1
|
Ansari I, Singh AK, Kapoor A, Mukhopadhyay A. Unconventional role of Rab4 in the secretory pathway in Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119687. [PMID: 38342312 DOI: 10.1016/j.bbamcr.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Leishmania donovani is an auxotroph for heme. Parasite acquires heme by clathrin-mediated endocytosis of hemoglobin by specific receptor. However, the regulation of receptor recycling pathway is not known in Leishmania. Here, we have cloned, expressed and characterized the Rab4 homologue from L. donovani. We have found that LdRab4 localizes in both early endosomes and Golgi in L. donovani. To understand the role of LdRab4 in L. donovani, we have generated transgenic parasites overexpressing GFP-LdRab4:WT, GFP-LdRab4:Q67L, and GFP-LdRab4:S22N. Our results have shown that overexpression of GFP-LdRab4:Q67L or GFP-LdRab4:S22N does not alter the cell surface localization of hemoglobin receptor in L. donovani. Surprisingly, we have found that overexpression of GFP-LdRab4:S22N significantly blocks the transport of Ldgp63 to the cell surface whereas the trafficking of Ldgp63 is induced to the cell surface in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites. Consequently, we have found significant inhibition of gp63 secretion by GFP-LdRab4:S22N overexpressing parasites whereas secretion of Ldgp63 is enhanced in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites in comparison to untransfected control parasites. Moreover, we have found that survival of transgenic parasites overexpressing GFP-LdRab4:S22N is severely compromised in macrophages in comparison to GFP-LdRab4:WT and GFP-LdRab4:Q67L expressing parasites. These results demonstrated that LdRab4 unconventionally regulates the secretory pathway in L. donovani.
Collapse
Affiliation(s)
- Irshad Ansari
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Amir Kumar Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Anjali Kapoor
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
3
|
The Leishmania donovani Ortholog of the Glycosylphosphatidylinositol Anchor Biosynthesis Cofactor PBN1 Is Essential for Host Infection. mBio 2022; 13:e0043322. [PMID: 35420475 PMCID: PMC9239262 DOI: 10.1128/mbio.00433-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Visceral leishmaniasis is a deadly infectious disease caused by Leishmania donovani, a kinetoplastid parasite for which no licensed vaccine is available. To identify potential vaccine candidates, we systematically identified genes encoding putative cell surface and secreted proteins essential for parasite viability and host infection. We identified a protein encoded by LdBPK_061160 which, when ablated, resulted in a remarkable increase in parasite adhesion to tissue culture flasks. Here, we show that this phenotype is caused by the loss of glycosylphosphatidylinositol (GPI)-anchored surface molecules and that LdBPK_061160 encodes a noncatalytic component of the L. donovani GPI-mannosyltransferase I (GPI-MT I) complex. GPI-anchored surface molecules were rescued in the LdBPK_061160 mutant by the ectopic expression of both human genes PIG-X and PIG-M, but neither gene could complement the phenotype alone. From further sequence comparisons, we conclude that LdBPK_061160 is the functional orthologue of yeast PBN1 and mammalian PIG-X, which encode the noncatalytic subunits of their respective GPI-MT I complexes, and we assign LdBPK_061160 as LdPBN1. The LdPBN1 mutants could not establish a visceral infection in mice, a phenotype that was rescued by constitutive expression of LdPBN1. Although mice infected with the null mutant did not develop an infection, exposure to these parasites provided significant protection against subsequent infection with a virulent strain. In summary, we have identified the orthologue of the PBN1/PIG-X noncatalytic subunit of GPI-MT I in trypanosomatids, shown that it is essential for infection in a murine model of visceral leishmaniasis, and demonstrated that the LdPBN1 mutant shows promise for the development of an attenuated live vaccine.
Collapse
|
4
|
Structure of human glycosylphosphatidylinositol transamidase. Nat Struct Mol Biol 2022; 29:203-209. [DOI: 10.1038/s41594-022-00726-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/11/2022] [Indexed: 01/31/2023]
|
5
|
Singh SK, Reddy MS. Computational prediction of the effects of non-synonymous single nucleotide polymorphisms on the GPI-anchor transamidase subunit GPI8p of Plasmodium falciparum. Comput Biol Chem 2021; 92:107461. [PMID: 33667975 DOI: 10.1016/j.compbiolchem.2021.107461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/03/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Drug resistance is increasingly evolving in malaria parasites; hence, it is important to discover and establish alternative drug targets. In this context, GPI-anchor transamidase (GPI-T) is a potential drug target primarily of its crucial role in the development and survival of the parasite in the GPI anchor biosynthesis pathway. The present investigation was undertaken to explore the plausible effects of nsSNP on the structure and functions of GPI-T subunit GPI8p of Plasmodium falciparum. The GPI8p (PF3D7_1128700) was analyzed using various sequence-based and structure-based computational tools such as SIFT, PROVEAN, PredictSNP, SNAP2, I-Mutant, MuPro, ConSurf, NetSurfP, MUSTER, COACH server and STRING server. Of the 34 nsSNPs submitted for functional analysis, 18 nsSNPs (R124 L, N143 K, Y145 F, V157I, T195S, K379E, I392 K, I437 T, Y438H, N439D, Y441H, N442D, N448D, N451D, D457A, D457Y, I458 L and N460 K) were predicted to have deleterious effects on the protein GPI8p. Additionally, I-Mutant 2.0 and MuPro both showed a decrease in stability after mutation as a result of these nsSNPs, suggesting the destabilization of protein. ConSurf findings suggest that most of the regions were highly conserved. In addition, COACH server was used to predict the ligand binding sites. It was found that no mutation was present at the predicted ligand binding site. The results of the STRING database showed that the protein GPI8p interacts with those proteins which either involve the biosynthetic process of attaching GPI anchor to protein or GPI anchor. The present study suggested that the GPI8p could be a novel target for anti-malarial drugs, which provides significant details for further experimentation.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
6
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
7
|
Fernandes ACS, Soares DC, Neves RFC, Koeller CM, Heise N, Adade CM, Frases S, Meyer-Fernandes JR, Saraiva EM, Souto-Padrón T. Endocytosis and Exocytosis in Leishmania amazonensis Are Modulated by Bromoenol Lactone. Front Cell Infect Microbiol 2020; 10:39. [PMID: 32117812 PMCID: PMC7020749 DOI: 10.3389/fcimb.2020.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
In the protozoan pathogen Leishmania, endocytosis, and exocytosis occur mainly in the small area of the flagellar pocket membrane, which makes this parasite an interesting model of strikingly polarized internalization and secretion. Moreover, little is known about vesicle recognition and fusion mechanisms, which are essential for both endo/exocytosis in this parasite. In other cell types, vesicle fusion events require the activity of phospholipase A2 (PLA2), including Ca2+-independent iPLA2 and soluble, Ca2+-dependent sPLA2. Here, we studied the role of bromoenol lactone (BEL) inhibition of endo/exocytosis in promastigotes of Leishmania amazonensis. PLA2 activities were assayed in intact parasites, in whole conditioned media, and in soluble and extracellular vesicles (EVs) conditioned media fractions. BEL did not affect the viability of promastigotes, but reduced the differentiation into metacyclic forms. Intact parasites and EVs had BEL-sensitive iPLA2 activity. BEL treatment reduced total EVs secretion, as evidenced by reduced total protein concentration, as well as its size distribution and vesicles in the flagellar pocket of treated parasites as observed by TEM. Membrane proteins, such as acid phosphatases and GP63, became concentrated in the cytoplasm, mainly in multivesicular tubules of the endocytic pathway. BEL also prevented the endocytosis of BSA, transferrin and ConA, with the accumulation of these markers in the flagellar pocket. These results suggested that the activity inhibited by BEL, which is one of the irreversible inhibitors of iPLA2, is required for both endocytosis and exocytosis in promastigotes of L. amazonensis.
Collapse
Affiliation(s)
- Anne C S Fernandes
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid C Soares
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta F C Neves
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila M Adade
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaïs Souto-Padrón
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Castro Neto AL, Brito ANALM, Rezende AM, Magalhães FB, de Melo Neto OP. In silico characterization of multiple genes encoding the GP63 virulence protein from Leishmania braziliensis: identification of sources of variation and putative roles in immune evasion. BMC Genomics 2019; 20:118. [PMID: 30732584 PMCID: PMC6367770 DOI: 10.1186/s12864-019-5465-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background The leishmaniasis are parasitic diseases caused by protozoans of the genus Leishmania, highly divergent eukaryotes, characterized by unique biological features. To survive in both the mammalian hosts and insect vectors, these pathogens make use of a number of mechanisms, many of which are associated with parasite specific proteases. The metalloprotease GP63, the major Leishmania surface antigen, has been found to have multiple functions required for the parasite’s survival. GP63 is encoded by multiple genes and their copy numbers vary considerably between different species and are increased in those from the subgenus Viannia, including L. braziliensis. Results By comparing multiple sequences from Leishmania and related organisms this study sought to characterize paralogs in silico, evaluating their differences and similarities and the implications for the GP63 function. The Leishmania GP63 genes are encoded on chromosomes 10, 28 and 31, with the genes from the latter two chromosomes more related to genes found in insect or plant parasites. Those from chromosome 10 have experienced independent expansions in numbers in Leishmania, especially in L. braziliensis. These could be clustered in three groups associated with different mRNA 3′ untranslated regions as well as distinct C-terminal ends for the encoded proteins, with presumably distinct expression patterns and subcellular localizations. Sequence variations between the chromosome 10 genes were linked to intragenic recombination events, mapped to the external surface of the proteins and predicted to be immunogenic, implying a role against the host immune response. Conclusions Our results suggest a greater role for the sequence variation found among the chromosome 10 GP63 genes, possibly related to the pathogenesis of L. braziliensis and closely related species within the mammalian host. They also indicate different functions associated to genes mapped to different chromosomes. For the chromosome 10 genes, variable subcellular localizations were found to be most likely associated with multiple functions and target substrates for this versatile protease. Electronic supplementary material The online version of this article (10.1186/s12864-019-5465-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Artur L Castro Neto
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Adriana N A L M Brito
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Antonio M Rezende
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Franklin B Magalhães
- Centro Universitário Tabosa de Almeida - ASCES/UNITA, Caruaru, Pernambuco, Brazil
| | - Osvaldo P de Melo Neto
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil.
| |
Collapse
|
9
|
Estrada-Figueroa LA, Díaz-Gandarilla JA, Hernández-Ramírez VI, Arrieta-González MM, Osorio-Trujillo C, Rosales-Encina JL, Toledo-Leyva A, Talamás-Rohana P. Leishmania mexicana gp63 is the enzyme responsible for cyclooxygenase (COX) activity in this parasitic protozoa. Biochimie 2018; 151:73-84. [DOI: 10.1016/j.biochi.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
|
10
|
Parashar S, Mukhopadhyay A. GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania. J Biol Chem 2017; 292:12111-12125. [PMID: 28576830 DOI: 10.1074/jbc.m117.784033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/30/2017] [Indexed: 12/30/2022] Open
Abstract
Metalloprotease gp63 (Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His6-LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63L594A/L595A or GFP-Ldgp63V597S mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion.
Collapse
Affiliation(s)
- Smriti Parashar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
11
|
Shanmugam SK, Kumar K, Singh PK, Rastogi R, Mukhopadhyay A. Single GDP-dissociation Inhibitor Protein regulates endocytic and secretory pathways in Leishmania. Sci Rep 2016; 6:37058. [PMID: 27841328 PMCID: PMC5107955 DOI: 10.1038/srep37058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/07/2016] [Indexed: 11/09/2022] Open
Abstract
The role of GDP dissociation inhibitor (GDI) protein in regulation of Rab cycle in Leishmania is not known. Here, we have cloned and characterized the functions of GDI homologue in vivo in Leishmania. Our results have shown that LdGDI:WT along with GDP removes the Rab5 from purified endosomes and inhibits the homotypic fusion between early endosomes. Whereas, LdGDI:R239A, a dominant negative mutant of GDI, under the same condition neither removes the Rab5 from endosome nor inhibits fusion. To determine the role of Ld-GDI in vivo, transgenic parasites overexpressing GFP-LdGDI:WT or GFP-LdGDI:R239A, are co-expressed with RFP-LdRab5:WT, RFP-LdRab7:WT or RFP-LdRab1:WT. Our results have shown that overexpression of GFP-LdGDI:WT extracts the RFP-LdRab5, RFP-LdRab7 or RFP-LdRab1 from their discrete endomembrane predominantly into cytosol. No change in the distribution of indicated Rabs is detected with overexpression of GFP-LdGDI:R239A. To determine the functional significance, we have used hemoglobin as an endocytic marker and gp63 as a marker for secretory pathway. We have found that overexpression of GFP-LdGDI:WT enhances the lysosomal targeting of internalized hemoglobin and the secretion of gp63 in the parasites possibly by triggering Rab cycle. This is the first demonstration of a single GDI ubiquitously regulating both endocytic and secretory pathways in Leishmania.
Collapse
Affiliation(s)
| | - Kamal Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pawan Kishor Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ruchir Rastogi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
12
|
Bahl S, Parashar S, Malhotra H, Raje M, Mukhopadhyay A. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania. J Biol Chem 2015; 290:29993-30005. [PMID: 26499792 DOI: 10.1074/jbc.m115.670018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Surbhi Bahl
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Smriti Parashar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | | | - Manoj Raje
- the Institute of Microbial Technology, Chandigarh 160036, India
| | - Amitabha Mukhopadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| |
Collapse
|
13
|
Castanys-Muñoz E, Brown E, Coombs GH, Mottram JC. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis 2012; 3:e385. [PMID: 22951982 PMCID: PMC3461358 DOI: 10.1038/cddis.2012.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metacaspases (MCAs) are caspase family cysteine peptidases that have been implicated in cell death processes in plants, fungi and protozoa. MCAs have also been suggested to be involved in cell cycle control, differentiation and clearance of aggregates; they are virulence factors. Dissecting the function of MCAs has been complicated by the presence in many organisms of multiple MCA genes or limitations on genetic manipulation. We describe here the creation of a MCA gene-deletion mutant (Δmca) in the protozoan parasite Leishmania mexicana, which has allowed us to dissect the role of the parasite's single MCA gene in cell growth and cell death. Δmca parasites are viable as promastigotes, and differentiate normally to the amastigote form both in in vitro macrophages infection and in mice. Δmca promastigotes respond to cell death inducers such as the drug miltefosine and H2O2 similarly to wild-type (WT) promastigotes, suggesting that MCAs do not have a caspase-like role in execution of L. mexicana cell death. Δmca amastigotes replicated significantly faster than WT amastigotes in macrophages and in mice, but not as axenic culture in vitro. We propose that the Leishmania MCA acts as a negative regulator of amastigote proliferation, thereby acting to balance cell growth and cell death.
Collapse
Affiliation(s)
- E Castanys-Muñoz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | |
Collapse
|
14
|
Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol 2012; 2:72. [PMID: 22919663 PMCID: PMC3417651 DOI: 10.3389/fcimb.2012.00072] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions.
Collapse
Affiliation(s)
- Amandine Isnard
- Faculty of Medicine, Department of Medicine, Microbiology, and Immunology, The Research Institute of the McGill University Health Centre, McGill University Montréal, QC, Canada
| | | | | |
Collapse
|
15
|
Lambertz U, Silverman JM, Nandan D, McMaster WR, Clos J, Foster LJ, Reiner NE. Secreted virulence factors and immune evasion in visceral leishmaniasis. J Leukoc Biol 2012; 91:887-99. [PMID: 22442494 DOI: 10.1189/jlb.0611326] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Evasion or subversion of host immune responses is a well-established paradigm in infection with visceralizing leishmania. In this review, we summarize current findings supporting a model in which leishmania target host regulatory molecules and pathways, such as the PTP SHP-1 and the PI3K/Akt signaling cascade, to prevent effective macrophage activation. Furthermore, we describe how virulence factors, secreted by leishmania, interfere with macrophage intracellular signaling. Finally, we discuss mechanisms of secretion and provide evidence that leishmania use a remarkably adept, exosome-based secretion mechanism to export and deliver effector molecules to host cells. In addition to representing a novel mechanism for trafficking of virulence factors across membranes, recent findings indicate that leishmania exosomes may have potential as vaccine candidates.
Collapse
Affiliation(s)
- Ulrike Lambertz
- Department of Medicine Division of Infectious Diseases and the Experimental Medicine Program, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Contreras I, Gómez MA, Nguyen O, Shio MT, McMaster RW, Olivier M. Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63. PLoS Pathog 2010; 6:e1001148. [PMID: 20976196 PMCID: PMC2954837 DOI: 10.1371/journal.ppat.1001148] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 09/10/2010] [Indexed: 01/05/2023] Open
Abstract
Leishmania parasites have evolved sophisticated mechanisms to subvert macrophage immune responses by altering the host cell signal transduction machinery, including inhibition of JAK/STAT signalling and other transcription factors such as AP-1, CREB and NF-κB. AP-1 regulates pro-inflammatory cytokines, chemokines and nitric oxide production. Herein we show that upon Leishmania infection, AP-1 activity within host cells is abolished and correlates with lower expression of 5 of the 7 AP-1 subunits. Of interest, c-Jun, the central component of AP-1, is cleaved by Leishmania. Furthermore, the cleavage of c-Jun is dependent on the expression and activity of the major Leishmania surface protease GP63. Immunoprecipitation of c-Jun from nuclear extracts showed that GP63 interacts, and cleaves c-Jun at the perinuclear area shortly after infection. Phagocytosis inhibition by cytochalasin D did not block c-Jun down-regulation, suggesting that internalization of the parasite might not be necessary to deliver GP63 molecules inside the host cell. This observation was corroborated by the maintenance of c-Jun cleavage upon incubation with L. mexicana culture supernatant, suggesting that secreted, soluble GP63 could use a phagocytosis-independent mechanism to enter the host cell. In support of this, disruption of macrophage lipid raft microdomains by Methyl β-Cyclodextrin (MβCD) partially inhibits the degradation of full length c-Jun. Together our results indicate a novel role of the surface protease GP63 in the Leishmania-mediated subversion of host AP-1 activity.
Collapse
Affiliation(s)
- Irazú Contreras
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Centre for the Study of Host Resistance and the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - María Adelaida Gómez
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Centre for the Study of Host Resistance and the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Oliver Nguyen
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Marina T. Shio
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Centre for the Study of Host Resistance and the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Robert W. McMaster
- Department of Medical Genetics, University of British Columbia, Vancouver Hospital, Vancouver, British Columbia, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Centre for the Study of Host Resistance and the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Abstract
Major surface protease (MSP or GP63) is the most abundant glycoprotein localized to the plasma membrane of Leishmania promastigotes. MSP plays several important roles in the pathogenesis of leishmaniasis, including but not limited to (i) evasion of complement-mediated lysis, (ii) facilitation of macrophage (Mø) phagocytosis of promastigotes, (iii) interaction with the extracellular matrix, (iv) inhibition of natural killer cellular functions, (v) resistance to antimicrobial peptide killing, (vi) degradation of Mø and fibroblast cytosolic proteins, and (vii) promotion of survival of intracellular amastigotes. MSP homologues have been found in all other trypanosomatids studied to date including heteroxenous members of Trypanosoma cruzi, the extracellular Trypanosoma brucei, unusual intraerythrocytic Endotrypanum spp., phytoparasitic Phytomonas spp., and numerous monoxenous species. These proteins are likely to perform roles different from those described for Leishmania spp. Multiple MSPs in individual cells may play distinct roles at some time points in trypanosomatid life cycles and collaborative or redundant roles at others. The cellular locations and the extracellular release of MSPs are also discussed in connection with MSP functions in leishmanial promastigotes.
Collapse
|
18
|
Hallé M, Gomez MA, Stuible M, Shimizu H, McMaster WR, Olivier M, Tremblay ML. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J Biol Chem 2008; 284:6893-908. [PMID: 19064994 DOI: 10.1074/jbc.m805861200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Leishmania parasite is a widespread disease threat in tropical areas, causing symptoms ranging from skin lesions to death. Leishmania parasites typically invade macrophages but are also capable of infecting fibroblasts, which may serve as a reservoir for recurrent infection. Invasion by intracellular pathogens often involves exploitation of the host cell cytoskeletal and signaling machinery. Here we have observed a dramatic rearrangement of the actin cytoskeleton and marked modifications in the profile of protein tyrosine phosphorylation in fibroblasts infected with Leishmania major. Correspondingly, exposure to L. major resulted in degradation of the phosphorylated adaptor protein p130Cas and the protein-tyrosine phosphatase-PEST. Cellular and in vitro assays using pharmacological protease inhibitors, recombinant enzyme, and genetically modified strains of L. major identified the parasite protease GP63 as the principal catalyst of proteolysis during infection. A number of additional signaling proteins were screened for degradation during L. major infection as follows: a small subset was cleaved, including cortactin, T-cell protein-tyrosine phosphatase, and caspase-3, but the majority remained unaffected. Protein degradation occurred in cells incubated with Leishmania extracts in the absence of intact parasites, suggesting a mechanism permitting transfer of functional GP63 into the intracellular space. Finally, we evaluated the impact of Leishmania on MAPK signaling; unlike p44/42 and JNK, p38 was inactivated upon infection in a GP63- and protein degradation-dependent manner, which likely involves cleavage of the upstream adaptor TAB1. Our results establish that GP63 plays a central role in a number of hostcell molecular events that likely contribute to the infectivity of Leishmania.
Collapse
Affiliation(s)
- Maxime Hallé
- Rosalind and Morris Goodman Cancer Centre, Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Jayakumar A, Widenmaier R, Ma X, McDowell MA. Transcriptional inhibition of interleukin-12 promoter activity in Leishmania spp.-infected macrophages. J Parasitol 2008; 94:84-93. [PMID: 18372625 DOI: 10.1645/ge-1153.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To establish and persist within a host, Leishmania spp. parasites delay the onset of cell-mediated immunity by suppressing interleukin-12 (IL-12) production from host macrophages. Although it is established that Leishmania spp.-infected macrophages have impaired IL-12 production, the mechanisms that account for this suppression remain to be completely elucidated. Using a luciferase reporter assay assessing IL-12 transcription, we report here that Leishmania major, Leishmania donovani, and Leishmania chagasi inhibit IL-12 transcription in response to interferon-gamma, lipopolysaccharide, and CD40 ligand and that Leishmania spp. lipophosphoglycan, phosphoglycans, and major surface protein are not necessary for inhibition. In addition, all the Leishmania spp. strains and life-cycle stages tested inhibited IL-12 promoter activity. Our data further reveal that autocrine-acting host factors play no role in the inhibitory response and that phagocytosis signaling is necessary for inhibition of IL-12.
Collapse
Affiliation(s)
- Asha Jayakumar
- 215 Galvin Life Sciences, Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
20
|
Besteiro S, Tonn D, Tetley L, Coombs GH, Mottram JC. The AP3 adaptor is involved in the transport of membrane proteins to acidocalcisomes of Leishmania. J Cell Sci 2008; 121:561-70. [DOI: 10.1242/jcs.022574] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysosomal function is crucial for the differentiation and infectivity of the parasitic protozoon Leishmania major. To study lysosomal biogenesis, an L. major mutant deficient in the δ subunit of the adaptor protein 3 (AP3 δ) complex was generated. Structure and proteolytic capacity of the lysosomal compartment were apparently unaffected in the AP3-deficient mutant; however, defects were identified in its acidocalcisomes. These are acidic organelles enriched in calcium and phosphorus, conserved from bacteria to eukaryotes, whose function remains enigmatic. The acidocalcisomes of the L. major mutant lacked membrane-bound proton pumps (notably V-H+-PPase), were less acidic than normal acidocalcisomes and devoid of polyphosphate, but contained a soluble pyrophosphatase. The mutant parasites were viable in vitro, but were unable to establish an infection in mice, which indicates a role for AP3 in determining – possibly through an acidocalcisome-related function – the virulence of the parasite. AP3 transport function has been linked previously to lysosome-related organelles such as platelet dense granules, which appear to share several features with acidocalcisomes. Our findings, implicating that AP3 has a role in transport to acidocalcisomes, thus provide further evidence that biogenesis of acidocalcisomes resembles that of lysosome-related organelles, and that both may have conserved origins.
Collapse
Affiliation(s)
- Sébastien Besteiro
- Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Daniela Tonn
- Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Laurence Tetley
- Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Graham H. Coombs
- Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Jeremy C. Mottram
- Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
21
|
Crithidia deanei: influence of parasite gp63 homologue on the interaction of endosymbiont-harboring and aposymbiotic strains with Aedes aegypti midgut. Exp Parasitol 2007; 118:345-53. [PMID: 17945218 DOI: 10.1016/j.exppara.2007.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 09/04/2007] [Accepted: 09/10/2007] [Indexed: 11/23/2022]
Abstract
The present study demonstrates that the endosymbiont of Crithidia deanei influences the expression of surface gp63 molecules. Ultrastructural immunocytochemical analysis shows the presence of the gp63-like protein in the protozoan flagellum and flagellar pocket, either attached to shed membranes or in a free form. This molecule is glycosylphosphatidylinositol (GPI) anchored to the plasma membrane as demonstrated by phospholipase C (PLC) treatment and cross-reacting determinant detection by immunoblotting. The gp63 molecule mediates the adhesive process of the protozoan to Aedes aegypti explanted guts, since the binding was reduced by pre-incubating the C. deanei parasites (wild and aposymbiotic strains) with anti-gp63 antibodies, PLC or PLC followed by anti-gp63 antibodies incubation. In addition, the number of wild C. deanei bound to A. aegypti explanted guts was twice as that of aposymbiotic parasites. Flow cytometry assays revealed that the reactivity of the wild strain with anti-gp63 antibodies was approximately twice as that of the aposymbiotic strain. We may conclude that higher expression of surface gp63 by the wild strain of C. deanei may positively influence this interaction, posing a prominent advantage for the endosymbiont-containing trypanosomatids.
Collapse
|
22
|
Zacks MA, Garg N. Recent developments in the molecular, biochemical and functional characterization of GPI8 and the GPI-anchoring mechanism [review]. Mol Membr Biol 2006; 23:209-25. [PMID: 16785205 DOI: 10.1080/09687860600601494] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glycoconjugates are utilized by eukaryotic organisms ranging from yeast to humans for the cell surface expression of a wide variety of proteins and lipids. These glycoconjugates are expressed as enzymes or receptors and serve a diversity of functions, including cell signaling and cell survival. In parasitic protozoans, glycoconjugates play roles in infectivity, survival, virulence and immune evasion. Among the alternate glycoconjugate structures that have been identified, glycosylphosphatidylinositols (GPIs) represent a universal structure for the anchorage of proteins, lipids, and phosphosaccharides to cellular membranes. Biosynthesis of the GPI is a multi-step process that culminates in the attachment of the assembled GPI to a precursor protein. This final step in the transfer of the GPI to a protein is catalyzed by GPI8 of the putative transamidase complex (TAM). GPI8 functions dually to perform the proteolytic cleavage of the C-terminal signal sequence of the precursor protein, followed by the formation of an amide bond between the protein and the ethanolamine phosphate of the GPI. This review summarizes the current aggregate of biochemical, gene-disruption and active site mutagenesis studies, which provide evidence that GPI8 is responsible for the protein-GPI anchoring reaction. We describe recently published studies that have identified other potential components of the TAM complex and that have elucidated their likely role in protein-GPI attachment. Further, we discuss the biochemical, molecular and functional differences between protozoan and mammalian GPI8 and the protein-GPI anchoring machinery. Finally, we will present the implications of these studies for the development of anti-parasite drug therapies.
Collapse
Affiliation(s)
- Michele A Zacks
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | |
Collapse
|
23
|
Zheng Z, Tweten RK, Mensa-Wilmot K. Intracellular glycosylphosphatidylinositols accumulate on endosomes: toxicity of alpha-toxin to Leishmania major. EUKARYOTIC CELL 2005; 4:556-66. [PMID: 15755918 PMCID: PMC1087796 DOI: 10.1128/ec.4.3.556-566.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycosylphosphatidylinositols (GPIs) are ubiquitous glycolipids in eukaryotes. In the protozoan Leishmania major, GPIs occur "free" or covalently linked to proteins (e.g., gp63) and polysaccharides. While some free GPIs are detected on the plasma membrane, specific sites where GPIs accumulate intracellularly are unknown in most cells, although the glycolipids are synthesized within the secretory system. Herein, we describe a protocol for identifying intracellular sites of GPI accumulation by using alpha-toxin (from Clostridium septicum). Alpha-toxin bound to gp63 and GPIs from L. major. Intracellular binding sites for alpha-toxin were determined in immunofluorescence assays after removal of GPI-anchored macromolecules (e.g., gp63) from the plasma membrane of fixed cells by using detergent. Endosomes were a major site for GPI accretion in L. major. GPI-less gp63 was detected at the endoplasmic reticulum. In studies with live parasites, alpha-toxin killed L. major with a 50% lethal concentration of 0.77 nM.
Collapse
Affiliation(s)
- Zhifeng Zheng
- Department of Cellular Biology, The University of Georgia, 724 Biological Sciences, Athens, GA 30602, USA
| | | | | |
Collapse
|
24
|
Chauhan V, Sheikh AM, Chauhan A, Spivack WD, Fenko MD, Malik MN. Regulation of high molecular weight bovine brain neutral protease by phospholipids in vitro. Mol Cell Biochem 2005; 272:145-9. [PMID: 16010981 DOI: 10.1007/s11010-005-6915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The activity of the heat stable, glycosylated high molecular weight bovine brain neutral protease (HMW protease) is differentially regulated by phospholipids. While phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidic acid (PA) had only marginal stimulatory effect (40-75%) on the activity of HMW protease, lysophoshatidylcholine (lysoPC) and lysophosphatidic acid (lysoPA) activated the enzyme by more than two-fold. Both lysoPC and lysoPA exhibited concentration-dependent saturation kinetics for the activation of HMW protease. Surprisingly, phosphoinositides (phosphatidylinositol, PI; phosphatidylinositol 4-phosphate, PIP; and phosphatidylinositol 4,5-bisphosphate, PIP2) modulated the activity of protease differently: activation of the enzyme was higher with PIP (90%) as compared to PI (21%), whereas PIP2 inhibited the enzyme (16%). The inhibition of the protease by PIP2 was concentration-dependent. During receptor-coupled cell activation, phospholipase A2 (PLA2) converts PC and PA to lysoPC and lysoPA, respectively; PI is converted to PIP2 by successive enzymatic phosphorylation by PI 4-kinase and PIP 5-kinase; and phospholipase C (PLC) degrades PIP2 to diacylglycerol and inositol 1,4,5-trisphosphate. Therefore, the data suggest that HMW protease may be coupled to cell signal transduction where PLA2, PI 4-kinase, PIP 5-kinase and PLC are involved.
Collapse
Affiliation(s)
- V Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Yao C, Luo J, Hsiao C, Donelson JE, Wilson ME. Internal and surface subpopulations of the major surface protease (MSP) of Leishmania chagasi. Mol Biochem Parasitol 2005; 139:173-83. [PMID: 15664652 DOI: 10.1016/j.molbiopara.2004.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 10/19/2004] [Accepted: 11/03/2004] [Indexed: 11/21/2022]
Abstract
Major surface protease (MSP) facilitates Leishmania promastigote evasion of complement-mediated lysis in the mammalian host and enhances host macrophage phagocytosis of the promastigotes. We previously showed that the steady-state abundance of MSP protein increases 14-fold during in vitro cultivation of L. chagasi promastigotes from logarithmic to stationary phase, despite the fact that the total amount of MSP mRNA does not increase. Furthermore, 10 major MSP isoforms are differentially expressed in different promastigote growth phases, and attenuation of parasites by long-term in vitro cultivation influences MSP isoform expression. Herein, we report that although about two-thirds of newly synthesized MSP becomes surface localized, the rest of the MSP does not reach the promastigote surface. This internal MSP is stable without detectable decrease in abundance up to 6 days after biosynthesis. Furthermore, surface-localized MSP is released at different rates from logarithmic and stationary phase virulent Leishmania promastigotes. These data are consistent with the hypothesis that the major mechanism regulating MSP abundance is the rate of loss of surface-localized MSP from the promastigote surface, and that internally localized MSP is very stable.
Collapse
Affiliation(s)
- Chaoqun Yao
- VA Medical Center, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Leishmania mexicana amastigotes are particularly rich in cysteine peptidases (CPs), which play important roles in facilitating the survival and growth of the parasites in mammals. The importance of the CPs as virulence factors and their potential as drug targets and vaccine candidates has been investigated extensively. Recent years, however, have heralded advances in our knowledge and understanding of leishmanial CPs on two fronts. Firstly, genome analysis has revealed the great diversity of CPs, and, secondly, the ways in which the most widely studied CPs, designated CPB, influence the interaction between parasite and mammalian host have been elucidated. These topics are the focus of this review.
Collapse
Affiliation(s)
- Jeremy C Mottram
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
27
|
Yao C, Luo J, Storlie P, Donelson JE, Wilson ME. Multiple products of the Leishmania chagasi major surface protease (MSP or GP63) gene family. Mol Biochem Parasitol 2004; 135:171-83. [PMID: 15110459 DOI: 10.1016/j.molbiopara.2004.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 11/14/2003] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
The major surface protease (MSP or GP63) of the Leishmania spp. protozoa facilitates parasite evasion of complement-mediated killing, phagocytosis by macrophages, and intracellular survival in macrophage phagolysosomes. Immunoblots of several Leishmania species have shown there are distinct MSP isoforms, but the biochemical bases for these differences are unknown. Northern blots show that transcripts of the three tandem gene classes encoding Leishmania chagasi MSP (MSPS, MSPL, MSPC) are differentially expressed during parasite growth in vitro. Cell-associated MSPs increase in abundance during growth, correlating directly with parasite virulence. We examined whether distinct products of these >18 MSP genes are either differentially expressed or differentially processed during parasite growth. Two-dimensional gel electrophoresis and immunoblots delineated more than 10 MSP isoforms in stationary phase L. chagasi, distributed between pIs of 5.2-6.1 and masses of 58-63 kDa. Post-translational modifications including N-glycosylation, GPI anchor addition and phosphorylation did not account for all differences among the isoforms. MALDI-TOF mass spectrometry demonstrated that at least some L. chagasi MSPs were the products of different MSP genes. One isoform was not available for surface biotinylation, suggesting it could be located internally. Parasites in logarithmic growth expressed only four MSP isoforms, and an attenuated strain of L. chagasi (L5) did not express one of the MSP classes (MSPS). These data demonstrate that the products of individual MSP genes are differentially expressed during Leishmania development. We hypothesize they may play different roles during parasite migration through its two hosts.
Collapse
Affiliation(s)
- Chaoqun Yao
- Department of Internal Medicine, University of Iowa, 300L, EMRB, Newton Road, Iowa City, IA 52242, USA. Chaoqun -
| | | | | | | | | |
Collapse
|
28
|
d'Avila-Levy CM, Souza RF, Gomes RC, Vermelho AB, Branquinha MH. A metalloproteinase extracellularly released by Crithidia deanei. Can J Microbiol 2004; 49:625-32. [PMID: 14663496 DOI: 10.1139/w03-081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actively motile cells from a cured strain of Crithidia deanei released proteins in phosphate buffer (pH 7.4). The molecular mass of the released polypeptides, which included some proteinases, ranged from 19 to 116 kDa. One of the major protein bands was purified to homogeneity by a combination of anion-exchange and gel filtration chromatographs. The apparent molecular mass of this protein was estimated to be 62 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The incorporation of gelatin into SDS-PAGE showed that the purified protein presented proteolytic activity in a position corresponding to a molecular mass of 60 kDa. The enzyme was optimally active at 37 degrees C and pH 6.0 and showed 25% of residual activity at 28 degrees C for 30 min. The proteinase was inhibited by 1,10-phenanthroline and EDTA, showing that it belonged to the metalloproteinase class. A polyclonal antibody to the leishmanial gp63 reacted strongly with the released C. deanei protease. After Triton X-114 extraction, an enzyme similar to the purified metalloproteinase was detected in aqueous and detergent-rich phases. The detection of an extracellular metalloproteinase produced by C. deanei and some other Crithidia species suggests a potential role of this released enzyme in substrate degradation that may be relevant to the survival of trypanosomatids in the host.
Collapse
Affiliation(s)
- Claudia Masini d'Avila-Levy
- Dept. Microbiologica Geral, Inst. Microbiologia Prof. Paulo de Góes, CCS, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
29
|
Yao C, Donelson JE, Wilson ME. The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 2004; 132:1-16. [PMID: 14563532 DOI: 10.1016/s0166-6851(03)00211-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Leishmania sp. are digenetic protozoa that cause an estimated 1.5-2 million new cases of leishmaniasis per year worldwide. Among the molecular factors that contribute to Leishmania sp. virulence and pathogenesis is the major surface protease, alternately called MSP, GP63, leishmanolysin, EC3.4.24.36, and PSP, which is the most abundant surface protein of leishmania promastigotes. Recent studies using gene knockout, antisense RNA and overexpression mutants have demonstrated a role for MSP in resistance of promastigotes to complement-mediated lysis and either a direct or indirect role in receptor-mediated uptake of leishmania. The MSP gene clusters in different Leishmania sp. include multiple distinct MSPs that tend to fall into three classes, which can be distinguished by their sequences and by their differential expression in parasite life stages. Regulated expression of MSP class gene products during the parasite life cycle occurs at several levels involving both mRNA and protein metabolism. In this review we summarize advances in MSP research over the past decade, including organization of the gene families, crystal structure of the protein, regulation of mRNA and protein expression, biosynthesis and possible functions. The MSPs exquisitely demonstrate the multiple levels of post-transcriptional gene regulation that occur in Leishmania sp. and other trypanosomatid protozoa.
Collapse
Affiliation(s)
- Chaoqun Yao
- VA Medical Center, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
30
|
Cuevas IC, Cazzulo JJ, Sánchez DO. gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infect Immun 2003; 71:5739-49. [PMID: 14500495 PMCID: PMC201075 DOI: 10.1128/iai.71.10.5739-5749.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gp63 is a highly abundant glycosylphosphatidylinositol (GPI)-anchored membrane protein expressed predominantly in the promastigote but also in the amastigote stage of Leishmania species. In Leishmania spp., gp63 has been implicated in a number of steps in establishment of infection. Here we demonstrate that Trypanosoma cruzi, the etiological agent of Chagas' disease, has a family of gp63 genes composed of multiple groups. Two of these groups, Tcgp63-I and -II, are present as high-copy-number genes. The genomic organization and mRNA expression pattern were specific for each group. Tcgp63-I was widely expressed, while the Tcgp63-II group was scarcely detected in Northern blots, even though it is well represented in the T. cruzi genome. Western blots using sera directed against a synthetic peptide indicated that the Tcgp63-I group produced proteins of approximately 78 kDa, differentially expressed during the life cycle. Immunofluorescence staining and phosphatidylinositol-specific phospholipase C digestion confirmed that Tcgp63-I group members are surface proteins bound to the membrane by a GPI anchor. We also demonstrate the presence of metalloprotease activity which is attributable, at least in part, to Tcgp63-I group. Since antibodies against Tcgp63-I partially blocked infection of Vero cells by trypomastigotes, a possible role for this group in infection is suggested.
Collapse
Affiliation(s)
- Ileana C Cuevas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín, 1650 San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Provincia de Buenos Aires, Argentina
| | | | | |
Collapse
|
31
|
Abstract
Parasitic protozoa contain an abundance of cysteine peptidases that are crucial for a range of important biological processes. The most studied cysteine peptidases of parasitic protozoa belong to the group of papain-like enzymes known as clan CA. However, several more recently identified cysteine peptidases differ fundamentally from the clan CA enzymes and have been included together in clan CD. Enzymes of this clan have now been identified in parasitic protozoa. Many have important roles and also differ significantly from known mammalian counterparts. The main characteristics of clan CD enzymes are outlined here, in particular glycosylphosphatidylinositol (GPI):protein transamidase, metacaspase and separase, and their differences from the clan CA enzymes are described.
Collapse
|
32
|
Naderer T, McConville MJ. Characterization of a Leishmania mexicana mutant defective in synthesis of free and protein-linked GPI glycolipids. Mol Biochem Parasitol 2002; 125:147-61. [PMID: 12467982 DOI: 10.1016/s0166-6851(02)00236-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cell surface of the promastigote stage of the protozoan parasite, Leishmania mexicana is coated by a number of glycosylphosphatidylinositol (GPI)-anchored proteins, a GPI-anchored lipophosphoglycan (LPG) and an abundant class of free GPIs, termed glycoinositolphospholipids (GIPLs). We have developed a new screen for isolating L. mexicana mutants that are defective in GPI biosynthesis, involving concanavalin A selection of a parental strain with a modified surface coat. One mutant was isolated that lacked the major GIPL species and mature GPI-protein anchor precursors, but synthesized normal levels of LPG anchor precursors. Based on analysis of apolar GIPLs that accumulate in this mutant and in vivo and in vitro synthesized GPIs, this mutant was found to have a defect in the addition of an alpha1-6 linked mannose to the common precursor, Man(1)GlcN-PI. The apolar GIPLs were transported to the cell surface with the same kinetics as mature GIPLs. However, non-anchored isoforms of the major GPI-anchored protein, gp63, were either slowly secreted (with a t(1/2) of 2 h) or retained within the endoplasmic reticulum, respectively. These findings suggest that common enzymes are involved in the synthesis of GIPLs and protein anchors and have implications for understanding how the biosynthesis of the major surface components of these parasites is regulated.
Collapse
Affiliation(s)
- Thomas Naderer
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic. 3010, Australia
| | | |
Collapse
|
33
|
Corradin S, Ransijn A, Corradin G, Bouvier J, Delgado MB, Fernandez-Carneado J, Mottram JC, Vergères G, Mauël J. Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein. Biochem J 2002; 367:761-9. [PMID: 12137567 PMCID: PMC1222923 DOI: 10.1042/bj20020386] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Revised: 06/19/2002] [Accepted: 07/23/2002] [Indexed: 11/17/2022]
Abstract
The zinc metalloprotease gp63 (leishmanolysin; promastigote surface protease) is expressed at high density at the surface of Leishmania promastigotes. Efficient non-toxic inhibitors of gp63 do not exist, and its precise role in parasite physiology remains unknown. MARCKS (myristoylated alanine-rich C kinase substrate) and MARCKS-related protein (MRP; MacMARCKS) are protein kinase C substrates in various cells, including macrophages. We reported previously that MRP is an excellent substrate for gp63. A major cleavage site was identified within the MRP effector domain (ED), a highly basic 24-amino-acid sequence, and the synthetic ED peptide (MRP(ED)) was shown to inhibit MRP hydrolysis. In the present study, MRP cleavage was used as an assay to measure the capacity of various MRP or MARCKS ED peptides to block gp63 activity. On a molar basis, MRP(ED) inhibited gp63 to a greater extent than two previously described gp63 inhibitors, o -phenanthroline and benzyloxycarbonyl-Tyr-Leu-NHOH. MARCKS(ED) analogues containing modifications in the gp63 consensus cleavage site showed significant differences in inhibitory capacity. As phosphorylation of ED serine residues prevented gp63-mediated MRP degradation, we synthesized a pseudophosphorylated peptide in which serine residues were substituted by aspartate (3DMRP(ED)). 3DMRP(ED) was a highly effective inhibitor of both soluble and parasite-associated gp63. Finally, MRP ED peptides were synthesized together with an N-terminal HIV-1 Tat transduction domain (TD) to obtain cell-permeant peptide constructs. Such peptides retained gp63 inhibitory activity and efficiently entered both macrophages and parasites in a Tat TD-dependent manner. These studies may provide the basis for developing potent cell-permeant inhibitors of gp63.
Collapse
Affiliation(s)
- Sally Corradin
- Institute of Biochemistry, University of Lausanne, Chemin de Boveresses, 1066 Epalinges, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|