1
|
Ji Y, Yiorkas AM, Frau F, Mook-Kanamori D, Staiger H, Thomas EL, Atabaki-Pasdar N, Campbell A, Tyrrell J, Jones SE, Beaumont RN, Wood AR, Tuke MA, Ruth KS, Mahajan A, Murray A, Freathy RM, Weedon MN, Hattersley AT, Hayward C, Machann J, Häring HU, Franks P, de Mutsert R, Pearson E, Stefan N, Frayling TM, Allebrandt KV, Bell JD, Blakemore AI, Yaghootkar H. Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype Is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension. Diabetes 2019; 68:207-219. [PMID: 30352878 DOI: 10.2337/db18-0708] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022]
Abstract
Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.
Collapse
Affiliation(s)
- Yingjie Ji
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Andrianos M Yiorkas
- Section of Investigative Medicine, Imperial College London, London, U.K
- Department of Life Sciences, Brunel University London, Uxbridge, U.K
| | - Francesca Frau
- Translational Medicine and Early Development, TMED Translational Informatics, Sanofi, Frankfurt am Main, Germany
| | - Dennis Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Naeimeh Atabaki-Pasdar
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Archie Campbell
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Samuel E Jones
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Marcus A Tuke
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Rachel M Freathy
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Paul Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ewan Pearson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital, Dundee, U.K
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Karla V Allebrandt
- Translational Medicine and Early Development, TMED Translational Informatics, Sanofi, Frankfurt am Main, Germany
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Alexandra I Blakemore
- Section of Investigative Medicine, Imperial College London, London, U.K
- Department of Life Sciences, Brunel University London, Uxbridge, U.K
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K.
| |
Collapse
|
2
|
Wongchenko MJ, Ribas A, Ascierto PA, Dréno B, Maria di Giacomo A, Garbe C, Chang I, Hsu J, Rooney I, Lu W, Koeppen H, Larkin J, Yan Y, McArthur GA. Effects of Molecular Heterogeneity on Survival of Patients With BRAFV600-Mutated Melanoma Treated With Vemurafenib With or Without Cobimetinib in the coBRIM Study. JCO Precis Oncol 2018; 2:1-18. [DOI: 10.1200/po.17.00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose The treatment of advanced BRAFV600-mutated melanomas with BRAF inhibitors (BRAFi) has improved survival, but the efficacy of BRAFi varies among individuals and the development of acquired resistance to BRAFi through reactivation of mitogen-activated protein kinase (MAPK) signaling is common. We performed an exploratory, retrospective analysis to investigate the effects of BRAFV600 allelic balance, coexisting oncogene mutations, cell proliferation signaling levels, and loss of PTEN expression on progression-free survival (PFS) in patients in the phase III coBRIM study, which compared the combination of the MEK inhibitor cobimetinib with the BRAFi vemurafenib versus vemurafenib as monotherapy. Methods Baseline tumor samples from the intention-to-treat population were analyzed by targeted deep sequencing at a median coverage of 3,600× and by immunohistochemistry for cell proliferation markers, BRAFV600E, and PTEN. The association of these biomarkers with PFS was assessed by Cox proportional hazards modeling. Gene expression in relation to loss of PTEN was profiled by RNA sequencing in 205 patient samples and 42 BRAFV600-mutated melanoma cell lines. Results Neither BRAFV600 allelic balance nor coexisting mutations in the RAS/RAF/RTK pathway affected PFS in either treatment group. Increased baseline MAPK signaling and cell proliferation did not affect PFS in patients treated with cobimetinib combined with vemurafenib. PTEN loss was associated with reduced PFS in patients treated with vemurafenib alone but not in patients treated with cobimetinib combined with vemurafenib. Conclusion Deeper inhibition of the MAPK pathway through targeting of both MEK and BRAF may override the effects of tumor heterogeneity and improve PFS in all patients with advanced BRAFV600 melanoma.
Collapse
Affiliation(s)
- Matthew J. Wongchenko
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Antoni Ribas
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Paolo A. Ascierto
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Brigitte Dréno
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Anna Maria di Giacomo
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Claus Garbe
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Ilsung Chang
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Jessie Hsu
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Isabelle Rooney
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - William Lu
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Hartmut Koeppen
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - James Larkin
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Yibing Yan
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| | - Grant A. McArthur
- Matthew J. Wongchenko, Ilsung Chang, Jessie Hsu, Isabelle Rooney, William Lu, Hartmut Koeppen, and Yibing Yan, Genentech, South San Francisco; Antoni Ribas, Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, Los Angeles, CA; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples; Anna Maria di Giacomo, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Brigitte Dréno, Nantes University, Nantes, France; Claus Garbe, University of Tübingen, Tübingen,
| |
Collapse
|
3
|
Lachowski D, Cortes E, Robinson B, Rice A, Rombouts K, Del Río Hernández AE. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. FASEB J 2018; 32:1099-1107. [PMID: 29070586 DOI: 10.1096/fj.201700721r] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Focal adhesion kinase (FAK) is a key molecule in focal adhesions and regulates fundamental processes in cells such as growth, survival, and migration. FAK is one of the first molecules recruited to focal adhesions in response to external mechanical stimuli and therefore is a pivotal mediator of cell mechanosignaling, and relays these stimuli to other mechanotransducers within the cytoplasm. Yes-associated protein (YAP) has been identified recently as one of these core mechanotransducers. YAP translocates to the nucleus following changes in cell mechanics to promote the expression of genes implicated in motility, apoptosis, proliferation, and organ growth. Here, we show that FAK controls the nuclear translocation and activation of YAP in response to mechanical activation and submit that the YAP-dependent process of durotaxis requires a cell with an asymmetric distribution of active and inactive FAK molecules.-Lachowski, D., Cortes, E., Robinson, B., Rice, A., Rombouts, K., Del Río Hernández, A. E. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis.
Collapse
Affiliation(s)
- Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Benjamin Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, United Kingdom
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| |
Collapse
|
4
|
Suddason T, Gallagher E. A RING to rule them all? Insights into the Map3k1 PHD motif provide a new mechanistic understanding into the diverse roles of Map3k1. Cell Death Differ 2015; 22:540-8. [PMID: 25613373 PMCID: PMC4356348 DOI: 10.1038/cdd.2014.239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022] Open
Abstract
Despite the sizable number of components that comprise Mapk cascades, Map3k1 is the only element that contains both a kinase domain and a plant homeodomain (PHD) motif, allowing Map3k1 to regulate the protein phosphorylation and ubiquitin proteasome systems. As such, Map3k1 has complex roles in the regulation of cell death, survival, migration and differentiation. Numerous mouse and human genetic analyses have demonstrated that Map3k1 is of critical importance for the immune system, cardiac tissue, testis, wound healing, tumorigenesis and cancer. Recent gene knockin of Map3k1 to mutate the E2 binding site within the Map3k1 PHD motif and high throughput ubiquitin protein array screening for Map3k1 PHD motif substrates provide critical novel insights into Map3k1 PHD motif signal transduction and bring a brand-new understanding to Map3k1 signaling in mammalian biology.
Collapse
Affiliation(s)
- T Suddason
- Department of Medicine, Imperial College London, Du Cane Road, London, UK
| | - E Gallagher
- Department of Medicine, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
5
|
Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, Yengo L, Lecoeur C, Shungin D, Sanna S, Sidore C, Johnson PCD, Jukema JW, Johnson T, Mahajan A, Verweij N, Thorleifsson G, Hottenga JJ, Shah S, Smith AV, Sennblad B, Gieger C, Salo P, Perola M, Timpson NJ, Evans DM, Pourcain BS, Wu Y, Andrews JS, Hui J, Bielak LF, Zhao W, Horikoshi M, Navarro P, Isaacs A, O'Connell JR, Stirrups K, Vitart V, Hayward C, Esko T, Mihailov E, Fraser RM, Fall T, Voight BF, Raychaudhuri S, Chen H, Lindgren CM, Morris AP, Rayner NW, Robertson N, Rybin D, Liu CT, Beckmann JS, Willems SM, Chines PS, Jackson AU, Kang HM, Stringham HM, Song K, Tanaka T, Peden JF, Goel A, Hicks AA, An P, Müller-Nurasyid M, Franco-Cereceda A, Folkersen L, Marullo L, Jansen H, Oldehinkel AJ, Bruinenberg M, Pankow JS, North KE, Forouhi NG, Loos RJF, Edkins S, Varga TV, Hallmans G, Oksa H, Antonella M, Nagaraja R, Trompet S, Ford I, Bakker SJL, Kong A, Kumari M, Gigante B, Herder C, Munroe PB, Caulfield M, Antti J, Mangino M, Small K, Miljkovic I, et alScott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, Yengo L, Lecoeur C, Shungin D, Sanna S, Sidore C, Johnson PCD, Jukema JW, Johnson T, Mahajan A, Verweij N, Thorleifsson G, Hottenga JJ, Shah S, Smith AV, Sennblad B, Gieger C, Salo P, Perola M, Timpson NJ, Evans DM, Pourcain BS, Wu Y, Andrews JS, Hui J, Bielak LF, Zhao W, Horikoshi M, Navarro P, Isaacs A, O'Connell JR, Stirrups K, Vitart V, Hayward C, Esko T, Mihailov E, Fraser RM, Fall T, Voight BF, Raychaudhuri S, Chen H, Lindgren CM, Morris AP, Rayner NW, Robertson N, Rybin D, Liu CT, Beckmann JS, Willems SM, Chines PS, Jackson AU, Kang HM, Stringham HM, Song K, Tanaka T, Peden JF, Goel A, Hicks AA, An P, Müller-Nurasyid M, Franco-Cereceda A, Folkersen L, Marullo L, Jansen H, Oldehinkel AJ, Bruinenberg M, Pankow JS, North KE, Forouhi NG, Loos RJF, Edkins S, Varga TV, Hallmans G, Oksa H, Antonella M, Nagaraja R, Trompet S, Ford I, Bakker SJL, Kong A, Kumari M, Gigante B, Herder C, Munroe PB, Caulfield M, Antti J, Mangino M, Small K, Miljkovic I, Liu Y, Atalay M, Kiess W, James AL, Rivadeneira F, Uitterlinden AG, Palmer CNA, Doney ASF, Willemsen G, Smit JH, Campbell S, Polasek O, Bonnycastle LL, Hercberg S, Dimitriou M, Bolton JL, Fowkes GR, Kovacs P, Lindström J, Zemunik T, Bandinelli S, Wild SH, Basart HV, Rathmann W, Grallert H, Maerz W, Kleber ME, Boehm BO, Peters A, Pramstaller PP, Province MA, Borecki IB, Hastie ND, Rudan I, Campbell H, Watkins H, Farrall M, Stumvoll M, Ferrucci L, Waterworth DM, Bergman RN, Collins FS, Tuomilehto J, Watanabe RM, de Geus EJC, Penninx BW, Hofman A, Oostra BA, Psaty BM, Vollenweider P, Wilson JF, Wright AF, Hovingh GK, Metspalu A, Uusitupa M, Magnusson PKE, Kyvik KO, Kaprio J, Price JF, Dedoussis GV, Deloukas P, Meneton P, Lind L, Boehnke M, Shuldiner AR, van Duijn CM, Morris AD, Toenjes A, Peyser PA, Beilby JP, Körner A, Kuusisto J, Laakso M, Bornstein SR, Schwarz PEH, Lakka TA, Rauramaa R, Adair LS, Smith GD, Spector TD, Illig T, de Faire U, Hamsten A, Gudnason V, Kivimaki M, Hingorani A, Keinanen-Kiukaanniemi SM, Saaristo TE, Boomsma DI, Stefansson K, van der Harst P, Dupuis J, Pedersen NL, Sattar N, Harris TB, Cucca F, Ripatti S, Salomaa V, Mohlke KL, Balkau B, Froguel P, Pouta A, Jarvelin MR, Wareham NJ, Bouatia-Naji N, McCarthy MI, Franks PW, Meigs JB, Teslovich TM, Florez JC, Langenberg C, Ingelsson E, Prokopenko I, Barroso I. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 2012; 44:991-1005. [PMID: 22885924 PMCID: PMC3433394 DOI: 10.1038/ng.2385] [Show More Authors] [Citation(s) in RCA: 651] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
Collapse
Affiliation(s)
- Robert A Scott
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nawroth R, Stellwagen F, Schulz WA, Stoehr R, Hartmann A, Krause BJ, Gschwend JE, Retz M. S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer. PLoS One 2011; 6:e27509. [PMID: 22110663 PMCID: PMC3216974 DOI: 10.1371/journal.pone.0027509] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/18/2011] [Indexed: 12/21/2022] Open
Abstract
Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and the mitogen activated protein kinase (MAPK) signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC). However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK.
Collapse
Affiliation(s)
- Roman Nawroth
- Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kuang L, Wang L, Wang Q, Zhao Q, Du B, Li D, Luo J, Liu M, Hou A, Qian M. Cudratricusxanthone G inhibits human colorectal carcinoma cell invasion by MMP-2 down-regulation through suppressing activator protein-1 activity. Biochem Pharmacol 2011; 81:1192-200. [DOI: 10.1016/j.bcp.2011.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 12/16/2022]
|
8
|
Pearlman A, Loke J, Le Caignec C, White S, Chin L, Friedman A, Warr N, Willan J, Brauer D, Farmer C, Brooks E, Oddoux C, Riley B, Shajahan S, Camerino G, Homfray T, Crosby AH, Couper J, David A, Greenfield A, Sinclair A, Ostrer H. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am J Hum Genet 2010; 87:898-904. [PMID: 21129722 DOI: 10.1016/j.ajhg.2010.11.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/02/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022] Open
Abstract
Investigations of humans with disorders of sex development (DSDs) resulted in the discovery of many of the now-known mammalian sex-determining genes, including SRY, RSPO1, SOX9, NR5A1, WT1, NR0B1, and WNT4. Here, the locus for an autosomal sex-determining gene was mapped via linkage analysis in two families with 46,XY DSD to the long arm of chromosome 5 with a combined, multipoint parametric LOD score of 6.21. A splice-acceptor mutation (c.634-8T>A) in MAP3K1 segregated with the phenotype in the first family and disrupted RNA splicing. Mutations were demonstrated in the second family (p.Gly616Arg) and in two of 11 sporadic cases (p.Leu189Pro, p.Leu189Arg)-18% prevalence in this cohort of sporadic cases. In cultured primary lymphoblastoid cells from family 1 and the two sporadic cases, these mutations altered the phosphorylation of the downstream targets, p38 and ERK1/2, and enhanced binding of RHOA to the MAP3K1 complex. Map3k1 within the syntenic region was expressed in the embryonic mouse gonad prior to, and after, sex determination. Thus, mutations in MAP3K1 that result in 46,XY DSD with partial or complete gonadal dysgenesis implicate this pathway in normal human sex determination.
Collapse
|
9
|
|
10
|
Zheng D, Golubovskaya V, Kurenova E, Wood C, Massoll NA, Ostrov D, Cance WG, Hochwald SN. A novel strategy to inhibit FAK and IGF-1R decreases growth of pancreatic cancer xenografts. Mol Carcinog 2010; 49:200-9. [PMID: 19885860 DOI: 10.1002/mc.20590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deregulation of insulin-like growth factor-1 receptor (IGF-1R) and focal adhesion kinase (FAK) signaling pathways plays an important role in cancer cell proliferation and metastasis. In pancreatic cancer cells, the crosstalk and compensatory mechanisms between these two pathways reduce the efficacy of the treatments that target only one of the pathways. Ablation of IGF-1R signaling by siRNA showed minimal effects on the survival and growth of pancreatic cancer cells. An increased activity of FAK pathway was seen in these cells after IGF-1R knockdown. Further inhibition of FAK pathway using Y15 significantly decreased cell survival, adhesion, and promoted apoptosis. The combination of Y15 treatment and IGF-1R knockdown also showed significant antitumor effect in vivo. The current study demonstrates the importance of dual inhibition of both these signaling pathways as a novel strategy to decrease both in vitro and in vivo growth of human pancreatic cancer.
Collapse
Affiliation(s)
- Donghang Zheng
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Konno H, Yamamoto T, Yamazaki K, Gohda J, Akiyama T, Semba K, Goto H, Kato A, Yujiri T, Imai T, Kawaguchi Y, Su B, Takeuchi O, Akira S, Tsunetsugu-Yokota Y, Inoue JI. TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS One 2009; 4:e5674. [PMID: 19479062 PMCID: PMC2682567 DOI: 10.1371/journal.pone.0005674] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 05/05/2009] [Indexed: 12/24/2022] Open
Abstract
Background In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor κB (NF-κB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed. Principal Findings Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-κB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFβ-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-κB activation, were not essential for RLH-mediated NF-κB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-κB and IRF7. Conclusions/Significance Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection.
Collapse
Affiliation(s)
- Hiroyasu Konno
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takuya Yamamoto
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohsuke Yamazaki
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jin Gohda
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taishin Akiyama
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Hideo Goto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsushi Kato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiaki Yujiri
- Third Department of Internal Medicine, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Takahiko Imai
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Bing Su
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Osamu Takeuchi
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka, Japan
| | | | - Jun-ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Zong H, Bastie CC, Xu J, Fassler R, Campbell KP, Kurland IJ, Pessin JE. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice. J Biol Chem 2009; 284:4679-88. [PMID: 19064993 PMCID: PMC2640962 DOI: 10.1074/jbc.m807408200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/01/2008] [Indexed: 01/19/2023] Open
Abstract
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.
Collapse
Affiliation(s)
- Haihong Zong
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Liu W, Bloom DA, Cance WG, Kurenova EV, Golubovskaya VM, Hochwald SN. FAK and IGF-IR interact to provide survival signals in human pancreatic adenocarcinoma cells. Carcinogenesis 2008; 29:1096-107. [PMID: 18263593 DOI: 10.1093/carcin/bgn026] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a lethal disease accounting for the fourth leading cause of cancer death in USA. Focal adhesion kinase (FAK) and the insulin-like growth factor-I receptor (IGF-1R) are tyrosine kinases that activate common pathways, leading to increased proliferation and cell survival. Sparse information is available regarding their contribution to the malignant behavior of pancreatic cancer. We analyzed the relationship between FAK and IGF-1R in human pancreatic cancer cells, determined which downstream signaling pathways are altered following kinase inhibition or downregulation and studied whether dual kinase inhibition represents a potential novel treatment strategy in this deadly disease. Using immunoprecipitation and confocal microscopy, we show for the first time that FAK and IGF-1R physically interact in pancreatic cancer cells and that inhibition of tyrosine phosphorylation of either kinase disrupts their interaction. Decreasing phosphorylation of either FAK or IGF-1R alone resulted in little inhibition of cell viability or increased apoptosis. However, dual inhibition of FAK, using either a dominant-negative construct (FAK-CD) or small interfering RNA, and IGF-1R, using a specific small molecule tyrosine kinase inhibitor (AEW-541) or stable expression of a truncated, mutated IGF-1R, led to a synergistic decrease in cell proliferation and phosphorylation of extracellular signal-regulated kinase (ERK) and increase in cell detachment and apoptosis compared with inhibition of either pathway alone. Dual kinase inhibition with FAK-CD and AEW-541 resulted in a marked increase in apoptosis when FAK was displaced from the focal adhesions. Inhibition of both tyrosine kinase activities via a novel single small molecular inhibitor (TAE 226), at low doses specific for FAK and IGF-1R, resulted in significant inhibition of cell viability, decrease in phosphorylation of ERK and Akt and increase in apoptosis accompanied by cleavage of Poly (ADP-ribose) polymerase (PARP) and activation of caspase-3 in pancreatic cancer cells. Thus, simultaneous inhibition of both tyrosine kinases represents a potential novel therapeutic approach in human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Weiguo Liu
- Division of Surgical Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Bisht B, Goel HL, Dey CS. Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia 2007; 50:1058-69. [PMID: 17333113 DOI: 10.1007/s00125-007-0591-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/15/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS On the basis of our previous studies, we investigated the possible role of focal adhesion kinase (FAK) in the development of insulin resistance in skeletal muscle, a major organ responsible for insulin-stimulated glucose uptake. MATERIALS AND METHODS Insulin-resistant C2C12 skeletal muscle cells were transfected with FAK wild-type or FAK mutant plasmids, knocked down using small interfering RNA (siRNA), and their effects on the levels and activities of insulin-signalling molecules and on glucose uptake were determined. RESULTS A significant decrease in tyrosine phosphorylation of FAK in insulin-resistant C2C12 cells was observed. A similar decrease was observed in skeletal muscle obtained from insulin-resistant Sprague-Dawley rats fed a high-fat diet. Increased levels of FAK in insulin-resistant C2C12 skeletal muscle cells increased insulin sensitivity and glucose uptake. These effects were reversed by an increase in the level of kinase activity mutant FAK or suppression of endogenous FAK by siRNA. FAK was also found to interact downstream with insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase C and glycogen synthase kinase 3beta, leading to translocation of glucose transporter 4 and resulting in the regulation of glucose uptake. CONCLUSIONS/INTERPRETATION The present study provides strong evidence that the modulation of FAK level regulates the insulin sensitivity of skeletal muscle cells. The results demonstrate a direct role of FAK in insulin-resistant skeletal muscle cells for the first time.
Collapse
Affiliation(s)
- B Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Chandigarh 160062, India
| | | | | |
Collapse
|
15
|
Abstract
One of the functional roles of the corneal epithelial layer is to protect the cornea, lens and other underlying ocular structures from damages caused by environmental insults. It is important for corneal epithelial cells to maintain this function by undergoing continuous renewal through a dynamic process of wound healing. Previous studies in corneal epithelial cells have provided substantial evidence showing that environmental insults, such as ultraviolet (UV) irradiation and other biohazards, can induce stress-related cellular responses resulting in apoptosis and thus interrupt the dynamic process of wound healing. We found that UV irradiation-induced apoptotic effects in corneal epithelial cells are started by the hyperactivation of K+ channels in the cell membrane resulting in a fast loss of intracellular K+ ions. Recent studies provide further evidence indicating that these complex responses in corneal epithelial cells are resulted from the activation of stress-related signaling pathways mediated by K+ channel activity. The effect of UV irradiation on corneal epithelial cell fate shares common signaling mechanisms involving the activation of intracellular responses that are often activated by the stimulation of various cytokines. One piece of evidence for making this distinction is that at early times UV irradiation activates a Kv3.4 channel in corneal epithelial cells to elicit activation of c-Jun N-terminal kinase cascades and p53 activation leading to cell cycle arrest and apoptosis. The hypothetic model is that UV-induced potassium channel hyperactivity as an early event initiates fast cell shrinkages due to the loss of intracellular potassium, resulting in the activation of scaffolding protein kinases and cytoskeleton reorganizations. This review article presents important control mechanisms that determine Kv channel activity-mediated cellular responses in corneal epithelial cells, involving activation of stress-induced signaling pathways, arrests of cell cycle progression and/or induction of apoptosis.
Collapse
Affiliation(s)
- Luo Lu
- Department of Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Harbor-UCLA Medical Center, CA 90502, USA.
| |
Collapse
|
16
|
Chae HJ, Ha HY, Im JY, Song JY, Park S, Han PL. JSAP1 is required for the cell adhesion and spreading of mouse embryonic fibroblasts. Biochem Biophys Res Commun 2006; 345:809-16. [PMID: 16707108 DOI: 10.1016/j.bbrc.2006.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/01/2006] [Indexed: 12/18/2022]
Abstract
The roles of JSAP1 and JIP1 in cell adhesion and spreading were examined using mouse embryonic fibroblasts (MEFs) deficient in JIP1 (JIP1-KO), JSAP1 (JSAP1-KO), and in both JIP1 and JSAP1 (double-KO), and by using their wild type. After being plated on fibronectin-coated culture plates, wild type MEFs rapidly adhered and differentiated to typical longitudinal fibroblasts in 4 h. JSAP1-KO MEFs showed a similar sequence of adhesion and cell spreading, but their adhesion was weak, and cell spreading sequence proceeded in a delayed manner compared with the wild type. In spreading JSAP1-KO MEFs, adhesion-triggered actin cytoskeleton reorganization and FAK activation proceeded at a slower pace than in wild type MEFs. The cellular properties of double-KO MEFs and JIP1-KO MEFs were similar to those of JSAP1-KO MEFs and wild type MEFs, respectively. These results suggest that JSAP1 plays a role in adhesion and cell spreading by regulating the rapid reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Hee-Jung Chae
- Division of Nano Sciences and Ewha Institute of Neuroscience, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Recent studies have demonstrated that mitogen-activated protein kinases (MAPKs), including Jun N-terminus kinase (JNK), p38 and Erk, play crucial roles in cell migration. JNK, for example, regulates cell migration by phosphorylating paxillin, DCX, Jun and microtubule-associated proteins. Studies of p38 show that this MAPK modulates migration by phosphorylating MAPK-activated protein kinase 2/3 (MAPKAP 2/3), which appears to be important for directionality of migration. Erk governs cell movement by phosphorylating myosin light chain kinase (MLCK), calpain or FAK. Thus, the different kinases in the MAPK family all seem able to regulate cell migration but by distinct mechanisms.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
18
|
Takino T, Nakada M, Miyamori H, Watanabe Y, Sato T, Gantulga D, Yoshioka K, Yamada KM, Sato H. JSAP1/JIP3 cooperates with focal adhesion kinase to regulate c-Jun N-terminal kinase and cell migration. J Biol Chem 2005; 280:37772-81. [PMID: 16141199 DOI: 10.1074/jbc.m505241200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Jun N-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1) (also termed JNK-interacting protein 3; JIP3) is a member of a family of scaffold factors for the mitogen-activated protein kinase (MAPK) cascades, and it also forms a complex with focal adhesion kinase (FAK). Here we demonstrate that JSAP1 serves as a cooperative scaffold for activation of JNK and regulation of cell migration in response to fibronectin (FN) stimulation. JSAP1 mediated an association between FAK and JNK, which was induced by either co-expression of Src or attachment of cells to FN. Complex formation of FAK with JSAP1 and p130 Crk-associated substrate (p130(Cas)) resulted in augmentation of FAK activity and phosphorylation of both JSAP1 and p130(Cas), which required p130(Cas) hyperphosphorylation and was abolished by inhibition of Src. JNK activation by FN was enhanced by JSAP1, which was suppressed by disrupting the FAK/p130(Cas) pathway by expression of a dominant-negative form of p130(Cas) or by inhibiting Src. We also documented the co-localization of JSAP1 with JNK and phosphorylated FAK at the leading edge and stimulation of cell migration by JSAP1 expression, which depended on its JNK binding domain and was suppressed by inhibition of JNK. The level of JSAP1 mRNA correlated with advanced malignancy in brain tumors, unlike other JIPs. We propose that the JSAP1.FAK complex functions cooperatively as a scaffold for the JNK signaling pathway and regulator of cell migration on FN, and we suggest that JSAP1 is also associated with malignancy in brain tumors.
Collapse
Affiliation(s)
- Takahisa Takino
- Department of Molecular Virology, Cancer Research Institute, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vulin AI, Jacob KK, Stanley FM. Integrin activates receptor-like protein tyrosine phosphatase alpha, Src, and Rho to increase prolactin gene expression through a final phosphatidylinositol 3-kinase/cytoskeletal pathway that is additive with insulin. Endocrinology 2005; 146:3535-46. [PMID: 15878970 DOI: 10.1210/en.2004-1386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously showed that receptor-like protein tyrosine phosphatase (RPTP)-alpha inhibited insulin-increased prolactin gene transcription. Others suggested that RPTPalpha was a key intermediary between integrins and activation of Src. We present evidence that inhibition of insulin-increased prolactin gene transcription was secondary to RPTPalpha activation of Src, reflecting its role as mediator of integrin responses. Src kinase activity was increased in GH4 cells transiently or stably expressing RPTPalpha and cells plated on the integrin-alpha5beta1 ligand fibronectin. C-terminal Src kinase inactivated Src and blocked RPTPalpha inhibition of insulin-increased prolactin gene transcription. Expression of dominant-negative Src also prevented the RPTPalpha-mediated inhibition of insulin-increased prolactin gene expression. Low levels of a constitutively active Src mutant (SrcY/F) stimulated whereas higher expression levels of Src Y/F inhibited prolactin gene expression. Src-increased prolactin gene transcription was inhibited by expression of a blocking Rho-mutant (RhoN19), suggesting that Src acted through or required active Rho. Experiments with an activated Rho-mutant (RhoL63) demonstrated a biphasic activation/repression of prolactin gene transcription that was similar to the effect of Src. The effects of both Src and Rho were phosphatidylinositol 3-kinase dependent. Expression of SrcY/F or RhoL63 altered the actin cytoskeleton and morphology of GH4 cells. Taken together, these data suggest a physiological pathway from the cell matrix to increased prolactin gene transcription mediated by RPTPalpha/Src/Rho/phosphatidylinositol 3-kinase and cytoskeletal change that is additive with effects of insulin. Over activation of this pathway, however, caused extreme alteration of the cytoskeleton that blocked activation of the prolactin gene.
Collapse
Affiliation(s)
- Anthony I Vulin
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | | | |
Collapse
|
20
|
Moissoglu K, Sachdev S, Gelman IH. Enhanced v-Src-induced oncogenic transformation in the absence of focal adhesion kinase is mediated by phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 2005; 330:673-84. [PMID: 15809050 DOI: 10.1016/j.bbrc.2005.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Indexed: 11/21/2022]
Abstract
We showed previously [K. Moissoglu, I.H. Gelman, J. Biol. Chem. 278 (2003) 47946-47959] that oncogenic v-Src could induce 7- to 10-fold greater anchorage-independent growth (AIG) in FAK-null mouse embryo fibroblasts (MEF) compared to those expressing FAK. Here, we demonstrate that the enhanced AIG (eAIG) correlates with increased activation levels of phosphatidylinositol 3-kinase (PI3K) and not with changes in the protein levels of the p85 regulatory subunit of PI3K, PDK1 or PTEN- modulators, and/or mediators of PI3K activity. eAIG could be blunted selectively by treatment with the PI3K inhibitor, LY294002, or by overexpression of either the PI3K antagonist, PTEN, dominant-interfering alleles of PI3K or a downstream PI3K mediator, AKT, but not by the MEK inhibitor, PD98059, dominant-interfering alleles of MEK or the signal transducer and activator of transcription (STAT)-3. In contrast, RNAi-mediated knockdown of FAK resulted in increased v-Src-induced AIG. Expression of a constitutively active PI3K allele was sufficient to induce higher levels of AIG, whereas overexpression of v-Src produced only larger-sized colonies in soft agar. Interestingly, FAK was required for full activation of PI3K by PDGF whereas the activation of PI3K by insulin was significantly increased in FAK-/- cells. Thus, although FAK is dispensable for v-Src-induced oncogenic transformation in vitro, it may exert either positive or negative effects on signaling or motility depending on which pathways are activated in cancer cells.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14623, USA
| | | | | |
Collapse
|
21
|
Li Y, Minamino T, Tsukamoto O, Yujiri T, Shintani Y, Okada KI, Nagamachi Y, Fujita M, Hirata A, Sanada S, Asanuma H, Takashima S, Hori M, Johnson GL, Kitakaze M. Ablation of MEK Kinase 1 Suppresses Intimal Hyperplasia by Impairing Smooth Muscle Cell Migration and Urokinase Plasminogen Activator Expression in a Mouse Blood-Flow Cessation Model. Circulation 2005; 111:1672-8. [PMID: 15795331 DOI: 10.1161/01.cir.0000160350.20810.0f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Migration, proliferation, and matrix-degrading protease expression of smooth muscle cells (SMCs) are major features of intimal hyperplasia after vascular injury. Although MEK kinase 1 (MEKK1) has been shown to regulate cell migration and urokinase plasminogen activator (uPA) expression, the precise role of MEKK1 in this process remains unknown.
Methods and Results—
We triggered a vascular remodeling model by complete ligation of the right common carotid artery in wild-type (WT) and MEKK1-null (MEKK1
−/−
) mice. The intimal areas 28 days after ligation were significantly decreased in the ligated MEKK1
−/−
arteries compared with WT arteries (28±8 versus 65±17 μm
2
,
P
<0.05). There were no differences in the ratios of proliferating cell nuclear antigen (PCNA)–positive cells to total cells within the arterial wall between WT and MEKK1
−/−
arteries. Proliferation capacity also did not differ between WT and MEKK1
−/−
cultured aortic smooth muscle cells (AoSMCs). In contrast, the number of intimal PCNA-positive cells 7 days after ligation was significantly smaller in MEKK1
−/−
arteries. Three different migration assays revealed that migration and invasion of MEKK1
−/−
AoSMCs were markedly impaired. Addition of full-length MEKK1 restored the migration capacity of MEKK1
−/−
AoSMCs. The number of MEKK1
−/−
AoSMCs showing lamellipodia formation by epithelial growth factor was significantly smaller compared with those of WT SMCs. Furthermore, uPA expression after ligation was markedly decreased in MEKK1
−/−
arteries.
Conclusions—
MEKK1 is implicated in vascular remodeling after blood-flow cessation by regulating the migration and uPA expression of SMCs. MEKK1 is a potential target for drug development to prevent vascular remodeling.
Collapse
Affiliation(s)
- Yan Li
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sekimoto H, Eipper-Mains J, Pond-Tor S, Boney CM. (alpha)v(beta)3 integrins and Pyk2 mediate insulin-like growth factor I activation of Src and mitogen-activated protein kinase in 3T3-L1 cells. Mol Endocrinol 2005; 19:1859-67. [PMID: 15761030 DOI: 10.1210/me.2004-0481] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.
Collapse
Affiliation(s)
- Hiroko Sekimoto
- Rhode Island Hospital, Department of Pediatrics, 593 Eddy Street, MPS-2, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
23
|
Plows LD, Cook RT, Davies AJ, Walker AJ. Carbohydrates that mimic schistosome surface coat components affect ERK and PKC signalling in Lymnaea stagnalis haemocytes. Int J Parasitol 2005; 35:293-302. [PMID: 15722081 DOI: 10.1016/j.ijpara.2004.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/10/2004] [Accepted: 11/11/2004] [Indexed: 11/30/2022]
Abstract
Molluscs are intermediate hosts for helminth parasites such as Schistosoma spp. that possess an immunogenic surface coat of high carbohydrate content, with fucose as the predominant saccharide. More than a decade ago, it was postulated that such components could block receptors on snail haemocytes thus preventing recognition of intra-molluscan schistosome stages. Although more recent studies have shown that carbohydrates can suppress processes such as phagocytosis by haemocytes, interference of the haemocyte cell signalling pathways that regulate immunity by saccharides has not yet been investigated. We have recently reported the presence of extracellular-signal regulated kinase and protein kinase C in Lymnaea stagnalis haemocytes. Here we show that extracellular-signal regulated kinase and protein kinase C activities are down-regulated when haemocytes are exposed to albumin-linked fucose and galactose in the absence of haemolymph. Moreover, we demonstrate that phagocytosis is reduced under these conditions. Interestingly, in the presence of haemolymph, only protein kinase C activity is down-regulated and only galactose suppresses phagocytosis, implying a role for serum factors in the preservation of haemocyte function following exposure. We therefore propose that the establishment of a compatible relationship between a schistosome and its snail host is at least in part due to down-regulation of cell signalling events in haemocytes.
Collapse
Affiliation(s)
- Louise D Plows
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston-Upon-Thames, Surrey KT1 2EE, UK
| | | | | | | |
Collapse
|
24
|
Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60c-src/MEK-dependent. J Cell Physiol 2005; 204:236-46. [PMID: 15622520 DOI: 10.1002/jcp.20279] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) stimulates expression of plasminogen activator inhibitor type-1 (PAI-1), a serine protease inhibitor (SERPIN) important in the control of stromal barrier proteolysis and cell-to-matrix adhesion. Pharmacologic agents that target MEK (PD98059, U0126) or src family (PP1) kinases attenuated TGF-beta1-dependent PAI-1 transcription in R22 aortic smooth muscle cells. Pretreatment with PP1 at concentrations that inhibited TGF-beta1-dependent PAI-1 expression also blocked ERK1/2 activation/nuclear accumulation suggesting that the required src kinase activity is upstream of ERK1/2 in the TGF-beta1-initiated signaling cascade. The IC(50) of the PP1-sensitive kinase, furthermore, specifically implied involvement of pp60(c-src) in PAI-1 induction. Indeed, addition of TGF-beta1 to quiescent R22 cells resulted in a 3-fold increase in pp60(c-src) autophosphorylation and kinase activity. Transfection of a dominant-negative pp60(c-src) construct, moreover, reduced TGF-beta1-induced PAI-1 expression levels to that of unstimulated controls or PP1-pretreated cells. A >/=170 kDa protein that co-immunoprecipitated with TGF-beta1-activated pp60(c-src) was also phosphorylated transiently in response to TGF-beta1. TGF-beta1 is known to transactivate the 170 kDa EGF receptor (EGFR) by autocrine HB-EGF or TGF-alpha mechanisms suggesting involvement of EGFR activation in certain TGF-beta1-initiated responses. Incubation of quiescent R22 cells with the EGFR-specific inhibitor AG1478 prior to growth factor (EGF or TGF-beta1) addition effectively blocked EGFR activation as determined by direct visualization of receptor internalization. AG1478 suppressed (in a dose-dependent fashion) EGF-induced PAI-1 protein levels and, at a final concentration of 2.5 muM, virtually eliminated EGF-dependent PAI-1 synthesis. More importantly, AG1478 similarly repressed inducible PAI-1 levels in TGF-beta1-stimulated R22 cultures. PP1, PD98059, and U0126 also inhibited TGF-beta1-dependent cell motility at concentrations that significantly attenuated PAI-1 expression. Consistent with the AG1478-associated reductions in EGF- and TGF-beta1-stimulated PAI-1 expression, pretreatment of R22 cell cultures with AG1478 effectively suppressed growth factor-stimulated cell motility. These data indicate that two major phenotypic characteristics of TGF-beta1-exposure (i.e., transcription of specific target genes [e.g., PAI-1], increased cell motility) are linked in the R22 vascular smooth muscle cell system, require pp60(c-src) kinase activity and MEK signaling and involve activation of an AG1478-sensitive (likely EGFR-dependent) pathway.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
25
|
Ha HY, Cho IH, Lee KW, Lee KW, Song JY, Kim KS, Yu YM, Lee JK, Song JS, Yang SD, Shin HS, Han PL. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev Biol 2005; 277:184-99. [PMID: 15572149 DOI: 10.1016/j.ydbio.2004.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 09/12/2004] [Accepted: 09/13/2004] [Indexed: 11/17/2022]
Abstract
The JNK interacting protein, JSAP1, has been identified as a scaffold protein for mitogen-activated protein kinase (MAPK) signaling pathways and as a linker protein for the cargo transport along the axons. To investigate the physiological function of JSAP1 in vivo, we generated mice lacking JSAP1. The JSAP1 null mutation produced various developmental deficits in the brain, including an axon guidance defect of the corpus callosum, in which phospho-FAK and phospho-JNK were distributed at reduced levels. The axon guidance defect of the corpus callosum in the jsap1-/- brain was correlated with the misplacement of glial sling cells, which reverted to their normal position after the transgenic expression of JNK interacting protein 1(JIP1). The transgenic JIP1 partially rescued the axon guidance defect of the corpus callosum and the anterior commissure of the jsap1-/- brain. The JSAP1 null mutation impaired the normal distribution of the Ca+2 regulating protein, calretinin, but not the synaptic vesicle marker, SNAP-25, along the axons of the thalamocortical tract. These results suggest that JSAP1 is required for the axon guidance of the telencephalic commissures and the distribution of cellular protein(s) along axons in vivo, and that the signaling network organized commonly by JIP1 and JSAP1 regulates the axon guidance in the developing brain.
Collapse
Affiliation(s)
- Hye-Yeong Ha
- Department of Neuroscience, Neuroscience Research Center and Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Xia Y, Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol 2004; 14:94-101. [PMID: 15102441 DOI: 10.1016/j.tcb.2003.12.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Originally identified as stress-activated protein kinases that control cell survival and proliferation through transcription factor c-Jun, the Jun N-terminal kinase (JNK) subgroup of MAP kinases (MAPKs) have recently emerged as crucial regulators of cell migration and the morphogenetic movement of epithelial sheets. In Drosophila, a well-orchestrated JNK signaling pathway controls formation of actin stress fibers and cell shape changes, which are required for the sealing of embryonic epidermis in a process known as dorsal closure. The JNK pathway is also involved in morphogenetic processes in mice including closure of the eyelid, neural tube and optic fissure. This article focuses on recent advances in understanding the role of JNK pathway in the regulation of cell migration, cytoskeleton rearrangement and the morphogenesis of epithelial sheets.
Collapse
Affiliation(s)
- Ying Xia
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, 123 East Shields Street, Cincinnati, OH 45267-0056, USA.
| | | |
Collapse
|
27
|
Bian D, Su S, Mahanivong C, Cheng RK, Han Q, Pan ZK, Sun P, Huang S. Lysophosphatidic Acid Stimulates Ovarian Cancer Cell Migration via a Ras-MEK Kinase 1 Pathway. Cancer Res 2004; 64:4209-17. [PMID: 15205333 DOI: 10.1158/0008-5472.can-04-0060] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lysophosphatidic acid (LPA) is present at high concentrations in ascites and plasma of ovarian cancer patients. Studies conducted in experimental models demonstrate that LPA promotes ovarian cancer invasion/metastasis by up-regulating protease expression, elevating protease activity, and enhancing angiogenic factor expression. In this study, we investigated the effect of LPA on ovarian cancer migration, an essential component of cancer cell invasion. LPA stimulates both chemotaxis and chemokinesis of ovarian cancer cells and LPA-stimulated cell migration is G(I) dependent. Moreover, constitutively active H-Ras enhances ovarian cancer cell migration, whereas dominant negative H-Ras blocks LPA-stimulated cell migration, suggesting that Ras works downstream of G(i) to mediate LPA-stimulated cell migration. Interestingly, H-Ras mutants that specifically activate Raf-1, Ral-GDS, or phosphatidylinositol 3'-kinase are unable to significantly enhance ovarian cancer cell migration, suggesting that a Ras downstream effector distinct from Raf-1, Ral-GDS, and phosphatidylinositol 3'-kinase is responsible for LPA-stimulated cell migration. In this article, we demonstrate that LPA activates mitogen-activated protein kinase kinase 1 (MEKK1) in a G(i)-Ras-dependent manner and that MEKK1 activity is essential for LPA-stimulated ovarian cancer cell migration. Inhibitors that block MEKK1 downstream pathways, including MEK1/2, MKK4/7, and nuclear factor-kappa B pathways, do not significantly alter LPA-stimulated cell migration. Instead, LPA induces the redistribution of focal adhesion kinase to focal contact regions of the cytoplasm membrane, and this event is abolished by pertussis toxin, dominant negative H-Ras, or dominant negative MEKK1. Our studies thus suggest that the G(i)-Ras-MEKK1 signaling pathway mediates LPA-stimulated ovarian cancer cell migration by facilitating focal adhesion kinase redistribution to focal contacts.
Collapse
Affiliation(s)
- Dafang Bian
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:77-102. [PMID: 15246681 DOI: 10.1016/j.bbamcr.2004.04.008] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 04/08/2004] [Indexed: 01/09/2023]
Abstract
Cell motility is stimulated by extracellular stimuli and initiated by intracellular signaling proteins that localize to sites of cell contact with the extracellular matrix termed focal contacts. Focal adhesion kinase (FAK) is an intracellular protein-tyrosine kinase (PTK) that acts to regulate the cycle of focal contact formation and disassembly required for efficient cell movement. FAK is activated by a variety of cell surface receptors and transmits signals to a range of targets. Thus, FAK acts as an integrator of cell motility-associated signaling events. We will review the stimulatory and regulatory mechanisms of FAK activation, the different signaling connections of FAK that are mediated by a growing number of FAK-interacting proteins, and the modulation of FAK function by tyrosine and serine phosphorylation. We will also summarize findings with regard to FAK function in vertebrate and invertebrate development as well as recent insights into the mechanistic role(s) of FAK in promoting cell migration. As increased FAK expression and tyrosine phosphorylation have been correlated with the progression to an invasive cell phenotype, there is growing interest in elucidating the important FAK-related signaling connections promoting invasive tumor cell movement. To this end, we will discuss the effects of FAK inhibition via the dominant-negative expression of the FAK C-terminal domain termed FAK-related non-kinase (FRNK) and how these studies have uncovered a distinct role for FAK in promoting cell invasion that may differ from its role in promoting cell motility.
Collapse
Affiliation(s)
- David D Schlaepfer
- Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
29
|
Schlaepfer DD, Mitra SK. Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 2004; 14:92-101. [PMID: 15108811 DOI: 10.1016/j.gde.2003.12.002] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The ability of intracellular signaling networks to orchestrate a complex biological response such as cell motility requires that individual signaling proteins must act as integrators, responding to multiple extracellular inputs and regulating multiple signaling pathway outputs. In this review, we highlight recent findings that place focal adhesion kinase (FAK) in an important receptor-proximal position in the regulation of growth factor and integrin-stimulated cell motility. Emphasis is placed on the molecular mechanisms of FAK activation, connections of FAK to focal contact formation as well as turnover, and the potential that FAK function in promoting cell invasion may be distinct from its role in cell motility.
Collapse
Affiliation(s)
- David D Schlaepfer
- The Scripps Research Institute, Department of Immunology, IMM26, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | |
Collapse
|
30
|
Nawata R, Yujiri T, Nakamura Y, Ariyoshi K, Takahashi T, Sato Y, Oka Y, Tanizawa Y. MEK kinase 1 mediates the antiapoptotic effect of the Bcr-Abl oncogene through NF-κB activation. Oncogene 2003; 22:7774-80. [PMID: 14586403 DOI: 10.1038/sj.onc.1206901] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bcr-Abl tyrosine kinase, a chimeric oncoprotein responsible for chronic myelogenous leukemia, constitutively activates several signal transduction pathways that stimulate cell proliferation and prevent apoptosis in hematopoietic cells. The antiapoptotic function of Bcr-Abl is necessary for hematopoietic transformation, and also contributes to leukemogenesis. Herein, we show for the first time that cell transformation induced by Bcr-Abl leads to increased expression and kinase activity of MEK kinase 1 (MEKK1), which acts upstream of the c-Jun N-terminal kinase (JNK), extracellular signal regulated kinase (ERK) and NF-kappaB signaling pathways. Inhibition of MEKK1 activity using a dominant-negative MEKK1 mutant (MEKK1km) diminished the ability of Bcr-Abl to protect cells from genotoxin-induced apoptosis, but had no effect on the proliferation of Bcr-Abl-transformed cells. Expression of MEKK1km also reduced NF-kappaB activation, and inhibited antiapoptotic c-IAP1 and c-IAP2 mRNA expression in response to the genotoxin. By contrast, neither JNK nor ERK activation was affected. These results indicate that MEKK1 is a downstream target of Bcr-Abl, and that the antiapoptotic effect of Bcr-Abl in chronic myelogenous leukemia cells is mediated via the MEKK1-NF-kappaB pathway.
Collapse
Affiliation(s)
- Ryouhei Nawata
- Department of Bio-Signal Analysis, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Davidson L, Pawson AJ, Millar RP, Maudsley S. Cytoskeletal reorganization dependence of signaling by the gonadotropin-releasing hormone receptor. J Biol Chem 2003; 279:1980-93. [PMID: 14559894 DOI: 10.1074/jbc.m309827200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activation of classical G protein-coupled receptors (GPCRs) like the mammalian gonadotropin-releasing hormone receptor (GnRHR) typically stimulates heterotrimeric G protein molecules that subsequently activate downstream effectors. Receptor activation of heterotrimeric G protein pathways primarily controls intermediary cell metabolism by elevation or diminution of soluble cytoplasmic second messenger molecules. We have demonstrated here that stimulation of the GnRHR also results in a dramatic change in both cell adhesion and superstructural morphology. Gonadotropin-releasing hormone (GnRH) receptor activation rapidly increases the capacity of HEK293 cells expressing the GnRHR to remain matrix-adherent in the face of fluid insults. Coinciding with this profound elevation in matrix adherence, we demonstrated a GnRH-induced alteration in both cell morphology and the de novo generation of polymerized actin structures. GnRH induction of cytoskeletal remodeling was correlated with significant increases in the tyrosine phosphorylation status of a series of cytoskeletal associated proteins, e.g. focal adhesion kinase (FAK), c-Src, and microtubule-associated protein kinase (MAPK or ERK1/2). The activation of the distal downstream effector ERK1/2 was demonstrated to be sensitive to the disrupters of cytoskeletal rearrangement, cytochalasin D and latrunculin B. In addition to the sensitivity of ERKs to cytoskeletal integrity, GnRH-induced FAK and c-Src kinase activation were sensitive to these agents and the fibronectin-integrin antagonistic RGDS peptide. Activation of ERK was dependent on its protein-protein assembly with FAK and c-Src at focal adhesion complexes. Induction of the cell remodeling event leading to this signaling complex assembly occurred primarily via GnRHR activation of the monomeric G protein Rac but not RhoA. These findings demonstrated a clear divergence of GnRHR signaling via the Rac monomeric G protein focal adhesion signaling complex assembly and cytoskeletal remodeling independent of the classical heterotrimeric G protein-controlled phospholipase C-beta pathway.
Collapse
Affiliation(s)
- Lindsay Davidson
- Medical Research Council Human Reproductive Sciences Unit, Edinburgh Royal Infirmary, the University of Edinburgh Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, United Kingdom
| | | | | | | |
Collapse
|
32
|
Cuevas BD, Abell AN, Witowsky JA, Yujiri T, Johnson NL, Kesavan K, Ware M, Jones PL, Weed SA, DeBiasi RL, Oka Y, Tyler KL, Johnson GL. MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J 2003; 22:3346-55. [PMID: 12839996 PMCID: PMC165646 DOI: 10.1093/emboj/cdg322] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Revised: 05/12/2003] [Accepted: 05/13/2003] [Indexed: 12/28/2022] Open
Abstract
Herein, we define how MEKK1, a MAPK kinase kinase, regulates cell migration. MEKK1 is associated with actin fibers and focal adhesions, localizing MEKK1 to sites critical in the control of cell adhesion and migration. EGF-induced ERK1/2 activation and chemotaxis are inhibited in MEKK1-/- fibroblasts. MEKK1 deficiency causes loss of vinculin in focal adhesions of migrating cells, increased cell adhesion and impeded rear-end detachment. MEKK1 is required for activation of the cysteine protease calpain and cleavage of spectrin and talin, proteins linking focal adhesions to the cytoskeleton. Inhibition of ERK1/2 or calpain, but not of JNK, mimics MEKK1 deficiency. Therefore, MEKK1 regulates calpain-mediated substratum release of migrating fibroblasts.
Collapse
Affiliation(s)
- Bruce D Cuevas
- Department of Pharmacology, Craniofacial Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|