1
|
Hashimoto T, Saito S, Ohata M, Okuwaki M. The oncoprotein DEK controls growth-regulated gene expression by enhancing the DNA-binding activity of basic leucine zipper transcription factors. FEBS J 2025. [PMID: 40318137 DOI: 10.1111/febs.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/07/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Overexpression of the oncogenic protein DEK is associated with a poor prognosis in various cancers. However, the molecular mechanisms by which DEK promotes cancer development and malignant transformation remain unclear. Previous studies have shown that DEK interacts with transcription factors, such as AP-2a and C/EBPα, and enhances their transcriptional activity. We hypothesized that DEK promotes cancer cell phenotypes by regulating transcription factors. We analyzed the interaction between DEK and the transcription factors to evaluate this hypothesis. We found that DEK binds to the basic regions within the basic leucine zipper (bZIP)- and basic helix-loop-helix leucine zipper (bHLH-ZIP)- transcription factors. Interestingly, DEK enhanced the DNA-binding capacity of two bZIP transcription factors, C/EBPα and ATF3, in vitro without being a component of the transcription factor-DNA complex. We performed DEK knockdown in lung adenocarcinoma A549 cells and examined the global transcriptome changes to determine the biological significance of the interaction between DEK and transcription factors. We found that diverse genes regulating cell growth and amino acid metabolism, which may potentially be regulated by c-Jun, a subunit of the bZIP transcription factor AP1, and c-Myc, a bHLH-ZIP transcription factor, were decreased by DEK knockdown. Consistent with these transcriptome changes, the cell growth, colony formation, and cell migration abilities of A549 cells were decreased by DEK knockdown. These results suggest that DEK promotes cancer cell malignancy by regulating the functions of the bZIP and bHLH-ZIP transcription factors.
Collapse
Affiliation(s)
- Takuma Hashimoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
| | - Shoko Saito
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| | - Mike Ohata
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| | - Mitsuru Okuwaki
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| |
Collapse
|
2
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. An evolutionary dynamics analysis of the plant DEK gene family reveals the role of BnaA02g08940D in drought tolerance. Int J Biol Macromol 2025; 298:140053. [PMID: 39828179 DOI: 10.1016/j.ijbiomac.2025.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
DEK is a chromatin protein that interacts with DNA to influence chromatin formation, thereby affecting plant growth, development, and stress response. This study investigates the molecular evolution of the DEK family in plants, with a particular focus on the Brassica species. A total of 127 DEK genes were identified in 34 plants and classified into seven groups based on the phylogenetic analysis. The distribution of motifs and gene structure is similar within each group, indicating a high degree of conservation. The results of the collinearity analysis indicated that the DEK protein has undergone a certain degree of evolutionary conservation. The expansion of the DEK family is primarily attributable to whole-genome duplication (WGD) or segmental duplication events. The DEK protein has undergone purification during its evolutionary history, and several positively selected sites have been identified. Moreover, the examination of cis-acting elements and expression patterns revealed that the BnDEKs play a significant role in plant growth and stress response. The protein-protein interaction network identified several noteworthy proteins that interact with DEK. These analyses enhance our comprehension of the DEK gene family and establish the foundation for additional validation of its function. Further research demonstrated that the overexpression of one DEK family member, BnaA02g08940D, enhanced the transgenic Arabidopsis tolerance to drought and osmosis. This indicates that the DEK family may respond when plants are subjected to drought stress, thereby strengthening the plant's resilience.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Liu D, Sun W, Han J, Wang C, Chen D, Wu Y, Chang Y, Yang B. Proto-oncogene DEK binds to pre-mRNAs and regulates the alternative splicing of Hippo signaling genes in HeLa cells. Mol Genet Genomics 2025; 300:31. [PMID: 40075046 PMCID: PMC11903584 DOI: 10.1007/s00438-025-02226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
Our study aimed to explore how DEK, a carcinogenic protein with chromatin architectural function, genome-widely binds to RNA and affects the alternative splicing in cancer cells to decipher its molecular functions. To achieve this goal, cell phenotype experiments, RNA sequencing (RNA-seq), and improved RNA immunoprecipitation sequencing (iRIP-seq) were conducted to identify the function and regulated targets of DEK in HeLa cells. The results showed DEK overexpression promoted cell proliferation and invasion of HeLa cells. Meanwhile, DEK hardly affected transcript level expression of those high expressed genes, but splicing pattern of 411 genes was regulated by DEK in HeLa cells, which were enriched in Hippo signaling pathway. Moreover, DEK broadly bind the RNA of a total of 11, 112 genes, with a biased binding the 5' splice site (5'SS) consensus GGUAA motifs at the CDS and intronic regions. In addition, 297 DEK-binding genes showed different splicing pattern after DEK overexpression in HeLa cells. These genes were enriched in Hippo signaling pathway including CSNK1D. The RT-qPCR and RIP-PCR confirmed that DEK can bind to CSNK1D to regulate its alternative splicing in HeLa cells. In summary, our results indicated DEK could broadly bind and regulate the pre-mRNA splicing process, which provide new insights of mechanisms that DEK functions in various biological processes including cancer.
Collapse
Affiliation(s)
- Dongbo Liu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing Han
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Wang
- Science Department, Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei, 430075, China
| | - Dong Chen
- Science Department, Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei, 430075, China
| | - Yunfei Wu
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei, 430075, China
| | - Yongjie Chang
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei, 430075, China
| | - Bin Yang
- Department of Thoracic Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, No. 116 Zhuodaoquan South Rd, Wuhan, Hubei, 430079, China.
| |
Collapse
|
4
|
Sundaram R, Gandhi S, Jonak C, Vasudevan D. Characterization of the Arabidopsis thaliana chromatin remodeler DEK3 for its interaction with histones and DNA. Biochimie 2024; 227:248-261. [PMID: 39097158 DOI: 10.1016/j.biochi.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Chromatin structure and dynamics regulate all DNA-templated processes, such as transcription, replication, and repair. Chromatin binding factors, chromatin architectural proteins, and nucleosome remodelers modulate chromatin structure and dynamics and, thereby, the various DNA-dependent processes. Arabidopsis thaliana DEK3, a member of the evolutionarily conserved DEK domain-containing chromatin architectural proteins, is an important factor for chromatin structure and function, involved in transcriptional programming to regulate flowering time and abiotic stress tolerance. AtDEK3 contains an uncharacterized N-terminal domain, a middle SAF domain (winged helix-like domain), and a C-terminal DEK domain, but their role in the interaction of AtDEK3 with histones and DNA remained poorly understood. Using biochemical and biophysical analyses, we provide a comprehensive in vitro characterization of the different AtDEK3 domains for their interaction with histone H3/H4 and DNA. AtDEK3 directly interacts with histone H3/H4 tetramers through its N-terminal domain and the C-terminal DEK domain in a 1:1 stoichiometry. Upon interaction with H3/H4, the unstructured N-terminal domain of AtDEK3 undergoes a conformational change and adopts an alpha-helical conformation. In addition, the in-solution envelope structures of the AtDEK3 domains and their complex with H3/H4 have been characterized. The SAF and DEK domains associate with double-stranded and four-way junction DNA. As DEK3 possesses a histone-interacting domain at the N- and the C-terminus and a DNA-binding domain in the middle and at the C-terminus, the protein might play a complex role as a chromatin remodeler.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Surajit Gandhi
- Institute of Life Sciences, Bhubaneswar, 751023, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Dileep Vasudevan
- Institute of Life Sciences, Bhubaneswar, 751023, India; Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India.
| |
Collapse
|
5
|
Hopper MA, Dropik AR, Walker JS, Novak JP, Laverty MS, Manske MK, Wu X, Wenzl K, Krull JE, Sarangi V, Maurer MJ, Yang ZZ, Del Busso MD, Habermann TM, Link BK, Rimsza LM, Witzig TE, Ansell SM, Cerhan JR, Jevremovic D, Novak AJ. DEK regulates B-cell proliferative capacity and is associated with aggressive disease in low-grade B-cell lymphomas. Blood Cancer J 2024; 14:172. [PMID: 39384745 PMCID: PMC11464677 DOI: 10.1038/s41408-024-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
This study sheds light on the pivotal role of the oncoprotein DEK in B-cell lymphoma. We reveal DEK expression correlates with increased tumor proliferation and inferior overall survival in cases diagnosed with low-grade B-cell lymphoma (LGBCL). We also found significant correlation between DEK expression and copy number alterations in LGBCL tumors, highlighting a novel mechanism of LGBCL pathogenesis that warrants additional exploration. To interrogate the mechanistic role of DEK in B-cell lymphoma, we generated a DEK knockout cell line model, which demonstrated DEK depletion caused reduced proliferation and altered expression of key cell cycle and apoptosis-related proteins, including Bcl-2, Bcl-xL, and p53. Notably, DEK depleted cells showed increased sensitivity to apoptosis-inducing agents, including venetoclax and staurosporine, which underscores the therapeutic potential of targeting DEK in B-cell lymphomas. Overall, our study contributes to a better understanding of DEK's role as an oncoprotein in B-cell lymphomas, highlighting its potential as both a promising therapeutic target and a novel biomarker for aggressive LGBCL. Further research elucidating the molecular mechanisms underlying DEK-mediated tumorigenesis could pave the way for improved treatment strategies and better clinical outcomes for patients with B-cell lymphoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaosheng Wu
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Bone & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Johnstone M, Leck A, Lange T, Wilcher K, Shephard MS, Paranjpe A, Schutte S, Wells S, Kappes F, Salomonis N, Privette Vinnedge LM. The chromatin remodeler DEK promotes proliferation of mammary epithelium and is associated with H3K27me3 epigenetic modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612116. [PMID: 39314335 PMCID: PMC11419013 DOI: 10.1101/2024.09.09.612116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The DEK chromatin remodeling protein was previously shown to confer oncogenic phenotypes to human and mouse mammary epithelial cells using in vitro and knockout mouse models. However, its functional role in normal mammary gland epithelium remained unexplored. We developed two novel mouse models to study the role of Dek in normal mammary gland biology in vivo . Mammary gland-specific Dek over-expression in mice resulted in hyperproliferation of cells that visually resembled alveolar cells, and a transcriptional profile that indicated increased expression of cell cycle, mammary stem/progenitor, and lactation-associated genes. Conversely, Dek knockout mice exhibited an alveologenesis or lactation defect, resulting in dramatically reduced pup survival. Analysis of previously published single-cell RNA-sequencing of mouse mammary glands revealed that Dek is most highly expressed in mammary stem cells and alveolar progenitor cells, and to a lesser extent in basal epithelial cells, supporting the observed phenotypes. Mechanistically, we discovered that Dek is a modifier of Ezh2 methyltransferase activity, upregulating the levels of histone H3 trimethylation on lysine 27 (H3K27me3) to control gene transcription. Combined, this work indicates that Dek promotes proliferation of mammary epithelial cells via cell cycle deregulation. Furthermore, we report a novel function for Dek in alveologenesis and histone H3 K27 trimethylation.
Collapse
|
7
|
Pierzynska-Mach A, Czada C, Vogel C, Gwosch E, Osswald X, Bartoschek D, Diaspro A, Kappes F, Ferrando-May E. DEK oncoprotein participates in heterochromatin replication via SUMO-dependent nuclear bodies. J Cell Sci 2023; 136:jcs261329. [PMID: 37997922 PMCID: PMC10753498 DOI: 10.1242/jcs.261329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.
Collapse
Affiliation(s)
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Eva Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Xenia Osswald
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Denis Bartoschek
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Alberto Diaspro
- Nanoscopy & NIC@IIT, Istituto Italiano di Tecnologia, Genoa 16152, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Ferdinand Kappes
- Duke Kunshan University, Division of Natural and Applied Sciences, Kunshan 215316, People's Republic of China
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
- German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
8
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Greene AN, Nguyen ET, Paranjpe A, Lane A, Privette Vinnedge LM, Solomon MB. In silico gene expression and pathway analysis of DEK in the human brain across the lifespan. Eur J Neurosci 2022; 56:4720-4743. [PMID: 35972263 PMCID: PMC9730547 DOI: 10.1111/ejn.15791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
DEK, a chromatin-remodelling phosphoprotein, is associated with various functions and biological pathways in the periphery, including inflammation, oncogenesis, DNA repair, and transcriptional regulation. We recently identified an association between DEK loss and central nervous system diseases, such as Alzheimer's. To understand DEK's potential role in disease, it is critical to characterize DEK in healthy human brain to distinguish between neural DEK expression and function in healthy versus diseased states like dementia. We utilized two public databases, BrainCloud and Human Brain Transcriptome, and analysed DEK mRNA expression across the lifespan in learning and memory relevant brain regions. Since DEK loss induces phenotypes associated with brain ageing (e.g., DNA damage and apoptosis), we hypothesized that neural DEK expression may be highest during foetal development and lower in elderly individuals. In agreement with this hypothesis, DEK was most prominently expressed during foetal development in all queried forebrain areas, relative to other ages. Consistent with its roles in the periphery, pathways related to DEK in the brain were associated with cellular proliferation, DNA replication and repair, apoptosis, and inflammation. We also found novel neural development-relevant pathways (e.g., synaptic transmission, neurite outgrowth, and myelination) to be enriched from genes correlated with DEK expression. These findings suggest that DEK is important for human brain development. Overall, we highlight age-related changes in neural DEK expression across the human lifespan and illuminate novel biological pathways associated with DEK that are distinct from normal brain ageing. These findings may further our understanding of how DEK impacts brain function and disease susceptibility.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
| | | | - Aditi Paranjpe
- Division of Biomedical Informatics, Bioinformatics Collaborative Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
10
|
Habiburrahman M, Wardoyo MP, Sutopo S, Rahadiani N. Potential of DEK proto-oncogene as a prognostic biomarker for colorectal cancer: An evidence-based review. Mol Clin Oncol 2022; 17:117. [PMID: 35747597 PMCID: PMC9204329 DOI: 10.3892/mco.2022.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Given its role in tumorigenesis and its correlation with various pathologic features of colorectal cancer (CRC), DEK is considered to have the potential to predict CRC prognosis. This review attempts to summarize current knowledge and evidence supporting the potential of DEK as a prognostic biomarker of CRC. We searched meta-analyses, systematic reviews, cohort studies, and cell line studies published in the last 10 years. A literature search was conducted in PubMed, Pubmed Central (PMC), Proquest, EBSCOHost, Scopus, and Cochrane Library using the keywords 'colorectal/colon/rectal cancer', 'DEK', 'biomarker', and 'prognosis'. Studies that were not published in English, without accessible full text, unrelated to clinical questions, or conducted with a design unsuitable for the eligibility criteria were excluded. Seven included studies reported the potential of DEK as a prognostic biomarker of CRC and its role in cancer cell proliferation, invasion, and metastasis. This role is achieved through the Wnt/β-catenin pathway, prevention of apoptosis through destabilization of p53, and bridging inflammation and tumorigenesis through the nuclear factor (NF)-κB pathway, causing chronic inflammation and activation of tumorigenic genes. DEK overexpression is also associated with CRC clinical and pathological features, such as tumor size, lymph node metastasis, serosal invasion, differentiation, tumor staging, and epithelial-mesenchymal transition. DEK overexpression was found to be associated with lower survival and recovery rates. Its prognostic value was comparable with other prognostic biomarkers of CRC, such as BRAF, topoisomerase-1, and CEA. A cohort study reported that DEK overexpression was associated with a better response to fluoropyrimidine-based chemotherapy, while a cell-line study indicated a correlation between DEK overexpression with a worse response to irinotecan-based chemotherapy. In conclusion, considering its correlation with CRC pathology, its association with worse CRC patient survival, and its possibility to forecast the therapeutic response of various chemotherapeutic regimens, DEK has the potential to be used as a CRC prognostic biomarker.
Collapse
Affiliation(s)
- Muhammad Habiburrahman
- Faculty of Medicine, Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | | | - Stefanus Sutopo
- Faculty of Medicine, Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
11
|
Yang YS, Jia XZ, Lu QY, Cai SL, Huang XT, Yang SH, Wood C, Wang YH, Zhou JJ, Chen YD, Yang JS, Yang WJ. Exosomal DEK removes chemoradiotherapy resistance by triggering quiescence exit of breast cancer stem cells. Oncogene 2022; 41:2624-2637. [PMID: 35351996 DOI: 10.1038/s41388-022-02278-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Tumor therapeutics often target the primary tumor bulk but fail to eradicate therapy-resistant cancer stem cells (CSCs) in quiescent state. These can then become activated to initiate recurrence and/or metastasis beyond therapy. Here, we identified and isolated chemoradiotherapy-resistant CSCs in quiescent state with high capacity of tumor-initiation and tumorsphere formation from three types of breast tumors in mice. Experiments of knockdown and rescue revealed DEK, a nuclear protein, as essential for CSC activation. Exogenous DEK was then used to trigger quiescence exit of CSCs. ChIP-seq and ATAC-seq showed that DEK directly binds to chromatin, facilitating its genome-wide accessibility. The resulting epigenetic events upregulate the expression of cellular activation-related genes including MYC targets, whereas cellular quiescence-related genes including the p53 signaling pathway are silenced. However, twinned with DEK-induced activation, formerly resistant CSCs were then destroyed by chemotherapy in vitro. In mice, traditional chemoradiotherapy concurrent with the injection of DEK-containing exosomes resulted in eradication of primary tumors together with formerly resistant CSCs without recurrence or metastasis. Our findings advance knowledge of the mechanism of quiescent CSC activation and may provide novel clinical opportunities for removal of quiescence-linked therapy resistance.
Collapse
Affiliation(s)
- Yao-Shun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi-Zheng Jia
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Yun Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sun-Li Cai
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ting Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Hua Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chris Wood
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue-Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jin-Shu Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Yang MQ, Bai LL, Wang Z, Lei L, Zheng YW, Li ZH, Huang WJ, Liu CC, Xu HT. DEK is highly expressed in breast cancer and is associated with malignant phenotype and progression. Oncol Lett 2021; 21:440. [PMID: 33868478 PMCID: PMC8045159 DOI: 10.3892/ol.2021.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/10/2021] [Indexed: 01/21/2023] Open
Abstract
DEK proto-oncogene (DEK) has been demonstrated as an oncogene and is associated with the development of many types of tumor; however, the expression and role of DEK in breast cancer remain unknown. The present study aimed to determine the role of DEK in the progression of breast cancer. The expression of DEK in 110 breast cancer tissues and 50 adjacent normal breast tissues was examined using immunohistochemistry. Furthermore, DEK expression was upregulated by DEK transfection or downregulated by DEK shRNA interference in MCF7 cells. Proliferative and invasive abilities were examined in MCF7 cells using MTT assay, colony-formation assay and transwell invasion assays. The results demonstrated that DEK expression level was significantly increased in breast cancer tissues compared with normal breast tissues. Furthermore, high DEK expression was associated with high histological grade, lymph node metastasis, advanced Tumor-Node-Metastasis stage and high Ki-67 index; however, DEK expression was not associated with the expression level of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. High DEK expression indicated poor prognosis in patients with breast cancer. DEK overexpression upregulated the protein expression of β-catenin and Wnt and increased the proliferative and invasive abilities of breast cancer cells. DEK downregulation had the opposite effect. Taken together, the results from the present study demonstrated that high expression of DEK was common in patients with breast cancer and was associated with progression of the disease and poor prognosis, and that DEK overexpression promoted the proliferative and invasive abilities of breast cancer cells.
Collapse
Affiliation(s)
- Mai-Qing Yang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Lin-Lin Bai
- Department of Pathology, Shenyang 242 Hospital, Shenyang, Liaoning 110034, P.R. China
| | - Zhao Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, General Hospital of Heilongjiang Land Reclamation Bureau, Harbin, Heilongjiang 150088, P.R. China
| | - Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi-Wen Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Han Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wen-Jing Huang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chen-Chen Liu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
13
|
Guo H, Prell M, Königs H, Xu N, Waldmann T, Hermans-Sachweh B, Ferrando-May E, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS) identifies a loss-of-function mutant of the DEK oncogene, indicating DNA modulating activities of DEK in chromatin. FEBS Lett 2021; 595:1438-1453. [PMID: 33686684 DOI: 10.1002/1873-3468.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The DEK oncoprotein regulates cellular chromatin function via a number of protein-protein interactions. However, the biological relevance of its unique pseudo-SAP/SAP-box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis-driven mutations failed to yield DNA-binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck. Re-expression of a DEK-DBN mutant in newly established human DEK knockout cells failed to reduce the increase in nuclear size as compared to wild type, indicating roles for DEK-DNA interactions in cellular chromatin organization. Our results extend the functional roles of DEK in metazoan chromatin and highlight the predictive ability of recombinant protein toxicity in E. coli for unbiased studies of eukaryotic DNA modulating protein domains.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Germany
| | | | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Germany
| | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| |
Collapse
|
14
|
Guo H, Xu N, Prell M, Königs H, Hermanns-Sachweh B, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS): harnessing recombinant protein toxicity for rapid and unbiased interrogation of protein function. FEBS Lett 2021; 595:1422-1437. [PMID: 33704777 DOI: 10.1002/1873-3468.14072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
In two proof-of-concept studies, we established and validated the Bacterial Growth Inhibition Screen (BGIS), which explores recombinant protein toxicity in Escherichia coli as a largely overlooked and alternative means for basic characterization of functional eukaryotic protein domains. By applying BGIS, we identified an unrecognized RNA-interacting domain in the DEK oncoprotein (this study) and successfully combined BGIS with random mutagenesis as a screening tool for loss-of-function mutants of the DNA modulating domain of DEK [1]. Collectively, our findings shed new light on the phenomenon of recombinant protein toxicity in E. coli. Given the easy and rapid implementation and wide applicability, BGIS will extend the repertoire of basic methods for the identification, analysis and unbiased manipulation of proteins.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | | | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
15
|
Greene AN, Parks LG, Solomon MB, Privette Vinnedge LM. Loss of DEK Expression Induces Alzheimer's Disease Phenotypes in Differentiated SH-SY5Y Cells. Front Mol Neurosci 2020; 13:594319. [PMID: 33304240 PMCID: PMC7701170 DOI: 10.3389/fnmol.2020.594319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and is characterized by the buildup of β-amyloid plaques and neurofibrillary Tau tangles. This leads to decreased synaptic efficacy, cell death, and, consequently, brain atrophy in patients. Behaviorally, this manifests as memory loss and confusion. Using a gene ontology analysis, we recently identified AD and other age-related dementias as candidate diseases associated with the loss of DEK expression. DEK is a nuclear phosphoprotein with roles in DNA repair, cellular proliferation, and inhibiting apoptosis. Work from our laboratory determined that DEK is highly expressed in the brain, particularly in regions relevant to learning and memory, including the hippocampus. Moreover, we have also determined that DEK is highly expressed in neurons. Consistent with our gene ontology analysis, we recently reported that cortical DEK protein levels are inversely proportional to dementia severity scores in elderly female patients. However, the functional role of DEK in neurons is unknown. Thus, we knocked down DEK in an in vitro neuronal model, differentiated SH-SY5Y cells, hypothesizing that DEK loss would result in cellular and molecular phenotypes consistent with AD. We found that DEK loss resulted in increased neuronal death by apoptosis (i.e., cleaved caspases 3 and 8), decreased β-catenin levels, disrupted neurite development, higher levels of total and phosphorylated Tau at Ser262, and protein aggregates. We have demonstrated that DEK loss in vitro recapitulates cellular and molecular phenotypes of AD pathology.
Collapse
Affiliation(s)
- Allie N Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lois G Parks
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matia B Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
16
|
Bondy-Chorney E, Abramchuk I, Nasser R, Holinier C, Denoncourt A, Baijal K, McCarthy L, Khacho M, Lavallée-Adam M, Downey M. A Broad Response to Intracellular Long-Chain Polyphosphate in Human Cells. Cell Rep 2020; 33:108318. [PMID: 33113373 DOI: 10.1016/j.celrep.2020.108318] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphosphates (polyPs) are long chains of inorganic phosphates linked by phosphoanhydride bonds. They are found in all kingdoms of life, playing roles in cell growth, infection, and blood coagulation. Unlike in bacteria and lower eukaryotes, the mammalian enzymes responsible for polyP metabolism are largely unexplored. We use RNA sequencing (RNA-seq) and mass spectrometry to define a broad impact of polyP produced inside of mammalian cells via ectopic expression of the E. coli polyP synthetase PPK. We find that multiple cellular compartments can support accumulation of polyP to high levels. Overproduction of polyP is associated with reprogramming of both the transcriptome and proteome, including activation of the ERK1/2-EGR1 signaling axis. Finally, fractionation analysis shows that polyP accumulation results in relocalization of nuclear/cytoskeleton proteins, including targets of non-enzymatic lysine polyphosphorylation. Our work demonstrates that internally produced polyP can activate diverse signaling pathways in human cells.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Iryna Abramchuk
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rawan Nasser
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Charlotte Holinier
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kanchi Baijal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Liam McCarthy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
17
|
Yue L, Wan R, Luan S, Zeng W, Cheung TH. Dek Modulates Global Intron Retention during Muscle Stem Cells Quiescence Exit. Dev Cell 2020; 53:661-676.e6. [DOI: 10.1016/j.devcel.2020.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022]
|
18
|
Zhang H, Yan M, Deng R, Song F, Jiang M. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Gene 2020; 727:144245. [PMID: 31715302 DOI: 10.1016/j.gene.2019.144245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
DEK involves in the modulation of cell proliferation, differentiation, apoptosis, migration and cell senescence. However, direct genetic evidence proving the functions of DEK in disease resistance against pathogens is still deficient. In the present study, four DEKs were identified in tomato genome and their roles in disease resistance in tomato were analyzed. The expression levels of DEKs were differently induced by Botrytis cinerea, Pseudomonas syringae pv. tomato (Pst) DC3000 and defense-related signaling molecules (such as jasmonic acid, aethylene precursor and salicylic acid). The DEKs' silencing by virus induced gene silencing led to decreased resistance against B. cinerea or Pst DC3000. The underlying mechanisms may be through the upregulation of the accumulation of reactive oxygen species (ROS) and the changed expression levels of defense-related genes by pathogen inoculation. These results indicate that DEKs involve in disease resistance against different pathogens and thus broaden the knowledge of DEK genes' function in tomato.
Collapse
Affiliation(s)
- Huijuan Zhang
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Mengjiao Yan
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Rong Deng
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- Collegue of Life Science, Taizhou University, Taizhou, China.
| |
Collapse
|
19
|
Ganz M, Vogel C, Czada C, Jörke V, Gwosch EC, Kleiner R, Pierzynska-Mach A, Zanacchi FC, Diaspro A, Kappes F, Bürkle A, Ferrando-May E. The oncoprotein DEK affects the outcome of PARP1/2 inhibition during mild replication stress. PLoS One 2019; 14:e0213130. [PMID: 31408463 PMCID: PMC6692024 DOI: 10.1371/journal.pone.0213130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023] Open
Abstract
DNA replication stress is a major source of genomic instability and is closely linked to tumor formation and progression. Poly(ADP-ribose)polymerases1/2 (PARP1/2) enzymes are activated in response to replication stress resulting in poly(ADP-ribose) (PAR) synthesis. PARylation plays an important role in the remodelling and repair of impaired replication forks, providing a rationale for targeting highly replicative cancer cells with PARP1/2 inhibitors. The human oncoprotein DEK is a unique, non-histone chromatin architectural protein whose deregulated expression is associated with the development of a wide variety of human cancers. Recently, we showed that DEK is a high-affinity target of PARylation and that it promotes the progression of impaired replication forks. Here, we investigated a potential functional link between PAR and DEK in the context of replication stress. Under conditions of mild replication stress induced either by topoisomerase1 inhibition with camptothecin or nucleotide depletion by hydroxyurea, we found that the effect of acute PARP1/2 inhibition on replication fork progression is dependent on DEK expression. Reducing DEK protein levels also overcomes the restart impairment of stalled forks provoked by blocking PARylation. Non-covalent DEK-PAR interaction via the central PAR-binding domain of DEK is crucial for counteracting PARP1/2 inhibition as shown for the formation of RPA positive foci in hydroxyurea treated cells. Finally, we show by iPOND and super resolved microscopy that DEK is not directly associated with the replisome since it binds to DNA at the stage of chromatin formation. Our report sheds new light on the still enigmatic molecular functions of DEK and suggests that DEK expression levels may influence the sensitivity of cancer cells to PARP1/2 inhibitors.
Collapse
Affiliation(s)
- Magdalena Ganz
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Vera Jörke
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Eva Christina Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Rebecca Kleiner
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Agnieszka Pierzynska-Mach
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Francesca Cella Zanacchi
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- Biophysics Institute (IBF), National Research Council (CNR), Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Ferdinand Kappes
- Xi’an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou, China
| | - Alexander Bürkle
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
de Albuquerque Oliveira AC, Kappes F, Martins DBG, de Lima Filho JL. The unique DEK oncoprotein in women's health: A potential novel biomarker. Biomed Pharmacother 2018; 106:142-148. [PMID: 29957464 DOI: 10.1016/j.biopha.2018.06.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Breast and cervical cancer are the first and fourth cancer types with the highest prevalence in women, respectively. The developmental profiles of cancer in women can vary by genetic markers and cellular events. In turn, age and lifestyle influence in the cellular response and also on the cancer progression and relapse. The human DEK protein, a histone chaperone, belongs to a specific subclass of chromatin topology modulators, being involved in the regulation of DNA-dependent processes. These epigenetic mechanisms have dynamic and reversible nature, have been proposed as targets for different treatment approaches, especially in tumor therapy. The expression patterns of DEK vary between healthy and cancer cells. High expression of DEK is associated with poor prognosis in many cancer types, suggesting that DEK takes part in oncogenic activities via different molecular pathways, including inhibition of senescence and apoptosis. The focus of this review was to highlight the role of the DEK protein in these two female cancers.
Collapse
Affiliation(s)
- Ana Cecília de Albuquerque Oliveira
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| | - Ferdinand Kappes
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, PR China
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil.
| | - José Luiz de Lima Filho
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| |
Collapse
|
21
|
Zhou QC, Deng XF, Yang J, Jiang H, Qiao MX, Liu HH, Qian Z, Hou LL, Hu HG. Oncogene DEK is highly expressed in lung cancerous tissues and positively regulates cell proliferation as well as invasion. Oncol Lett 2018; 15:8573-8581. [PMID: 29844811 PMCID: PMC5958825 DOI: 10.3892/ol.2018.8436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
DEK is a protein ubiquitously expressed in multicellular organisms as well as certain unicellular organisms. It is associated with the regulation of cell proliferation, differentiation, migration, apoptosis, senescence, self-renewal and DNA repairing. In tumor cells it is associated with the carcinogenesis process, however there have been few previous studies into the expression of DEK in lung cancer. In the present study the expression level of DEK mRNA and protein was detected in lung cancer tissues and non-cancerous counterparts by performing reverse transcription-quantitative polymerase chain reaction and immunohistochemical staining. It was revealed that the expression of DEK was increased in lung cancer tissues compared with normal tissue. Knock-down and over-expression of DEK in A549 cells were performed to determine the role of DEK in tumor formation. An MTT assay, colony formation assay and Matrigel invasion assay demonstrated that DEK positively regulated cell proliferation and invasion. These results suggest that DEK is highly expressed in lung cancer tissues and positively regulates cell proliferation and invasion.
Collapse
Affiliation(s)
- Qian-Cheng Zhou
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Xue-Feng Deng
- Department of Cardio-Thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Juan Yang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Hong Jiang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Ming-Xu Qiao
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Huan-Huan Liu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Zhen Qian
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Ling-Ling Hou
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Hong-Gang Hu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| |
Collapse
|
22
|
Matrka MC, Cimperman KA, Haas SR, Guasch G, Ehrman LA, Waclaw RR, Komurov K, Lane A, Wikenheiser-Brokamp KA, Wells SI. Dek overexpression in murine epithelia increases overt esophageal squamous cell carcinoma incidence. PLoS Genet 2018; 14:e1007227. [PMID: 29538372 PMCID: PMC5884580 DOI: 10.1371/journal.pgen.1007227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/04/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer occurs as either squamous cell carcinoma (ESCC) or adenocarcinoma. ESCCs comprise almost 90% of cases worldwide, and recur with a less than 15% five-year survival rate despite available treatments. The identification of new ESCC drivers and therapeutic targets is critical for improving outcomes. Here we report that expression of the human DEK oncogene is strongly upregulated in esophageal SCC based on data in the cancer genome atlas (TCGA). DEK is a chromatin-associated protein with important roles in several nuclear processes including gene transcription, epigenetics, and DNA repair. Our previous data have utilized a murine knockout model to demonstrate that Dek expression is required for oral and esophageal SCC growth. Also, DEK overexpression in human keratinocytes, the cell of origin for SCC, was sufficient to cause hyperplasia in 3D organotypic raft cultures that mimic human skin, thus linking high DEK expression in keratinocytes to oncogenic phenotypes. However, the role of DEK over-expression in ESCC development remains unknown in human cells or genetic mouse models. To define the consequences of Dek overexpression in vivo, we generated and validated a tetracycline responsive Dek transgenic mouse model referred to as Bi-L-Dek. Dek overexpression was induced in the basal keratinocytes of stratified squamous epithelium by crossing Bi-L-Dek mice to keratin 5 tetracycline transactivator (K5-tTA) mice. Conditional transgene expression was validated in the resulting Bi-L-Dek_K5-tTA mice and was suppressed with doxycycline treatment in the tetracycline-off system. The mice were subjected to an established HNSCC and esophageal carcinogenesis protocol using the chemical carcinogen 4-nitroquinoline 1-oxide (4NQO). Dek overexpression stimulated gross esophageal tumor development, when compared to doxycycline treated control mice. Furthermore, high Dek expression caused a trend toward esophageal hyperplasia in 4NQO treated mice. Taken together, these data demonstrate that Dek overexpression in the cell of origin for SCC is sufficient to promote esophageal SCC development in vivo.
Collapse
Affiliation(s)
- Marie C. Matrka
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katherine A. Cimperman
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Sarah R. Haas
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Geraldine Guasch
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institute Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Lisa A. Ehrman
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Ronald R. Waclaw
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kakajan Komurov
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Adam Lane
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine and Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Susanne I. Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
23
|
Roles of DEK in the endometrium of mice in early pregnancy. Gene 2018; 642:261-267. [PMID: 29109007 DOI: 10.1016/j.gene.2017.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Embryo implantation is a complex process requiring reciprocal interactions between implantation-competent blastocysts and receptive uteri. Accumulating evidence from Digital Protein Expression Profiling indicates that DEK protein expression at implantation sites (ISs) was much higher than that at inter-implantation sites (IISs). In this study, we investigated the expression of DEK in mouse uterus by immunohistochemistry (IHC), Western blotting. We explored its function during decidualization of uterine stromal cells by inhibiting the expression of DEK. In further study of mechanism, the cell proliferation, apoptosis and DNA damage were detected after inhibiting DEK during decidualization of stromal cells. The results suggest that DEK participates in decidualization of stromal cells through mediating cell proliferation, apoptosis and DNA repair.
Collapse
|
24
|
Abstract
Histone chaperones are indispensable regulators of chromatin structure and function. Recent work has shown that they are frequently mis-regulated in cancer, which can have profound consequences on tumor growth and survival. Here, we focus on chaperones for the essential H3 histone variants H3.3 and CENP-A, specifically HIRA, DAXX/ATRX, DEK, and HJURP. This review summarizes recent studies elucidating their roles in regulating chromatin and discusses how cancer-specific chromatin interactions can be exploited to target cancer cells.
Collapse
Affiliation(s)
- Jonathan Nye
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniël P Melters
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Smith EA, Krumpelbeck EF, Jegga AG, Greis KD, Ali AM, Meetei AR, Wells SI. The nuclear DEK interactome supports multi-functionality. Proteins 2018; 86:88-97. [PMID: 29082557 PMCID: PMC5730476 DOI: 10.1002/prot.25411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023]
Abstract
DEK is an oncoprotein that is overexpressed in many forms of cancer and participates in numerous cellular pathways. Of these different pathways, relevant interacting partners and functions of DEK are well described in regard to the regulation of chromatin structure, epigenetic marks, and transcription. Most of this understanding was derived by investigating DNA-binding and chromatin processing capabilities of the oncoprotein. To facilitate the generation of mechanism-driven hypotheses regarding DEK activities in underexplored areas, we have developed the first DEK interactome model using tandem-affinity purification and mass spectrometry. With this approach, we identify IMPDH2, DDX21, and RPL7a as novel DEK binding partners, hinting at new roles for the oncogene in de novo nucleotide biosynthesis and ribosome formation. Additionally, a hydroxyurea-specific interaction with replication protein A (RPA) was observed, suggesting that a DEK-RPA complex may form in response to DNA replication fork stalling. Taken together, these findings highlight diverse activities for DEK across cellular pathways and support a model wherein this molecule performs a plethora of functions.
Collapse
Affiliation(s)
- Eric A. Smith
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Eric F. Krumpelbeck
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45219, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45219, USA
| | - Abdullah M. Ali
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Amom R. Meetei
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Susanne I. Wells
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem/progenitor cell fate decision during hematopoiesis is regulated by intracellular and extracellular signals such as transcription factors, growth factors, and cell-to-cell interactions. In this review, we explore the function of DEK, a nuclear phosphoprotein, on gene regulation. We also examine how DEK is secreted and internalized by cells, and discuss how both endogenous and extracellular DEK regulates hematopoiesis. Finally, we explore what currently is known about the regulation of DEK during inflammation. RECENT FINDINGS DEK negatively regulates the proliferation of early myeloid progenitor cells but has a positive effect on the differentiation of mature myeloid cells. Inflammation regulates intracellular DEK concentrations with inflammatory stimuli enhancing DEK expression. Inflammation-induced nuclear factor-kappa B activation is regulated by DEK, resulting in changes in the production of other inflammatory molecules such as IL-8. Inflammatory stimuli in turn regulates DEK secretion by cells of hematopoietic origin. However, how inflammation-induced expression and secretion of DEK regulates hematopoiesis remains unknown. SUMMARY Understanding how DEK regulates hematopoiesis under both homeostatic and inflammatory conditions may lead to a better understanding of the biology of HSCs and HPCs. Furthering our knowledge of the regulation of hematopoiesis will ultimately lead to new therapeutics that may increase the efficacy of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Maegan L Capitano
- Indiana University School of Medicine, Department of Microbiology and Immunology, Indianapolis, Indiana, USA
| | | |
Collapse
|
27
|
Smith EA, Gole B, Willis NA, Soria R, Starnes LM, Krumpelbeck EF, Jegga AG, Ali AM, Guo H, Meetei AR, Andreassen PR, Kappes F, Vinnedge LMP, Daniel JA, Scully R, Wiesmüller L, Wells SI. DEK is required for homologous recombination repair of DNA breaks. Sci Rep 2017; 7:44662. [PMID: 28317934 PMCID: PMC5357905 DOI: 10.1038/srep44662] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood. We present new evidence demonstrating the observed decrease in NHEJ is insufficient to impact immunoglobulin class switching in DEK knockout mice. Furthermore, DEK knockout cells were sensitive to apoptosis with NHEJ inhibition. Thus, we hypothesized DEK plays additional roles in homologous recombination (HR). Using episomal and integrated reporters, we demonstrate that HR repair of conventional DSBs is severely compromised in DEK-deficient cells. To define responsible mechanisms, we tested the role of DEK in the HR repair cascade. DEK-deficient cells were impaired for γH2AX phosphorylation and attenuated for RAD51 filament formation. Additionally, DEK formed a complex with RAD51, but not BRCA1, suggesting a potential role regarding RAD51 filament formation, stability, or function. These findings define DEK as an important and multifunctional mediator of HR, and establish a synthetic lethal relationship between DEK loss and NHEJ inhibition.
Collapse
Affiliation(s)
- Eric A. Smith
- Division of Oncology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Boris Gole
- Department of Obstetrics and Gynecology; Ulm University, Ulm, 89075, Germany
| | - Nicholas A. Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Rebeca Soria
- Chromatin Structure and Function Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Linda M. Starnes
- Chromatin Structure and Function Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eric F. Krumpelbeck
- Division of Oncology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Anil G. Jegga
- Division of Oncology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Abdullah M. Ali
- Division of Experimental Hematology and Cancer Biology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | - Amom R. Meetei
- Division of Experimental Hematology and Cancer Biology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | | | - Jeremy A. Daniel
- Chromatin Structure and Function Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology; Ulm University, Ulm, 89075, Germany
| | - Susanne I. Wells
- Division of Oncology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
28
|
Qiao MX, Li C, Zhang AQ, Hou LL, Yang J, Hu HG. Regulation of DEK expression by AP-2α and methylation level of DEK promoter in hepatocellular carcinoma. Oncol Rep 2016; 36:2382-90. [PMID: 27499261 DOI: 10.3892/or.2016.4984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/23/2016] [Indexed: 11/06/2022] Open
Abstract
DEK is overexpressed in multiple invasive tumors. However, the transcriptional regulatory mechanism of DEK remains unclear. In the present study, progressive-type truncation assay indicated that CpG2-2 (-167 bp/+35 bp) was the DEK core promoter, whose methylation inhibited DEK expression. Bisulfite genomic sequencing analysis indicated that the methylation levels of the DEK promoter in normal hepatic cells and tissues were higher than those in hepatocellular carcinoma (HCC) cells. TFSEARCH result revealed transcription factor binding sites in CpG2-2. Among the sites, the AP-2α binding site showed the most significant methylation difference; hence, AP-2α is a key transcription factor that regulates DEK expression. Point or deletion mutation of the AP-2α binding site significantly reduced the promoter activity. Chromatin immunoprecipitation assay demonstrated the binding of AP-2α to the core promoter. Furthermore, knock down of endogenous AP-2α downregulated DEK expression, whereas overexpression of AP-2α upregulated DEK expression. Thus, AP-2α is an important transcription factor of DEK expression, which is correlated with the methylation level of the DEK core promoter in HCC.
Collapse
Affiliation(s)
- Ming-Xu Qiao
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Chun Li
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Ai-Qun Zhang
- Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, P.R. China
| | - Ling-Ling Hou
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Juan Yang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Hong-Gang Hu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| |
Collapse
|
29
|
Zhang Y, Liu J, Wang S, Luo X, Li Y, Lv Z, Zhu J, Lin J, Ding L, Ye Q. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners. Oncotarget 2016; 7:23740-56. [PMID: 26988756 PMCID: PMC5029660 DOI: 10.18632/oncotarget.8060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Chick Embryo
- Chorioallantoic Membrane/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Response Elements
- Signal Transduction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Shibin Wang
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Yang Li
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhaohui Lv
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jie Zhu
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
30
|
Dissecting the Potential Interplay of DEK Functions in Inflammation and Cancer. JOURNAL OF ONCOLOGY 2015; 2015:106517. [PMID: 26425120 PMCID: PMC4575739 DOI: 10.1155/2015/106517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
There is a long-standing correlation between inflammation, inflammatory cell signaling pathways, and tumor formation. Understanding the mechanisms behind inflammation-driven tumorigenesis is of great research and clinical importance. Although not entirely understood, these mechanisms include a complex interaction between the immune system and the damaged epithelium that is mediated by an array of molecular signals of inflammation—including reactive oxygen species (ROS), cytokines, and NFκB signaling—that are also oncogenic. Here, we discuss the association of the unique DEK protein with these processes. Specifically, we address the role of DEK in chronic inflammation via viral infections and autoimmune diseases, the overexpression and oncogenic activity of DEK in cancers, and DEK-mediated regulation of NFκB signaling. Combined, evidence suggests that DEK may play a complex, multidimensional role in chronic inflammation and subsequent tumorigenesis.
Collapse
|
31
|
Deutzmann A, Ganz M, Schönenberger F, Vervoorts J, Kappes F, Ferrando-May E. The human oncoprotein and chromatin architectural factor DEK counteracts DNA replication stress. Oncogene 2015; 34:4270-7. [PMID: 25347734 DOI: 10.1038/onc.2014.346] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/16/2022]
Abstract
DNA replication stress is a major source of DNA strand breaks and genomic instability, and a hallmark of precancerous lesions. In these hyperproliferative tissues, activation of the DNA damage response results in apoptosis or senescence preventing or delaying their development to full malignancy. In cells, in which this antitumor barrier is disabled by mutations (for example, in p53), viability and further uncontrolled proliferation depend on factors that help to cope with replication-associated DNA damage. Replication problems preferentially arise in chromatin regions harboring complex DNA structures. DEK is a unique chromatin architectural factor which binds to non-B-form DNA structures, such as cruciform DNA or four-way junctions. It regulates DNA topology and chromatin organization, and is essential for the maintenance of heterochromatin integrity. Since its isolation as part of an oncogenic fusion in a subtype of AML, DEK has been consistently associated with tumor progression and chemoresistance. How DEK promotes cancer, however, is poorly understood. Here we show that DEK facilitates cellular proliferation under conditions of DNA replication stress by promoting replication fork progression. DEK also protects from the transmission of DNA damage to the daughter cell generation. We propose that DEK counteracts replication stress and ensures proliferative advantage by resolving problematic DNA and/or chromatin structures at the replication fork.
Collapse
Affiliation(s)
- A Deutzmann
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| | - M Ganz
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| | - F Schönenberger
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| | - J Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - F Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - E Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
32
|
Sandén C, Gullberg U. The DEK oncoprotein and its emerging roles in gene regulation. Leukemia 2015; 29:1632-6. [PMID: 25765544 DOI: 10.1038/leu.2015.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/08/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
The DEK oncogene is highly expressed in cells from most human tissues and overexpressed in a large and growing number of cancers. It also fuses with the NUP214 gene to form the DEK-NUP214 fusion gene in a subset of acute myeloid leukemia. Originally characterized as a member of this translocation, DEK has since been implicated in epigenetic and transcriptional regulation, but its role in these processes is still elusive and intriguingly complex. Similarly multifaceted is its contribution to cellular transformation, affecting multiple cellular processes such as self-renewal, proliferation, differentiation, senescence and apoptosis. Recently, the roles of the DEK and DEK-NUP214 proteins have been elucidated by global analysis of DNA binding and gene expression, as well as multiple functional studies. This review outlines recent advances in the understanding of the basic functions of the DEK protein and its role in leukemogenesis.
Collapse
Affiliation(s)
- C Sandén
- Department of Hematology, Lund University, Lund, Sweden
| | - U Gullberg
- Department of Hematology, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Matrka MC, Hennigan RF, Kappes F, DeLay ML, Lambert PF, Aronow BJ, Wells SI. DEK over-expression promotes mitotic defects and micronucleus formation. Cell Cycle 2015; 14:3939-53. [PMID: 25945971 PMCID: PMC4825741 DOI: 10.1080/15384101.2015.1044177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022] Open
Abstract
The DEK gene encodes a nuclear protein that binds chromatin and is involved in various fundamental nuclear processes including transcription, RNA splicing, DNA replication and DNA repair. Several cancer types characteristically over-express DEK at the earliest stages of transformation. In order to explore relevant mechanisms whereby DEK supports oncogenicity, we utilized cancer databases to identify gene transcripts whose expression patterns are tightly correlated with that of DEK. We identified an enrichment of genes involved in mitosis and thus investigated the regulation and possible function of DEK in cell division. Immunofluorescence analyses revealed that DEK dissociates from DNA in early prophase and re-associates with DNA during telophase in human keratinocytes. Mitotic cell populations displayed a sharp reduction in DEK protein levels compared to the corresponding interphase population, suggesting DEK may be degraded or otherwise removed from the cell prior to mitosis. Interestingly, DEK overexpression stimulated its own aberrant association with chromatin throughout mitosis. Furthermore, DEK co-localized with anaphase bridges, chromosome fragments, and micronuclei, suggesting a specific association with mitotically defective chromosomes. We found that DEK over-expression in both non-transformed and transformed cells is sufficient to stimulate micronucleus formation. These data support a model wherein normal chromosomal clearance of DEK is required for maintenance of high fidelity cell division and chromosomal integrity. Therefore, the overexpression of DEK and its incomplete removal from mitotic chromosomes promotes genomic instability through the generation of genetically abnormal daughter cells. Consequently, DEK over-expression may be involved in the initial steps of developing oncogenic mutations in cells leading to cancer initiation.
Collapse
Affiliation(s)
- Marie C Matrka
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| | - Robert F Hennigan
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| | - Ferdinand Kappes
- Department of Biological Sciences; Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
- Institute of Biochemistry and Molecular Biology; Medical School; RWTH Aachen University; Aachen, Germany
| | - Monica L DeLay
- Division of Rheumatology; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research; University of Wisconsin-Madison School of Medicine and Public Health; Madison, WI USA
| | - Bruce J Aronow
- Biomedical Informatics; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Susanne I Wells
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| |
Collapse
|
34
|
Waidmann S, Kusenda B, Mayerhofer J, Mechtler K, Jonak C. A DEK domain-containing protein modulates chromatin structure and function in Arabidopsis. THE PLANT CELL 2014; 26:4328-44. [PMID: 25387881 PMCID: PMC4277211 DOI: 10.1105/tpc.114.129254] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 05/19/2023]
Abstract
Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function.
Collapse
Affiliation(s)
- Sascha Waidmann
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Branislav Kusenda
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Juliane Mayerhofer
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Claudia Jonak
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
35
|
Ivanauskiene K, Delbarre E, McGhie JD, Küntziger T, Wong LH, Collas P. The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Genome Res 2014; 24:1584-94. [PMID: 25049225 PMCID: PMC4199371 DOI: 10.1101/gr.173831.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/18/2014] [Indexed: 12/24/2022]
Abstract
Histone variant H3.3 is deposited in chromatin at active sites, telomeres, and pericentric heterochromatin by distinct chaperones, but the mechanisms of regulation and coordination of chaperone-mediated H3.3 loading remain largely unknown. We show here that the chromatin-associated oncoprotein DEK regulates differential HIRA- and DAAX/ATRX-dependent distribution of H3.3 on chromosomes in somatic cells and embryonic stem cells. Live cell imaging studies show that nonnucleosomal H3.3 normally destined to PML nuclear bodies is re-routed to chromatin after depletion of DEK. This results in HIRA-dependent widespread chromatin deposition of H3.3 and H3.3 incorporation in the foci of heterochromatin in a process requiring the DAXX/ATRX complex. In embryonic stem cells, loss of DEK leads to displacement of PML bodies and ATRX from telomeres, redistribution of H3.3 from telomeres to chromosome arms and pericentric heterochromatin, induction of a fragile telomere phenotype, and telomere dysfunction. Our results indicate that DEK is required for proper loading of ATRX and H3.3 on telomeres and for telomeric chromatin architecture. We propose that DEK acts as a "gatekeeper" of chromatin, controlling chromatin integrity by restricting broad access to H3.3 by dedicated chaperones. Our results also suggest that telomere stability relies on mechanisms ensuring proper histone supply and routing.
Collapse
Affiliation(s)
- Kristina Ivanauskiene
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Erwan Delbarre
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - James D McGhie
- Epigenetics and Chromatin (EpiC) Research, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Küntziger
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Lee H Wong
- Epigenetics and Chromatin (EpiC) Research, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Philippe Collas
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway;
| |
Collapse
|
36
|
Kim KB, Chae YC, Han A, Kang JY, Jung H, Park JW, Hahm JY, Kim S, Seo SB. Negative regulation of peroxiredoxin 6 (Prdx 6) transcription by nuclear oncoprotein DEK during leukemia cell differentiation. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.950605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
37
|
Sandén C, Järvstråt L, Lennartsson A, Brattås PL, Nilsson B, Gullberg U. The DEK oncoprotein binds to highly and ubiquitously expressed genes with a dual role in their transcriptional regulation. Mol Cancer 2014; 13:215. [PMID: 25216995 PMCID: PMC4175287 DOI: 10.1186/1476-4598-13-215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The DEK gene is highly expressed in a wide range of cancer cells, and a recurrent translocation partner in acute myeloid leukemia. While DEK has been identified as one of the most abundant proteins in human chromatin, its function and binding properties are not fully understood. METHODS We performed ChIP-seq analysis in the myeloid cell line U937 and coupled it with epigenetic and gene expression analysis to explore the genome-wide binding pattern of DEK and its role in gene regulation. RESULTS We show that DEK preferentially binds to open chromatin, with a low degree of DNA methylation and scarce in the heterochromatin marker H3K9me(3) but rich in the euchromatin marks H3K4me(2/3), H3K27ac and H3K9ac. More specifically, DEK binding is predominantly located at the transcription start sites of highly transcribed genes and a comparative analysis with previously established transcription factor binding patterns shows a similarity with that of RNA polymerase II. Further bioinformatic analysis demonstrates that DEK mainly binds to genes that are ubiquitously expressed across tissues. The functional significance of DEK binding was demonstrated by knockdown of DEK by shRNA, resulting in both significant upregulation and downregulation of DEK-bound genes. CONCLUSIONS We find that DEK binds to transcription start sites with a dual role in activation and repression of highly and ubiquitously expressed genes.
Collapse
Affiliation(s)
- Carl Sandén
- />Department of Hematology, Lund University, BMC B13, Klinikgatan 26, 221 84 Lund, Sweden
| | - Linnea Järvstråt
- />Department of Hematology, Lund University, BMC B13, Klinikgatan 26, 221 84 Lund, Sweden
| | - Andreas Lennartsson
- />Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Novum, 141 83 Huddinge, Sweden
| | - Per Ludvik Brattås
- />Department of Hematology, Lund University, BMC B13, Klinikgatan 26, 221 84 Lund, Sweden
| | - Björn Nilsson
- />Department of Hematology, Lund University, BMC B13, Klinikgatan 26, 221 84 Lund, Sweden
| | - Urban Gullberg
- />Department of Hematology, Lund University, BMC B13, Klinikgatan 26, 221 84 Lund, Sweden
| |
Collapse
|
38
|
Sandahl JD, Coenen EA, Forestier E, Harbott J, Johansson B, Kerndrup G, Adachi S, Auvrignon A, Beverloo HB, Cayuela JM, Chilton L, Fornerod M, de Haas V, Harrison CJ, Inaba H, Kaspers GJL, Liang DC, Locatelli F, Masetti R, Perot C, Raimondi SC, Reinhardt K, Tomizawa D, von Neuhoff N, Zecca M, Zwaan CM, van den Heuvel-Eibrink MM, Hasle H. t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica 2014; 99:865-72. [PMID: 24441146 PMCID: PMC4008104 DOI: 10.3324/haematol.2013.098517] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/13/2014] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia with t(6;9)(p22;q34) is listed as a distinct entity in the 2008 World Health Organization classification, but little is known about the clinical implications of t(6;9)-positive myeloid leukemia in children. This international multicenter study presents the clinical and genetic characteristics of 62 pediatric patients with t(6;9)/DEK-NUP214-rearranged myeloid leukemia; 54 diagnosed as having acute myeloid leukemia, representing <1% of all childhood acute myeloid leukemia, and eight as having myelodysplastic syndrome. The t(6;9)/DEK-NUP214 was associated with relatively late onset (median age 10.4 years), male predominance (sex ratio 1.7), French-American-British M2 classification (54%), myelodysplasia (100%), and FLT3-ITD (42%). Outcome was substantially better than previously reported with a 5-year event-free survival of 32%, 5-year overall survival of 53%, and a 5-year cumulative incidence of relapse of 57%. Hematopoietic stem cell transplantation in first complete remission improved the 5-year event-free survival compared with chemotherapy alone (68% versus 18%; P<0.01) but not the overall survival (68% versus 54%; P=0.48). The presence of FLT3-ITD had a non-significant negative effect on 5-year overall survival compared with non-mutated cases (22% versus 62%; P=0.13). Gene expression profiling showed a unique signature characterized by significantly higher expression of EYA3, SESN1, PRDM2/RIZ, and HIST2H4 genes. In conclusion, t(6;9)/DEK-NUP214 represents a unique subtype of acute myeloid leukemia with a high risk of relapse, high frequency of FLT3-ITD, and a specific gene expression signature.
Collapse
MESH Headings
- Adolescent
- Bone Marrow/pathology
- Child
- Child, Preschool
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomes, Human, Pair 6
- Chromosomes, Human, Pair 9
- Female
- Gene Expression Profiling
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/diagnosis
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/mortality
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Male
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/mortality
- Myelodysplastic Syndromes/therapy
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Poly-ADP-Ribose Binding Proteins
- Recurrence
- Translocation, Genetic
- Treatment Outcome
Collapse
|
39
|
Karam M, Thenoz M, Capraro V, Robin JP, Pinatel C, Lancon A, Galia P, Sibon D, Thomas X, Ducastelle-Lepretre S, Nicolini F, El-Hamri M, Chelghoun Y, Wattel E, Mortreux F. Chromatin redistribution of the DEK oncoprotein represses hTERT transcription in leukemias. Neoplasia 2014; 16:21-30. [PMID: 24563617 PMCID: PMC3927101 DOI: 10.1593/neo.131658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
Abstract
Although numerous factors have been found to modulate hTERT transcription, the mechanism of its repression in certain leukemias remains unknown. We show here that DEK represses hTERT transcription through its enrichment on the hTERT promoter in cells from chronic and acute myeloid leukemias, chronic lymphocytic leukemia, but not acute lymphocytic leukemias where hTERT is overexpressed. We isolated DEK from the hTERT promoter incubated with nuclear extracts derived from fresh acute myelogenous leukemia (AML) cells and from cells expressing Tax, an hTERT repressor encoded by the human T cell leukemia virus type 1. In addition to the recruitment of DEK, the displacement of two potent known hTERT transactivators from the hTERT promoter characterized both AML cells and Tax-expressing cells. Reporter and chromatin immunoprecipitation assays permitted to map the region that supports the repressive effect of DEK on hTERT transcription, which was proportionate to the level of DEK-promoter association but not with the level of DEK expression. Besides hTERT repression, this context of chromatin redistribution of DEK was found to govern about 40% of overall transcriptional modifications, including those of cancer-prone genes. In conclusion, DEK emerges as an hTERT repressor shared by various leukemia subtypes and seems involved in the deregulation of numerous genes associated with leukemogenesis.
Collapse
Affiliation(s)
- Maroun Karam
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Morgan Thenoz
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Valérie Capraro
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Jean-Philippe Robin
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Christiane Pinatel
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Agnès Lancon
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Perrine Galia
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - David Sibon
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
- Service d'Hématologie Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Xavier Thomas
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Sophie Ducastelle-Lepretre
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Franck Nicolini
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Mohamed El-Hamri
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Youcef Chelghoun
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Eric Wattel
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Franck Mortreux
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| |
Collapse
|
40
|
Broxmeyer HE, Mor-Vaknin N, Kappes F, Legendre M, Saha AK, Ou X, O'Leary H, Capitano M, Cooper S, Markovitz DM. Concise review: role of DEK in stem/progenitor cell biology. Stem Cells 2013; 31:1447-53. [PMID: 23733396 PMCID: PMC3814160 DOI: 10.1002/stem.1443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/19/2022]
Abstract
Understanding the factors that regulate hematopoiesis opens up the possibility of modifying these factors and their actions for clinical benefit. DEK, a non-histone nuclear phosphoprotein initially identified as a putative proto-oncogene, has recently been linked to regulate hematopoiesis. DEK has myelosuppressive activity in vitro on proliferation of human and mouse hematopoietic progenitor cells and enhancing activity on engraftment of long-term marrow repopulating mouse stem cells, has been linked in coordinate regulation with the transcription factor C/EBPα, for differentiation of myeloid cells, and apparently targets a long-term repopulating hematopoietic stem cell for leukemic transformation. This review covers the uniqueness of DEK, what is known about how it now functions as a nuclear protein and also as a secreted molecule that can act in paracrine fashion, and how it may be regulated in part by dipeptidylpeptidase 4, an enzyme known to truncate and modify a number of proteins involved in activities on hematopoietic cells. Examples are provided of possible future areas of investigation needed to better understand how DEK may be regulated and function as a regulator of hematopoiesis, information possibly translatable to other normal and diseased immature cell systems.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Privette Vinnedge LM, Kappes F, Nassar N, Wells SI. Stacking the DEK: from chromatin topology to cancer stem cells. Cell Cycle 2013; 12:51-66. [PMID: 23255114 PMCID: PMC3570517 DOI: 10.4161/cc.23121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cells are essential for development and tissue maintenance and display molecular markers and functions distinct from those of differentiated cell types in a given tissue. Malignant cells that exhibit stem cell-like activities have been detected in many types of cancers and have been implicated in cancer recurrence and drug resistance. Normal stem cells and cancer stem cells have striking commonalities, including shared cell surface markers and signal transduction pathways responsible for regulating quiescence vs. proliferation, self-renewal, pluripotency and differentiation. As the search continues for markers that distinguish between stem cells, progenitor cells and cancer stem cells, growing evidence suggests that a unique chromatin-associated protein called DEK may confer stem cell-like qualities. Here, we briefly describe current knowledge regarding stem and progenitor cells. We then focus on new findings that implicate DEK as a regulator of stem and progenitor cell qualities, potentially through its unusual functions in the regulation of local or global chromatin organization.
Collapse
Affiliation(s)
- Lisa M Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
42
|
Samejima K, Samejima I, Vagnarelli P, Ogawa H, Vargiu G, Kelly DA, de Lima Alves F, Kerr A, Green LC, Hudson DF, Ohta S, Cooke CA, Farr CJ, Rappsilber J, Earnshaw WC. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. ACTA ACUST UNITED AC 2012; 199:755-70. [PMID: 23166350 PMCID: PMC3514791 DOI: 10.1083/jcb.201202155] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the shaping of mitotic chromosomes, KIF4 and condensin work in parallel to promote lateral chromatid compaction and in opposition to topoisomerase IIα, which shortens the chromatid arms. Mitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic “X” shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the “intrinsic structure” of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Privette Vinnedge LM, Ho SM, Wikenheiser-Brokamp KA, Wells SI. The DEK oncogene is a target of steroid hormone receptor signaling in breast cancer. PLoS One 2012; 7:e46985. [PMID: 23071688 PMCID: PMC3468546 DOI: 10.1371/journal.pone.0046985] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/07/2012] [Indexed: 12/28/2022] Open
Abstract
Expression of estrogen and progesterone hormone receptors indicates a favorable prognosis due to the successful use of hormonal therapies such as tamoxifen and aromatase inhibitors. Unfortunately, 15-20% of patients will experience breast cancer recurrence despite continued use of tamoxifen. Drug resistance to hormonal therapies is of great clinical concern so it is imperative to identify novel molecular factors that contribute to tumorigenesis in hormone receptor positive cancers and/or mediate drug sensitivity. The hope is that targeted therapies, in combination with hormonal therapies, will improve survival and prevent recurrence. We have previously shown that the DEK oncogene, which is a chromatin remodeling protein, supports breast cancer cell proliferation, invasion and the maintenance of the breast cancer stem cell population. In this report, we demonstrate that DEK expression is associated with positive hormone receptor status in primary breast cancers and is up-regulated in vitro following exposure to the hormones estrogen, progesterone, and androgen. Chromatin immunoprecipitation experiments identify DEK as a novel estrogen receptor α (ERα) target gene whose expression promotes estrogen-induced proliferation. Finally, we report for the first time that DEK depletion enhances tamoxifen-induced cell death in ER+ breast cancer cell lines. Together, our data suggest that DEK promotes the pathogenesis of ER+ breast cancer and that the targeted inhibition of DEK may enhance the efficacy of conventional hormone therapies.
Collapse
Affiliation(s)
- Lisa M. Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine and Cincinnati Veteran Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Kathryn A. Wikenheiser-Brokamp
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
44
|
Liu K, Feng T, Liu J, Zhong M, Zhang S. Silencing of the DEK gene induces apoptosis and senescence in CaSki cervical carcinoma cells via the up-regulation of NF-κB p65. Biosci Rep 2012; 32:323-32. [PMID: 22390170 DOI: 10.1042/bsr20100141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human DEK proto-oncogene has been found to play an important role in autoimmune disease, viral infection and human carcinogenesis. Although it is transcriptionally up-regulated in cervical cancer, its intracellular function and regulation is still unexplored. In the present study, DEK and IκBα [inhibitor of NF-κB (nuclear factor κB) α] shRNAs (short hairpin RNAs) were constructed and transfected into CaSki cells using Lipofectamine™. The stable cell line CaSki-DEK was obtained after G418 selection. CaSki-IκB cells were observed at 48 h after psiRNA-IκB transfection. The inhibitory efficiency of shRNAs were detected by RT (reverse transcription)-PCR and Western blot analysis. The proliferation activity of cells were measured using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay, cell apoptosis was measured using an Annexin V/PI (propidium iodide) kit, the cell cycle was analysed by flow cytometry and cell senescence was detected using senescence β-galactosidase staining. The intracellular expression of NF-κB p65 protein was studied by cytochemistry. The expression levels of NF-κB p65, p50, c-Rel, IκBα and phospho-IκBα protein were analysed by immunoblotting in whole-cell lysates, cytosolic fractions and nuclear extracts. The protein expression and activity of p38 and JNK (c-Jun N-terminal kinase) were also assayed. In addition, the NF-κB p65 DNA-binding activity was measured by ELISA. Following the silencing of DEK and IκBα, cell proliferation was inhibited, apoptosis was increased, the cell cycle was blocked in the G0/G1-phase with a corresponding decrease in the G2/M-phase, and cell senescence was induced. All of these effects may be related to the up-regulation of NF-κB p65 expression and its nuclear translocation.
Collapse
Affiliation(s)
- Kuiran Liu
- Department of Gynecology and Obstetrics, the Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China.
| | | | | | | | | |
Collapse
|
45
|
Liu S, Wang X, Sun F, Kong J, Li Z, Lin Z. DEK overexpression is correlated with the clinical features of breast cancer. Pathol Int 2012; 62:176-81. [PMID: 22360505 DOI: 10.1111/j.1440-1827.2011.02775.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the clinicopathological significance of DEK overexpression in breast cancers, a total of 196 cases, including 20 of normal tissues, 12 of intraductal hyperplasia, 31 of ductal carcinoma in situ (DCIS) and 133 of invasive ductal carcinoma of the breast, were selected from the Department of Pathology, Yanbian Tumor Hospital for immunohistochemical staining of DEK, estrogen (ER), progesterone (PR) and Ki-67 proteins. In results, DEK protein had higher positivity in DCIS, compared with the adjacent normal breast tissues. Also, DEK protein was strongly positive in invasive ductal carcinoma of the breast on immunohistochemistry, which was significantly higher than normal breast tissues. However, only two (2/12) cases of intraductal hyperplasia of the breast showed positive staining for DEK protein. Additionally, DEK overexpression was significantly correlated with the increased proliferating index of Ki-67. For the histological grade, DEK positive rate was only 39.6% in G1 breast cancers, but significantly higher in G2 (92.3%) and G3 (97.0%) cases (P<0.05). Also, a strongly positive rate of DEK was lower in Stage-0 (21.4%) and Stage-I (40.9%) compared with Stage-IIa (87.5%), Stage-IIb (89.7%) and Stage-IIIa (92.3%) (P<0.05). And DEK protein showed higher expression level in < 3 years disease free survival breast cancers than it did in ≥ 3 years disease free survival cases (P<0.05). However, no statistically difference was found among DEK expression, lymph node metastasis, and ER and PR expressions. In conclusion, DEK overexpression appears to be associated with breast cancer progression and DEK may potentially be used as a breast cancer biomarker for the early diagnosis, prognostic evaluation and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shuangping Liu
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | | | | | | | | | | |
Collapse
|
46
|
Privette Vinnedge LM, McClaine R, Wagh PK, Wikenheiser-Brokamp KA, Waltz SE, Wells SI. The human DEK oncogene stimulates β-catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene 2011; 30:2741-52. [PMID: 21317931 PMCID: PMC3117026 DOI: 10.1038/onc.2011.2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/16/2022]
Abstract
Breast cancer is a major cause of cancer-related deaths in American women; therefore, the identification of novel breast cancer-related molecules for the discovery of new markers and drug targets remains essential. The human DEK gene, which encodes a chromatin-binding protein and DNA topology regulator, is upregulated in many types of cancer. DEK has been implicated as an oncogene in breast cancer based on mRNA expression studies, but its functional significance in breast cancer growth and progression has not yet been tested directly. We demonstrate that DEK is highly expressed in breast cancer cells compared with normal tissue, and functionally important for cellular growth, invasion and mammosphere formation. DEK overexpression in non-tumorigenic MCF10A cells resulted in increased growth and motility, with a concomitant downregulation of E-cadherin. Conversely, DEK knockdown in MCF7 and MDA-MB-468 breast cancer cells resulted in decreased growth and motility with upregulation of E-cadherin. The use of DEK-proficient and -deficient breast cancer cells in orthotopic xenografts provided further in vivo evidence that DEK contributes to tumor growth. Activation of the β-catenin signaling pathway is important for normal and cancer stem cell character, growth and metastasis. We show that DEK expression stimulated, and DEK knockdown repressed β-catenin nuclear translocation and activity. Importantly, the expression of constitutively active β-catenin rescued breast cancer invasion defects of DEK knockdown cells. Together, our data indicate that DEK expression stimulates the growth, stem cell character and motility of breast cancer cells, and that DEK-dependent cellular invasion occurs at least in part via β-catenin activation.
Collapse
Affiliation(s)
- L M Privette Vinnedge
- Department of Hematology and Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kappes F, Waldmann T, Mathew V, Yu J, Zhang L, Khodadoust MS, Chinnaiyan AM, Luger K, Erhardt S, Schneider R, Markovitz DM. The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev 2011; 25:673-8. [PMID: 21460035 PMCID: PMC3070930 DOI: 10.1101/gad.2036411] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 02/09/2011] [Indexed: 12/18/2022]
Abstract
Heterochromatin integrity is crucial for genome stability and regulation of gene expression, but the factors involved in mammalian heterochromatin biology are only incompletely understood. Here we identify the oncoprotein DEK, an abundant nuclear protein with a previously enigmatic in vivo function, as a Suppressor of Variegation [Su(var)] that is crucial to global heterochromatin integrity. We show that DEK interacts directly with Heterochromatin Protein 1 α (HP1α) and markedly enhances its binding to trimethylated H3K9 (H3K9me3), which is key for maintaining heterochromatic regions. Loss of Dek in Drosophila leads to a Su(var) phenotype and global reduction in heterochromatin. Thus, these findings show that DEK is a key factor in maintaining the balance between heterochromatin and euchromatin in vivo.
Collapse
Affiliation(s)
- Ferdinand Kappes
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Tanja Waldmann
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Veena Mathew
- CellNetworks-Cluster of Excellence, ZMBH-DKFZ-Alliance, ZMBH, Heidelberg University, Heidelberg 69120, Germany
| | - Jindan Yu
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Michael S. Khodadoust
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Sylvia Erhardt
- CellNetworks-Cluster of Excellence, ZMBH-DKFZ-Alliance, ZMBH, Heidelberg University, Heidelberg 69120, Germany
| | | | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Mor-Vaknin N, Kappes F, Dick AE, Legendre M, Damoc C, Teitz-Tennenbaum S, Kwok R, Ferrando-May E, Adams BS, Markovitz DM. DEK in the synovium of patients with juvenile idiopathic arthritis: characterization of DEK antibodies and posttranslational modification of the DEK autoantigen. ARTHRITIS AND RHEUMATISM 2011; 63:556-67. [PMID: 21280010 PMCID: PMC3117121 DOI: 10.1002/art.30138] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE DEK is a nuclear phosphoprotein and autoantigen in a subset of children with juvenile idiopathic arthritis (JIA). Autoantibodies to DEK are also found in a broad spectrum of disorders associated with abnormal immune activation. We previously demonstrated that DEK is secreted by macrophages, is released by apoptotic T cells, and attracts leukocytes. Since DEK has been identified in the synovial fluid (SF) of patients with JIA, this study was undertaken to investigate how DEK protein and/or autoantibodies may contribute to the pathogenesis of JIA. METHODS DEK autoantibodies, immune complexes (ICs), and synovial macrophages were purified from the SF of patients with JIA. DEK autoantibodies and ICs were purified by affinity-column chromatography and analyzed by 2-dimensional gel electrophoresis, immunoblotting, and enzyme-linked immunosorbent assay. DEK in supernatants and exosomes was purified by serial centrifugation and immunoprecipitation with magnetic beads, and posttranslational modifications of DEK were identified by nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS). RESULTS DEK autoantibodies and protein were found in the SF of patients with JIA. Secretion of DEK by synovial macrophages was observed both in a free form and via exosomes. DEK autoantibodies (IgG2) may activate the complement cascade, primarily recognize the C-terminal portion of DEK protein, and exhibit higher affinity for acetylated DEK. Consistent with these observations, DEK underwent acetylation on an unprecedented number of lysine residues, as demonstrated by nano-LC-MS/MS. CONCLUSION These results indicate that DEK can contribute directly to joint inflammation in JIA by generating ICs through high-affinity interaction between DEK and DEK autoantibodies, a process enhanced by acetylation of DEK in the inflamed joint.
Collapse
|
49
|
Abstract
DNA supercoiling plays essential role in maintaining proper chromosome structure, as well as the equilibrium between genome dynamics and stability under specific physicochemical and physiological conditions. In mesophilic organisms, DNA is negatively supercoiled and, until recently, positive supercoiling was considered a peculiar mark of (hyper)thermophilic archaea needed to survive high temperatures. However, several lines of evidence suggest that negative and positive supercoiling might coexist in both (hyper)thermophilic and mesophilic organisms, raising the possibility that positive supercoiling might serve as a regulator of various cellular events, such as chromosome condensation, gene expression, mitosis, sister chromatid cohesion, centromere identity and telomere homoeostasis.
Collapse
|
50
|
Valenti A, Perugino G, Varriale A, D'Auria S, Rossi M, Ciaramella M. The archaeal topoisomerase reverse gyrase is a helix-destabilizing protein that unwinds four-way DNA junctions. J Biol Chem 2010; 285:36532-41. [PMID: 20851892 DOI: 10.1074/jbc.m110.169029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Four-way junctions are non-B DNA structures that originate as intermediates of recombination and repair (Holliday junctions) or from the intrastrand annealing of palindromic sequences (cruciforms). These structures have important functional roles but may also severely interfere with DNA replication and other genetic processes; therefore, they are targeted by regulatory and architectural proteins, and dedicated pathways exist for their removal. Although it is well known that resolution of Holliday junctions occurs either by recombinases or by specialized helicases, less is known on the mechanisms dealing with secondary structures in nucleic acids. Reverse gyrase is a DNA topoisomerase, specific to microorganisms living at high temperatures, which comprises a type IA topoisomerase fused to an SF2 helicase-like module and catalyzes ATP hydrolysis-dependent DNA positive supercoiling. Reverse gyrase is likely involved in regulation of DNA structure and stability and might also participate in the cell response to DNA damage. By applying FRET technology to multiplex fluorophore gel imaging, we show here that reverse gyrase induces unwinding of synthetic four-way junctions as well as forked DNA substrates, following a mechanism independent of both the ATPase and the strand-cutting activity of the enzyme. The reaction requires high temperature and saturating protein concentrations. Our results suggest that reverse gyrase works like an ATP-independent helix-destabilizing protein specific for branched DNA structures. The results are discussed in light of reverse gyrase function and their general relevance for protein-mediated unwinding of complex DNA structures.
Collapse
Affiliation(s)
- Anna Valenti
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|