During infections, the glycan–lectin interactions shape the virus–host interplay and viruses can subvert the function of CLRs to escape antiviral immunity. Recognition of virus/viral components and uptake by CLRs together with subsequent signalling cascades are crucial in initiating and shaping antiviral immunity, and decisive in the outcome of infection. Yet, the interaction of hepatitis B virus (HBV) with CLRs remains largely unknown. As HBV hijacks DC subsets and viral antigens harbour glycan motifs, we hypothesised that HBV may subvert DCs through CLR binding. Methods We investigated here the pattern of CLR expression on BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s from both blood and liver of HBV‐infected patients and explored the ability of HBsAg to bind DC subsets through specific CLRs. Results We highlighted for the first time that the CLR repertoire of circulating and intrahepatic cDC2s, cDC1s and pDCs was perturbed in patients with chronic HBV infection and that some CLR expression levels correlated with plasma HBsAg and HBV DNA levels. We also identified candidate CLR responsible for HBsAg binding to cDCs (CD367/DCIR/CLEC4A, CD32/FcɣRIIA) and pDCs (CD369/DECTIN1/CLEC7A, CD336/NKp44) and demonstrated that HBsAg inhibited DC functions in a CLR‐ and glycosylation‐dependent manner. Conclusion HBV may exploit CLR pathways to hijack DC subsets and escape from immune control. Such advances bring insights into the mechanisms by which HBV subverts immunity and pave the way for developing innovative therapeutic strategies to restore an efficient immune control of the infection by manipulating the viral glycan–lectin axis.
Collapse
Affiliation(s)
- Laurissa Ouaguia
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble France
| | - Tania Dufeu-Duchesne
- Hepato-Gastroenterology Unit CHU Grenoble Alpes Grenoble France.,Institute for Advanced Biosciences Research Center Inserm U1209/CNRS 5309/UGA Analytic Immunology of Chronic Pathologies La Tronche France
| | - Vincent Leroy
- Hepato-Gastroenterology Unit CHU Grenoble Alpes Grenoble France.,Institute for Advanced Biosciences Research Center Inserm U1209/CNRS 5309/UGA Analytic Immunology of Chronic Pathologies La Tronche France.,Université Grenoble Alpes Grenoble France
| | - Thomas Decaens
- Hepato-Gastroenterology Unit CHU Grenoble Alpes Grenoble France.,Institute for Advanced Biosciences Research Center Inserm U1209/CNRS 5309/UGA Analytic Immunology of Chronic Pathologies La Tronche France.,Université Grenoble Alpes Grenoble France
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale CNRS CEA Université Grenoble Alpes Grenoble France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble France
| | - David Durantel
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Lyon Université Claude Bernard Lyon 1 Lyon France
| | - Jenny Valladeau-Guilemond
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Lyon Université Claude Bernard Lyon 1 Lyon France
| | - Nathalie Bendriss-Vermare
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Lyon Université Claude Bernard Lyon 1 Lyon France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble France
| |
Collapse
|
17
|
Lin Z, Tan X, Zhang Y, Li F, Luo P, Liu H. Molecular Targets and Related Biologic Activities of Fucoidan: A Review. Mar Drugs 2020; 18:E376. [PMID: 32707775 PMCID: PMC7459501 DOI: 10.3390/md18080376] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fucoidan-a marine natural active polysaccharide derived from brown algae with a variety of medicinal activities and low toxicity-has been used as clinical drug for renal diseases for nearly 20 years. The pharmacological mechanism of fucoidan has been well-investigated, based on target molecules and downstream signaling pathways. This review summarizes some important molecular targets of fucoidan and its related biologic activities, including scavenger receptor (SR), Toll-like receptors (TLRs), C-type lectin (CLEC) and some newly found target molecules, which may be beneficial for further understanding the pharmacological mechanism of fucoidan and discovering its new functions, as well as developing related clinical or adjuvant drugs and functional preparations.
Collapse
Affiliation(s)
| | | | | | | | | | - Huazhong Liu
- Faculty of Chemistry & Environment Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (X.T.); (Y.Z.); (F.L.); (P.L.)
| |
Collapse
|
18
|
Lindenwald DL, Monteiro JT, Rautenschlein S, Meens J, Jung K, Becker SC, Lepenies B. Ovine C-type lectin receptor hFc-fusion protein library - A novel platform to screen for host-pathogen interactions. Vet Immunol Immunopathol 2020; 224:110047. [PMID: 32325253 DOI: 10.1016/j.vetimm.2020.110047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/13/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
C-type lectin receptors (CTLRs) are pattern recognition receptors which are important constituents of the innate immunity. However, their role has mostly been studied in humans and in mouse models. To bridge the knowledge gap concerning CTLRs of veterinary relevant species, a novel ovine CTLR hFc-fusion protein library which allows in vitro ligand identification and pathogen binding studies has been established. Its utility was tested with known ligands of corresponding murine CTLRs in ELISA- and flow cytometry based binding studies. The ovine CTLR-hFc library was subsequently used in a proof-of-principle pathogen binding study with the ruminant pathogen Mycoplasma mycoides subsp. capri. Some ovine CTLRs, such as Dendritic Cell Immunoreceptor (DCIR, Clec4a), Macrophage C-Type Lectin (MCL, Clec4d) and Myeloid Inhibitory C-Type Lectin-Like Receptor (MICL, Clec12a) were identified as possible candidate receptors whose role in Mycoplasma recognition can now be unraveled in further studies. This study thus shows the utility of this novel ovine CTLR-hFc fusion protein library to screen for CTLR/pathogen interactions.
Collapse
Affiliation(s)
- Dimitri L Lindenwald
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - João T Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Stefanie C Becker
- Institute for Parasitology & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation. Hannover, Germany.
| |
Collapse
|
19
|
Miyagawa A, Yamamura H. Synthesis of β-1,3-glucan mimics by β-1,3-glucan trisaccharyl monomer polymerization. Carbohydr Polym 2020; 227:115105. [PMID: 31590847 DOI: 10.1016/j.carbpol.2019.115105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
β-1,3-Glucans are important as immunostimulating agents in living organisms. The multivalent binding of β-1,3-glucans to dectin-1, a cell surface receptor, activates immunological defenses. To study artificial immunostimulating agents, glycopolymers carrying β-1,3-glucan trisaccharides as artificial ligands were synthesized. The β-1,3-glucan trisaccharide, defined as an active unit of β-1,3-glucan, was constructed from D-glucose by glycosylation. A norbornene group was introduced as a polymerizable group into the trisaccharide derivative at the aglycone. The prepared endo/exo norbornene stereoisomers of the monomers were separated by silica gel chromatography and identified by NMR spectroscopy and mass spectrometry. The synthesized glycosyl monomers were polymerized and copolymerized with norbornene using 2nd generation Hoveyda-Grubbs catalyst, deprotected, and purified by gel filtration to prepare water-soluble glycopolymers of varied compositions and high molecular weights. These polymers will have the potential for multivalent binding to dectin-1 to activate immune response and facilitate studies to understand the binding mechanisms of β-1,3-glucans with dectin-1.
Collapse
Affiliation(s)
- Atsushi Miyagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
| | - Hatsuo Yamamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
| |
Collapse
|
20
|
Zhou Q, Qiu H. The Mechanistic Impact of N-Glycosylation on Stability, Pharmacokinetics, and Immunogenicity of Therapeutic Proteins. J Pharm Sci 2018; 108:1366-1377. [PMID: 30471292 DOI: 10.1016/j.xphs.2018.11.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023]
Abstract
N-glycosylation is one of major post-translational modifications in nature, and it is essential for protein structure and function. As hydrophilic moieties of glycoproteins, N-glycans play important roles in protein stability. They protect the proteins against proteolytic degradation, aggregation, and thermal denaturation through maintaining optimal conformations. There are extensive evidences showing the involvement of N-glycans in the pharmacodynamics and pharmacokinetics of recombinant therapeutic proteins and antibodies. Highly sialylated complex-type glycans enable the longer serum half-lives of proteins against uptake through hepatic asialoglycoprotein receptor and mannose receptor for degradation in lysosomes. Moreover, the presence of nonhuman glycans results in clearance through pre-existing antibodies from serum and induces IgE-mediated anaphylaxis. N-glycans also facilitate or reduce the adverse immune responses of the proteins through interacting with multiple glycan-binding proteins, including those specific for mannose or mannose 6-phosphate. Due to the glycan impacts, a few therapeutic proteins were glycoengineered to improve the pharmacokinetics and stability. Thus, N-glycosylation should be extensively investigated and optimized for each individual protein for better efficacy and safety.
Collapse
Affiliation(s)
- Qun Zhou
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701.
| | - Huawei Qiu
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701
| |
Collapse
|
21
|
Lipoteichoic acid anchor triggers Mincle to drive protective immunity against invasive group A Streptococcus infection. Proc Natl Acad Sci U S A 2018; 115:E10662-E10671. [PMID: 30352847 DOI: 10.1073/pnas.1809100115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes a range of diseases, including fatal invasive infections. However, the mechanisms by which the innate immune system recognizes GAS are not well understood. We herein report that the C-type lectin receptor macrophage inducible C-type lectin (Mincle) recognizes GAS and initiates antibacterial immunity. Gene expression analysis of myeloid cells upon GAS stimulation revealed the contribution of the caspase recruitment domain-containing protein 9 (CARD9) pathway to the antibacterial responses. Among receptors signaling through CARD9, Mincle induced the production of inflammatory cytokines, inducible nitric oxide synthase, and reactive oxygen species upon recognition of the anchor of lipoteichoic acid, monoglucosyldiacylglycerol (MGDG), produced by GAS. Upon GAS infection, Mincle-deficient mice exhibited impaired production of proinflammatory cytokines, severe bacteremia, and rapid lethality. GAS also possesses another Mincle ligand, diglucosyldiacylglycerol; however, this glycolipid interfered with MGDG-induced activation. These results indicate that Mincle plays a central role in protective immunity against acute GAS infection.
Collapse
|
22
|
Del Fresno C, Iborra S, Saz-Leal P, Martínez-López M, Sancho D. Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front Immunol 2018; 9:804. [PMID: 29755458 PMCID: PMC5932189 DOI: 10.3389/fimmu.2018.00804] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Myeloid C-type lectin receptors (CLRs) are important sensors of self and non-self that work in concert with other pattern recognition receptors (PRRs). CLRs have been previously classified based on their signaling motifs as activating or inhibitory receptors. However, specific features of the ligand binding process may result in distinct signaling through a single motif, resulting in the triggering of non-canonical pathways. In addition, CLR ligands are frequently exposed in complex structures that simultaneously bind different CLRs and other PRRs, which lead to integration of heterologous signaling among diverse receptors. Herein, we will review how sensing by myeloid CLRs and crosstalk with heterologous receptors is modulated by many factors affecting their signaling and resulting in differential outcomes for immunity and inflammation. Finding common features among those flexible responses initiated by diverse CLR-ligand partners will help to harness CLR function in immunity and inflammation.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula Saz-Leal
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Martínez-López
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|