1
|
Shi P, Xu J, Cui H. The Recent Research Progress of NF-κB Signaling on the Proliferation, Migration, Invasion, Immune Escape and Drug Resistance of Glioblastoma. Int J Mol Sci 2023; 24:10337. [PMID: 37373484 PMCID: PMC10298967 DOI: 10.3390/ijms241210337] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor in humans, accounting for approximately 45-50% of all primary brain tumors. How to conduct early diagnosis, targeted intervention, and prognostic evaluation of GBM, in order to improve the survival rate of glioblastoma patients, has always been an urgent clinical problem to be solved. Therefore, a deeper understanding of the molecular mechanisms underlying the occurrence and development of GBM is also needed. Like many other cancers, NF-κB signaling plays a crucial role in tumor growth and therapeutic resistance in GBM. However, the molecular mechanism underlying the high activity of NF-κB in GBM remains to be elucidated. This review aims to identify and summarize the NF-κB signaling involved in the recent pathogenesis of GBM, as well as basic therapy for GBM via NF-κB signaling.
Collapse
Affiliation(s)
- Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
2
|
Zhang H, Lang W, Li S, Xu C, Wang X, Li Y, Zhang Z, Wu T, Feng M. Corynoline ameliorates dextran sulfate sodium-induced colitis in mice by modulating Nrf2/NF-κB pathway. Immunopharmacol Immunotoxicol 2023; 45:26-34. [PMID: 35980837 DOI: 10.1080/08923973.2022.2112218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Corynoline is an active substance extracted from Corydalis bungeana Turcz and exerts a therapeutic effect in multiple diseases by alleviating inflammatory response. The present study sought to elucidate the role of corynoline in ulcerative colitis (UC). METHODS The experimental colitis models were induced in BALB/c mice via receiving a drinking water supplemented with 3.5% (I) dextran sulfate sodium (DSS) ad libitum for 7 days. RESULTS Corynoline administration inhibited body weight loss, colon shortening, disease activity index and colonic pathomorphological changes in DSS-treated mice. Besides, corynoline down-regulated the levels of pro-inflammatory interleukin (IL)-1β, IL-6 and tumor necrosis factor Alpha (TNF-α), as well as decreased myeloperoxidase (MPO) activity in the colon of DSS-treated mice. In addition, severe oxidative stress in the colonic tissues of DSS-treated was mitigated by corynoline treatment. However, these beneficial effects were reversed by a specific nuclear factor E2-related factor 2 (Nrf2) inhibitor ML385 intervention. Further evidence confirmed that corynoline promoted Nrf2 nuclear migration and heme oxygenase-1 gene expression in the colonic tissues of UC mice. Besides, corynoline treatment restrained colonic nuclear factor-kappa B (NF-κB) activation as proved by the decrease in phosphorylation and nuclear translocation of NF-κB. CONCLUSIONS Corynoline ameliorates DSS-induced mouse colitis, which may provide a promising therapeutic strategy for UC treatment.
Collapse
Affiliation(s)
- Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, People's Republic of China
| | - Wuying Lang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, People's Republic of China
| | - Sufen Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, People's Republic of China
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, People's Republic of China
| | - Xiumin Wang
- Beijing Centre Technology Co., Ltd., Beijing, People's Republic of China
| | - Yunyu Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, People's Republic of China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, People's Republic of China
| | - Tonglei Wu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, People's Republic of China
| | - Minshan Feng
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, People's Republic of China
| |
Collapse
|
3
|
Sabater L, Gossart JB, Hernandez I, Rico D, Blanchard A, Borthwick LA, Fisher AJ, Majo J, Jiwa K, Collins A, Abbate G, Oakley F, Mann DA, Mann J. miRNA Expression in Fibroblastic Foci within Idiopathic Pulmonary Fibrosis Lungs Reveals Novel Disease-Relevant Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:417-429. [PMID: 36690076 DOI: 10.1016/j.ajpath.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023]
Abstract
miRNAs are a class of noncoding RNAs of approximately 22 nucleotides long that play an important role in regulating gene expression at a post-transcriptional level. Aberrant levels of miRNAs have been associated with profibrotic processes in idiopathic pulmonary fibrosis (IPF). However, most of these studies used whole IPF tissue or in vitro monocultures in which fibrosis has been artificially induced. In this study, we used laser microdissection to collect fibroblastic foci (FF), the key pathologic lesion in IPF, then isolate miRNAs and compare their expression levels with those found in whole IPF lung tissue and/or in vitro cultured fibroblast from IPF or normal lungs. Sequencing libraries were generated, and data generated were bioinformatically analyzed. A total of 18 miRNAs were significantly overexpressed in FF tissue when compared with whole IPF tissue; of these molecules, 15 were unique to FF. Comparison of FF with cultured IPF fibroblasts also revealed differences in miRNA composition that impact on several signaling pathways. The miRNA composition of FF is both overlapping and distinct from that of whole IPF tissue or cultured IPF fibroblasts and highlights the importance of characterizing FF biology as a phenotypically and functionally discrete tissue microenvironment.
Collapse
Affiliation(s)
- Laura Sabater
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jean B Gossart
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Inmaculada Hernandez
- Computational Epigenomics Laboratory, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Rico
- Computational Epigenomics Laboratory, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andy Blanchard
- GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Fisher
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Joaquim Majo
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Kasim Jiwa
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Giuseppe Abbate
- FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Vilmundarson RO, Heydarikhorneh N, Duong A, Ho T, Keyhanian K, Soheili F, Chen HH, Stewart AFR. Savior Siblings Might Rescue Fetal Lethality But Not Adult Lymphoma in Irf2bp2-Null Mice. Front Immunol 2022; 13:868053. [PMID: 35865523 PMCID: PMC9295810 DOI: 10.3389/fimmu.2022.868053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon regulatory factor 2 binding protein 2 (Irf2bp2), a co-repressor of Irf2, is required for fetal hepatic erythropoiesis through the expansion of erythromyeloid progenitors. Mice with germline ablation of the entire Irf2bp2 transcript produced no viable Irf2bp2-null pups in first litters. In subsequent litters, fewer than 1/3 of the expected Irf2bp2-null pups were born and half survived to adulthood. As in humans with somatic mutations in IRF2BP2, adult Irf2bp2-null mice developed lymphoma. Transcriptome profiling of liver, heart, and skeletal muscle from Irf2bp2-null adult mice revealed a predominant upregulation of interferon-responsive genes. Of interest, hematopoietic stem cell-enriched transcription factors (Etv6, Fli1, Ikzf1, and Runx1) were also elevated in Irf2bp2-null livers. Intriguingly, Irf2bp2-positive mwfi 2yeloid (but not lymphoid) cells were detected in the livers of adult Irf2bp2-null mice. In female Irf2bp2-null mice, these cells carried a Y chromosome while in male Irf2bp2-null livers, no cells with Barr bodies (inactivated X chromosomes) were detected, indicating that Irf2bp2-positive erythromyeloid cells might be acquired only from male siblings of prior litters by transmaternal microchimerism. These cells likely rescue the deficit in fetal erythropoiesis, but not adult-onset lymphomagenesis, caused by Irfb2p2 ablation.
Collapse
Affiliation(s)
- Ragnar O. Vilmundarson
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Niloufar Heydarikhorneh
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - An Duong
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Tiffany Ho
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Kianoosh Keyhanian
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Institute, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Neuroscience Division, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Fariborz Soheili
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Hsiao-Huei Chen
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Institute, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Neuroscience Division, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- *Correspondence: Hsiao-Huei Chen, ; Alexandre F. R. Stewart,
| | - Alexandre F. R. Stewart
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Hsiao-Huei Chen, ; Alexandre F. R. Stewart,
| |
Collapse
|
5
|
Heiniö C, Havunen R, Santos J, de Lint K, Cervera-Carrascon V, Kanerva A, Hemminki A. TNFa and IL2 Encoding Oncolytic Adenovirus Activates Pathogen and Danger-Associated Immunological Signaling. Cells 2020; 9:cells9040798. [PMID: 32225009 PMCID: PMC7225950 DOI: 10.3390/cells9040798] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
In order to break tumor resistance towards traditional treatments, we investigate the response of tumor and immune cells to a novel, cytokine-armed oncolytic adenovirus: Ad5/3-d24-E2F-hTNFa-IRES-hIL2 (also known as TILT-123 and OAd.TNFa-IL2). There are several pattern recognition receptors (PRR) that might mediate adenovirus-infection recognition. However, the role and specific effects of each PRR on the tumor microenvironment and treatment outcome remain unclear. Hence, the aim of this study was to investigate the effects of OAd.TNFa-IL2 infection on PRR-mediated danger- and pathogen-associated molecular pattern (DAMP and PAMP, respectively) signaling. In addition, we wanted to see which PRRs mediate an antitumor response and are therefore relevant for optimizing this virotherapy. We determined that OAd.TNFa-IL2 induced DAMP and PAMP release and consequent tumor microenvironment modulation. We show that the AIM2 inflammasome is activated during OAd.TNFa-IL2 virotherapy, thus creating an immunostimulatory antitumor microenvironment.
Collapse
Affiliation(s)
- Camilla Heiniö
- Cancer Gene Therapy Group, Faculty of Medicine, TRIMM, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland; (C.H.); (J.S.); (V.C.-C.); (A.K.)
| | - Riikka Havunen
- TILT Biotherapeutics Ltd., Haartmaninkatu 3, 00290 Helsinki, Finland;
| | - Joao Santos
- Cancer Gene Therapy Group, Faculty of Medicine, TRIMM, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland; (C.H.); (J.S.); (V.C.-C.); (A.K.)
- TILT Biotherapeutics Ltd., Haartmaninkatu 3, 00290 Helsinki, Finland;
| | - Klaas de Lint
- Cancer Center Amsterdam, Department of Clinical Genetics, Section Oncogenetics, Amsterdam UMC, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands;
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Faculty of Medicine, TRIMM, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland; (C.H.); (J.S.); (V.C.-C.); (A.K.)
- TILT Biotherapeutics Ltd., Haartmaninkatu 3, 00290 Helsinki, Finland;
| | - Anna Kanerva
- Cancer Gene Therapy Group, Faculty of Medicine, TRIMM, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland; (C.H.); (J.S.); (V.C.-C.); (A.K.)
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Haartmaninkatu 2, 00290 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Faculty of Medicine, TRIMM, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland; (C.H.); (J.S.); (V.C.-C.); (A.K.)
- TILT Biotherapeutics Ltd., Haartmaninkatu 3, 00290 Helsinki, Finland;
- Helsinki University Hospital Comprehensive Cancer Center, Paciuksenkatu 3, 00290 Helsinki, Finland
- Correspondence:
| |
Collapse
|
6
|
Li J, Guo A, Wang Q, Li Y, Zhao J, Lu J, Pei G. NF‐κB directly regulates β‐arrestin‐1 expression and forms a negative feedback circuit in TNF‐α‐induced cell death. FASEB J 2018; 32:4096-4106. [DOI: 10.1096/fj.201700642rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juan Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- St. Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchThe Rockefeller UniversityNew YorkNYUSA
| | - Ao Guo
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Qinying Wang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yuanyuan Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Jian Zhao
- Translational Medical Center for Stem Cell TherapyShanghai East HospitalSchool of MedicineShanghaiChina
| | - Jing Lu
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Gang Pei
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Collaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
7
|
Chen Q, Tong C, Ma S, Zhou L, Zhao L, Zhao X. Involvement of MicroRNAs in Probiotics-Induced Reduction of the Cecal Inflammation by Salmonella Typhimurium. Front Immunol 2017; 8:704. [PMID: 28659929 PMCID: PMC5468434 DOI: 10.3389/fimmu.2017.00704] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
The microRNAs (miRNAs) have been shown to play important roles in the development of the immune system and in regulation of host inflammation responses. Probiotics can effectively alleviate the inflammation caused by Salmonella in chickens. However, whether and how miRNAs are involved in modulation of the inflammation response in the gut of chickens have not been reported. In this study, the impact of a probiotics, Lactobacillus plantarum Z01 (LPZ01), was investigated on the cecal miRNAs and cytokine secretions in Salmonella Typhimurium (S. Typhimurium)-infected chickens at the age of 3 days. Newly hatched chicks were assigned to four groups (1): NC (basal diet) (2): S (basal diet + S. Typhimurium challenged) (3): SP (basal diet + S. Typhimurium challenged + LPZ01) (4): P (basal diet + LPZ01). In comparison with the S group, chicks in the SP group reduced the number of S. Typhimurium and had lower levels of interferon-γ and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) in ceca post challenge. Expression of 14 miRNAs was significantly affected by the presence of S. Typhimurium and/or lactobacillus. Five differential expression miRNAs (gga-miR-215-5p, gga-miR-3525, gga-miR-193a-5p, gga-miR-122-5p, and gga-miR-375) were randomly selected for confirmation by the RT-PCR. Predicted target genes of differentially expressed miRNAs were enriched in regulation of cAMP-dependent protein kinase activity, stress-activated MAPK cascade, immune system development and regulation of immune system process as well as in immune related pathways such as MAPK and Wnt signaling pathways. The relationship between changes of miRNAs and changes of cytokines was explored. Finally, 119 novel miRNAs were identified in 36 libraries totally. Identification of novel miRNAs significantly expanded the repertoire of chicken miRNAs and provided the basis for understanding the function of miRNAs in the host. Our results suggest that the probiotics reduce the inflammation of the S. Typhimurium infection in neonatal broiler chicks, at least partially, through regulation of miRNAs expression.
Collapse
Affiliation(s)
- Qiaoling Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chao Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shaoyang Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Luoxiong Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lili Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Yanagida M, Jung G, Tanaka Y, Sone S, Fujishiro M, Ikeda K, Nozawa K, Kaneko H, Takasaki Y, Ogawa H, Takamori K, Sekigawa I. Serum proteome analysis in patients with rheumatoid arthritis receiving therapy with etanercept, a chimeric tumor necrosis factor-alpha receptor. Int J Rheum Dis 2012; 15:486-95. [PMID: 23083039 DOI: 10.1111/j.1756-185x.2012.01816.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIM Rheumatoid arthritis (RA) is a chronic inflammatory disorder of the synovium resulting in the destruction of affected joint cartilage and bone structures. Etanercept is a biological agent that blocks the tumor necrosis factor-α (TNF-α)-mediated inflammatory processes in RA patients, and has a regenerative effect on cartilage. In order to identify novel disease-related proteins and candidate biomarkers, we performed proteomic profiling of the serum in patients with RA who were treated with etanercept. METHOD Serum samples were obtained from eight RA patients before and after etanercept treatment. The low molecular weight proteins in the serum were concentrated and analyzed by liquid chromatography-tandem mass spectrometry. The results before and after etanercept treatment were compared by the spectrum count method. RESULTS Among a total of 477 proteins identified, 12 were found to be decreased and five were increased by etanercept treatment. Some of the changed proteins were known to be related to RA, and most of the other changed proteins may play possible roles in the TNF-α signaling pathway or the state of cartilage and extracellular matrix. CONCLUSION The present proteomic study identified several proteins that could be involved in the pathogenesis of RA. These findings could thus lead to the identification of novel candidate disease-related protein biomarkers for RA, or indicate new targets for therapy.
Collapse
Affiliation(s)
- Mitsuaki Yanagida
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, and Department of Internal Medicine, Juntendo University Urayasu Hospital, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
10
|
Tee JM, Peppelenbosch MP. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol 2010; 45:318-30. [PMID: 20515317 PMCID: PMC2942773 DOI: 10.3109/10409238.2010.488217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies.
Collapse
Affiliation(s)
- Jin-Ming Tee
- Hubrecht Institute for Developmental Biology and Stem Cell Research-University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
11
|
Das B, Gupta S, Vasanji A, Xu Z, Misra S, Sen S. Nuclear co-translocation of myotrophin and p65 stimulates myocyte growth. Regulation by myotrophin hairpin loops. J Biol Chem 2008; 283:27947-27956. [PMID: 18693253 DOI: 10.1074/jbc.m801210200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotrophin, a 12-kDa ankyrin repeat protein, stimulates protein synthesis and cardiomyocyte growth to initiate cardiac hypertrophy by activating the NF-kappaB signaling cascade. We found that, after internalization into myocytes, myotrophin cotranslocates into the nucleus with p65 to stimulate myocyte growth. We used structure-based mutations on the hairpin loops of myotrophin to determine the effect of the loops on myotrophin and p65 localization, induction of protein synthesis, and cardiac hypertrophy. Loop mutants, most prominently glutamic acid 33-->alanine (E33A), stimulated protein synthesis much less than wild type. Myotrophin-E33A internalized into myocytes but did not translocate into the nucleus and failed to promote nuclear translocation of p65. In addition, two cardiac hypertrophy marker genes, atrial natriuretic factor and beta-myosin heavy chain, were not up-regulated in E33A-treated cells. Myotrophin-induced myocyte growth and initiation of hypertrophy thus require nuclear co-translocation of myotrophin and p65, in a manner that depends crucially on the myotrophin hairpin loops.
Collapse
Affiliation(s)
- Biswajit Das
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sudhiranjan Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Amit Vasanji
- Image Processing and Analysis Center, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Zhen Xu
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Saurav Misra
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Subha Sen
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
12
|
Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL. Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J Biol Chem 2008; 283:23419-28. [PMID: 18544535 DOI: 10.1074/jbc.m802967200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1, p55) and 2 (TNFR2, p75) are characterized by several cysteine-rich modules in the extracellular domain, raising the possibility that redox-induced modifications of these cysteine residues might alter TNFR function. To test this possibility, we examined fluorescence resonance energy transfer (FRET) in 293T cells transfected with CFP- and YFP-tagged TNFRs exposed to the thiol oxidant diamide. Treatment with high concentrations of diamide (1 mm) resulted in an increase in the FRET signal that was sensitive to inhibition with the reducing agent dithiothreitol, suggesting that oxidative stress resulted in TNFR self-association. Treatment of cells with low concentrations of diamide (1 mum) that was not sufficient to provoke TNFR self-association resulted in increased TNF-induced FRET signals relative to the untreated cells, suggesting that oxidative stress enhanced ligand-dependent TNFR signaling. Similar findings were obtained when the TNFR1- and TNFR2-transfected cells were pretreated with a cell-impermeable oxidase, DsbA, that catalyzes disulfide bond formation between thiol groups on cysteine residues. The changes in TNFR self-association were functionally significant, because pretreating the HeLa cells and 293T cells resulted in increased TNF-induced NF-kappaB activation and TNF-induced expression of IkappaB and syndecan-4 mRNA levels. Although pretreatment with DsbA did not result in an increase in TNF binding to TNFRs, it resulted in increased TNF-induced activation of NF-kappaB, consistent with an allosteric modification of the TNFRs. Taken together, these results suggest that oxidative stress promotes TNFR receptor self-interaction and ligand-independent and enhanced ligand-dependent TNF signaling.
Collapse
Affiliation(s)
- Hatice Z Ozsoy
- Department of Medicine and Molecular Physiology and Biophysics, Winters Center for Heart Failure Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Knuefermann P, Schwederski M, Velten M, Krings P, Ehrentraut H, Rüdiger M, Boehm O, Fink K, Dreiner U, Grohé C, Hoeft A, Baumgarten G, Koch A, Zacharowski K, Meyer R. Bacterial DNA induces myocardial inflammation and reduces cardiomyocyte contractility: role of toll-like receptor 9. Cardiovasc Res 2008; 78:26-35. [PMID: 18194990 DOI: 10.1093/cvr/cvn011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Myocardial function is severely compromised during sepsis. Several underlying mechanisms have been proposed. The innate immune system, i.e. toll-like receptor (TLR) 2 and 4, significantly contributes to cardiac dysfunction. Little is known regarding TLR9 and its pathogenic ligand bacterial DNA in the myocardium. We therefore studied the role of TLR9 in myocardial inflammation and cardiac contractility. METHODS AND RESULTS Wild-type (WT, C57BL/6) and TLR9-deficient (TLR9-D) mice and isolated cardiomyocytes were challenged with synthetic bacterial DNA (CpG-ODN). Myocardial contractility as well as markers of inflammation/signalling were determined. Isolated cardiomyocytes incorporated fluorescence-marked CpG-ODN. In WT mice, CpG-ODN caused a robust response in hearts demonstrated by increased levels of tumour necrosis factor (TNF-alpha), interleukin (IL)-1beta, IL-6, inducible nitric oxide synthase (iNOS), and nuclear factor kappaB activity. This inflammatory response was absent in TLR9-D mice. Under similar conditions, contractility measurements of isolated ventricular cardiomyocytes demonstrated a TLR9-dependent loss of sarcomeric shortening after CpG-ODN exposure. This observation was iNOS dependent as the application of a specific iNOS inhibitor reversed sarcomeric shortening to normal levels. CONCLUSION Our data suggest that bacterial DNA contributes to myocardial cytokine production and loss of cardiomyocyte contractility via TLR9.
Collapse
Affiliation(s)
- Pascal Knuefermann
- Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn 53105, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin CW, Ting AY. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 2007; 128:4542-3. [PMID: 16594669 PMCID: PMC2561265 DOI: 10.1021/ja0604111] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-specific protein labeling methods allow cell biologists to access the vast array of existing chemical probes for the study of specific proteins of interest in the live cell context. Here we describe the use of the transglutaminase enzyme from guinea pig liver (gpTGase), whose natural function is to cross-link glutamine and lysine side chains, to covalently conjugate various small-molecule probes to recombinant proteins fused to a 6- or 7-amino acid transglutaminase recognition sequence, called a Q-tag. We demonstrate labeling of Q-tag fusion proteins both in vitro and on the surface of living mammalian cells with biotin, fluorophores, and a benzophenone photoaffinity probe. To illustrate the utility of this labeling, we tagged the NF-kappaB p50 transcription factor with benzophenone, cross-linked with UV light, and observed increased levels of p50 homodimerization in the presence of DNA and the binding protein myotrophin.
Collapse
|
15
|
Knuefermann P, Baumgarten G, Koch A, Schwederski M, Velten M, Ehrentraut H, Mersmann J, Meyer R, Hoeft A, Zacharowski K, Grohé C. CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo. Respir Res 2007; 8:72. [PMID: 17925007 PMCID: PMC2173891 DOI: 10.1186/1465-9921-8-72] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 10/09/2007] [Indexed: 01/11/2023] Open
Abstract
Background Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo. Methods Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured. Results In WT mice, CpG-ODN induced a strong activation of pulmonary NFκB as well as a significant increase in pulmonary TNF-α and IL-1β mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice. Conclusion This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9.
Collapse
Affiliation(s)
- Pascal Knuefermann
- Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53125 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cardiac hypertrophy and heart failure are major causes of morbidity and mortality in Western societies. Many factors have been implicated in cardiac remodeling, including alterations in gene expression in myocytes, cardiomyocytes apoptosis, cytokines and growth factors that influence cardiac dynamics, and deficits in energy metabolism as well as alterations in cardiac extracellular matrix composition. Many therapeutic means have been shown to prevent or reverse cardiac hypertrophy. New concepts for characterizing the pathophysiology of cardiac hypertrophy have been drawn from various aspects, including medical therapy and gene therapy, or use of stem cells for tissue regeneration. In this review, we focus on various types of cardiac hypertrophy, defining the causes of hypertrophy, describing available animal models of hypertrophy, discussing the mechanisms for development of hypertrophy and its transition to heart failure, and presenting the potential use of novel promising therapeutic strategies derived from new advances in basic scientific research.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
17
|
Harvey AJ, Navarrete Santos A, Kirstein M, Kind KL, Fischer B, Thompson JG. Differential expression of oxygen-regulated genes in bovine blastocysts. Mol Reprod Dev 2007; 74:290-9. [PMID: 16998843 DOI: 10.1002/mrd.20617] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low oxygen conditions (2%) during post-compaction culture of bovine blastocysts improve embryo quality, which is associated with a small yet significant increase in the expression of glucose transporter 1 (GLUT-1), suggesting a role of oxygen in embryo development mediated through oxygen-sensitive gene expression. However, bovine embryos to at least the blastocyst stage lack a key regulator of oxygen-sensitive gene expression, hypoxia-inducible factor 1alpha (HIF1alpha). A second, less well-characterized protein (HIF2alpha) is, however, detectable from the 8-cell stage of development. Here we use differential display to determine additional gene targets in bovine embryos in response to low oxygen conditions. While development to the blastocyst stage was unaffected by the oxygen concentration used during post-compaction culture, differential display identified oxygen-regulation of myotrophin and anaphase promoting complex 1 expression, with significantly lower levels observed following culture under 20% oxygen than 2% oxygen. These results further support the hypothesis that the level of gene expression of specific transcripts by bovine embryos alters in response to changes in the oxygen environment post-compaction. Specifically, we have identified two oxygen-sensitive genes that are potentially regulated by HIF2 in the bovine blastocyst.
Collapse
Affiliation(s)
- A J Harvey
- Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Khan SQ, Kelly D, Quinn P, Davies JE, Ng LL. Myotrophin is a more powerful predictor of major adverse cardiac events following acute coronary syndrome than N-terminal pro-B-type natriuretic peptide. Clin Sci (Lond) 2007; 112:251-6. [PMID: 17014419 DOI: 10.1042/cs20060191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myotrophin is a 12 kDa protein initially isolated from hypertrophied hearts of spontaneously hypertensive rats and acts by modulating NF-kappaB (nuclear factor kappaB) activity. We have reported previously the presence of myotrophin in patients with human systolic heart failure; however, its role as a predictor of MACE (major adverse cardiac events) in patients with ACS (acute coronary syndrome) is unclear. In the present study, we sought to investigate this and compared myotrophin with NTproBNP (N-terminal pro-B-type natriuretic peptide), a marker of MACE. We studied 356 patients with ACS {276 men; mean age, 63.0+/-12.8 years; 80.6% STEMI [ST segment elevation MI (myocardial infarction)]; and 19.4% NSTEMI (non-STEMI)}. Blood measurement was made at 25-48 h after the onset of chest pain. The plasma concentration of myotrophin and NTproBNP was determined using in-house non-competitive immunoassays. Patients were followed-up for the combined end point of death, MI or need for urgent revascularization. Over the median follow-up period of 355 (range 0-645) days, there were 28 deaths, 27 non-fatal MIs and 73 patients required urgent revascularization. Myotrophin was raised in patients with MACE compared with survivors [510.7 (116.0-7445.6) fmol/ml compared with 371.5 (51.8-6990.4) fmol/ml respectively; P=0.001; values are medians (range)]. Using a Cox proportional hazards model, myotrophin {HR (hazard ratio), 1.64 [95% CI (confidence interval), 0.97-2.76]; P=0.05} and Killip class above 1 [HR, 1.52 (95% CI, 0.93-2.42); P=0.10] were the only independent predictors of MACE. A Kaplan-Meier survival curve revealed a significantly better clinical outcome in patients with myotrophin below the median compared with those with myotrophin above the median (log rank, 7.63; P=0.006). In conclusion, after an ACS, levels of myotrophin are more informative at predicting MACE than NTproBNP and may be useful to risk stratify patients.
Collapse
Affiliation(s)
- Sohail Q Khan
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | | | | | | | | |
Collapse
|
19
|
Pajonk F, Riedisser A, Henke M, McBride WH, Fiebich B. The effects of tea extracts on proinflammatory signaling. BMC Med 2006; 4:28. [PMID: 17140430 PMCID: PMC1698929 DOI: 10.1186/1741-7015-4-28] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/01/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skin toxicity is a common side effect of radiotherapy for solid tumors. Its management can cause treatment gaps and thus can impair cancer treatment. At present, in many countries no standard recommendation for treatment of skin during radiotherapy exists. In this study, we explored the effect of topically-applied tea extracts on the duration of radiation-induced skin toxicity. We investigated the underlying molecular mechanisms and compared effects of tea extracts with the effects of epigallocatechin-gallate, the proposed most-active moiety of green tea. METHODS Data from 60 patients with cancer of the head and neck or pelvic region topically treated with green or black tea extracts were analyzed retrospectively. Tea extracts were compared for their ability to modulate IL-1beta, IL-6, IL-8, TNFalpha and PGE2 release from human monocytes. Effects of tea extracts on 26S proteasome function were assessed. NF-kappaB activity was monitored by EMSAs. Viability and radiation response of macrophages after exposure to tea extracts was measured by MTT assays. RESULTS Tea extracts supported the restitution of skin integrity. Tea extracts inhibited proteasome function and suppressed cytokine release. NF-kappaB activity was altered by tea extracts in a complex, caspase-dependent manner, which differed from the effects of epigallocatechin-gallate. Additionally, both tea extracts, as well as epigallocatechin-gallate, slightly protected macrophages from ionizing radiation CONCLUSION Tea extracts are an efficient, broadly available treatment option for patients suffering from acute radiation-induced skin toxicity. The molecular mechanisms underlying the beneficial effects are complex, and most likely not exclusively dependent on effects of tea polyphenols such as epigallocatechin-gallate.
Collapse
Affiliation(s)
- Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1714, USA
| | - Anja Riedisser
- Department of Radiation Oncology, University Hospital of Freiburg, Germany
| | - Michael Henke
- Department of Radiation Oncology, University Hospital of Freiburg, Germany
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1714, USA
| | - Bernd Fiebich
- Department of Psychiatry, University Hospital of Freiburg, Germany
| |
Collapse
|
20
|
Xiong Z, Liu E, Yan Y, Silver RT, Yang F, Chen IH, Chen Y, Verstovsek S, Wang H, Prchal J, Yang XF. An unconventional antigen translated by a novel internal ribosome entry site elicits antitumor humoral immune reactions. THE JOURNAL OF IMMUNOLOGY 2006; 177:4907-16. [PMID: 16982933 PMCID: PMC3902139 DOI: 10.4049/jimmunol.177.7.4907] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-tumor Ags that elicit antitumor immune responses in responses to IFN-alpha stimulation remain poorly defined. We screened a human testis cDNA library with sera from three polycythemia vera patients who responded to IFN-alpha and identified a novel Ag, MPD6. MPD6 belongs to the group of cryptic Ags without conventional genomic structure and is encoded by a cryptic open reading frame located in the 3'-untranslated region of myotrophin mRNA. MPD6 elicits IgG Ab responses in a subset of polycythemia vera patients, as well as patients with chronic myelogenous leukemia and prostate cancer, suggesting that it is broadly immunogenic. The expression of myotrophin-MPD6 transcripts was up-regulated in some tumor cells, but only slightly increased in K562 cells in response to IFN-alpha treatment. By using bicistronic reporter constructs, we showed that the translation of MPD6 was mediated by a novel internal ribosome entry site (IRES) upstream of the MPD6 reading frame. Furthermore, the MPD6-IRES-mediated translation, but not myotrophin-MPD6 transcription, was significantly up-regulated in response to IFN-alpha stimulation. These findings demonstrate that a novel IRES-mediated mechanism may be responsible for the translation of unconventional self-Ag MPD6 in responsive to IFN-alpha stimulation. The eliciting antitumor immune response against unconventional Ag MPD6 in patients with myeloproliferative diseases suggests MPD6 as a potential target of novel immunotherapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/physiology
- Antigens, Neoplasm/ultrastructure
- Blotting, Northern
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Gene Library
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Interferon-gamma/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Male
- Molecular Sequence Data
- Polycythemia Vera/immunology
- Prostatic Neoplasms/immunology
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/ultrastructure
- Testis/physiology
Collapse
Affiliation(s)
- Zeyu Xiong
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Enli Liu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yan Yan
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Richard T. Silver
- Department of Medicine, New York Presbyterian-Weill Cornell Medical Center, New York, NY 10021
| | - Fan Yang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Irene H. Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Yangyang Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Hong Wang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Josef Prchal
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Xiao-Feng Yang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
- Address correspondence and reprint requests to Dr. Xiao-Feng Yang, Department of Pharmacology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140.
| |
Collapse
|
21
|
Baumgarten G, Knuefermann P, Wrigge H, Putensen C, Stapel H, Fink K, Meyer R, Hoeft A, Grohé C. Role of Toll-like receptor 4 for the pathogenesis of acute lung injury in Gram-negative sepsis. Eur J Anaesthesiol 2006; 23:1041-8. [PMID: 16836770 DOI: 10.1017/s0265021506001098] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2006] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE Proinflammatory cytokines as well as nitric oxide (NO) play a major role in mediating the response to lipopolysaccharide (LPS). The present study tested the hypothesis that LPS induces proinflammatory cytokines in the lung via the Toll-like receptor 4 (TLR4)/CD14 signalling cascade. METHODS Control mice and TLR4-deficient (TLR4-D) mice were used to test TLR4-mediated effects of LPS. Both strains received either Escherichia coli LPS (20 mg kg-1 intraperitoneal) or saline and their lungs were collected at different time points. Pulmonary nuclear factor kappaB (NFkappaB) activation was investigated with electromobility shift assay. mRNA expression of inflammatory mediators and their corresponding receptors were detected with Ribonuclease Protection Assay. Protein expression was detected by ELISA and western blotting. Inducible NO synthase (iNOS) expression was monitored by RT-PCR and iNOS activity by conversion of l-arginine to citrulline. Immune cells were sampled by bronchoalveolar lavage (BAL) and classified. RESULTS LPS application induced CD14-, but not TLR4 protein expression in control mice. Activation of pulmonary NFkappaB was observed within 60 min in control, but not in TLR4-D mice. Six hours of LPS administration induced a significant increase in pulmonary tumour necrosis factor alpha-, interleukin-1beta- and interleukin-6 mRNA and protein expression in control mice compared to TLR4-D mice. Furthermore, LPS induced a significantly higher increase of the iNOS expression and catalytic activity in control mice than in TLR4-D mice. BAL revealed an increase in total cell count in all LPS treated mice. CONCLUSION Our findings suggest that TLR4 plays a key role for regulating the expression of relevant cytokines within the lung during endotoxic shock.
Collapse
Affiliation(s)
- G Baumgarten
- Universitätsklinikum Bonn, Department of Anesthesiology and Intensive Care Medicine, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baumgarten G, Kim SC, Stapel H, Vervölgyi V, Bittig A, Hoeft A, Meyer R, Grohé C, Knuefermann P. Myocardial injury modulates the innate immune system and changes myocardial sensitivity. Basic Res Cardiol 2006; 101:427-35. [PMID: 16699746 DOI: 10.1007/s00395-006-0597-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 04/11/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Transverse aortic constriction (TAC) results in a transient increase of proinflammatory cytokines, which return to baseline levels within 3 d. In contrast to cytokine baseline levels, the myocardium remains capable to respond even stronger to a new stimulus. As the molecular mechanisms for this phenomenon are unknown, we tested whether TAC modulates the innate immune system in mice and changes the inflammatory reaction to a new stimulus. METHODS Following 3 d of TAC or sham-operation procedure (SOP), LPS (20 mg/kg) or PBS (control) were administered intraperitoneal for 10 min as well as for 6 h. Hemodynamic parameters were recorded to measure the effects of TAC and LPS. After TAC/SOP alone CD14 expression was monitored and after additional 6 h of LPS/PBS the expression of CD14, TLR4 and proinflammatory cytokines were determined by western-blot, ELISA and RNase protection assay, respectively. Following TAC/SOP and 10 min of LPS/PBS, NFkappaB activation was investigated by EMSA. RESULTS TAC induced cardiac hypertrophy and elevated blood pressure. LPS application led to hypotension and other symptoms of sepsis. CD14 expression increased after TAC alone and even further after additional LPS challenge. However, we did not detect changes of TLR4 expression. Also NFkappaB activation increased after LPS challenge higher in the TAC than in the SOP group. LPS-stimulation induced also higher cytokine expression in the TAC than in the SOP group. CONCLUSION TAC modulates innate immunity by regulating the expression of CD14 and changes the myocardial tissue to respond more powerful to LPS.
Collapse
Affiliation(s)
- Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Bonn, Sigmund-Freud Strasse 25, 53105, Bonn, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baumgarten G, Knuefermann P, Schuhmacher G, Vervölgyi V, von Rappard J, Dreiner U, Fink K, Djoufack C, Hoeft A, Grohé C, Knowlton AA, Meyer R. Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock 2006; 25:43-9. [PMID: 16369185 DOI: 10.1097/01.shk.0000196498.57306.a6] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms that mediate gram-negative sepsis-associated myocardial dysfunction remain elusive. Myocardial expression of inflammatory mediators is Toll-like receptor 4 (TLR4) dependent. However, it remains to be elucidated whether TLR4, expressed on cardiac myocytes, mediates impairment of cardiac contractility after lipopolysaccharide (LPS) application. Cardiac myocyte contractility, measured as sarcomere shortening of isolated cardiac myocytes from C3H/HeJ (with nonfunctional TLR4) and C3H/HeN (control), were recorded at stimulation frequencies between 0.5 and 10 Hz and after incubation with 1 and 10 mug/mL LPS for up to 8 h. Control cells treated with LPS were investigated with and without a competitive LPS inhibitor (E5564) and a specific inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea. In control mice, LPS reduced sarcomere shortening amplitude and prolonged duration of relaxation, whereas sarcomere shortening of C3H/HeJ cells was insensitive to LPS. NFkappaB and iNOS were upregulated after LPS application in control mice compared with C3H/HeJ. Inhibition of TLR4 by E5564 as well as inhibition of iNOS prevented the influence of LPS on contractile activity in control myocytes. LPS-dependent suppression of cardiac myocyte contractility was significantly blunted in C3H/HeJ mice. Competitive inhibition of functional TLR4 with E5564 protects cardiac myocyte contractility against LPS. These findings suggest that TLR4, expressed on cardiac myocytes, contributes to sepsis-induced myocardial dysfunction. E5564, currently under investigation in two clinical phase II trials, seems to be a new therapeutic option for the treatment of myocardial dysfunction in sepsis associated with endotoxemia.
Collapse
Affiliation(s)
- Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Institute of Physiology II, Universitätsklinikum Bonn, D-53111 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shiio Y, Suh KS, Lee H, Yuspa SH, Eisenman RN, Aebersold R. Quantitative Proteomic Analysis of Myc-induced Apoptosis. J Biol Chem 2006; 281:2750-6. [PMID: 16316993 DOI: 10.1074/jbc.m509349200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myc is a key regulatory protein in higher eukaryotes controlling important cellular functions such as proliferation, differentiation, and apoptosis. Myc is profoundly involved in the genesis of many human and animal cancers, and the abrogation of Myc-induced apoptosis is a critical event in cancer progression. Because the mechanisms that mediate Myc-induced apoptosis are largely unknown, we analyzed protein expression during Myc-induced apoptosis using an isotope-coded affinity tag quantitative proteomics approach and identified that a proapoptotic mitochondrial chloride ion channel, mtCLIC/CLIC4, is induced by Myc. Myc binds to the mtCLIC gene promoter and activates its transcription. Suppression of mtCLIC expression by RNA interference inhibited Myc-induced apoptosis in response to different stress conditions and abolished the cooperative induction of apoptosis by Myc and Bax. We also found that Myc reduces the expression of Bcl-2 and Bcl-xL and that the apoptosis-inducing stimuli up-regulate Bax expression. These results suggest that up-regulation of mtCLIC, together with a reduction in Bcl-2 and Bcl-xL, sensitizes Myc-expressing cells to the proapoptotic action of Bax.
Collapse
Affiliation(s)
- Yuzuru Shiio
- Institute for Systems Biology, Seattle, Washington 98103-8904, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Uchida Y, Yamazaki H, Watanabe S, Hayakawa K, Meng Y, Hiramatsu N, Kasai A, Yamauchi K, Yao J, Kitamura M. Enhancement of NF-kappaB activity by resveratrol in cytokine-exposed mesangial cells. Clin Exp Immunol 2005; 142:76-83. [PMID: 16178859 PMCID: PMC1809482 DOI: 10.1111/j.1365-2249.2005.02895.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Resveratrol, a natural polyphenolic phytoalexin, has been considered as a potential anti-inflammatory agent because of its suppressive effect on nuclear factor-kappaB (NF-kappaB). However, we recently found that treatment of glomerular mesangial cells with resveratrol significantly and dose-dependently enhanced NF-kappaB activation triggered by proinflammatory cytokines. This finding was evidenced by different reporter assays as well as by expression of an endogenous NF-kappaB-dependent gene, intercellular adhesion molecule-1. The NF-kappaB promoting effect of resveratrol was also observed in renal tubular LLCPK1 cells, but not in HepG2 hepatoma cells. In all cell types tested, treatment with resveratrol alone did not affect NF-kappaB activity. The enhanced activation of NF-kappaB by resveratrol progressed for at least 24 h and was accompanied by sustained down-regulation of an endogenous NF-kappaB inhibitor, IkappaBbeta, but not IkappaBalpha. Although expression of inducible nitric oxide synthase was suppressed by resveratrol, nitric oxide, a negative regulator of NF-kappaB, was not involved in the regulation of NF-kappaB by resveratrol. These data elucidated, for the first time, that resveratrol may enhance activation of NF-kappaB under certain circumstances.
Collapse
Affiliation(s)
- Y Uchida
- Department of Molecular Signalling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Adell T, Müller WEG. Expression pattern of the Brachyury and Tbx2 homologues from the sponge Suberites domuncula. Biol Cell 2005; 97:641-50. [PMID: 15850455 DOI: 10.1042/bc20040135] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION T-box transcription factors are a large family of transcriptional regulators involved in many aspects of embryonic development. In a previous report, we described the isolation and genomic characterization of two T-box genes from the siliceous sponge Suberites domuncula: a Brachyury homologue, Sd-Bra, and a Tbx2 homologue, Sd-Tbx2. Elucidation of the genomic structure of Sd-Bra allowed us to demonstrate the existence of two different isoforms, resulting from alternative splicing. Moreover, we demonstrated that the shorter isoform exists in two different glycosylation states. RESULTS In the present study, we demonstrate a differential subcellular localization of the three Sd-Bra isoforms, suggesting that its differential nuclear import could be an important mechanism for its functional regulation. Furthermore, we demonstrate that Sd-Tbx2 exists only in one isoform, which is mainly localized in the nucleus. The pattern of expression of Sd-Bra and Sd-Tbx2 genes is analysed in sponge tissue, in gemmules and in cultured cells. CONCLUSION These results suggest a conserved role for Sd-Bra in the control of morphogenetic movements through the regulation of cell-adhesion properties and the involvement of Sd-Tbx2 in the determination of cell identity in the early stages of differentiation, reminiscent of the function of Tbx2-3-4-5 in vertebrates during limb specification. Also, the fact that a Brachyury and a Tbx2 homologue exist in S. domuncula suggests that the first divergence from the ancestral Brachyury-like gene might be a Tbx2-like gene and not a Tbrain-like gene as had been previously suggested.
Collapse
Affiliation(s)
- Teresa Adell
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | |
Collapse
|
27
|
Adhikary G, Gupta S, Sil P, Saad Y, Sen S. Characterization and functional significance of myotrophin: a gene with multiple transcripts. Gene 2005; 353:31-40. [PMID: 15946807 DOI: 10.1016/j.gene.2005.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/07/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The underlying mechanism for the development of cardiac hypertrophy that advances to heart failure is not known. Many factors have been implied to play a role in this process. Among others, we have isolated and identified myotrophin, a factor that stimulates myocytes growth, from spontaneously hypertensive rat (SHR) heart and patients with dilated cardiomyopathy. The gene encoding myotrophin has been cloned and expressed in E. coli. Recently, myotrophin gene has been mapped and shown to be a novel gene localized in human chromosome 7q-33. To define the characteristics of each transcript and its pathophysiological significance, we examined transcripts of myotrophin in SHR heart during progression of hypertrophy. Northern blot analysis of myotrophin mRNA showed multiple transcripts. We isolated and characterized various myotrophin cDNA clones corresponding to the multiple transcripts by 5' "stretch plus" rat heart cDNA library screening. Sequence analysis of these cDNA clones indicates that each clone has a unique 5' UTR and multiple 3' UTR with varying lengths, repeated ATTTA motifs and many polyadenylation signals. In vitro transcripts generated from all these myotrophin-specific cDNA clones translate in vitro to a 12-kD protein. Among pathophysiological significance, we determined mRNA expression in 9 days old, 3 weeks old and 31 weeks old and observed a linear increased during the progression of hypertrophy. In WKY, this mRNA level remained the same throughout the growth and development of hypertrophy. Our data strongly suggest that myotrophin appears to be a candidate gene for cardiac hypertrophy and heart failure.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cardiomegaly/genetics
- Cardiomegaly/physiopathology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Female
- Gene Expression
- Genes/genetics
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/physiology
- Introns
- Male
- Molecular Sequence Data
- Myocardium/metabolism
- Polymorphism, Single Nucleotide
- Pregnancy
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Sequence Analysis, DNA
- Time Factors
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Gautam Adhikary
- Department of Molecular Cardiology, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | |
Collapse
|
28
|
Singh AK, Jiang Y. Differential activation of NF kappa B/RelA-p50 and NF kappa B/p50-p50 in control and alcohol-drinking rats subjected to carrageenin-induced pleurisy. Mediators Inflamm 2005; 13:255-62. [PMID: 15545056 PMCID: PMC1781568 DOI: 10.1080/09629350400003035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Carrageenin (CAR) injection into the pleural cavity causes local inflammation called carrageenin-induced pleurisy (CAR-IP). Inflammation onset is characterized by an activation of pro-inflammatory NFkappaB, RelA-p50, while inflammation resolution is characterized by an activation of an anti-inflammatory NFkappaB, p50-p50, that re-establishes homeostasis, an essential process for an organism's survival. Although chronic alcohol intake disrupts inflammation, the mechanism behind the development of inflammatory disorder in alcoholics is not yet known. Therefore, the aim of this investigation was to study the effects of ethanol intake on CAR-IP and NFkappaB activation in pleural fluid neutrophils in P rats. METHODS Alcohol-preferring, P rats were given free choice of alcohol (15% ethanol) and water or water alone (for control) for 15 days. Then, each rat was injected with 0.2 ml of 2% CAR into the pleural cavity under light ether anesthesia. At different time intervals after the CAR injection, rats were anesthetized and their blood and pleural fluid samples were collected. Pleural fluid inflammatory cells were identified with Turk's or Wright-Giemsa staining. Different cell types were sorted using a fluorescence-activated cell sorter. Pleural fluid neutrophils were examined for apoptosis and activation of the two NFkappaB subspecies. RESULTS In control rats, fluid began to accumulate in the pleural cavity 0.5 h after, which peaked 24 h after, CAR injection. Then, the values declined gradually. The increase in pleural fluid correlated with RelA-p50 activation, while the decline in pleural fluid correlated with p50-p50 activation and apoptosis in neutrophils. In alcohol-drinking rats, pleural fluid remained elevated for up to 6 days after CAR injection. Neutrophils from alcohol-drinking rats exhibited suppressed apoptosis, augmented RelA-p50 activation, and suppressed p50-p50 activation. CONCLUSIONS Alcohol intake prolonged inflammation in P rats. An alcohol-induced upregulation of RelA-p50 activation and downregulation of p50-p50 activation may be causally related to the alcohol-induced inflammation dysregulation.
Collapse
Affiliation(s)
- Ashok K Singh
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul Campus, St Paul, MN 55108, USA.
| | | |
Collapse
|
29
|
Lubin FD, Johnston LD, Sweatt JD, Anderson AE. Kainate mediates nuclear factor-kappa B activation in hippocampus via phosphatidylinositol-3 kinase and extracellular signal-regulated protein kinase. Neuroscience 2005; 133:969-81. [PMID: 15916859 DOI: 10.1016/j.neuroscience.2005.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 03/24/2005] [Accepted: 03/26/2005] [Indexed: 01/01/2023]
Abstract
The transcription factor nuclear factor-kappa B (NF-kappaB) is an inducible regulator of genes that plays a crucial role in the nervous system. Glutamate receptor stimulation is one well-described mechanism for NF-kappaB activation. In the studies presented here we used the glutamate analog, kainate to investigate the signaling mechanisms that couple to NF-kappaB activation in hippocampus. Kainate (250 nM) application to hippocampal slices elicited a time-dependent increase in nuclear NF-kappaB levels in areas CA3 and CA1, but not dentate, compared with controls. Further analysis focused on hippocampal area CA3, revealed increased NF-kappaB DNA binding activity in response to kainate stimulation. Supershift electrophoretic mobility shift assay indicated that the kainate-mediated NF-kappaB complex binding DNA was composed of p65, p50, and c-Rel subunits. Through inhibition studies we found that extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol-3 kinase (PI3K) couple to basal and kainate-mediated NF-kappaB DNA binding activity in area CA3. Kainate elicited decreased total and increased phospho-inhibitor kappa B alpha (IkappaBalpha), suggesting that kainate-mediated activation of NF-kappaB is via the classical IkappaB kinase pathway. Interestingly, inhibition of ERK but not PI3K blocked the kainate-mediated increase in phospho-IkappaBalpha. Thus, our findings support a role for the ERK and PI3K pathways in kainate-mediated NF-kappaB activation in hippocampal area CA3, but these kinases may target the NF-kappaB pathway at different loci.
Collapse
Affiliation(s)
- F D Lubin
- The Cain Foundation Laboratories, Texas Children's Hospital, Department of Pediatrics, MC 3-6365, 1102 Bates Street, Houston, TX 77030-2399, USA
| | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
OBJECTIVES The goal of this study was to investigate plasma levels of myotrophin in heart failure (HF) and their relationship to gender and disease severity. BACKGROUND Myotrophin is a myocardial hypertrophy-inducing factor initially demonstrated in hypertrophied and cardiomyopathic hearts. Recent evidence suggests an interaction with the transcription factor nuclear factor kappa B (NFkappaB), which is activated in HF and modulates myocardial protein expression. It is unknown whether this peptide has an endocrine/paracrine role in man. We hypothesized that it may have a role in HF and would be raised in plasma. METHODS We developed a competitive binding assay specific for human myotrophin. Myotrophin was measured in plasma extracts of 120 HF patients and 130 age- and gender-matched normal controls. RESULTS Myotrophin in plasma existed as the full-length 12 kD form with also a 2.7 kD form (possibly a degradation product). Log normalized myotrophin levels were significantly elevated in HF patients (mean +/- SEM [geometric mean, range], 2.402 +/- 0.021 [252, 72 to 933] vs. 2.268 +/- 0.021 [185, 28 to 501] fmol/ml, p < 0.0005). There was no relationship between myotrophin and age or gender in controls. However, males with HF had higher levels of myotrophin than females (p < 0.001). There was an inverse relationship of myotrophin levels with New York Heart Association class in patients with no gender difference in the relationship. CONCLUSIONS There is evidence of early activation of the myotrophin system in HF, which is more evident in males. This response is attenuated in more severe disease. The contribution of myotrophin to NFkappaB-mediated gene transcription and preservation of cardiac muscle mass remains to be investigated further.
Collapse
Affiliation(s)
- Russell J O'Brien
- Department of Medicine and Therapeutics, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Taoka M, Ichimura T, Wakamiya-Tsuruta A, Kubota Y, Araki T, Obinata T, Isobe T. V-1, a protein expressed transiently during murine cerebellar development, regulates actin polymerization via interaction with capping protein. J Biol Chem 2003; 278:5864-70. [PMID: 12488317 DOI: 10.1074/jbc.m211509200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-1 is a 12-kDa protein consisting of three consecutive ANK repeats, which are believed to serve as the surface for protein-protein interactions. It is thought to have a role in neural development for its temporal profile of expression during murine cerebellar development, but its precise role remains unknown. Here we applied the proteomic approach to search for protein targets that interact with V-1. The V-1 cDNA attached with a tandem affinity purification tag was expressed in the cultured 293T cells, and the protein complex formed within the cells were captured and characterized by mass spectrometry. We detected two polypeptides specifically associated with V-1, which were identified as the alpha and beta subunits of the capping protein (CP, alternatively called CapZ or beta-actinin). CP regulates actin polymerization by capping the barbed end of the actin filament. The V-1.CP complex was detected not only in cultured cells transfected with the V-1 cDNA but also endogenously in cells as well as in murine cerebellar extracts. An analysis of the V-1/CP interaction by surface plasmon resonance spectroscopy showed that V-1 formed a stable complex with the CP heterodimer with a dissociation constant of 1.2 x 10(-7) m and a molecular stoichiometry of approximately 1:1. In addition, V-1 inhibited the CP-regulated actin polymerization in vitro in a dose-dependent manner. Thus, our results suggest that V-1 is a novel component that regulates the dynamics of actin polymerization by interacting with CP and thereby participates in a variety of cellular processes such as actin-driven cell movements and motility during neuronal development.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Gupta S, Purcell NH, Lin A, Sen S. Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol 2002; 159:1019-28. [PMID: 12486112 PMCID: PMC2173971 DOI: 10.1083/jcb.200207149] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) regulates expression of a variety of genes involved in immune responses, inflammation, proliferation, and programmed cell death (apoptosis). Here, we show that in rat neonatal ventricular cardiomyocytes, activation of NF-kappaB is involved in the hypertrophic response induced by myotrophin, a hypertrophic activator identified from spontaneously hypertensive rat heart and cardiomyopathic human hearts. Myotrophin treatment stimulated NF-kappaB nuclear translocation and transcriptional activity, accompanied by IkappaB-alpha phosphorylation and degradation. Consistently, myotrophin-induced NF-kappaB activation was enhanced by wild-type IkappaB kinase (IKK) beta and abolished by the dominant-negative IKKbeta or a general PKC inhibitor, calphostin C. Importantly, myotrophin-induced expression of two hypertrophic genes (atrial natriuretic factor [ANF] and c-myc) and also enhanced protein synthesis were partially inhibited by a potent NF-kappaB inhibitor, pyrrolidine dithio-carbamate (PDTC), and calphostin C. Expression of the dominant-negative form of IkappaB-alpha or IKKbeta also partially inhibited the transcriptional activity of ANF induced by myotrophin. These findings suggest that the PKC-IKK-NF-kappaB pathway may play a critical role in mediating the myotrophin-induced hypertrophic response in cardiomyocytes.
Collapse
MESH Headings
- Alkaloids
- Animals
- Animals, Newborn
- Benzophenanthridines
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Genes, Dominant
- Growth Substances/metabolism
- Hypertrophy
- I-kappa B Proteins/metabolism
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/metabolism
- Luciferases/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Myocardium/cytology
- Myocardium/pathology
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Naphthalenes/metabolism
- Phenanthridines/metabolism
- Phosphorylation
- Protein Binding
- Protein Kinase C/metabolism
- Protein Transport
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|