1
|
Thomalla JM, Wolfner MF. No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. Curr Top Dev Biol 2025; 162:165-205. [PMID: 40180509 DOI: 10.1016/bs.ctdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States; Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
2
|
Fu J, Ling J, Li CF, Tsai CL, Yin W, Hou J, Chen P, Cao Y, Kang Y, Sun Y, Xia X, Jiang Z, Furukawa K, Lu Y, Wu M, Huang Q, Yao J, Hawke DH, Pan BF, Zhao J, Huang J, Wang H, Bahassi EIM, Stambrook PJ, Huang P, Fleming JB, Maitra A, Tainer JA, Hung MC, Lin C, Chiao PJ. Nardilysin-regulated scission mechanism activates polo-like kinase 3 to suppress the development of pancreatic cancer. Nat Commun 2024; 15:3149. [PMID: 38605037 PMCID: PMC11009390 DOI: 10.1038/s41467-024-47242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.
Collapse
Affiliation(s)
- Jie Fu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenjuan Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junwei Hou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Cao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yichen Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xianghou Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenei Furukawa
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Lu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qian Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bih-Fang Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - E I Mustapha Bahassi
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peng Huang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Fernández-Sainz J, Pacheco-Liñán PJ, Granadino-Roldán JM, Bravo I, Rubio-Martínez J, Albaladejo J, Garzón-Ruiz A. Shedding light on the binding mechanism of kinase inhibitors BI-2536, Volasetib and Ro-3280 with their pharmacological target PLK1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112477. [PMID: 35644070 DOI: 10.1016/j.jphotobiol.2022.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In the present work, the interactions of the novel kinase inhibitors BI-2536, Volasetib (BI-6727) and Ro-3280 with the pharmacological target PLK1 have been studied by fluorescence spectroscopy and molecular dynamics calculations. High Stern-Volmer constants were found in fluorescence experiments suggesting the formation of stable protein-ligand complexes. In addition, it was observed that the binding constant between BI-2536 and PLK1 increases about 100-fold in presence of the phosphopeptide Cdc25C-p that docks to the polo box domain of the protein and releases the kinase domain. All the determined binding constants are higher for the kinase inhibitors than for their competitor for the active center (ATP) being BI-2536 and Volasertib the inhibitors that showed more affinity for PLK1. Calculated binding free energies confirmed the higher affinity of PLK1 for BI-2536 and Volasertib than for ATP. The higher affinity of the inhibitors to PLK1 compared to ATP was mainly attributed to stronger van der Waals interactions. Results may help with the challenge of designing and developing new kinase inhibitors more effective in clinical cancer therapy.
Collapse
Affiliation(s)
- Jesús Fernández-Sainz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071 Jaén, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - Jaime Rubio-Martínez
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB), Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain.
| |
Collapse
|
4
|
Kim S, Chien YH, Ryan A, Kintner C. Emi2 enables centriole amplification during multiciliated cell differentiation. SCIENCE ADVANCES 2022; 8:eabm7538. [PMID: 35363516 PMCID: PMC10938574 DOI: 10.1126/sciadv.abm7538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Massive centriole amplification during multiciliated cell (MCC) differentiation is a notable example of organelle biogenesis. This process is thought to be enabled by a derived cell cycle state, but the key cell cycle components required for centriole amplification in MCC progenitors remain poorly defined. Here, we show that emi2 (fbxo43) expression is up-regulated and acts in MCC progenitors after cell cycle exit to transiently inhibit anaphase-promoting complex/cyclosome (APC/C)cdh1 activity. We find that this inhibition is required for the phosphorylation and activation of a key cell cycle kinase, plk1, which acts, in turn, to promote different steps required for centriole amplification and basal body formation, including centriole disengagement, apical migration, and maturation into basal bodies. This emi2-APC/C-plk1 axis is also required to down-regulate gene expression essential for centriole amplification after differentiation is complete. These results identify an emi2-APC/C-plk1 axis that promotes and then terminates centriole assembly and basal body formation during MCC differentiation.
Collapse
Affiliation(s)
- Seongjae Kim
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yuan-Hung Chien
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amy Ryan
- Hastings Center for Pulmonary Research, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Kintner
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
5
|
Li Y, Wang H, Zhang Z, Tang C, Zhou X, Mohan C, Wu T. Identification of polo-like kinase 1 as a therapeutic target in murine lupus. Clin Transl Immunology 2022; 11:e1362. [PMID: 35024139 PMCID: PMC8733964 DOI: 10.1002/cti2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The signalling cascades that contribute to lupus pathogenesis are incompletely understood. We address this by using an unbiased activity‐based kinome screen of murine lupus. Methods An unbiased activity‐based kinome screen (ABKS) of 196 kinases was applied to two genetically different murine lupus strains. Systemic and renal lupus were evaluated following in vivo PLK1blockade. The upstream regulators and downstream targets of PLK1 were also interrogated. Results Multiple signalling cascades were noted to be more active in murine lupus spleens, including PLK1. In vivo administration of a PLK1‐specific inhibitor ameliorated splenomegaly, anti‐dsDNA antibody production, proteinuria, BUN and renal pathology in MRL.lpr mice (P < 0.05). Serum IL‐6, IL‐17 and kidney injury molecule 1 (KIM‐1) were significantly decreased after PLK1 inhibition. PLK1 inhibition reduced germinal centre and marginal zone B cells in the spleen, but changes in T cells were not significant. In vitro, splenocytes were treated with anti‐mouse CD40 Ab or F(ab’)2 fragment anti‐mouse IgM. After 24‐h stimulation, IL‐6 secretion was significantly reduced upon PLK1 blockade, whereas IL‐10 production was significantly increased. The phosphorylation of mTOR was assessed in splenocyte subsets, which revealed a significant change in myeloid cells. PLK1 blockade reduced phosphorylation associated with mTOR signalling, while Aurora‐A emerged as a potential upstream regulator of PLK1. Conclusion The Aurora‐A → PLK1 → mTOR signalling axis may be central in lupus pathogenesis, and emerges as a potential therapeutic target.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Hongting Wang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Zijing Zhang
- Department of Biomedical Engineering University of Houston Houston TX USA.,Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan China
| | - Chenling Tang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Xinjin Zhou
- Department of Pathology Baylor University Medical Center at Dallas Dallas TX USA
| | - Chandra Mohan
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Tianfu Wu
- Department of Biomedical Engineering University of Houston Houston TX USA
| |
Collapse
|
6
|
Singh P, Pesenti ME, Maffini S, Carmignani S, Hedtfeld M, Petrovic A, Srinivasamani A, Bange T, Musacchio A. BUB1 and CENP-U, Primed by CDK1, Are the Main PLK1 Kinetochore Receptors in Mitosis. Mol Cell 2021; 81:67-87.e9. [PMID: 33248027 PMCID: PMC7837267 DOI: 10.1016/j.molcel.2020.10.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 02/02/2023]
Abstract
Reflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself. Here, we combine ectopic localization, in vitro reconstitution, and kinetochore localization studies to demonstrate that most and likely all of the PLK1 is recruited through BUB1 in the outer kinetochore and centromeric protein U (CENP-U) in the inner kinetochore. BUB1 and CENP-U share a constellation of sequence motifs consisting of a putative PP2A-docking motif and two neighboring PLK1-docking sites, which, contingent on priming phosphorylation by cyclin-dependent kinase 1 and PLK1 itself, bind PLK1 and promote its dimerization. Our results rationalize previous observations and describe a unifying mechanism for recruitment of PLK1 to human kinetochores.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marion E Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Sara Carmignani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Anupallavi Srinivasamani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
7
|
Ciardo D, Haccard O, Narassimprakash H, Chiodelli V, Goldar A, Marheineke K. Polo-like kinase 1 (Plk1) is a positive regulator of DNA replication in the Xenopus in vitro system. Cell Cycle 2020; 19:1817-1832. [PMID: 32573322 PMCID: PMC7469467 DOI: 10.1080/15384101.2020.1782589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/24/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a cell cycle kinase essential for mitosis progression, but also important for checkpoint recovery and adaptation in response to DNA damage and replication stress. However, although Plk1 is expressed in S phase, little is known about its function during unperturbed DNA replication. Using Xenopus laevis egg extracts, mimicking early embryonic replication, we demonstrate that Plk1 is simultaneously recruited to chromatin with pre-replication proteins where it accumulates throughout S phase. Further, we found that chromatin-bound Plk1 is phosphorylated on its activating site T201, which appears to be sensitive to dephosphorylation by protein phosphatase 2A. Extracts immunodepleted of Plk1 showed a decrease in DNA replication, rescued by wild type recombinant Plk1. Inversely, modest Plk1 overexpression accelerated DNA replication. Plk1 depletion led to an increase in Chk1 phosphorylation and to a decrease in Cdk2 activity, which strongly suggests that Plk1 could inhibit the ATR/Chk1-dependent intra-S phase checkpoint during normal S phase. In addition, we observed that phosphorylated Plk1 levels are high during the rapid, early cell cycles of Xenopus development but decrease after the mid-blastula transition when the cell cycle and the replication program slow down along with more active checkpoints. These data shed new light on the role of Plk1 as a positive regulating factor for DNA replication in early, rapidly dividing embryos.
Collapse
Affiliation(s)
- Diletta Ciardo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hemalatha Narassimprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Chiodelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
8
|
Bansal S, Tiwari S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div 2019; 14:14. [PMID: 31889987 PMCID: PMC6927175 DOI: 10.1186/s13008-019-0057-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit, multifunctional ubiquitin ligase that controls the temporal degradation of numerous cell cycle regulatory proteins to direct the unidirectional cell cycle phases. Several different mechanisms contribute to ensure the correct order of substrate modification by the APC/C complex. Recent advances in biochemical, biophysical and structural studies of APC/C have provided a deep mechanistic insight into the working of this complex ubiquitin ligase. This complex displays remarkable conformational flexibility in response to various binding partners and post-translational modifications, which together regulate substrate selection and catalysis of APC/C. Apart from this, various features and modifications of the substrates also influence their recognition and affinity to APC/C complex. Ultimately, temporal degradation of substrates depends on the kind of ubiquitin modification received, the processivity of APC/C, and other extrinsic mechanisms. This review discusses our current understanding of various intrinsic and extrinsic mechanisms responsible for 'substrate ordering' by the APC/C complex.
Collapse
Affiliation(s)
- Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
9
|
Zhang Z, Hou SQ, He J, Gu T, Yin Y, Shen WH. PTEN regulates PLK1 and controls chromosomal stability during cell division. Cell Cycle 2016; 15:2476-85. [PMID: 27398835 PMCID: PMC5026806 DOI: 10.1080/15384101.2016.1203493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
PTEN functions as a guardian of the genome through multiple mechanisms. We have previously established that PTEN maintains the structural integrity of chromosomes. In this report, we demonstrate a fundamental role of PTEN in controlling chromosome inheritance to prevent gross genomic alterations. Disruption of PTEN or depletion of PTEN protein phosphatase activity causes abnormal chromosome content, manifested by enlarged or polyploid nuclei. We further identify polo-like kinase 1 (PLK1) as a substrate of PTEN phosphatase. PTEN can physically associate with PLK1 and reduce PLK1 phosphorylation in a phosphatase-dependent manner. We show that PTEN deficiency leads to PLK1 phosphorylation and that a phospho-mimicking PLK1 mutant causes polyploidy, imitating functional deficiency of PTEN phosphatase. Inhibition of PLK1 activity or overexpression of a non-phosphorylatable PLK1 mutant reduces the polyploid cell population. These data reveal a new mechanism by which PTEN controls genomic stability during cell division.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Sheng-Qi Hou
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Jinxue He
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Tingting Gu
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Yuxin Yin
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
- Present address: Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wen H. Shen
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
10
|
Palmisiano ND, Kasner MT. Polo-like kinase and its inhibitors: Ready for the match to start? Am J Hematol 2015; 90:1071-6. [PMID: 26294255 DOI: 10.1002/ajh.24177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022]
Abstract
Polo-like kinases (Plks) plays a central role in the normal cell cycle and their upregulation has been shown to play a role in the pathogenesis of multiple human cancers. Preclinical work demonstrates that targeting Plk has a significant impact on the treatment of both solid and hematologic malignancies in vitro and in vivo. We review here the basic science and clinical work to date with the Plks as well as future directions with this novel class of mitotic inhibitors.
Collapse
|
11
|
Du J, Cao Y, Wang Q, Zhang N, Liu X, Chen D, Liu X, Xu Q, Ma W. Unique subcellular distribution of phosphorylated Plk1 (Ser137 and Thr210) in mouse oocytes during meiotic division and pPlk1(Ser137) involvement in spindle formation and REC8 cleavage. Cell Cycle 2015; 14:3566-79. [PMID: 26654596 PMCID: PMC4825778 DOI: 10.1080/15384101.2015.1100770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is pivotal for proper mitotic progression, its targeting activity is regulated by precise subcellular positioning and phosphorylation. Here we assessed the protein expression, subcellular localization and possible functions of phosphorylated Plk1 (pPlk1(Ser137) and pPlk1(Thr210)) in mouse oocytes during meiotic division. Western blot analysis revealed a peptide of pPlk1(Ser137) with high and stable expression from germinal vesicle (GV) until metaphase II (MII), while pPlk1(Thr210) was detected as one large single band at GV stage and 2 small bands after germinal vesicle breakdown (GVBD), which maintained stable up to MII. Immunofluorescence analysis showed pPlk1(Ser137) was colocalized with microtubule organizing center (MTOC) proteins, γ-tubulin and pericentrin, on spindle poles, concomitantly with persistent concentration at centromeres and dynamic aggregation between chromosome arms. Differently, pPlk1(Thr210) was persistently distributed across the whole body of chromosomes after meiotic resumption. The specific Plk1 inhibitor, BI2536, repressed pPlk1(Ser137) accumulation at MTOCs and between chromosome arms, consequently disturbed γ-tubulin and pericentrin recruiting to MTOCs, destroyed meiotic spindle formation, and delayed REC8 cleavage, therefore arresting oocytes at metaphase I (MI) with chromosome misalignment. BI2536 completely reversed the premature degradation of REC8 and precocious segregation of chromosomes induced with okadaic acid (OA), an inhibitor to protein phosphatase 2A. Additionally, the protein levels of pPlk1(Ser137) and pPlk1(Thr210), as well as the subcellular distribution of pPlk1(Thr210), were not affected by BI2536. Taken together, our results demonstrate that Plk1 activity is required for meiotic spindle assembly and REC8 cleavage, with pPlk1(Ser137) is the action executor, in mouse oocytes during meiotic division.
Collapse
Affiliation(s)
- Juan Du
- Department of Histology and Embryology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| | - Yan Cao
- Department of Histology and Embryology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| | - Qian Wang
- Department of Histology and Embryology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| | - Nana Zhang
- Department of Histology and Embryology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| | - Xiaoyu Liu
- Department of Histology and Embryology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| | - Dandan Chen
- Department of Histology and Embryology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| | - Xiaoyun Liu
- Department of Histology and Embryology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| | - Qunyuan Xu
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| | - Wei Ma
- Department of Histology and Embryology; School of Basic Medical Sciences; Capital Medical University; Beijing, China
| |
Collapse
|
12
|
Qi L, Liu Z, Wang J, Cui Y, Guo Y, Zhou T, Zhou Z, Guo X, Xue Y, Sha J. Systematic analysis of the phosphoproteome and kinase-substrate networks in the mouse testis. Mol Cell Proteomics 2014; 13:3626-38. [PMID: 25293948 PMCID: PMC4256510 DOI: 10.1074/mcp.m114.039073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/09/2014] [Indexed: 11/06/2022] Open
Abstract
Spermatogenesis is a complex process closely associated with the phosphorylation-orchestrated cell cycle. Elucidating the phosphorylation-based regulations should advance our understanding of the underlying molecular mechanisms. Here we present an integrative study of phosphorylation events in the testis. Large-scale phosphoproteome profiling in the adult mouse testis identified 17,829 phosphorylation sites in 3955 phosphoproteins. Although only approximately half of the phosphorylation sites enriched by IMAC were also captured by TiO2, both the phosphoprotein data sets identified by the two methods significantly enriched the functional annotation of spermatogenesis. Thus, the phosphoproteome profiled in this study is a highly useful snapshot of the phosphorylation events in spermatogenesis. To further understand phosphoregulation in the testis, the site-specific kinase-substrate relations were computationally predicted for reconstructing kinase-substrate phosphorylation networks. A core sub-kinase-substrate phosphorylation networks among the spermatogenesis-related proteins was retrieved and analyzed to explore the phosphoregulation during spermatogenesis. Moreover, network-based analyses demonstrated that a number of protein kinases such as MAPKs, CDK2, and CDC2 with statistically more site-specific kinase-substrate relations might have significantly higher activities and play an essential role in spermatogenesis, and the predictions were consistent with previous studies on the regulatory roles of these kinases. In particular, the analyses proposed that the activities of POLO-like kinases (PLKs) might be dramatically higher, while the prediction was experimentally validated by detecting and comparing the phosphorylation levels of pT210, an indicator of PLK1 activation, in testis and other tissues. Further experiments showed that the inhibition of POLO-like kinases decreases cell proliferation by inducing G2/M cell cycle arrest. Taken together, this systematic study provides a global landscape of phosphoregulation in the testis, and should prove to be of value in future studies of spermatogenesis.
Collapse
Affiliation(s)
- Lin Qi
- From the ‡State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zexian Liu
- §Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jing Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiqiang Cui
- From the ‡State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yueshuai Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Zhou
- From the ‡State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zuomin Zhou
- From the ‡State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuejiang Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China;
| | - Yu Xue
- §Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiahao Sha
- From the ‡State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
13
|
Schmucker S, Sumara I. Molecular dynamics of PLK1 during mitosis. Mol Cell Oncol 2014; 1:e954507. [PMID: 27308323 PMCID: PMC4905186 DOI: 10.1080/23723548.2014.954507] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/30/2022]
Abstract
Polo-like kinase 1 (PLK1) is a key regulator of eukaryotic cell division. During mitosis, dynamic regulation of PLK1 is crucial for its roles in centrosome maturation, spindle assembly, microtubule–kinetochore attachment, and cytokinesis. Similar to other members of the PLK family, the molecular architecture of PLK1 protein is characterized by 2 domains—the kinase domain and the regulatory substrate-binding domain (polo-box domain)—that cooperate and control PLK1 function during mitosis. Mitotic cells employ many layers of regulation to activate and target PLK1 to different cellular structures in a timely manner. During the last decade, numerous studies have shed light on the precise molecular mechanisms orchestrating the mitotic activity of PLK1 in time and space. This review aims to discuss available data and concepts related to regulation of the molecular dynamics of human PLK1 during mitotic progression.
Collapse
Affiliation(s)
- Stephane Schmucker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) ; Illkirch, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) ; Illkirch, France
| |
Collapse
|
14
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
15
|
Kitazawa D, Matsuo T, Kaizuka K, Miyauchi C, Hayashi D, Inoue YH. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis. PLoS One 2014; 9:e93669. [PMID: 24850412 PMCID: PMC4029619 DOI: 10.1371/journal.pone.0093669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023] Open
Abstract
Peripheral microtubules (MTs) near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR) in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.
Collapse
Affiliation(s)
- Daishi Kitazawa
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Tatsuru Matsuo
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Kana Kaizuka
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Chie Miyauchi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Daisuke Hayashi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Yoshihiro H. Inoue
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Feine O, Hukasova E, Bruinsma W, Freire R, Fainsod A, Gannon J, Mahbubani HM, Lindqvist A, Brandeis M. Phosphorylation-mediated stabilization of Bora in mitosis coordinates Plx1/Plk1 and Cdk1 oscillations. Cell Cycle 2014; 13:1727-36. [PMID: 24675888 PMCID: PMC4111719 DOI: 10.4161/cc.28630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/23/2014] [Indexed: 11/19/2022] Open
Abstract
Cdk1 and Plk1/Plx1 activation leads to their inactivation through negative feedback loops. Cdk1 deactivates itself by activating the APC/C, consequently generating embryonic cell cycle oscillations. APC/C inhibition by the mitotic checkpoint in somatic cells and the cytostatic factor (CSF) in oocytes sustain the mitotic state. Plk1/Plx1 targets its co-activator Bora for degradation, but it remains unclear how embryonic oscillations in Plx1 activity are generated, and how Plk1/Plx1 activity is sustained during mitosis. We show that Plx1-mediated degradation of Bora in interphase generates oscillations in Plx1 activity and is essential for development. In CSF extracts, phosphorylation of Bora on the Cdk consensus site T52 blocks Bora degradation. Upon fertilization, Calcineurin dephosphorylates T52, triggering Plx1 oscillations. Similarly, we find that GFP-Bora is degraded when Plk1 activity spreads to somatic cell cytoplasm before mitosis. Interestingly, GFP-Bora degradation stops upon mitotic entry when Cdk1 activity is high. We hypothesize that Cdk1 controls Bora through an incoherent feedforward loop synchronizing the activities of mitotic kinases.
Collapse
Affiliation(s)
- Oren Feine
- Department of Genetics; The Hebrew University of Jerusalem; Jerusalem, Israel
| | - Elvira Hukasova
- Department of Cell and Molecular Biology; Karolinska Institute; Stockholm, Sweden
| | - Wytse Bruinsma
- Department of Cell Biology; The Netherlands Cancer Institute; Amsterdam, Netherlands
| | - Raimundo Freire
- Unidad de Investigación; Hospital Universitario de Canarias; Instituto de Tecnologias Biomedicas; Tenerife, Spain
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research; The Hebrew University of Jerusalem; Jerusalem, Israel
| | - Julian Gannon
- Cancer Research UK; Clare Hall Laboratories; South Mimms, Hertfordshire, UK
| | - Hiro M Mahbubani
- Cancer Research UK; Clare Hall Laboratories; South Mimms, Hertfordshire, UK
| | - Arne Lindqvist
- Department of Cell and Molecular Biology; Karolinska Institute; Stockholm, Sweden
| | - Michael Brandeis
- Department of Genetics; The Hebrew University of Jerusalem; Jerusalem, Israel
| |
Collapse
|
17
|
Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 2013; 14:563-80. [PMID: 23969844 DOI: 10.1038/nrm3640] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.
Collapse
Affiliation(s)
- H Christian Reinhardt
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
18
|
Bayliss R, Fry A, Haq T, Yeoh S. On the molecular mechanisms of mitotic kinase activation. Open Biol 2013; 2:120136. [PMID: 23226601 PMCID: PMC3513839 DOI: 10.1098/rsob.120136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/12/2012] [Indexed: 12/15/2022] Open
Abstract
During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein–protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients.
Collapse
Affiliation(s)
- Richard Bayliss
- Department of Biochemistry, Henry Wellcome Laboratories for Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
19
|
Qin B, Gao B, Yu J, Yuan J, Lou Z. Ataxia telangiectasia-mutated- and Rad3-related protein regulates the DNA damage-induced G2/M checkpoint through the Aurora A cofactor Bora protein. J Biol Chem 2013; 288:16139-44. [PMID: 23592782 PMCID: PMC3668769 DOI: 10.1074/jbc.m113.456780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/15/2013] [Indexed: 11/06/2022] Open
Abstract
Polo-like kinase1 (Plk1) activation is inhibited in response to DNA damage, and this inhibition contributes to the activation of the G2/M checkpoint, although the molecular mechanism by which Plk1 is inhibited is not clear. Here we report that the DNA damage signaling pathway inhibits Plk1 activity through Bora. Following UV irradiation, ataxia telangiectasia-mutated- and Rad3-related protein phosphorylates Bora at Thr-501. The phosphorylated Thr-501 is subsequently recognized by the E3 ubiquitin ligase SCF-β-TRCP, which targets Bora for degradation. The degradation of Bora compromises Plk1 activation and contributes to DNA damage-induced G2 arrest. These findings shed new light on Plk1 regulation by the DNA damage response pathway.
Collapse
Affiliation(s)
- Bo Qin
- From the Division of Oncology Research
| | - Bowen Gao
- From the Division of Oncology Research
| | - Jia Yu
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Jian Yuan
- the Research Center for Translational Medicine, East Hospital, Tongji University, Shanghai 200120, China
| | | |
Collapse
|
20
|
Paschal CR, Maciejowski J, Jallepalli PV. A stringent requirement for Plk1 T210 phosphorylation during K-fiber assembly and chromosome congression. Chromosoma 2012; 121:565-72. [PMID: 22566210 PMCID: PMC3519967 DOI: 10.1007/s00412-012-0375-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Polo-like kinase 1 (Plk1) is an essential mitotic regulator and undergoes periodic phosphorylation on threonine 210, a conserved residue in the kinase's activation loop. While phosphate-mimicking alterations of T210 stimulate Plk1's kinase activity in vitro, their effects on cell cycle regulation in vivo remain controversial. Using gene targeting, we replaced the native PLK1 locus in human cells with either PLK1 (T210A) or PLK1 (T210D) in both dominant and recessive settings. In contrast to previous reports, PLK1 (T210D) did not accelerate cells prematurely into mitosis, nor could it fulfill the kinase's essential role in chromosome congression. The latter was traced to an unexpected defect in Plk1-dependent phosphorylation of BubR1, a key mediator of stable kinetochore-microtubule attachment. Using chemical genetics to bypass this defect, we found that Plk1(T210D) is nonetheless able to induce equatorial RhoA zones and cleavage furrows during mitotic exit. Collectively, our data indicate that K-fibers are sensitive to even subtle perturbations in T210 phosphorylation and caution against relying on Plk1(T210D) as an in vivo surrogate for the natively activated kinase.
Collapse
Affiliation(s)
- Catherine Randall Paschal
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - John Maciejowski
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Prasad V. Jallepalli
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065 USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
21
|
Yu Z, Liu Y, Li Z. Structure-function relationship of the Polo-like kinase in Trypanosoma brucei. J Cell Sci 2012; 125:1519-30. [PMID: 22275435 PMCID: PMC3336379 DOI: 10.1242/jcs.094243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 12/19/2022] Open
Abstract
Polo-like kinases (Plks) play multiple roles in mitosis and cytokinesis in eukaryotes and are characterized by the C-terminal Polo-box domain (PBD), which is implicated in binding to Plk substrates, targeting Plk and regulating Plk activity. The Plk homolog in Trypanosoma brucei (TbPLK) possesses a similar architecture, but it lacks the crucial residues involved in substrate binding and regulates cytokinesis but not mitosis. Little is known about the regulation of TbPLK and the role of the PBD in TbPLK localization and function. Here, we addressed the requirement of the kinase activity and the PBD for TbPLK localization and function through coupling RNAi of endogenous TbPLK with ectopic expression of TbPLK mutants. We demonstrate that the kinase activity and phosphorylation of two threonine residues, Thr198 and Thr202, in the activation loop (T-loop) of the kinase domain are essential for TbPLK function but not for TbPLK localization. Deletion of the PBD abolishes TbPLK localization, but the PBD itself is not correctly targeted, indicating that TbPLK localization requires both the PBD and the kinase domain. Surprisingly, the kinase domain of TbPLK, but not the PBD, binds to its substrates TbCentrin2 and p110, suggesting that TbPLK might interact with its substrate through different mechanisms. Finally, the PBD interacts with the kinase domain of TbPLK and inhibits its activity, and this inhibition is relieved when Thr198 is phosphorylated. Together, these results suggest an essential role of T-loop phosphorylation in TbPLK activation and crucial roles of the PBD in regulating TbPLK activity and localization.
Collapse
Affiliation(s)
- Zhonglian Yu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Yi Liu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
22
|
Sun L, Wang CC. The structural basis of localizing polo-like kinase to the flagellum attachment zone in Trypanosoma brucei. PLoS One 2011; 6:e27303. [PMID: 22096549 PMCID: PMC3214037 DOI: 10.1371/journal.pone.0027303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/13/2011] [Indexed: 01/09/2023] Open
Abstract
The polo-like kinase in the deep branching eukaryote Trypanosoma brucei (TbPlk) has many unique features. Unlike all the other polo-like kinases known to associate with the nucleus and controlling both mitosis and cytokinesis, TbPlk localizes to the flagellum attachment zone (FAZ) and regulates only cytokinesis in T. brucei. TbPlk was, however, previously found capable of complementing all the multiple Plk (Cdc5) functions in Saccharomyces cerevisiae, indicating that it has acquired all the functions of Cdc5. In the present study, Cdc5 tagged with an enhanced yellow fluorescence protein (EYFP) localized exclusively in the FAZ of T. brucei, suggesting that the unusual localization and limited function of TbPlk are probably attributed to the particular environment in T. brucei cells. Structural basis for the FAZ localization of TbPlk was further investigated with TbPlk and TbPlk mutants tagged with EYFP and expressed in T. brucei. The results indicated that a kinase-inactive mutant N169A and a TbPlk mutant with the entire kinase domain (KD) deleted both localized to the FAZ. Substantial association with FAZ was also maintained when one of the two polo-boxes (PB1 or 2) or the linker region between them was deleted from TbPlk. But a deletion of both polo-boxes led to a complete exclusion of the protein from FAZ. All the deletion mutants retained the kinase activity, further indicating that the TbPlk kinase function does not play a role for FAZ localization. The two polo boxes in TbPlk are most likely instrumental in localizing the protein to FAZ through potential interactions with certain FAZ structural component(s). A putative cryptic bipartite nuclear targeting signal was identified in TbPlk, which was capable of directing TbPlk into the nucleus when either the kinase activity was lost or the PB1 was deleted from the protein.
Collapse
Affiliation(s)
- Lu Sun
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
23
|
Rozeboom AM, Pak DTS. Identification and functional characterization of polo-like kinase 2 autoregulatory sites. Neuroscience 2011; 202:147-57. [PMID: 22100274 DOI: 10.1016/j.neuroscience.2011.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/25/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
Polo family kinases play important roles in cellular proliferation as well as neuronal synaptic plasticity. However, the posttranslational regulation of these kinases is not fully understood. Here, we identified several novel Plk2 phosphorylation sites stimulated by Plk2 itself. By site-directed mutagenesis, we uncovered three additional hyperactivating Plk2 mutations as well as a series of residues regulating Plk2 steady-state expression level. Because of the established role of Plk2 in homeostatic negative control of excitatory synaptic strength, these phosphorylation sites could play an important role in the rapid activation, expansion, and prolongation of Plk2 signaling in this process.
Collapse
Affiliation(s)
- A M Rozeboom
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057-1464, USA
| | | |
Collapse
|
24
|
Ouyang Y, Petritsch C, Wen H, Jan L, Jan YN, Lu B. Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila. Development 2011; 138:2185-96. [PMID: 21558368 DOI: 10.1242/dev.058347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphorylation at conserved sites regulates the tumor suppressor activity of Numb. Enforced expression of a phospho-mimetic form of Numb (Numb-TS4D) or genetic manipulation that boosts phospho-Numb levels, attenuates endogenous Numb activity and causes ectopic neuroblast formation (ENF). This effect on neuroblast homeostasis occurs only in the type II neuroblast lineage. We identify Dronc caspase as a novel binding partner of Numb, and demonstrate that overexpression of Dronc suppresses the effects of Numb-TS4D in a non-apoptotic and possibly non-catalytic manner. Reduction of Dronc activity facilitates ENF induced by phospho-Numb. Our findings uncover a molecular mechanism that regulates Numb activity and suggest a novel role for Dronc caspase in regulating neural stem cell homeostasis.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
25
|
Bahassi EM. Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp Biol Med (Maywood) 2011; 236:648-57. [PMID: 21558091 DOI: 10.1258/ebm.2011.011011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that play a pivotal role in cell cycle progression and in cellular response to DNA damage. The Plks are highly conserved from yeast to mammals. There are five Plk family members (Plk1-5) in humans, of which Plk1, is the best characterized. The Plk1 isoform is being aggressively pursued as a target for cancer therapy, following observations that this protein is overexpressed in human tumors and is actively involved in malignant transformation. The roles of Plks in mitotic entry, spindle pole functions and cytokinesis are well established and have been the subject of several recent reviews. In this review, we discuss functions of Plks other than their classical roles in mitotic progression. When cells incur DNA damage, they activate checkpoint mechanisms that result in cell cycle arrest and allow time for repair. If the damage is extensive and cannot be repaired, cells will undergo cell death by apoptosis. If the damage is repaired, cells can resume cycling, as part of the process known as checkpoint recovery. If the damage is not repaired or incompletely repaired, cells can override the checkpoint and resume cycling with damaged DNA, a process called checkpoint adaptation. The Plks play a role in all three outcomes and their involvement in these processes will be the subject of this review.
Collapse
Affiliation(s)
- El Mustapha Bahassi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0562, USA.
| |
Collapse
|
26
|
Shen W, Ahmad F, Hockman S, Ma J, Omi H, Raghavachari N, Manganiello V. Female infertility in PDE3A(-/-) mice: polo-like kinase 1 (Plk1) may be a target of protein kinase A (PKA) and involved in meiotic arrest of oocytes from PDE3A(-/-) mice. Cell Cycle 2010; 9:4720-34. [PMID: 21099356 PMCID: PMC3048038 DOI: 10.4161/cc.9.23.14090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 01/01/2023] Open
Abstract
Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A(-/-) murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A(-/-) oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A(-/-) oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A(-/-) oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A(-/-) mice.
Collapse
Affiliation(s)
- Weixing Shen
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Faiyaz Ahmad
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Steven Hockman
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - John Ma
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Hitoshi Omi
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Nalini Raghavachari
- Genomics Core Facility; Pulmonary and Vascular Medicine Branch (PVMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Vincent Manganiello
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
27
|
Ji JH, Hwang HI, Lee HJ, Hyun SY, Kang HJ, Jang YJ. Purification and proteomic identification of putative upstream regulators of polo-like kinase-1 from mitotic cell extracts. FEBS Lett 2010; 584:4299-305. [PMID: 20869364 DOI: 10.1016/j.febslet.2010.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 11/15/2022]
Abstract
Polo-like kinase-1 (Plk1) is phosphorylated on Thr210 for activation during mitosis. Here, we investigated the question of which kinase(s) is the specific upstream kinase of mitotic Plk1. Upstream kinases of Plk1 were purified from mitotic cell extracts through column chromatography procedures, and identified by mass spectrometry. Candidates for Plk1 kinase included p21-activated kinase, aurora A, and mammalian Ste20-like kinases. Immunoprecipitates of these proteins from mitotic cell extracts phosphorylated Plk1 on Thr210. Even if the activity of Aurora A was blocked with a specific inhibitor, Plk1 phosphorylation still occurred, suggesting that function of Plk1 could be controlled by these kinases for proper mitotic progression, as well as by Aurora A in very late G2 phase for the beginning of mitosis.
Collapse
Affiliation(s)
- Jae-Hoon Ji
- Laboratory of Cell Cycle and Signal Transduction, WCU Department of NanoBioMedical Science, Dankook University, Cheonan-Si, Chungnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 2010; 9:643-60. [PMID: 20671765 DOI: 10.1038/nrd3184] [Citation(s) in RCA: 547] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The polo-like kinase 1 (PLK1) acts in concert with cyclin-dependent kinase 1-cyclin B1 and Aurora kinases to orchestrate a wide range of critical cell cycle events. Because PLK1 has been preclinically validated as a cancer target, small-molecule inhibitors of PLK1 have become attractive candidates for anticancer drug development. Although the roles of the closely related PLK2, PLK3 and PLK4 in cancer are less well understood, there is evidence showing that PLK2 and PLK3 act as tumour suppressors through their functions in the p53 signalling network, which guards the cell against various stress signals. In this article, recent insights into the biology of PLKs will be reviewed, with an emphasis on their role in malignant transformation, and progress in the development of small-molecule PLK1 inhibitors will be examined.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
29
|
Loebrich S, Nedivi E. The function of activity-regulated genes in the nervous system. Physiol Rev 2009; 89:1079-103. [PMID: 19789377 DOI: 10.1152/physrev.00013.2009] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mammalian brain is plastic in the sense that it shows a remarkable capacity for change throughout life. The contribution of neuronal activity to brain plasticity was first recognized in relation to critical periods of development, when manipulating the sensory environment was found to profoundly affect neuronal morphology and receptive field properties. Since then, a growing body of evidence has established that brain plasticity extends beyond development and is an inherent feature of adult brain function, spanning multiple domains, from learning and memory to adaptability of primary sensory maps. Here we discuss evolution of the current view that plasticity of the adult brain derives from dynamic tuning of transcriptional control mechanisms at the neuronal level, in response to external and internal stimuli. We then review the identification of "plasticity genes" regulated by changes in the levels of electrical activity, and how elucidating their cellular functions has revealed the intimate role transcriptional regulation plays in fundamental aspects of synaptic transmission and circuit plasticity that occur in the brain on an every day basis.
Collapse
Affiliation(s)
- Sven Loebrich
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
30
|
Abstract
Overactivation of both Polo-like kinase-1 (Plk1) and Aurora-A is linked to cancer development, and small-molecule inhibitors that target these kinases are currently tested as anticancer drugs. Here, we discuss recent advances in the understanding of the functional crosstalk between Plk1 and Aurora-A before and during mitosis. Several recent findings have led to a better appreciation of how the activities of these distinct mitotic kinases are intertwined. Such insight is important for the expected utility of small-molecule inhibitors targeting Plk1 or Aurora-A, and it might help us to improve their application.
Collapse
Affiliation(s)
- Libor Macurek
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
31
|
Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev 2008; 22:2707-20. [PMID: 18832073 DOI: 10.1101/gad.486808] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The conserved Polo kinase controls multiple events in mitosis and cytokinesis. Although Polo-like kinases are regulated by phosphorylation and proteolysis, control of subcellular localization plays a major role in coordinating their mitotic functions. This is achieved largely by the Polo-Box Domain, which binds prephosphorylated targets. However, it remains unclear whether and how Polo might interact with partner proteins when priming mitotic kinases are inactive. Here we show that Polo associates with microtubules in interphase and cytokinesis, through a strong interaction with the microtubule-associated protein Map205. Surprisingly, this interaction does not require priming phosphorylation of Map205, and the Polo-Box Domain of Polo is required but not sufficient for this interaction. Moreover, phosphorylation of Map205 at a CDK site relieves this interaction. Map205 can stabilize Polo and inhibit its cellular activity in vivo. In syncytial embryos, the centrosome defects observed in polo hypomorphs are enhanced by overexpression of Map205 and suppressed by its deletion. We propose that Map205-dependent targeting of Polo to microtubules provides a stable reservoir of Polo that can be rapidly mobilized by the activity of Cdk1 at mitotic entry.
Collapse
|
32
|
Eckerdt F, Maller JL. Kicking off the polo game. Trends Biochem Sci 2008; 33:511-3. [PMID: 18818085 DOI: 10.1016/j.tibs.2008.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/30/2022]
Abstract
Polo-like kinase 1 (Plk1) is essential for checkpoint recovery and the activation of key mitotic enzymes; however, its own activation mechanism has remained elusive. Recent findings show that Bora, a G(2)-M expressed protein, facilitates Plk1 activation by the oncogenic kinase Aurora A in G(2). During mitosis, Plk1-dependent Bora degradation promotes Aurora A localization to the centrosome and/or spindle. Bora-dependent regulation provides important new insights into interactions between key mitotic kinases.
Collapse
Affiliation(s)
- Frank Eckerdt
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
33
|
Macůrek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, Clouin C, Taylor SS, Yaffe MB, Medema RH. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 2008; 455:119-23. [PMID: 18615013 DOI: 10.1038/nature07185] [Citation(s) in RCA: 543] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/23/2008] [Indexed: 01/25/2023]
Abstract
Polo-like kinase-1 (PLK1) is an essential mitotic kinase regulating multiple aspects of the cell division process. Activation of PLK1 requires phosphorylation of a conserved threonine residue (Thr 210) in the T-loop of the PLK1 kinase domain, but the kinase responsible for this has not yet been affirmatively identified. Here we show that in human cells PLK1 activation occurs several hours before entry into mitosis, and requires aurora A (AURKA, also known as STK6)-dependent phosphorylation of Thr 210. We find that aurora A can directly phosphorylate PLK1 on Thr 210, and that activity of aurora A towards PLK1 is greatly enhanced by Bora (also known as C13orf34 and FLJ22624), a known cofactor for aurora A (ref. 7). We show that Bora/aurora-A-dependent phosphorylation is a prerequisite for PLK1 to promote mitotic entry after a checkpoint-dependent arrest. Importantly, expression of a PLK1-T210D phospho-mimicking mutant partially overcomes the requirement for aurora A in checkpoint recovery. Taken together, these data demonstrate that the initial activation of PLK1 is a primary function of aurora A.
Collapse
Affiliation(s)
- Libor Macůrek
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht 3584CG, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Seki A, Coppinger JA, Jang CY, Yates JR, Fang G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008; 320:1655-8. [PMID: 18566290 PMCID: PMC2834883 DOI: 10.1126/science.1157425] [Citation(s) in RCA: 484] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A central question in the study of cell proliferation is, what controls cell-cycle transitions? Although the accumulation of mitotic cyclins drives the transition from the G2 phase to the M phase in embryonic cells, the trigger for mitotic entry in somatic cells remains unknown. We report that the synergistic action of Bora and the kinase Aurora A (Aur-A) controls the G2-M transition. Bora accumulates in the G2 phase and promotes Aur-A-mediated activation of Polo-like kinase 1 (Plk1), leading to the activation of cyclin-dependent kinase 1 and mitotic entry. Mechanistically, Bora interacts with Plk1 and controls the accessibility of its activation loop for phosphorylation and activation by Aur-A. Thus, Bora and Aur-A control mitotic entry, which provides a mechanism for one of the most important yet ill-defined events in the cell cycle.
Collapse
Affiliation(s)
- Akiko Seki
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020
| | - Judith A. Coppinger
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Chang-Young Jang
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Guowei Fang
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020
| |
Collapse
|
35
|
The yeast Tor signaling pathway is involved in G2/M transition via polo-kinase. PLoS One 2008; 3:e2223. [PMID: 18493323 PMCID: PMC2375053 DOI: 10.1371/journal.pone.0002223] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/02/2008] [Indexed: 12/20/2022] Open
Abstract
The target of rapamycin (Tor) protein plays central roles in cell growth. Rapamycin inhibits cell growth and promotes cell cycle arrest at G1 (G0). However, little is known about whether Tor is involved in other stages of the cell division cycle. Here we report that the rapamycin-sensitive Tor complex 1 (TORC1) is involved in G2/M transition in S. cerevisiae. Strains carrying a temperature-sensitive allele of KOG1 (kog1-105) encoding an essential component of TORC1, as well as yeast cell treated with rapamycin show mitotic delay with prolonged G2. Overexpression of Cdc5, the yeast polo-like kinase, rescues the growth defect of kog1-105, and in turn, Cdc5 activity is attenuated in kog1-105 cells. The TORC1-Type2A phosphatase pathway mediates nucleocytoplasmic transport of Cdc5, which is prerequisite for its proper localization and function. The C-terminal polo-box domain of Cdc5 has an inhibitory role in nuclear translocation. Taken together, our results indicate a novel function of Tor in the regulation of cell cycle and proliferation.
Collapse
|
36
|
Yamashiro S, Yamakita Y, Totsukawa G, Goto H, Kaibuchi K, Ito M, Hartshorne DJ, Matsumura F. Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing polo-like kinase 1. Dev Cell 2008; 14:787-97. [PMID: 18477460 PMCID: PMC2680213 DOI: 10.1016/j.devcel.2008.02.013] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 01/28/2008] [Accepted: 02/22/2008] [Indexed: 01/15/2023]
Abstract
Myosin phosphatase-targeting subunit 1 (MYPT1) binds to the catalytic subunit of protein phosphatase 1 (PP1C). This binding is believed to target PP1C to specific substrates including myosin II, thus controlling cellular contractility. Surprisingly, we found that during mitosis, mammalian MYPT1 binds to polo-like kinase 1 (PLK1). MYPT1 is phosphorylated during mitosis by proline-directed kinases including cdc2, which generates the binding motif for the polo box domain of PLK1. Depletion of PLK1 by small interfering RNAs is known to result in loss of gamma-tubulin recruitment to the centrosomes, blocking centrosome maturation and leading to mitotic arrest. We found that codepletion of MYPT1 and PLK1 reinstates gamma-tubulin at the centrosomes, rescuing the mitotic arrest. MYPT1 depletion increases phosphorylation of PLK1 at its activating site (Thr210) in vivo, explaining, at least in part, the rescue phenotype by codepletion. Taken together, our results identify a previously unrecognized role for MYPT1 in regulating mitosis by antagonizing PLK1.
Collapse
Affiliation(s)
- Shigeko Yamashiro
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Trenz K, Errico A, Costanzo V. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J 2008; 27:876-85. [PMID: 18309293 PMCID: PMC2265110 DOI: 10.1038/emboj.2008.29] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 02/07/2008] [Indexed: 01/07/2023] Open
Abstract
Polo-like kinase (Plk)1 is required for mitosis progression. However, although Plk1 is expressed throughout the cell cycle, its function during S-phase is unknown. Using Xenopus laevis egg extracts, we demonstrate that Plx1, the Xenopus orthologue of Plk1, is required for DNA replication in the presence of stalled replication forks induced by aphidicolin, etoposide or reduced levels of DNA-bound Mcm complexes. Plx1 binds to chromatin and suppresses the ATM/ATR-dependent intra-S-phase checkpoint that inhibits origin firing. This allows Cdc45 loading and derepression of DNA replication initiation. Checkpoint activation increases Plx1 binding to the Mcm complex through its Polo box domain. Plx1 recruitment to chromatin is independent of checkpoint mediators Tipin and Claspin. Instead, ATR-dependent phosphorylation of serine 92 of Mcm2 is required for the recruitment of Plx1 to chromatin and for the recovery of DNA replication under stress. Depletion of Plx1 leads to accumulation of chromosomal breakage that is prevented by the addition of recombinant Plx1. These data suggest that Plx1 promotes genome stability by regulating DNA replication under stressful conditions.
Collapse
Affiliation(s)
- Kristina Trenz
- Genome Stability Unit, London Research Institute, Clare Hall Laboratories, South Mimms, Herts, UK
| | | | | |
Collapse
|
38
|
Burakov AV, Zhapparova ON, Kovalenko OV, Zinovkina LA, Potekhina ES, Shanina NA, Weiss DG, Kuznetsov SA, Nadezhdina ES. Ste20-related protein kinase LOSK (SLK) controls microtubule radial array in interphase. Mol Biol Cell 2008; 19:1952-61. [PMID: 18287541 DOI: 10.1091/mbc.e06-12-1156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Interphase microtubules are organized into a radial array with centrosome in the center. This organization is a subject of cellular regulation that can be driven by protein phosphorylation. Only few protein kinases that regulate microtubule array in interphase cells have been described. Ste20-like protein kinase LOSK (SLK) was identified as a microtubule and centrosome-associated protein. In this study we have shown that the inhibition of LOSK activity by dominant-negative mutant K63R-DeltaT or by LOSK depletion with RNAi leads to unfocused microtubule arrangement. Microtubule disorganization is prominent in Vero, CV-1, and CHO-K1 cells but less distinct in HeLa cells. The effect is a result neither of microtubule stabilization nor of centrosome disruption. In cells with suppressed LOSK activity centrosomes are unable to anchor or to cap microtubules, though they keep nucleating microtubules. These centrosomes are depleted of dynactin. Vero cells overexpressing K63R-DeltaT have normal dynactin "comets" at microtubule ends and unaltered morphology of Golgi complex but are unable to polarize it at the wound edge. We conclude that protein kinase LOSK is required for radial microtubule organization and for the proper localization of Golgi complex in various cell types.
Collapse
Affiliation(s)
- Anton V Burakov
- Institute of Protein Research, Russian Academy of Science, 142290 Pushchino, Moscow Region, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nahreini P, Yan XD, Andreatta CP, Prasad KN, Toribara NW. Identifying altered gene expression in neuroblastoma cells preceding apoptosis. J Cancer Res Clin Oncol 2007; 134:411-9. [PMID: 17786477 DOI: 10.1007/s00432-007-0303-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 08/16/2007] [Indexed: 01/28/2023]
Abstract
PURPOSE Concomitant differentiation and partial inhibition of proteasome trigger cell death in a neuroblastoma cell line (NBP2). Neither induction of differentiation nor partial inhibition of proteasome alone affects the viability of NBP2 cells. We wanted to identify genes whose expression alters under concomitant conditions and may account for cell death. METHODS We used gel electrophoresis to analyze total genomic DNA for the detection of DNA fragmentation. Affymetrix Murine Genome U74A version 2 microarray was used to screen for approximately 6,000 functionally characterized genes and approximately 6,000 expressed sequence tags (ESTs). Real time PCR (RT-PCR) was performed to provide an accurate assessment of changes in gene expression. RESULTS Concomitant differentiation and partial inhibition of proteasome trigger apoptosis, characterized by genomic DNA fragmentation in NBP2 cells. We found that the expression of 41 genes changed 2.5-fold or more primarily under concomitant conditions midway through apoptosis. Based on real time PCR, the expression of galectin-3, glycosylated 96, a leucine zipper protein (LRG-21), and endothelial cell activated protein C receptor (EPCR) increased between 50-500-fold, whereas the expression of Polo serine/threonine kinase, N-myc, and Histone H2A.1 decreased ranging from 8 to 37 fold. Altered expression of galectin-3, EPCR, and LRG-21 was detected as early as 2-8 h post simultaneous conditions. CONCLUSION We identified new genes that might be involved in apoptotic events in neuroblastoma cells.
Collapse
Affiliation(s)
- Piruz Nahreini
- Department of Gastroenterology and Hepatology, School of Medicine, University of Colorado Health Sciences Center (UCHSC), Denver Health Medical Center (DHMC), Unit 7, Room 208, 777 Bannock St., Box-4000, Denver, CO 80204, USA.
| | | | | | | | | |
Collapse
|
40
|
Hammarton TC, Kramer S, Tetley L, Boshart M, Mottram JC. Trypanosoma brucei Polo-like kinase is essential for basal body duplication, kDNA segregation and cytokinesis. Mol Microbiol 2007; 65:1229-48. [PMID: 17662039 PMCID: PMC2169650 DOI: 10.1111/j.1365-2958.2007.05866.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2007] [Indexed: 11/29/2022]
Abstract
Polo-like kinases (PLKs) are conserved eukaryotic cell cycle regulators, which play multiple roles, particularly during mitosis. The function of Trypanosoma brucei PLK was investigated in procyclic and bloodstream-form parasites. In procyclic trypanosomes, RNA interference (RNAi) of PLK, or overexpression of TY1-epitope-tagged PLK (PLKty), but not overexpression of a kinase-dead variant, resulted in the accumulation of cells that had divided their nucleus but not their kinetoplast (2N1K cells). Analysis of basal bodies and flagella in these cells suggested the defect in kinetoplast division arose because of an inhibition of basal body duplication, which occurred when PLK expression levels were altered. Additionally, a defect in kDNA replication was observed in the 2N1K cells. However, the 2N1K cells obtained by each approach were not equivalent. Following PLK depletion, the single kinetoplast was predominantly located between the two divided nuclei, while in cells overexpressing PLKty, the kinetoplast was mainly found at the posterior end of the cell, suggesting a role for PLK kinase activity in basal body and kinetoplast migration. PLK RNAi in bloodstream trypanosomes also delayed kinetoplast division, and was further observed to inhibit furrow ingression during cytokinesis. Notably, no additional roles were detected for trypanosome PLK in mitosis, setting this protein kinase apart from its counterparts in other eukaryotes.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Infection and Immunity, Wellcome Centre for Molecular Parasitology, University of Glasgow, Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
41
|
Uckun FM, Dibirdik I, Qazi S, Vassilev A, Ma H, Mao C, Benyumov A, Emami KH. Anti-breast cancer activity of LFM-A13, a potent inhibitor of Polo-like kinase (PLK). Bioorg Med Chem 2007; 15:800-14. [PMID: 17098432 DOI: 10.1016/j.bmc.2006.10.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/07/2006] [Accepted: 10/23/2006] [Indexed: 11/21/2022]
Abstract
Molecular modeling studies led to the identification of LFM-A13 (alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl)propenamide) as a potent inhibitor of Polo-like kinase (Plk). LFM-A13 inhibited recombinant purified Plx1, the Xenopus homolog of Plk, in a concentration-dependent fashion, as measured by autophosphorylation and phosphorylation of a substrate Cdc25 peptide. LFM-A13 was a selective Plk inhibitor. While the human PLK3 kinase was also inhibited by LFM-A13 with an IC(50) value of 61 microM, none of the 7 other serine/threonine kinases, including CDK1, CDK2, CDK3, CHK1, IKK, MAPK1 or SAPK2a, none of the 10 tyrosine kinases, including ABL, BRK, BMX, c-KIT, FYN, IGF1R, PDGFR, JAK2, MET, or YES, or the lipid kinase PI3Kgamma were inhibited (IC(50) values >200-500 microM). The mode of Plk3 inhibition by LFM-A13 was competitive with respect to ATP with a K(i) value of 7.2 microM from Dixon plots. LFM-A13 blocked the cell division in a zebrafish (ZF) embryo model at the 16-cell stage of the embryonic development followed by total cell fusion and lysis. LFM-A13 prevented bipolar mitotic spindle assembly in human breast cancer cells and glioblastoma cells and when microinjected into living epithelial cells at the prometaphase stage of cell division, it caused a total mitotic arrest. Notably, LFM-A13-delayed tumor progression in the MMTV/neu transgenic mouse model of HER2 positive breast cancer at least as effectively as paclitaxel and gemcitabine. LFM-A13 showed a favorable toxicity profile in mice and rats. In particular there was no evidence of hematologic toxicity as documented by peripheral blood counts and bone marrow examinations. These results establish LFM-A13 as a small molecule inhibitor of Plk with in vitro and in vivo anti-proliferative activity against human breast cancer.
Collapse
Affiliation(s)
- Fatih M Uckun
- Paradigm Pharmaceuticals, 2139 4th Street, White Bear Lake, MN 55110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mori D, Yano Y, Toyo-oka K, Yoshida N, Yamada M, Muramatsu M, Zhang D, Saya H, Toyoshima YY, Kinoshita K, Wynshaw-Boris A, Hirotsune S. NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol Cell Biol 2006; 27:352-67. [PMID: 17060449 PMCID: PMC1800650 DOI: 10.1128/mcb.00878-06] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.
Collapse
Affiliation(s)
- Daisuke Mori
- Osaka City University Graduate School of Medicine, Genetic Disease Research, Asahi-machi 1-4-3 Abeno, Osaka 545-8586, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Feng Y, Yuan JH, Maloid SC, Fisher R, Copeland TD, Longo DL, Conrads TP, Veenstra TD, Ferris A, Hughes S, Dimitrov DS, Ferris DK. Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein Ran is important for bipolar spindle formation. Biochem Biophys Res Commun 2006; 349:144-52. [PMID: 16930555 DOI: 10.1016/j.bbrc.2006.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/03/2006] [Indexed: 01/21/2023]
Abstract
Polo-like kinase functions are essential for the establishment of a normal bipolar mitotic spindle, although precisely how Plk1 regulates the spindle is uncertain. In this study, we report that the small GTP/GDP-binding protein Ran is associated with Plk1. Plk1 is capable of phosphorylating co-immunoprecipitated Ran in vitro on serine-135 and Ran is phosphorylated in vivo at the same site during mitosis when Plk1 is normally activated. Cell cultures over-expressing a Ran S135D mutant have significantly higher numbers of abnormal mitotic cells than those over-expressing either wild-type or S135A Ran. The abnormalities in S135D mutant cells are similar to cells over-expressing Plk1. Our data suggests that Ran is a physiological substrate of Plk1 and that Plk1 regulates the spindle organization partially through its phosphorylation on Ran.
Collapse
Affiliation(s)
- Yang Feng
- Laboratory of Cancer Prevention, NCI at Frederick, Frederick, MD, USA; Nanobiology Program, CCR, NCI at Frederick, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mortensen EM, Haas W, Gygi M, Gygi SP, Kellogg DR. Cdc28-dependent regulation of the Cdc5/Polo kinase. Curr Biol 2006; 15:2033-7. [PMID: 16303563 DOI: 10.1016/j.cub.2005.10.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Polo kinase is activated as cells enter mitosis and plays a central role in coordinating diverse mitotic events, yet the mechanisms leading to activation of Polo kinase are poorly understood . Work in Xenopus meiotic cell cycles has suggested that Polo kinase functions in a pathway that helps trigger activation of Cdk1 . However, studies in other organisms have suggested that activation of Polo kinase is dependent upon Cdk1 and therefore occurs downstream of Cdk1 activation . In this study, we have investigated the role of Cdk1 in the activation of budding yeast Polo kinase. The budding yeast homologs of Cdk1 and Polo kinase are referred to as Cdc28 and Cdc5. We show that signaling from Cdc28 is required to maintain Cdc5 activity in vivo. Furthermore, purified Cdc28 associated with the mitotic cyclin Clb2 is sufficient to activate purified Cdc5 in vitro. A single Cdc28 consensus phosphorylation site found at threonine 242 in the activation loop segment of Cdc5 is required for Cdc5 function in vivo and for kinase activity in vitro, whereas four other Cdc28 consensus sites are dispensable. Analysis of Cdc5 phosphorylation by mass spectrometry indicates that threonine 242 is phosphorylated in vivo. These results suggest that Cdc28 activates Cdc5 via phosphorylation of threonine 242.
Collapse
Affiliation(s)
- Eric M Mortensen
- Sinsheimer Labs, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Human polo-like kinase 1 (PLK1) is essential during mitosis and in the maintenance of genomic stability. PLK1 is overexpressed in human tumours and has prognostic potential in cancer, indicating its involvement in carcinogenesis and its potential as a therapeutic target. The use of different PLK1 inhibitors has increased our knowledge of mitotic regulation and allowed us to assess their ability to suppress tumour growth in vivo. We address the structural features of the kinase domain and the unique polo-box domain of PLK1 that are most suited for drug development and discuss our current understanding of the therapeutic potential of PLK1.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodore-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | |
Collapse
|
46
|
Abstract
Research in different species has shown that Polo-like kinases are essential for successful cell division. In human cells, Polo-like kinase-1 (Plk1) has been implicated in the regulation of different processes, including mitotic entry, spindle formation and cytokinesis. Recently, a range of new downstream targets of Plk1 has been identified, as well as a molecular mechanism that explains recruitment of Plk1 to potential substrate proteins through its polo-box domain. On the basis of these reports, we discuss possible mechanisms by which Polo-like kinases can exert their multiple functions during mitosis. Polo-like kinases also function in DNA damage checkpoints. Plk1 has been shown to be a target of the G2 DNA damage checkpoint, while Cdc5, the Polo-like kinase in Saccharomyces cerevisiae, has long been known to be required for adaptation to persistent DNA damage. Just recently, a similar requirement for Polo-like kinases during checkpoint adaptation was demonstrated in multicellular organisms. Moreover, Plk1 was also shown to be required for checkpoint recovery following checkpoint inactivation, that is, in cells where the damage is completely repaired. Thus, Plk1 appears to play a role at multiple points during a restart of the cell cycle following DNA damage. Based on these novel observations, we discuss possible consequences of using Plk1 as a target in anticancer strategies.
Collapse
Affiliation(s)
- Marcel A T M van Vugt
- Division of Molecular Biology H8, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
47
|
Guarguaglini G, Duncan PI, Stierhof YD, Holmström T, Duensing S, Nigg EA. The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 2005; 16:1095-107. [PMID: 15616186 PMCID: PMC551476 DOI: 10.1091/mbc.e04-10-0939] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/10/2004] [Accepted: 12/13/2004] [Indexed: 01/21/2023] Open
Abstract
We report the characterization of Cep170, a forkhead-associated (FHA) domain protein of previously unknown function. Cep170 was identified in a yeast two-hybrid screen for interactors of Polo-like kinase 1 (Plk1). In human cells, Cep170 is constantly expressed throughout the cell cycle but phosphorylated during mitosis. It interacts with Plk1 in vivo and can be phosphorylated by Plk1 in vitro, suggesting that it is a physiological substrate of this kinase. Both overexpression and small interfering RNA (siRNA)-mediated depletion studies suggest a role for Cep170 in microtuble organization and cell morphology. Cep170 associates with centrosomes during interphase and with spindle microtubules during mitosis. As shown by immunoelectron microscopy, Cep170 associates with subdistal appendages, typical of the mature mother centriole. Thus, anti-Cep170 antibodies stain only one centriole during G1, S, and early G2, but two centrioles during late G2 phase of the cell cycle. We show that Cep170 labeling can be used to discriminate bona fide centriole overduplication from centriole amplification that results from aborted cell division.
Collapse
Affiliation(s)
- Giulia Guarguaglini
- Department of Cell Biology, Max-Planck Institute for Biochemistry, D-82152, Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
van de Weerdt BCM, van Vugt MATM, Lindon C, Kauw JJW, Rozendaal MJ, Klompmaker R, Wolthuis RMF, Medema RH. Uncoupling anaphase-promoting complex/cyclosome activity from spindle assembly checkpoint control by deregulating polo-like kinase 1. Mol Cell Biol 2005; 25:2031-44. [PMID: 15713655 PMCID: PMC549351 DOI: 10.1128/mcb.25.5.2031-2044.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/14/2004] [Accepted: 11/24/2004] [Indexed: 01/25/2023] Open
Abstract
Polo-like kinase 1 (Plk1) plays a role in numerous events in mitosis, but how the multiple functions of Plk1 are separated is poorly understood. We studied regulation of Plk1 through two putative phosphorylation residues, Ser-137 and Thr-210. Using phospho-specific antibodies, we found that Thr-210 phosphorylation precedes Ser-137 phosphorylation in vivo, the latter occurring specifically in late mitosis. We show that expression of two activating mutants of these residues, S137D and T210D, results in distinct mitotic phenotypes. Whereas expression of both phospho-mimicking mutants as well as of the double mutant leads to accelerated mitotic entry, further progression through mitosis is dramatically different: the T210D mutant causes a spindle assembly checkpoint-dependent delay, whereas the expression of the S137D mutant or the double mutant results in untimely activation of the anaphase-promoting complex/cyclosome (APC/C) and frequent mitotic catastrophe. Using nonphosphorylatable Plk1-S137A and Plk1-T210A mutants, we show that both sites contribute to proper mitotic progression. Based on these observations, we propose that Plk1 function is altered at different stages of mitosis through consecutive posttranslational events, e.g., at Ser-137 and Thr-210. Furthermore, our data show that uncontrolled Plk1 activation can uncouple APC/C activity from spindle assembly checkpoint control.
Collapse
|
49
|
Abstract
The Xenopus Polo-like kinase Plx1 plays multiple roles in mitosis. Accumulating evidence shows that Plx1 is the trigger kinase for the G2/M transition that phosphorylates and activates the phosphatase Cdc25C, which subsequently dephosphorylates Cdc2/cyclin B and initiates a positive feedback loop between Cdc25C and Cdc2/cyclin B. Recent findings indicate that Plx1 itself is also in a positive feedback loop. It phosphorylates and activates the protein kinase xPlkk1, which itself then phosphorylates and further activates Plx1. Plx1 functions on the centrosome to promote bipolar spindle formation. Plx1 associates with the anaphase-promoting complex/cyclosome (APC/C) and is required to activate the APC/C for degradation of mitotic regulators required for sister chromatid separation and exit from mitosis. Plx1 is also required for cytokinesis and is localized on the midbody of the contractile ring. All known functions of Plx1 require not only its kinase activity but also an intact polo box domain in the C-terminus.
Collapse
Affiliation(s)
- Junjun Liu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
50
|
Rapley J, Baxter JE, Blot J, Wattam SL, Casenghi M, Meraldi P, Nigg EA, Fry AM. Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases. Mol Cell Biol 2005; 25:1309-24. [PMID: 15684383 PMCID: PMC548010 DOI: 10.1128/mcb.25.4.1309-1324.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/17/2004] [Accepted: 11/12/2004] [Indexed: 11/20/2022] Open
Abstract
Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.
Collapse
Affiliation(s)
- Joseph Rapley
- Department of Biochemistry, University of Leicester, University Rd., Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|