1
|
Kim S, Jeong H, Ahn HK, Han B, Lee KC, Song YK, Lim S, Yim J, Koh J, Jeon YK. Increased CCL2/CCR2 axis promotes tumor progression by increasing M2 macrophages in MYC/BCL2 double-expressor DLBCL. Blood Adv 2024; 8:5773-5788. [PMID: 39293078 PMCID: PMC11605354 DOI: 10.1182/bloodadvances.2024013699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
ABSTRACT The pathogenesis of myelocytomatosis oncogene (MYC) and B-cell lymphoma 2 (BCL2) double-expressor diffuse large B-cell lymphoma (DE-DLBCL) remains unclear. To investigate how MYC and BCL2 contribute to tumor aggressiveness, we analyzed tumors from 14 patients each with DE-DLBCL and non-DE-DLBCL using whole transcriptome sequencing. Validation was performed using publicly available data sets, tumor tissues from 126 patients, DLBCL cell lines, and a syngeneic mouse lymphoma model. Our transcriptome analysis revealed significantly elevated messenger RNA levels of C-C motif chemokine ligand 2 (CCL2) and C-C chemokine receptor type 2 (CCR2) in DE-DLBCLs when compared with non-DE-DLBCLs (adjusted P value < .05). Transcriptomic analysis of public data sets and immunohistochemistry corroborated these findings, indicating increased levels of M2 macrophages but a reduction in T-cell infiltration in DE-DLBCLs when compared with non-DE-DLBCLs (all P < .05). CCR2 expression was observed mainly in tumor-infiltrating macrophages and not in DLBCL cells. Increased expression of CCL2 and CCR2 was significantly associated with a poor prognosis in patients with DLBCL. In the in vitro analyses, MYChigh/BCL2high DLBCL cells showed higher CCL2 expression and secretion than MYClow/BCL2low cells. MYC and BCL2 increased CCL2 expression and secretion by upregulation of nuclear factor κB p65 in DLBCL cells, and CCL2 promoted M2 polarization of macrophages. In a mouse lymphoma model, CCL2 contributed to the immunosuppressive microenvironment and tumor growth of MYChigh/BCL2high tumors. We demonstrated that the increased CCL2/CCR2 axis confers aggressiveness to DE-DLBCL by increasing M2 polarization and can be a potential therapeutic target.
Collapse
MESH Headings
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Humans
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Animals
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Mice
- Macrophages/metabolism
- Gene Expression Regulation, Neoplastic
- Disease Progression
- Cell Line, Tumor
- Tumor Microenvironment
- Female
- Male
Collapse
Affiliation(s)
- Sehui Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyein Jeong
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Hyun Kyung Ahn
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Bogyeong Han
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki-Chang Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keun Song
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sojung Lim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeemin Yim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul Metropolitan Government, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Republic of Korea
| |
Collapse
|
2
|
Hasoglu I, Karatug Kacar A. The therapeutic effects of exosomes the first time isolated from pancreatic islet-derived progenitor cells in the treatment of pancreatic cancer. PROTOPLASMA 2024; 261:281-291. [PMID: 37798610 DOI: 10.1007/s00709-023-01896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Insulinoma is an excessive insulin-released beta cell tumor. Pancreas cancer is one of the deadliest malignant neoplasms. Exosomes are secreted cell membrane vesicles containing a large number of proteins, lipids, and nucleic acids. The aim of this study is to investigate the effects of exosomes on two cell lines of benign and malignant character. For the first time, exosomes were isolated from pancreatic island-derived progenitor cells (PID-PCs) and applied to INS-1 and MiaPaCa-2 cells. In addition, exosomes isolated from PID-PC, MiaPaca-2, and INS-1 cells were characterized in order to compare their sizes with other previously isolated exosomes. Alix, TSG101, CD9, and CD81 were analyzed. The size and concentration of exosomes and the cell viability were detected. The cells were marked with HSP90, HSF-1, Kaspaz-8, Active-Kaspaz-3, Beclin, and p-Bcl-2. The cell cytotoxicity and insulin levels kit were measured. Alix in all exosomes, and PID-PC, MiaPaca-2 cell lysates; TSG101 in PID-PC and MiaPaca-2 cell lysates; CD9 in INS-1 exosomes were detected. The dimensions of isolated exosomes were 103.6 ± 28.6 nm, 100.7 ± 10 nm, and 147.2 ± 12.3 nm for PID-PCs, MiaPaca-2, and INS-1 cells. The cell viability decreased and HSP90 increased in the MiaPaca-2 cells. The HSF-1 was higher in the control MiaPaca-2 cell compared to the control INS-1 cell, and the exosome-treated MiaPaca-2 cell compared to the exosome-treated INS-1 cell. Beclin and p-Bcl-2 were decreased in the exosome-treated MiaPaca-2 cells. The insulin level in the cell lysates increased compared to cell secretion in INS-1 cells. In conclusion, exosomes isolated from the PID-PC caused cell death in the MiaPaca-2 cells in a time- and dose-dependent manner. The IC50 value determined for MiaPaca-2 cells has no effect on cell viability in INS-1 cells, which best mimics pancreatic beta cells and can be used instead of healthy pancreatic beta cells. Isolated exosomes can kill cancer cells without damaging healthy cells.
Collapse
Affiliation(s)
- Imren Hasoglu
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Ayse Karatug Kacar
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
3
|
Dhingra R, Rabinovich-Nikitin I, Rothman S, Guberman M, Gang H, Margulets V, Jassal DS, Alagarsamy KN, Dhingra S, Ripoll CV, Billia F, Diwan A, Javaheri A, Kirshenbaum LA. Proteasomal Degradation of TRAF2 Mediates Mitochondrial Dysfunction in Doxorubicin-Cardiomyopathy. Circulation 2022; 146:934-954. [PMID: 35983756 PMCID: PMC10043946 DOI: 10.1161/circulationaha.121.058411] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cytokines such as tumor necrosis factor-α (TNFα) have been implicated in cardiac dysfunction and toxicity associated with doxorubicin (DOX). Although TNFα can elicit different cellular responses, including survival or death, the mechanisms underlying these divergent outcomes in the heart remain cryptic. The E3 ubiquitin ligase TRAF2 (TNF receptor associated factor 2) provides a critical signaling platform for K63-linked polyubiquitination of RIPK1 (receptor interacting protein 1), crucial for nuclear factor-κB (NF-κB) activation by TNFα and survival. Here, we investigate alterations in TNFα-TRAF2-NF-κB signaling in the pathogenesis of DOX cardiotoxicity. METHODS Using a combination of in vivo (4 weekly injections of DOX 5 mg·kg-1·wk-1) in C57/BL6J mice and in vitro approaches (rat, mouse, and human inducible pluripotent stem cell-derived cardiac myocytes), we monitored TNFα levels, lactate dehydrogenase, cardiac ultrastructure and function, mitochondrial bioenergetics, and cardiac cell viability. RESULTS In contrast to vehicle-treated mice, ultrastructural defects, including cytoplasmic swelling, mitochondrial perturbations, and elevated TNFα levels, were observed in the hearts of mice treated with DOX. While investigating the involvement of TNFα in DOX cardiotoxicity, we discovered that NF-κB was readily activated by TNFα. However, TNFα-mediated NF-κB activation was impaired in cardiac myocytes treated with DOX. This coincided with loss of K63- linked polyubiquitination of RIPK1 from the proteasomal degradation of TRAF2. Furthermore, TRAF2 protein abundance was markedly reduced in hearts of patients with cancer treated with DOX. We further established that the reciprocal actions of the ubiquitinating and deubiquitinating enzymes cellular inhibitors of apoptosis 1 and USP19 (ubiquitin-specific peptidase 19), respectively, regulated the proteasomal degradation of TRAF2 in DOX-treated cardiac myocytes. An E3-ligase mutant of cellular inhibitors of apoptosis 1 (H588A) or gain of function of USP19 prevented proteasomal degradation of TRAF2 and DOX-induced cell death. Furthermore, wild-type TRAF2, but not a RING finger mutant defective for K63-linked polyubiquitination of RIPK1, restored NF-κB signaling and suppressed DOX-induced cardiac cell death. Last, cardiomyocyte-restricted expression of TRAF2 (cardiac troponin T-adeno-associated virus 9-TRAF2) in vivo protected against mitochondrial defects and cardiac dysfunction induced by DOX. CONCLUSIONS Our findings reveal a novel signaling axis that functionally connects the cardiotoxic effects of DOX to proteasomal degradation of TRAF2. Disruption of the critical TRAF2 survival pathway by DOX sensitizes cardiac myocytes to TNFα-mediated necrotic cell death and DOX cardiotoxicity.
Collapse
Affiliation(s)
- Rimpy Dhingra
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Sonny Rothman
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Matthew Guberman
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Hongying Gang
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Victoria Margulets
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Davinder S. Jassal
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Keshav N. Alagarsamy
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
- Regenerative Medicine Program, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
- Regenerative Medicine Program, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Carla Valenzuela Ripoll
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Filio Billia
- Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada
| | - Abhinav Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ali Javaheri
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lorrie A. Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
- Department of Pharmacology and Therapeutics, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| |
Collapse
|
4
|
Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2. Pharmaceutics 2022; 14:pharmaceutics14010097. [PMID: 35056993 PMCID: PMC8778715 DOI: 10.3390/pharmaceutics14010097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
The B-cell lymphoma 2 (Bcl-2) family, comprised of pro- and anti-apoptotic proteins, regulates the delicate balance between programmed cell death and cell survival. The Bcl-2 family is essential in the maintenance of tissue homeostasis, but also a key culprit in tumorigenesis. Anti-apoptotic Bcl-2, the founding member of this family, was discovered due to its dysregulated expression in non-Hodgkin’s lymphoma. Bcl-2 is a central protagonist in a wide range of human cancers, promoting cell survival, angiogenesis and chemotherapy resistance; this has prompted the development of Bcl-2-targeting drugs. Antisense oligonucleotides (ASO) are highly specific nucleic acid polymers used to modulate target gene expression. Over the past 25 years several Bcl-2 ASO have been developed in preclinical studies and explored in clinical trials. This review will describe the history and development of Bcl-2-targeted ASO; from initial attempts, optimizations, clinical trials undertaken and the promising candidates at hand.
Collapse
|
5
|
Wu XM, Qian C, Jiang F, Bao YX, Qian ZM, Ke Y. The involvement of nuclear factor-κB in astroprotection against ischemia-reperfusion injury by ischemia-preconditioned neurons. J Cell Physiol 2021; 236:4515-4527. [PMID: 33442879 DOI: 10.1002/jcp.30168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022]
Abstract
Ischemic preconditioned (IP) neurons protect astrocytes against ischemia/reperfusion (I/R)-induced injury by inhibiting oxidative stress. However, the relevant mechanisms are unknown. Based on the role of nuclear factor-κB (NF-κB) in cell survival and adaption to oxidative stress, we hypothesized that NF-κB might be associated with astroprotection induced by IP neurons via upregulation of antioxidant enzymes. Here, we investigated the effects of IP neurons on NF-κB activation, cell viability, reactive oxygen species (ROS), expression of antioxidant enzymes, erythropoietin (EPO), and tumor necrosis factor α (TNF-α), in the presence or absence of BAY11-7082 (an NF-κB inhibitor), anti-EPO, and anti-TNF-α antibodies, in astrocytes treated with or without I/R. We found that IP neurons could keep NF-κB activation at a relatively higher but beneficial level, and in turn, upregulated the activity of antioxidant enzymes and hence enhanced cell viability and reduced ROS in I/R treated astrocytes. The results collectively indicated that IP neurons are able to significantly inhibit the I/R-induced NF-κB overactivation, probably via EPO and TNF-α, being essential for IP neuron-induced astroprotection under the conditions of I/R. We concluded that NF-κB-mediated antioxidative stress is one of the mechanisms by which IP neurons protect astrocytes against I/R injury.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Fei Jiang
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
6
|
Salomón R, Reyes-López FE, Tort L, Firmino JP, Sarasquete C, Ortiz-Delgado JB, Quintela JC, Pinilla-Rosas JM, Vallejos-Vidal E, Gisbert E. Medicinal Plant Leaf Extract From Sage and Lemon Verbena Promotes Intestinal Immunity and Barrier Function in Gilthead Seabream ( Sparus aurata). Front Immunol 2021; 12:670279. [PMID: 34054843 PMCID: PMC8160519 DOI: 10.3389/fimmu.2021.670279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The inclusion of a medicinal plant leaf extract (MPLE) from sage (Salvia officinalis) and lemon verbena (Lippia citriodora), rich in verbascoside and triterpenic compounds like ursolic acid, was evaluated in gilthead seabream (Sparus aurata) fed a low fishmeal-based diet (48% crude protein, 17% crude fat, 21.7 MJ kg-1, 7% fishmeal, 15% fish oil) for 92 days. In particular, the study focused on the effect of these phytogenic compounds on the gut condition by analyzing the transcriptomic profiling (microarray analysis) and histological structure of the intestinal mucosa, as well as the histochemical properties of mucins stored in goblet cells. A total number of 506 differentially expressed genes (285 up- and 221 down-regulated) were found when comparing the transcriptomic profiling of the intestine from fish fed the control and MPLE diets. The gut transcripteractome revealed an expression profile that favored biological mechanisms associated to the 1) immune system, particularly involving T cell activation and differentiation, 2) gut integrity (i.e., adherens and tight junctions) and cellular proliferation, and 3) cellular proteolytic pathways. The histological analysis showed that the MPLE dietary supplementation promoted an increase in the number of intestinal goblet cells and modified the composition of mucins' glycoproteins stored in goblet cells, with an increase in the staining intensity of neutral mucins, as well as in mucins rich in carboxylated and weakly sulfated glycoconjugates, particularly those rich in sialic acid residues. The integration of transcriptomic and histological results showed that the evaluated MPLE from sage and lemon verbena is responsible for the maintenance of intestinal health, supporting gut homeostasis and increasing the integrity of the intestinal epithelium, which suggests that this phytogenic may be considered as a promising sustainable functional additive for aquafeeds.
Collapse
Affiliation(s)
- Ricardo Salomón
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | - Juan B. Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | | | | | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
7
|
Single-cell brain atlas of Parkinson's disease mouse model. J Genet Genomics 2021; 48:277-288. [PMID: 34052184 DOI: 10.1016/j.jgg.2021.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, leading to the impairment of movement execution. PD pathogenesis has been largely investigated, either limited to bulk transcriptomic levels or at certain cell types, which failed to capture the cellular heterogeneity and intrinsic interplays among distinct cell types. Here, we report the application of single-nucleus RNA-seq on midbrain, striatum, and cerebellum of the α-syn-A53T mouse, a well-established PD mouse model, and matched controls, generating the first single cell transcriptomic atlas for the PD model mouse brain composed of 46,174 individual cells. Additionally, we comprehensively depicte the dysfunctions in PD pathology, covering the elevation of NF-κB activity, the alteration of ion channel components, the perturbation of protein homeostasis network, and the dysregulation of glutamatergic signaling. Notably, we identify a variety of cell types closely associated with PD risk genes. Taken together, our study provides valuable resources to systematically dissect the molecular mechanism of PD pathogenesis at the single-cell resolution, which facilitates the development of novel approaches for diagnosis and therapies against PD.
Collapse
|
8
|
Dhingra R, Guberman M, Rabinovich-Nikitin I, Gerstein J, Margulets V, Gang H, Madden N, Thliveris J, Kirshenbaum LA. Impaired NF-κB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy. Cardiovasc Res 2020; 116:1161-1174. [PMID: 31566215 PMCID: PMC7177490 DOI: 10.1093/cvr/cvz240] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS The chemotherapy drug doxorubicin (Dox) is commonly used for treating a variety of human cancers; however, it is highly cardiotoxic and induces heart failure. We previously reported that the Bcl-2 mitochondrial death protein Bcl-2/19kDa interaction protein 3 (Bnip3), is critical for provoking mitochondrial perturbations and necrotic cell death in response to Dox; however, the underlying mechanisms had not been elucidated. Herein, we investigated mechanism that drives Bnip3 gene activation and downstream effectors of Bnip3-mediated mitochondrial perturbations and cell death in cardiac myocytes treated with Dox. METHODS AND RESULTS Nuclear factor-κB (NF-κB) signalling, which transcriptionally silences Bnip3 activation under basal states in cardiac myocytes was dramatically reduced following Dox treatment. This was accompanied by Bnip3 gene activation, mitochondrial injury including calcium influx, permeability transition pore (mPTP) opening, loss of nuclear high mobility group protein 1, reactive oxygen species production, and cell death. Interestingly, impaired NF-κB signalling in cells treated with Dox was accompanied by protein complexes between Bnip3 and cyclophilin D (CypD). Notably, Bnip3-mediated mPTP opening was suppressed by inhibition of CypD-demonstrating that CypD functionally operates downstream of Bnip3. Moreover, restoring IKKβ-NF-κB activity in cardiac myocytes treated with Dox suppressed Bnip3 expression, mitochondrial perturbations, and necrotic cell death. CONCLUSIONS The findings of the present study reveal a novel signalling pathway that functionally couples NF-κB and Dox cardiomyopathy to a mechanism that is mutually dependent upon and obligatorily linked to the transcriptional control of Bnip3. Our findings further demonstrate that mitochondrial injury and necrotic cell death induced by Bnip3 is contingent upon CypD. Hence, maintaining NF-κB signalling may prove beneficial in reducing mitochondrial dysfunction and heart failure in cancer patients undergoing Dox chemotherapy.
Collapse
Affiliation(s)
- Rimpy Dhingra
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Manitoba, Canada
| | - Matthew Guberman
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Manitoba, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Manitoba, Canada
| | - Jonathon Gerstein
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Manitoba, Canada
| | - Victoria Margulets
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Manitoba, Canada
| | - Hongying Gang
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Manitoba, Canada
| | - Nicholas Madden
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Manitoba, Canada
| | - James Thliveris
- Department of Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Manitoba, Canada
| |
Collapse
|
9
|
Saito T, Nah J, Oka SI, Mukai R, Monden Y, Maejima Y, Ikeda Y, Sciarretta S, Liu T, Li H, Baljinnyam E, Fraidenraich D, Fritzky L, Zhai P, Ichinose S, Isobe M, Hsu CP, Kundu M, Sadoshima J. An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia. J Clin Invest 2019; 129:802-819. [PMID: 30511961 PMCID: PMC6355232 DOI: 10.1172/jci122035] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Energy stress, such as ischemia, induces mitochondrial damage and death in the heart. Degradation of damaged mitochondria by mitophagy is essential for the maintenance of healthy mitochondria and survival. Here, we show that mitophagy during myocardial ischemia was mediated predominantly through autophagy characterized by Rab9-associated autophagosomes, rather than the well-characterized form of autophagy that is dependent on the autophagy-related 7 (Atg) conjugation system and LC3. This form of mitophagy played an essential role in protecting the heart against ischemia and was mediated by a protein complex consisting of unc-51 like kinase 1 (Ulk1), Rab9, receptor-interacting serine/thronine protein kinase 1 (Rip1), and dynamin-related protein 1 (Drp1). This complex allowed the recruitment of trans-Golgi membranes associated with Rab9 to damaged mitochondria through S179 phosphorylation of Rab9 by Ulk1 and S616 phosphorylation of Drp1 by Rip1. Knockin of Rab9 (S179A) abolished mitophagy and exacerbated the injury in response to myocardial ischemia, without affecting conventional autophagy. Mitophagy mediated through the Ulk1/Rab9/Rip1/Drp1 pathway protected the heart against ischemia by maintaining healthy mitochondria.
Collapse
Affiliation(s)
- Toshiro Saito
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shin-ichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yoshiya Monden
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiyuki Ikeda
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sebastiano Sciarretta
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, and
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, and
| | - Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Luke Fritzky
- Core Imaging Facility, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shizuko Ichinose
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan
| | - Mondira Kundu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
10
|
Gabellini C, Trisciuoglio D, Del Bufalo D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis 2017; 38:579-587. [PMID: 28203756 DOI: 10.1093/carcin/bgx016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 protein family is constituted by multidomain members originally identified as modulators of programmed cell death and whose expression is frequently misbalanced in cancer cells. The lead member Bcl-2 and its homologue Bcl-xL proteins are characterized by the presence of all four conserved BH domain and exert their antiapoptotic role mainly through the involvement of BH1, BH2 and BH3 homology domains, that mediate the interaction with the proapoptotic members of the same Bcl-2 family. The N-terminal BH4 domain of Bcl-2 and Bcl-xL is responsible for the interaction with other proteins that do not belong to Bcl-2 protein family. Beyond a classical role in inhibiting apoptosis, BH4 domain has been characterized as a crucial regulator of other important cellular functions attributed to Bcl-2 and Bcl-xL, including proliferation, autophagy, differentiation, DNA repair, cell migration, tumor progression and angiogenesis. During the last two decades a strong effort has been made to dissect the molecular pathways involved the capability of BH4 domain to regulate the canonical antiapoptotic and the non-canonical activities of Bcl-2 and Bcl-xL, creating the basis for the development of novel anticancer agents targeting this domain. Indeed, recent evidences obtained on in vitro and in vivo model of different cancer histotypes are confirming the promising therapeutic potential of BH4 domain inhibitors supporting their future employment as a novel anticancer strategy.
Collapse
Affiliation(s)
- Chiara Gabellini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy and.,Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
11
|
Gene expression profile of compressed primary human cementoblasts before and after IL-1β stimulation. Clin Oral Investig 2014; 18:1925-39. [DOI: 10.1007/s00784-013-1167-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
|
12
|
Braun F, de Carné Trécesson S, Bertin-Ciftci J, Juin P. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle 2013; 12:2937-47. [PMID: 23974114 PMCID: PMC3875667 DOI: 10.4161/cc.25972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is widely accepted that anti-apoptotic Bcl-2 family members promote cancer cell survival by binding to their pro-apoptotic counterparts, thereby preventing mitochondrial outer membrane permeabilization (MOMP) and cytotoxic caspase activation. Yet, these proteins do not only function as guardians of mitochondrial permeability, preserving it, and maintaining cell survival in the face of acute or chronic stress, they also regulate non-apoptotic functions of caspases and biological processes beyond MOMP from diverse subcellular localizations and in complex with numerous binding partners outside of the Bcl-2 family. In particular, some of the non-canonical effects and functions of Bcl-2 homologs lead to an interplay with E2F-1, NFκB, and Myc transcriptional pathways, which themselves influence cancer cell growth and survival. We thus propose that, by feedback loops that we currently have only hints of, Bcl-2 proteins may act as rulers of survival signaling, predetermining the apoptotic threshold that they also directly scaffold. This underscores the robustness of the control exerted by Bcl-2 homologs over cancer cell survival, and implies that small molecules compounds currently used in the clinic to inhibit their mitochondrial activity may be not always be fully efficient to override this control.
Collapse
Affiliation(s)
- Frédérique Braun
- UMR 892 INSERM/6299 CNRS/Université de Nantes; Team 8 "Cell survival and tumor escape in breast cancer"; Institut de Recherche en Santé de l'Université de Nantes; Nantes, France
| | | | | | | |
Collapse
|
13
|
Gang H, Shaw J, Dhingra R, Davie JR, Kirshenbaum LA. Epigenetic regulation of canonical TNFα pathway by HDAC1 determines survival of cardiac myocytes. Am J Physiol Heart Circ Physiol 2013; 304:H1662-9. [PMID: 23585133 DOI: 10.1152/ajpheart.00093.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene transcription is regulated by post-translation modifications. Histone deacetylases (HDACs) remove acetyl groups from histone and non-histone factors inhibiting transcription. Proinflammatory cytokines such as TNFα activate the canonical nuclear factor-κB (NF-κB) pathway. Earlier we established a cytoprotective role for NF-κB in the heart. Though a causal relationship for HDAC1 and NF-κB has been established, the impact of HDAC1 on TNFα signaling is unknown. Herein, we demonstrate that HDAC1 provides a molecular switch for determining cell survival in the TNFα pathway. In contrast to vehicle-treated control cells, TNFα-treated cells displayed a marked increase in NF-κB gene transcription. Notably, cells treated with TNFα were indistinguishable from vehicle controls cells with respect to viability. Interestingly, HDAC activity was reduced in cells treated with TNFα. Conversely, in the presence of HDAC1, NF-κB gene transcription by TNFα was repressed, resulting in mitochondrial perturbations and widespread cell death. Heterologous fusion proteins comprised of yeast Gal4 DNA binding domain fused in frame to the NF-κB p65 transactivation domain were preferentially repressed by HDAC1. Moreover, transcription mediated by Gal4VP16 protein from herpes virus was unaffected by HDAC1 in cardiac myocytes. Mutations that abrogate known catalytic activities of HDAC1, small interference RNA, or pharmacological inhibition of HDAC1 restored NF-κB signaling and suppressed cell death induced by TNFα. These data provide the first evidence for an obligate link between HDAC1 and canonical TNFα pathway for cell survival of cardiac myocytes.
Collapse
Affiliation(s)
- Hongying Gang
- The Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
14
|
Anticancer activity of esculetin via-modulation of Bcl-2 and NF-κB expression in benzo[a]pyrene induced lung carcinogenesis in mice. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bionut.2012.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Effect of miR-451 on the biological behavior of the esophageal carcinoma cell line EC9706. Dig Dis Sci 2013; 58:706-14. [PMID: 23053883 DOI: 10.1007/s10620-012-2395-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND MicroRNAs play important roles in coordinating a variety of cellular processes. Abnormal expression of miRNAs has been linked to several cancers. However, the functional role of miR-451 in esophageal squamous cell carcinoma remains unclear. AIMS The present study explored the effects of miR-451 on the biological behavior of the esophageal carcinoma cell line EC9706. METHODS Synthetic miR-451 mimics were transfected into EC9706 cells using Lipofectamine™ 2000. The expression of miR-451 was analyzed by RT-PCR and the expressions of Bcl-2, AKT and phosphorylated AKT were analyzed by Western blotting. The MTT assay, soft agar colony formation assay, transwell assay and FACS were used to assess the effect of miR-451 on EC9706 cell proliferation, invasion, metastasis and apoptosis. Tumor growth was assessed by subcutaneous inoculation of cells into BALB/c nude mice. RESULTS In comparison to the controls, a significant increase in the expression of miR-451 was associated with significantly decreased expressions of Bcl-2, AKT and p-AKT, and a significant increase in the apoptosis rate. The number of cell clones was significantly decreased by miR-451 expression, which also caused the inhibition of cell proliferation. The average number of cells penetrating the matrigel was significantly lower than the controls. Injection of miR-451 inhibited tumor growth in a xenograft model. CONCLUSIONS Upregulated expression of miR-451 induced apoptosis and suppressed cell proliferation, invasion and metastasis in the esophageal carcinoma cell line EC9706. In addition, injection of miR-451 inhibited tumor growth in a xenograft model of esophageal cancer.
Collapse
|
16
|
Dhingra R, Gang H, Wang Y, Biala AK, Aviv Y, Margulets V, Tee A, Kirshenbaum LA. Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. Circ Heart Fail 2013; 6:335-43. [PMID: 23395931 DOI: 10.1161/circheartfailure.112.000061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor necrosis factor-α and other proinflammatory cytokines activate the canonical nuclear factor (NF)-κB pathway through the kinase IKKβ. Previously, we established that IKKβ is also critical for Akt-mediated NF-κB activation in ventricular myocytes. Akt activates the kinase mammalian target of rapamycin (mTOR), which mediates important processes such as cardiac hypertrophy. However, whether mTOR regulates cardiac myocyte cell survival is unknown. METHODS AND RESULTS Herein, we demonstrate bidirectional regulation between NF-κB signaling and mTOR, the balance which determines ventricular myocyte survival. Overexpression of IKKβ resulted in mTOR activation and conversely overexpression of mTOR lead to NF-κB activation. Loss of function approaches demonstrated that endogenous levels of IKKβ and mTOR also signal through this pathway. NF-κB activation by mTOR was mediated by phosphorylation of the NF-κB p65 subunit increasing p65 nuclear translocation and activation of gene transcription. This circuit was also important for NF-κB activation by the canonical tumor necrosis factor-α pathway. Our previous work has shown that NF-κB signaling suppresses transcription of the death gene Bnip3 resulting in ventricular myocyte survival. Inhibition of mTOR with rapamycin decreased NF-κB activation resulting in increased Bnip3 expression and cell death. Conversely, mTOR overexpression suppressed Bnip3 levels and cell death of ventricular myocytes in response to hypoxia. CONCLUSIONS To our knowledge, these data provide the first evidence for a bidirectional link between NF-κB signaling and mTOR that is critical in the regulation of Bnip3 expression and cardiac myocyte death. Hence, modulation of this axis may be cardioprotective during ischemia.
Collapse
Affiliation(s)
- Rimpy Dhingra
- Departments of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kotwal GJ, Hatch S, Marshall WL. Viral infection: an evolving insight into the signal transduction pathways responsible for the innate immune response. Adv Virol 2012; 2012:131457. [PMID: 22997518 PMCID: PMC3446651 DOI: 10.1155/2012/131457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/21/2012] [Indexed: 12/31/2022] Open
Abstract
The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death-a fundamental form of innate immunity-is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals.
Collapse
Affiliation(s)
- Girish J. Kotwal
- University of Medicine and Health Sciences, St. Kitts, New York, NY 10001, USA
| | - Steven Hatch
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - William L. Marshall
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
18
|
Context-Dependent Regulation of Autophagy by IKK-NF-κB Signaling: Impact on the Aging Process. Int J Cell Biol 2012; 2012:849541. [PMID: 22899934 PMCID: PMC3412117 DOI: 10.1155/2012/849541] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
The NF-κB signaling system and the autophagic degradation pathway are crucial cellular survival mechanisms, both being well conserved during evolution. Emerging studies have indicated that the IKK/NF-κB signaling axis regulates autophagy in a context-dependent manner. IKK complex and NF-κB can enhance the expression of Beclin 1 and other autophagy-related proteins and stimulate autophagy whereas as a feedback response, autophagy can degrade IKK components. Moreover, NF-κB signaling activates the expression of autophagy inhibitors (e.g., A20 and Bcl-2/xL) and represses the activators of autophagy (BNIP3, JNK1, and ROS). Several studies have indicated that NF-κB signaling is enhanced both during aging and cellular senescence, inducing a proinflammatory phenotype. The aging process is also associated with a decline in autophagic degradation. It seems that the activity of Beclin 1 initiation complex could be impaired with aging, since the expression of Beclin 1 decreases as does the activity of type III PI3K. On the other hand, the expression of inhibitory Bcl-2/xL proteins increases with aging. We will review the recent literature on the control mechanisms of autophagy through IKK/NF-κB signaling and emphasize that NF-κB signaling could be a potent repressor of autophagy with ageing.
Collapse
|
19
|
Morais C, Gobe G, Johnson DW, Healy H. The emerging role of nuclear factor kappa B in renal cell carcinoma. Int J Biochem Cell Biol 2011; 43:1537-49. [DOI: 10.1016/j.biocel.2011.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/26/2022]
|
20
|
Klymkowsky M. Mitochondrial activity, embryogenesis, and the dialogue between the big and little brains of the cell. Mitochondrion 2011; 11:814-9. [DOI: 10.1016/j.mito.2010.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/02/2010] [Accepted: 11/18/2010] [Indexed: 12/31/2022]
|
21
|
Hoffmann R, von Schwarzenberg K, López-Antón N, Rudy A, Wanner G, Dirsch VM, Vollmar AM. Helenalin bypasses Bcl-2-mediated cell death resistance by inhibiting NF-κB and promoting reactive oxygen species generation. Biochem Pharmacol 2011; 82:453-63. [PMID: 21669190 DOI: 10.1016/j.bcp.2011.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/22/2011] [Accepted: 05/24/2011] [Indexed: 11/17/2022]
Abstract
Evasion of cell death by overexpression of anti-apoptotic proteins, such as Bcl-2, is commonly observed in cancer cells leading to a lack of response to chemotherapy. Hence, there is a need to find new chemotherapeutic agents that are able to overcome chemoresistance mediated by Bcl-2 and to understand their mechanisms of action. Helenalin, a sesquiterpene lactone (STL), induces cell death and abrogates clonal survival in a highly apoptosis-resistant Bcl-2 overexpressing Jurkat cell line as well as in two other Bcl-2 overexpressing solid tumor cell lines (mammary MCF-7; pancreatic L6.3pl). This effect is not achieved by directly affecting the mitochondria-protective function of Bcl-2 in the intrinsic pathway of apoptosis since Bcl-2 overexpressing Jurkat cells do not show cytochrome c release and dissipation of mitochondrial membrane potential upon helenalin treatment. Moreover, helenalin induces an atypical form of cell death with necrotic features in Bcl-2 overexpressing cells, neither activating classical mediators of apoptosis (caspases, AIF, Omi/HtrA2, Apaf/apoptosome) nor ER-stress mediators (BiP/GRP78 and CHOP/GADD153), nor autophagy pathways (LC3 conversion). In contrast, helenalin was found to inhibit NF-κB activation that was considerably increased in Bcl-2 overexpressing Jurkat cells and promotes cell survival. Moreover, we identified reactive oxygen species (ROS) and free intracellular iron as mediators of helenalin-induced cell death whereas activation of JNK and abrogation of Akt activity did not contribute to helenalin-elicited cell death. Our results highlight the NF-κB inhibitor helenalin as a promising chemotherapeutic agent to overcome Bcl-2-induced cell death resistance.
Collapse
Affiliation(s)
- Ruth Hoffmann
- Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Masood A, Azmi AS, Mohammad RM. Small molecule inhibitors of bcl-2 family proteins for pancreatic cancer therapy. Cancers (Basel) 2011; 3:1527-1549. [PMID: 21760983 PMCID: PMC3134295 DOI: 10.3390/cancers3021527] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 02/24/2011] [Accepted: 03/16/2011] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (PC) has a complex etiology and displays a wide range of cellular escape pathways that allow it to resist different treatment modalities. Crucial signaling molecules that function downstream of the survival pathways, particularly at points where several of these pathways crosstalk, provide valuable targets for the development of novel anti-cancer drugs. Bcl-2 family member proteins are anti-apoptotic molecules that are known to be overexpressed in most cancers including PC. The anti-apoptotic machinery has been linked to the observed resistance developed to chemotherapy and radiation and therefore is important from the targeted drug development point of view. Over the past ten years, our group has extensively studied a series of small molecule inhibitors of Bcl-2 against PC and provide solid preclinical platform for testing such novel drugs in the clinic. This review examines the efficacy, potency, and function of several small molecule inhibitor drugs targeted to the Bcl-2 family of proteins and their preclinical progress against PC. This article further focuses on compounds that have been studied the most and also discusses the anti-cancer potential of newer class of Bcl-2 drugs.
Collapse
Affiliation(s)
- Ashiq Masood
- Department of Internal Medicine/Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit, MI 48201, USA; E-Mail:
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit MI 48201, USA; E-Mail:
| | - Ramzi M. Mohammad
- Department of Internal Medicine/Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit, MI 48201, USA; E-Mail:
- Department of Oncology, Karmanos Cancer Institute, 4100 John R, HWCRC 732, Detroit, MI 48201, USA
| |
Collapse
|
23
|
Pang X, Wu Y, Wu Y, Lu B, Chen J, Wang J, Yi Z, Qu W, Liu M. (-)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis. Mol Cancer Ther 2011; 10:795-805. [PMID: 21372225 DOI: 10.1158/1535-7163.mct-10-0936] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(-)-Gossypol, a natural BH3-mimetic and small-molecule Bcl-2 inhibitor, shows promise in ongoing phase II clinical trials for human cancers. However, whether (-)-gossypol plays functional roles in tumor angiogenesis has not been directly elucidated yet. In this study, we showed that (-)-gossypol dose dependently inhibited the expression of VEGF, Bcl-2, and Bcl-xL in human prostate cancer cells (PC-3 and DU 145) and primary cultured human umbilical vascular endothelial cells (HUVEC) in vitro. Notably, the growth of human prostate tumor PC-3 xenografts in mice was significantly suppressed by (-)-gossypol at a dosage of 15 mg/kg/d. This inhibitory action of (-)-gossypol in vivo was largely dependent on suppression of angiogenesis in the solid tumors, where VEGF expression and microvessel density were remarkably decreased. Furthermore, (-)-gossypol inhibited VEGF-induced chemotactic motility and tubulogenesis in HUVECs and human microvascular endothelial cells and suppressed microvessel sprouting from rat aortic rings ex vivo. When examined for the mechanism, we found that (-)-gossypol blocked the activation of VEGF receptor 2 kinase with the half maximal inhibitory concentration of 2.38 μmol/L in endothelial cells. Consequently, the phosphorylation of key intracellular proangiogenic kinases induced by VEGF was all suppressed by the treatment, such as Src family kinase, focal adhesion kinase, extracellular signal-related kinase, and AKT kinase. Taken together, the present study shows that (-)-gossypol potently inhibits human prostate tumor growth through modulating VEGF signaling pathway, which further validates its great potential in clinical practice.
Collapse
Affiliation(s)
- Xiufeng Pang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sasi N, Hwang M, Jaboin J, Csiki I, Lu B. Regulated cell death pathways: new twists in modulation of BCL2 family function. Mol Cancer Ther 2009; 8:1421-9. [PMID: 19509269 DOI: 10.1158/1535-7163.mct-08-0895] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of cell death pathways have been recognized. Though apoptosis and autophagy have been well characterized, programmed necrosis has recently received attention and may provide clinical alternatives to suppress resistant tumors. Necrosis is primarily characterized by large-scale permeabilization, swelling, and rupture of cell membranes and the release of pro-inflammatory cytokines. Traditionally, necrosis in cancer cells has been indicative of poor prognoses, as chronic inflammation was found to encourage tumor growth. Yet, many antitumor effects associated with necrosis have been discovered in certain settings, such as the formation of an effective antitumor immune response. In this way, finding ways to attenuate the pro-tumor effects of necrosis while engaging the antitumor pathways via drugs, radiation, and sensitization may prove valuable as a clinical focus for the future. We hypothesize that the use of Bcl-2 inhibitors may enhance necrotic death characterized by inflammation and antitumor immunity. In this article, we briefly review apoptosis and autophagy and reason how necrosis may be a suitable alternative therapeutic endpoint. We then highlight novel inhibitors of Bcl-2 that may provide clinical application of our hypothesis in the future.
Collapse
Affiliation(s)
- Nidhish Sasi
- Department of Radiation Oncology, Vanderbilt University, 1301 22nd Avenue South, The Vanderbilt Clinic, Nashville, TN 37232-5671, USA
| | | | | | | | | |
Collapse
|
25
|
Wang Z, Azmi AS, Ahmad A, Banerjee S, Wang S, Sarkar FH, Mohammad RM. TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and induces apoptosis in pancreatic cancer: involvement of Notch-1 signaling pathway. Cancer Res 2009; 69:2757-65. [PMID: 19318573 DOI: 10.1158/0008-5472.can-08-3060] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Overexpression of Bcl-2 family proteins has been found in a variety of aggressive human carcinomas, including pancreatic cancer, suggesting that specific agents targeting Bcl-2 family proteins would be valuable for pancreatic cancer therapy. We have previously reported that TW-37, a small-molecule inhibitor of Bcl-2 family proteins, inhibited cell growth and induced apoptosis in pancreatic cancer. However, the precise role and the molecular mechanism of action of TW-37 have not been fully elucidated. In our current study, we found that TW-37 induces cell growth inhibition and S-phase cell cycle arrest, with regulation of several important cell cycle-related genes like p27, p57, E2F-1, cdc25A, CDK4, cyclin A, cyclin D1, and cyclin E. The cell growth inhibition was accompanied by increased apoptosis with concomitant attenuation of Notch-1, Jagged-1, and its downstream genes such as Hes-1 in vitro and in vivo. We also found that down-regulation of Notch-1 by small interfering RNA or gamma-secretase inhibitors before TW-37 treatment resulted in enhanced cell growth inhibition and apoptosis. Our data suggest that the observed antitumor activity of TW-37 is mediated through a novel pathway involving inactivation of Notch-1 and Jagged-1.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Lu X, Liu H, Wang L, Schaefer S. Activation of NF-kappaB is a critical element in the antiapoptotic effect of anesthetic preconditioning. Am J Physiol Heart Circ Physiol 2009; 296:H1296-304. [PMID: 19304943 DOI: 10.1152/ajpheart.01282.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anesthetic preconditioning (APC), defined as brief exposure to inhalational anesthetics before cardiac ischemia-reperfusion (I/R), limits injury in both animal models and in humans. APC can result in the production of reactive oxygen species (ROS), and prior work has shown that APC can modify activation of NF-kappaB during I/R, with consequent reduction in the expression of inflammatory mediators. However, the role of NF-kappaB activation before I/R is unknown. Therefore, these experiments tested the hypothesis that APC-induced ROS results in activation of NF-kappaB before I/R, with consequent increased expression of antiapoptotic proteins such as Bcl-2 and decreased apoptosis. Experiments utilized an established perfused heart rat model of sevoflurane APC and I/R. The role of NF-kappaB was defined by a novel method of transient inhibition of the regulatory kinase IKK using the reversible inhibitor SC-514. In addition to functional measures of left ventricular developed and end-diastolic pressure, phosphorylation of IkappaBalpha and activation of NF-kappaB were measured along with cytosolic protein content of Bcl-2, release of cytochrome c, and degradation of caspase-3. APC resulted in ROS-dependent phosphorylation of IkappaBalpha and activation of NF-kappaB before I/R. APC also increased the expression of Bcl-2 before I/R. In addition to functional protection following I/R, APC resulted in lower release of cytochrome c and caspase-3 degradation. These protective effects of APC were abolished by transient inhibition of IkappaBalpha phosphorylation and NF-kappaB activation by SC-514 followed by washout. ROS-dependent activation of NF-kappaB by APC before I/R is a critical element in the protective effect of APC. APC reduces apoptosis and functional impairment by increasing Bcl-2 expression before I/R. Interventions that increase NF-kappaB activation before I/R should protect hearts from I/R injury.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Internal Medicine, Division of Cardiovascular Medicine, Univ. of California, One Shields Ave., TB 172, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
27
|
Brunt KR, Tsuji MR, Lai JH, Kinobe RT, Durante W, Claycomb WC, Ward CA, Melo LG. Heme oxygenase-1 inhibits pro-oxidant induced hypertrophy in HL-1 cardiomyocytes. Exp Biol Med (Maywood) 2009; 234:582-94. [PMID: 19244544 DOI: 10.3181/0810-rm-312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS Reactive oxygen species (ROS) activate multiple signaling pathways involved in cardiac hypertrophy. Since HO-1 exerts potent antioxidant effects, we hypothesized that this enzyme inhibits ROS-induced cardiomyocyte hypertrophy. METHODS HL-1 cardiomyocytes were transduced with an adenovirus constitutively expressing HO-1 (AdHO-1) to increase basal HO-1 expression and then exposed to 200 microM hydrogen peroxide (H2O2). Hypertrophy was measured using 3H-leucine incorporation, planar morphometry and cell-size by forward-scatter flow-cytometry. The pro-oxidant effect of H2O2 was assessed by redox sensitive fluorophores. Inducing intracellular redox imbalance resulted in cardiomyocyte hypertrophy through transactivation of nuclear factor kappa B (NF-kappaB). RESULTS Pre-emptive HO-1 overexpression attenuated the redox imbalance and reduced hypertrophic indices. This is the first time that HO-1 has directly been shown to inhibit oxidant-induced cardiomyocyte hypertrophy by a NF-kappaB-dependent mechanism. CONCLUSION These results demonstrate that HO-1 inhibits pro-oxidant induced cardiomyocyte hypertrophy and suggest that HO-1 may yield therapeutic potential in treatment of.
Collapse
Affiliation(s)
- Keith R Brunt
- Department of Physiology, Queen's University, 431 Botterell Hall, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc Natl Acad Sci U S A 2008; 105:20734-9. [PMID: 19088195 DOI: 10.1073/pnas.0807735105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transcription factor E2F-1 drives proliferation and death, but the mechanisms that differentially regulate these divergent actions are poorly understood. The hypoxia-inducible death factor Bnip3 is an E2F-1 target gene and integral component of the intrinsic mitochondrial death pathway. The mechanisms that govern Bnip3 gene activity remain cryptic. Herein we show that the transcription factor NF-kappaB provides a molecular switch that determines whether E2F-1 signals proliferation or death under physiological conditions. We show under basal nonapoptotic conditions that NF-kappaB constitutively occupies and transcriptionally silences Bnip3 gene transcription by competing with E2F-1 for Bnip3 promoter binding. Conversely, in the absence of NF-kappaB, or during hypoxia when NF-kappaB abundance is reduced, basal Bnip3 gene transcription is activated by the unrestricted binding of E2F-1 to the Bnip3 promoter. Genetic knock-down of E2F-1 or retinoblastoma gene product over-expression in cardiac and human pancreatic cancer cells deficient for NF-kappaB signaling abrogated basal and hypoxia-inducible Bnip3 transcription. The survival kinase PI3K/Akt inhibited Bnip3 expression levels in cells in a manner dependent upon NF-kappaB activation. Hence, by way of example, we show that the transcriptional inhibition of E2F-1-dependent Bnip3 expression by NF-kappaB highlights a survival pathway that overrides the E2F-1 tumor suppressor program. Our data may explain more fundamentally how cells, by selectively inhibiting E2F-1-dependent death gene transcription, avert apoptosis down-stream of the retinoblastoma/E2F-1 cell cycle pathway.
Collapse
|
29
|
Gabellini C, Castellini L, Trisciuoglio D, Kracht M, Zupi G, Del Bufalo D. Involvement of nuclear factor-kappa B in bcl-xL-induced interleukin 8 expression in glioblastoma. J Neurochem 2008; 107:871-82. [PMID: 18786178 DOI: 10.1111/j.1471-4159.2008.05661.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently reported that bcl-xL regulates interleukin 8 (CXCL8) protein expression and promoter activity in glioblastoma cells. In this paper we demonstrate that CXCL8 induction by bcl-xL is mediated through a nuclear factor-kappa B (NF-kB)-dependent mechanism. Mutational studies on the CXCL8 promoter showed that NF-kB binding site was required for bcl-xL-induced promoter activity and an enhanced nuclear expression of NF-kB subunits p65 and p50 was observed after bcl-xL over-expression. Electrophoretic mobility shift assay showed an increased DNA-binding activity of NF-kB in bcl-xL over-expressing cells and the use of specific antibodies confirmed the involvement of p65 and p50 in NF-kB activity on CXCL8 promoter sequence. NF-kB activity regulation by bcl-xL involved IkBalpha and IKK complex signaling pathway. In fact, bcl-xL over-expression induced a decrease of cytoplasmic expression of the IkBalpha protein, paralleled by an increase in the phosphorylation of the same IkBalpha and IKKalpha/beta. Moreover, the down-regulation of the ectopic or endogenous bcl-xL expression through RNA interference confirmed the ability of bcl-xL to modulate NF-kB pathway, and the transient expression of a degradation-resistant form of the cytoplasmic NF-kB inhibitor IkBalpha in bcl-xL transfectants confirmed the involvement of that inhibitor in bcl-xL-induced CXCL8 expression and promoter activity. In conclusion, our results demonstrate the role of NF-kB as the mediator of bcl-xL-induced CXCL8 up-regulation in glioblastoma cells.
Collapse
Affiliation(s)
- Chiara Gabellini
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Wang Z, Song W, Aboukameel A, Mohammad M, Wang G, Banerjee S, Kong D, Wang S, Sarkar FH, Mohammad RM. TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and invasion in pancreatic cancer. Int J Cancer 2008; 123:958-66. [PMID: 18528859 DOI: 10.1002/ijc.23610] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bcl-2 family of proteins plays critical roles in human cancers, including pancreatic cancer, suggesting that the discovery of specific agents targeting Bcl-2 family proteins would be extremely valuable for pancreatic cancer therapy. We have previously reported the synthesis and characterization of TW-37, which seems to be a negative regulator of Bcl-2. In this investigation, we tested our hypothesis whether TW-37 could be an effective inhibitor of cell growth, invasion and angiogenesis in pancreatic cancer cells. Using multiple cellular and molecular approaches such as MTT assay, apoptosis enzyme-linked immunosorbent assay, real-time reverse transcription-polymerase chain reaction, Western blotting, electrophoretic mobility shift assay for measuring DNA binding activity of NF-kappaB, migration, invasion and angiogenesis assays, we found that TW-37, in nanomolar concentrations, inhibited cell growth in a dose- and time-dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-kappaB, and downregulation of NF-kappaB downstream genes such as MMP-9 and VEGF, resulting in the inhibition of pancreatic cancer cell migration, invasion and angiogenesis in vitro and caused antitumor activity in vivo. From these results, we conclude that TW-37 is a potent inhibitor of progression of pancreatic cancer cells, which could be due to attenuation of Bcl-2 cellular signaling processes. Our findings provide evidence showing that TW-37 could act as a small-molecule Bcl-2 inhibitor on well-characterized pancreatic cancer cells in culture as well as when grown as tumor in a xenograft model. We also suggest that TW-37 could be further developed as a potential therapeutic agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mortenson MM, Galante JG, Gilad O, Schlieman MG, Virudachalam S, Kung HJ, Bold RJ. BCL-2 functions as an activator of the AKT signaling pathway in pancreatic cancer. J Cell Biochem 2008; 102:1171-9. [PMID: 17960583 DOI: 10.1002/jcb.21343] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BCL-2 is the prototypic anti-apoptotic protein involved in the regulation of apoptosis. Overexpression of BCL-2 is common in pancreatic cancer and confers resistance to the apoptotic effect of chemo- and radiotherapy. Although these cellular effects of BCL-2 are traditionally related to pathways involving the mitochondrial membrane, we sought to investigate whether BCL-2 is involved in other signaling pathways regulating cell survival and focused on AKT. We examined the effect of overexpression of BCL-2 in the MIA-PaCa-2 human pancreatic cancer cell line on the function and subcellular location of AKT. We observed that the stable subclones of MIA-PaCa-2 overexpressing BCL-2 demonstrated increased activity of AKT as well as IKK (a downstream target of AKT), increasing the transcriptional activity of NF-kappaB. Using immunoprecipitation techniques, we observed co-immunoprecipitation of AKT and BCL-2. Immunocytochemistry demonstrated co-localization of BCL-2 and AKT, which was abrogated by treatment with HA14-1, a small molecule inhibitor of BH-3-mediated protein interaction by BCL-2. Furthermore, treatment with HA14-1 decreased phosphorylation of AKT and increased sensitivity to the apoptotic effect of the chemotherapeutic agent, paclitaxel. These results demonstrate an additional mechanism of regulation of cell survival mediated by BCL-2, namely through AKT activation, in the MIA-PaCa-2 pancreatic cancer cell line. Therefore, directed inhibition of BCL-2 may alter diverse pathways controlling cell survival and overcome the apoptotic resistance that is the hallmark of pancreatic cancer.
Collapse
Affiliation(s)
- Melinda M Mortenson
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang Y, Cao R, Liu D, Chervin A, Yuan J, An J, Huang Z. Oligomerization of BH4-truncated Bcl-x(L) in solution. Biochem Biophys Res Commun 2007; 361:1006-11. [PMID: 17692289 DOI: 10.1016/j.bbrc.2007.07.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/21/2007] [Indexed: 11/16/2022]
Abstract
BH4 domain is critical for the anti-apoptotic functions of Bcl-2 and Bcl-x(L) and their binding abilities with other members of the Bcl-2 family. The cleavage of the BH4 domain in Bcl-x(L) and Bcl-2 by caspase 1 or 3 converts the anti-apoptotic Bcl-x(L) and Bcl-2 into pro-apoptotic proteins that potently induce apoptosis. Herein, we report that recombinant Bcl-x(L) proteins without N-terminal 61 residues, His(6)-NDelta61-Bcl-x(L)-CDelta21 and NDelta61-Bcl-x(L)-CDelta21, form oligomers in solution, whereas Bcl-x(L)-CDelta21 exists as a monomer. The oligomerization of the truncated proteins is independent of protein-lipid interaction, protein concentration or the ion strength of the solution. Circular dichroism spectrum shows a significant decrease in the content of alpha-helices upon deletion of N-terminal residues. NDelta61-Bcl-x(L)-CDelta21 also loses its heterodimerization capability with the BH3 peptide derived from Bak. This newly acquired property might be linked to its ability to induce apoptosis in cells.
Collapse
Affiliation(s)
- Youli Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang C, Carl TF, Trudeau ED, Simmet T, Klymkowsky MW. An NF-kappaB and slug regulatory loop active in early vertebrate mesoderm. PLoS One 2006; 1:e106. [PMID: 17205110 PMCID: PMC1762408 DOI: 10.1371/journal.pone.0000106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 11/23/2006] [Indexed: 01/11/2023] Open
Abstract
Background In both Drosophila and the mouse, the zinc finger transcription factor Snail is required for mesoderm formation; its vertebrate paralog Slug (Snai2) appears to be required for neural crest formation in the chick and the clawed frog Xenopus laevis. Both Slug and Snail act to induce epithelial to mesenchymal transition (EMT) and to suppress apoptosis. Methodology & Principle Findings Morpholino-based loss of function studies indicate that Slug is required for the normal expression of both mesodermal and neural crest markers in X. laevis. Both phenotypes are rescued by injection of RNA encoding the anti-apoptotic protein Bcl-xL; Bcl-xL's effects are dependent upon IκB kinase-mediated activation of the bipartite transcription factor NF-κB. NF-κB, in turn, directly up-regulates levels of Slug and Snail RNAs. Slug indirectly up-regulates levels of RNAs encoding the NF-κB subunit proteins RelA, Rel2, and Rel3, and directly down-regulates levels of the pro-apopotic Caspase-9 RNA. Conclusions/Significance These studies reveal a Slug/Snail–NF-κB regulatory circuit, analogous to that present in the early Drosophila embryo, active during mesodermal formation in Xenopus. This is a regulatory interaction of significance both in development and in the course of inflammatory and metastatic disease.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Timothy F. Carl
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Evan D. Trudeau
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Ulm, Germany
| | - Michael W. Klymkowsky
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Shaw J, Zhang T, Rzeszutek M, Yurkova N, Baetz D, Davie JR, Kirshenbaum LA. Transcriptional Silencing of the Death Gene BNIP3 by Cooperative Action of NF-κB and Histone Deacetylase 1 in Ventricular Myocytes. Circ Res 2006; 99:1347-54. [PMID: 17082476 DOI: 10.1161/01.res.0000251744.06138.50] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Earlier we identified a survival role for NF-κB in ventricular myocytes, however, the underlying mechanism was undefined. In this report we provide new mechanistic evidence that the hypoxia-inducible death factor BNIP3 is transcriptionally silenced by NF-κB through a mechanism that involves the cooperative actions of HDAC1. Activation of the NF-κB signaling pathway in ventricular myocytes suppressed basal and hypoxia-inducible BNIP3 gene activity. Basal Bnip3 gene expression was increased in cells derived from p65
−/−
deficient mice. The histone deacetylase (HDAC) inhibitor Trichostatin A (TSA 10 nM) suppressed the inhibitory actions of NF-κB on Bnip3 gene transcription. Basal and hypoxia- induced Bnip3 transcription was repressed by wild type but not a catalytically inactive mutant of HDAC1. Immunoprecipitation assays verified interaction of HDAC1 with wild type p65 NF-κB and mutations of p65 defective for transactivation in ventricular myocytes. Deletion analysis revealed canonical NF-κB elements within the Bnip3 promoter to be important for repression of Bnip3 gene expression by HDAC1. Further, the ability of HDAC1 to repress Bnip3 gene transcription was lost in cells derived from p65
−/−
deficient mice but was restored by repletion of p65 NF-κB into p65
−/−
cells. Mutations of p65 NF-κB defective for DNA binding but not for transactivation abrogated the inhibitory actions of HDAC1 on the Bnip3 gene transcription. Together, our findings provide new mechanistic insight into the cytoprotective actions conferred by NF-κB that extend to the active transcriptional repression of the death factor Bnip3 through a mechanism that is mutually dependent on HDAC-1.
Collapse
Affiliation(s)
- James Shaw
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre Rm. 3016, 351 Taché Avenue, Winnipeg, Manitoba, Canada, R2H 2A6.
| | | | | | | | | | | | | |
Collapse
|
35
|
Aoyagi M, Zhai D, Jin C, Aleshin AE, Stec B, Reed JC, Liddington RC. Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci 2006; 16:118-24. [PMID: 17123957 PMCID: PMC2222835 DOI: 10.1110/ps.062454707] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Poxviruses encode immuno-modulatory proteins capable of subverting host defenses. The poxvirus vaccinia expresses a small 14-kDa protein, N1L, that is critical for virulence. We report the crystal structure of N1L, which reveals an unexpected but striking resemblance to host apoptotic regulators of the B cell lymphoma-2 (Bcl-2) family. Although N1L lacks detectable Bcl-2 homology (BH) motifs at the sequence level, we show that N1L binds with high affinity to the BH3 peptides of pro-apoptotic Bcl-2 family proteins in vitro, consistent with a role for N1L in modulating host antiviral defenses.
Collapse
Affiliation(s)
- Mika Aoyagi
- Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Eisner V, Quiroga C, Criollo A, Eltit JM, Chiong M, Parra V, Hidalgo K, Toro B, Díaz-Araya G, Lavandero S. Hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. FEBS Lett 2006; 580:3469-76. [PMID: 16716309 DOI: 10.1016/j.febslet.2006.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/26/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
NFkappaB is a participant in the process whereby cells adapt to stress. We have evaluated the activation of NFkappaB pathway by hyperosmotic stress in cultured cardiomyocytes and its role in the activation of caspase and cell death. Exposure of cultured rat cardiomyocytes to hyperosmotic conditions induced phosphorylation of IKKalpha/beta as well as degradation of IkappaBalpha. All five members of the NFkappaB family were identified in cardiomyocytes. Analysis of the subcellular distribution of NFkappaB isoforms in response to hyperosmotic stress showed parallel migration of p65 and RelB from the cytosol to the nucleus. Measurement of the binding of NFkappaB to the consensus DNA kappaB-site binding by EMSA revealed an oscillatory profile with maximum binding 1, 2 and 6h after initiation of the hyperosmotic stress. Supershift analysis revealed that p65 and RelB (but not p50, p52 or cRel) were involved in the binding of NFkappaB to DNA. Hyperosmotic stress also resulted in activation of the NFkappaB-lux reporter gene, transient activation of caspases 9 and 3 and phosphatidylserine externalization. The effect on cell viability was not prevented by ZVAD (a general caspase inhibitor). Blockade of NFkappaB with AdIkappaBalpha, an IkappaBalpha dominant negative overexpressing adenovirus, prevented activation of caspase 9 (more than that caspase 3) but did not affect cell death in hyperosmotically stressed cardiomyocytes. We conclude that hyperosmotic stress activates p65 and RelB NFkappaB isoforms and NFkappaB mediates caspase 9 activation in cardiomyocytes. However cell death triggered by hyperosmotic stress was caspase- and NFkappaB-independent.
Collapse
Affiliation(s)
- Verónica Eisner
- Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baetz D, Regula KM, Ens K, Shaw J, Kothari S, Yurkova N, Kirshenbaum LA. Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation 2006; 112:3777-85. [PMID: 16344406 DOI: 10.1161/circulationaha.105.573899] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A survival role for the transcription factor nuclear factor-kappaB (NF-kappaB) in ventricular myocytes has been reported; however, the underlying mechanism is undefined. In this report we provide new mechanistic evidence that survival signals conferred by NF-kappaB impinge on the hypoxia-inducible death factor BNIP3. METHODS AND RESULTS Activation of the NF-kappaB signaling pathway by IKKbeta in ventricular myocytes suppressed mitochondrial permeability transition pore (PTP) opening and cell death provoked by BNIP3. Expression of IKKbeta or p65 NF-kappaB suppressed basal and hypoxia-inducible BNIP3 gene activity. Deletion analysis of the BNIP3 promoter revealed the NF-kappaB elements to be crucial for inhibiting basal and inducible BNIP3 gene activity. Cells derived from p65(-/-)-deficient mice or ventricular myocytes rendered defective for NF-kappaB signaling with a nonphosphorylative IkappaB exhibited increased basal BNIP3 gene expression, mitochondrial PTP, and cell death. Genetic or functional ablation of the BNIP3 gene in NF-kappaB-defective myocytes rescued them from mitochondrial defects and cell death. CONCLUSIONS The data provide new compelling evidence that NF-kappaB suppresses mitochondrial defects and cell death of ventricular myocytes through a mechanism that transcriptionally silences the death gene BNIP3. Collectively, our data provide new mechanistic insight into the mode by which NF-kappaB suppresses cell death and identify BNIP3 as a key transcriptional target for NF-kappaB-regulated expression in ventricular myocytes.
Collapse
Affiliation(s)
- Delphine Baetz
- Department of Physiology, Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Gupta S, Sen S. Role of the NF-kappaB signaling cascade and NF-kappaB-targeted genes in failing human hearts. J Mol Med (Berl) 2005; 83:993-1004. [PMID: 16133425 DOI: 10.1007/s00109-005-0691-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 05/20/2005] [Indexed: 11/24/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a ubiquitous transcription factor that has been indicated to play a causal role for many pathological states. Heart failure is a major cause of morbidity all over the world. In this study, we examined the role of NF-kappaB in failing (F) human hearts and nonfailing (NF) controls. Our data showed that an enhanced activation of this nuclear factor occurs in the F hearts along with its components, like I-kappaB kinase (IKK)beta and IkappaBalpha, both at transcript and translational levels. To obtain a profile of NF-kappaB-targeted gene expression in F hearts, we profiled, for the first time, the expression analysis of NF-kappaB-linked gene using a TranSignal human NF-kappaB-targeted gene array. Our data suggest that more than 50 genes were consistently upregulated in F hearts more than 1.5-fold (vs NF hearts, p<0.001). Our studies demonstrated that NF-kappaB is specifically and significantly activated via IKKbeta in F hearts. The most intriguing aspects of our studies are molecular profiles of NF-kappaB-linked or targeted gene expression in F hearts. Our data suggest that the regulation and control of NF-kappaB activation is, therefore, a powerful therapeutic strategy for delaying or attenuating such deadly disease.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, NB 50, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
39
|
Karl E, Warner K, Zeitlin B, Kaneko T, Wurtzel L, Jin T, Chang J, Wang S, Wang CY, Strieter RM, Nunez G, Polverini PJ, Nör JE. Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-kappaB and CXC chemokines. Cancer Res 2005; 65:5063-9. [PMID: 15958549 DOI: 10.1158/0008-5472.can-05-0140] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) induces expression of Bcl-2 in tumor-associated microvascular endothelial cells. We have previously reported that up-regulated Bcl-2 expression in microvascular endothelial cells is sufficient to enhance intratumoral angiogenesis and to accelerate tumor growth. We initially attributed these results to Bcl-2-mediated endothelial cell survival. However, in recent experiments, we observed that conditioned medium from Bcl-2-transduced human dermal microvascular endothelial cells (HDMEC-Bcl-2) is sufficient to induce potent neovascularization in the rat corneal assay, whereas conditioned medium from empty vector controls (HDMEC-LXSN) does not induce angiogenesis. These results cannot be attributed to the role of Bcl-2 in cell survival. To understand this unexpected observation, we did gene expression arrays that revealed that the expression of the proangiogenic chemokines interleukin-8 (CXCL8) and growth-related oncogene-alpha (CXCL1) is significantly higher in HDMEC exposed to VEGF and in HDMEC-Bcl-2 than in controls. Inhibition of Bcl-2 expression with small interfering RNA-Bcl-2, or the inhibition of Bcl-2 function with small molecule inhibitor BL-193, down-regulated CXCL8 and CXCL1 expression and caused marked decrease in the angiogenic potential of endothelial cells without affecting cell viability. Nuclear factor-kappaB (NF-kappaB) is highly activated in HDMEC exposed to VEGF and HDMEC-Bcl-2 cells, and genetic and chemical approaches to block the activity of NF-kappaB down-regulated CXCL8 and CXCL1 expression levels. These results reveal a novel function for Bcl-2 as a proangiogenic signaling molecule and suggest a role for this pathway in tumor angiogenesis.
Collapse
Affiliation(s)
- Elisabeta Karl
- Angiogenesis Research Laboratory, Department of Restorative Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cotella D, Jost N, Darna M, Radicke S, Ravens U, Wettwer E. Silencing the cardiac potassium channel Kv4.3 by RNA interference in a CHO expression system. Biochem Biophys Res Commun 2005; 330:555-60. [PMID: 15796918 DOI: 10.1016/j.bbrc.2005.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi) is a powerful technique for gene silencing, in which the downregulation of mRNA is triggered by short RNAs complementary to a target mRNA sequence, with consequent reduction of the encoded protein. The aim of this study was to test the effects of silencing the expression of the cardiac potassium channel Kv4.3 in a heterologous expression system, in order to investigate the effect of RNAi on channel properties. A Chinese hamster ovary cell line stably expressing Kv4.3 and the accessory beta-subunit KChIP2 was transfected with small-interfering RNAs (siRNAs) targeting Kv4.3. Effects of RNAi were monitored at the mRNA, protein, and functional levels. Real-time PCR and immunofluorescence staining revealed significant reduction of Kv4.3 mRNA and protein expression. These results were confirmed by functional patch-clamp measurements of the transient outward current (I(to)) which was reduced up to 80% by RNAi. We conclude that the use of siRNAs reagents for post-transcriptional gene silencing is a new effective method for the reduction of the expression and function of different ionic channels which may be adapted for studying their role also in native cells.
Collapse
Affiliation(s)
- Diego Cotella
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, University of Technology, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Song JM, Lee RH, Jung JS. Roles of NF-κB and Bcl-2 in Two Differential Modes of Cell Death of Mouse Cortical Collecting Duct Cells. Kidney Blood Press Res 2005; 28:101-10. [PMID: 15746559 DOI: 10.1159/000084253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2004] [Indexed: 01/08/2023] Open
Abstract
Recent data have implicated nuclear factor-kappaB (NF-kappaB) and Bcl-2 in the regulation of apoptotic and necrotic cell death in various cells. However, mechanisms of their effects on cell death of renal epithelial cells are not clear. First, we investigated the effect of specific inhibition of NF-kappaB and overexpression of Bcl-2 on necrotic cell death induced by hydrogen peroxide or cisplatin in renal collecting duct cells. M-1 cells, which were derived from outer cortical collecting duct, were stably transfected with the non-phosphorylatable mutant of inhibitory-kappaBalpha (I-kappaBalpha) and Bcl-2. Overexpression of I-kappaBalpha and Bcl-2 did not affect cisplatin-induced necrotic cell death, but overexpression of I-kappaBalpha significantly decreased H2O2-induced cell death. Regarding apoptotic cell death induced by cisplatin, serum deprivation and contact inhibition was increased by overexpression of I-kappaBalpha, whereas overexpression of bcl-2 inhibited the apoptotic cell death. I-kappaBalpha overexpression increased Bax expression and decreased cIAP-1 and -2 expression compared to vector-transfected cells, but did not alter SAPK/JNK activity in the presence or absence of cisplatin. NF-kappaB activity was significantly higher in bcl-2-overexpressing cells than in control cells. These data show that activation of NF-kappaB mediates H2O2-induced necrotic injury, but inhibits apoptotic cell death in renal collecting duct cells, and that Bcl-2 selectively protects apoptotic cell death in M-1 cells.
Collapse
Affiliation(s)
- J M Song
- Department of Physiology, College of Medicine, Pusan National University, Busan, Korea
| | | | | |
Collapse
|
42
|
|
43
|
Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J. Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J 2005; 18:1499-506. [PMID: 15466358 DOI: 10.1096/fj.04-1846com] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two studies were performed to investigate the effects of an acute bout of physical exercise on the nuclear protein kappaB (NF-kappaB) signaling pathway in rat skeletal muscle. In Study 1, a group of rats (n=6) was run on the treadmill at 25 m/min, 5% grade, for 1 h or until exhaustion (Ex), and compared with a second group (n=6) injected with two doses of pyrrolidine dithiocarbamate (PDTC, 100 mg/kg, i.p.) 24 and 1 h prior to the acute exercise bout. Three additional groups of rats (n=6) were injected with either 8 mg/kg (i.p.) of lipopolysaccharide (LPS), 1 mmol/kg (i.p.) t-butylhydroperoxide (tBHP), or saline (C) and killed at resting condition. Ex rats showed higher levels of NF-kappaB binding and P50 protein content in muscle nuclear extracts compared with C rats. Cytosolic IkappaBalpha and IkappaB kinase (IKK) contents were decreased, whereas phospho-IkappaBalpha and phospho-IKK contents were increased, comparing Ex vs. C. The exercise-induced activation of NF-kappaB signaling cascade was partially abolished by PDTC treatment. LPS, but not tBHP, treatment mimicked and exaggerated the effects observed in Ex rats. In Study 2, the time course of exercise-induced NF-kappaB activation was examined. Highest levels of NF-kappaB binding were observed at 2 h postexercise. Decreased cytosolic IkappaBalpha and increased phosphor-IkappaBalpha content were found 0-1 h postexercise whereas P65 reached peak levels at 2-4 h. These data suggest that the NF-kappaB signaling pathway can be activated in a redox-sensitive manner during muscular contraction, presumably due to increased oxidant production. The cascade of intracellular events may be the overture to elevated gene expression of manganese superoxide dismutase reported earlier (Pfluegers Arch. 442, 426-434, 2001).
Collapse
Affiliation(s)
- L L Ji
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | |
Collapse
|
44
|
Regula KM, Baetz D, Kirshenbaum LA. Nuclear Factor-κB Represses Hypoxia-Induced Mitochondrial Defects and Cell Death of Ventricular Myocytes. Circulation 2004; 110:3795-802. [PMID: 15596562 DOI: 10.1161/01.cir.0000150537.59754.55] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background—
Oxygen deprivation for prolonged periods of time provokes cardiac cell death and ventricular dysfunction. Preventing inappropriate cardiac cell death in patients with ischemic heart disease would be of significant therapeutic value as a means to improve ventricular performance. In the present study, we wished to ascertain whether activation of the cellular factor nuclear factor (NF)-κB suppresses mitochondrial defects and cell death of ventricular myocytes during hypoxic injury.
Methods and Results—
In contrast to normoxic control cells, ventricular myocytes subjected to hypoxia displayed a 9.1-fold increase (
P
<0.05) in cell death, as determined by Hoechst 33258 nuclear staining and vital dyes. Mitochondrial defects consistent with permeability transition pore opening, loss of mitochondrial membrane potential (ΔΨm), and Smac release were observed in cells subjected to hypoxia. An increase in postmitochondrial caspase 9 and caspase 3 activity was observed in hypoxic myocytes. Adenovirus-mediated delivery of wild-type IKKβ (IKKβwt) resulted in a significant increase in NF-κB-dependent DNA binding and gene transcription in ventricular myocytes. Interestingly, subcellular fractionation of myocytes revealed that the p65 subunit of NF-κB was localized to mitochondria. Hypoxia-induced mitochondrial defects and cell death were suppressed in cells expressing IKKβwt but not in cells expressing the kinase-defective IKKβ mutant.
Conclusions—
To the best of our knowledge, the data provide the first direct evidence that activation of the NF-κB signaling pathways is sufficient to suppress cell death of ventricular myocytes during hypoxia. Moreover, our data further suggest that NF-κB averts cell death through a mechanism that prevents perturbations to the mitochondrion during hypoxic injury.
Collapse
Affiliation(s)
- Kelly M Regula
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
45
|
Bowie AG, Zhan J, Marshall WL. Viral appropriation of apoptotic and NF-kappaB signaling pathways. J Cell Biochem 2004; 91:1099-108. [PMID: 15048867 DOI: 10.1002/jcb.20026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses utilize a variety of strategies to evade the host immune response and replicate in the cells they infect. The comparatively large genomes of the Orthopoxviruses and gammaherpesviruses encode several immunomodulatory proteins that are homologous to component of the innate immune system of host cells, which are reviewed here. However, the viral mechanisms used to survive host responses are quite distinct between these two virus families. Poxviruses undergo continuous lytic replication in the host cytoplasm while expressing many genes that inhibit innate immune responses. In contrast, herpesviruses persist in a latent state during much of their lifecycle while expressing only a limited number of relatively non-immunogenic viral proteins, thereby avoiding the adaptive immune response. Poxviruses suppress, whereas latent gammaherpesviruses activate, signaling by NF-kappaB, yet both viruses target similar host signaling pathways to suppress the apoptotic response. Here, modulation of apoptotic and NF-kappaB signal transduction pathways are examined as examples of common pathways appropriated in contrasting ways by herpesviruses and poxviruses.
Collapse
Affiliation(s)
- Andrew G Bowie
- Viral Immune Evasion Group, Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
46
|
Martindale JJ, Wall JA, Martinez-Longoria DM, Aryal P, Rockman HA, Guo Y, Bolli R, Glembotski CC. Overexpression of mitogen-activated protein kinase kinase 6 in the heart improves functional recovery from ischemia in vitro and protects against myocardial infarction in vivo. J Biol Chem 2004; 280:669-76. [PMID: 15492008 PMCID: PMC3691679 DOI: 10.1074/jbc.m406690200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mitogen-activated protein kinases (MAPK) have been the subject of many studies to identify signaling pathways that promote cell survival or death. In cultured cardiac myocytes, p38 MAPK promotes cell survival or death depending on whether it is activated by mitogen-activated protein kinase kinase 6 (MKK6) or MKK3, respectively. The objectives of the current study were to examine the effects of MKK6-mediated p38 activation in the heart in vivo. Accordingly, we generated transgenic (TG) mice that overexpress wild type MKK6 in a cardiac-restricted manner. Although p38 was about 17-fold more active in TG than non-transgenic (NTG) mouse hearts, TG mouse hearts were morphologically and functionally similar to those of NTG littermates. However, upon transient ischemia followed by reperfusion, the MKK6 TG mouse hearts exhibited significantly better functional recovery and less injury than NTG mouse hearts. Because MKK6 increases levels of the protective small heat shock protein, alpha B-crystallin (alpha BC), in cultured cardiac myocytes, we examined alpha BC levels in the mouse hearts. The level of alpha BC was 2-fold higher in MKK6 TG than NTG mouse hearts. Moreover, ischemia followed by reperfusion induced a 6.4-fold increase in alpha BC levels in the mitochondrial fractions of TG mouse hearts but no increase in alpha BC levels in any of the other fractions analyzed. These alterations in alpha BC expression and localization suggest possible mechanisms of cardioprotection in MKK6 TG mouse hearts.
Collapse
Affiliation(s)
- Joshua J. Martindale
- The San Diego State University Heart Institute and The Department of Biology, San Diego State University, San Diego, California 92182
| | - Jason A. Wall
- The San Diego State University Heart Institute and The Department of Biology, San Diego State University, San Diego, California 92182
| | - Diana M. Martinez-Longoria
- The San Diego State University Heart Institute and The Department of Biology, San Diego State University, San Diego, California 92182
| | - Prafulla Aryal
- Department of Medicine and Genetics, Duke University Medical Center, Durham, North Carolina 27710
| | - Howard A. Rockman
- Department of Medicine and Genetics, Duke University Medical Center, Durham, North Carolina 27710
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville Kentucky 40292
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville Kentucky 40292
| | - Christopher C. Glembotski
- The San Diego State University Heart Institute and The Department of Biology, San Diego State University, San Diego, California 92182
- To whom correspondence should be addressed: SDSU Heart Institute and the Dept. of Biology, San Diego State University, San Diego, CA 92182. Tel.: 619-594-2959; Fax: 619-594-5676;
| |
Collapse
|
47
|
Jang JH, Surh YJ. Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function. Biochem Pharmacol 2003; 66:1371-9. [PMID: 14555211 DOI: 10.1016/s0006-2952(03)00487-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A substantial body of data from clinical and laboratory studies indicates that reactive oxygen intermediates are implicated in the pathogenesis of diverse human diseases, including cancer, diabetes, and neurodegenerative disorders. Oxidative stress induced by reactive oxygen intermediates often causes cell death via apoptosis that is regulated by a plenty of functional genes and their protein products. Bcl-2, which is an integral intermitochondrial membrane protein, blocks apoptosis induced by a wide array of death signals. In spite of extensive research, the molecular milieu that characterizes the antiapoptotic function of Bcl-2 is complex and not fully identified. Recently, there are several lines of evidence that Bcl-2 functions via antioxidant pathways to prevent apoptosis. Thus, bcl-2-overexpressing cells exhibit elevated expression of antioxidant enzymes and higher levels of cellular GSH compared with the control cells transfected with the vector alone. There has been increasing evidence supporting that the redox-sensitive transcription factor nuclear factor kappaB regulates the activity and/or expression of antioxidative and antiapoptotic target genes and promotes cell survival against oxidative cell death. This commentary focuses on the antioxidative functions of Bcl-2 and underlying molecular mechanisms in relation to its antiapoptotic property. The role of Bcl-2 in regulation of nuclear factor kappaB signaling pathways and possible cross-talk with mitogen-activated protein kinases are also discussed.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Laboratory of Biochemistry and Molecular Toxicology, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | |
Collapse
|
48
|
Sola S, Ma X, Castro RE, Kren BT, Steer CJ, Rodrigues CMP. Ursodeoxycholic acid modulates E2F-1 and p53 expression through a caspase-independent mechanism in transforming growth factor beta1-induced apoptosis of rat hepatocytes. J Biol Chem 2003; 278:48831-8. [PMID: 14514686 DOI: 10.1074/jbc.m300468200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transforming growth factor beta1 (TGF-beta1)-induced hepatocyte apoptosis is associated with activation of E2F transcription factors and p53 stabilization through Mdm-2, thus potentially modulating a number of target genes. In previous studies, we have shown that ursodeoxycholic acid (UDCA) prevents TGF-beta1-induced hepatocyte apoptosis by inhibiting the mitochondrial pathway of cell death. In this study we examined the role of p53 in the induction of apoptosis by TGF-beta1, and identified additional antiapoptosis targets for UDCA. Our data show a significant transcriptional activation of E2F-1 in primary rat hepatocytes incubated with TGF-beta1, as well as a 5-fold increase in p53 and a 2-fold decrease in its inhibitor, Mdm-2 (p < 0.05). In addition, bax mRNA expression was significantly induced at 36 h (p < 0.01), resulting in increased levels of Bax protein. In contrast, Bcl-2 transcript and protein levels were decreased at all time points (p < 0.01). Notably, UDCA inhibited E2F-1 transcriptional activation, p53 stabilization and Bcl-2 family expression (p < 0.05), in part, through a caspase-independent mechanism. Moreover, in the absence of TGF-beta1, UDCA prevented induction of p53 and Bax by overexpression of E2F-1 and p53, respectively (p < 0.05). In addition, UDCA inhibited TGF-beta1-induced degradation of nuclear factor kappaB (NF-kappaB) and its inhibitor IkappaB (p < 0.05). In conclusion, these results demonstrate that UDCA inhibits E2F-1 transcriptional activation of hepatocyte apoptosis, thus modulating p53 stabilization, NF-kappaB degradation, and expression of Bcl-2 family members.
Collapse
Affiliation(s)
- Susana Sola
- Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, 1600-083 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Kurland JF, Voehringer DW, Meyn RE. The MEK/ERK pathway acts upstream of NF kappa B1 (p50) homodimer activity and Bcl-2 expression in a murine B-cell lymphoma cell line. MEK inhibition restores radiation-induced apoptosis. J Biol Chem 2003; 278:32465-70. [PMID: 12801933 DOI: 10.1074/jbc.m212919200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previously published report (Kurland, J. F., Kodym, R., Story, M. D., Spurgers, K. B., McDonnell, T. J., and Meyn, R. E. (2001) J. Biol. Chem. 276, 45380-45386), we described the NF kappa B status for two murine B-cell lymphoma cell lines, LY-as (apoptosis-sensitive) and LY-ar (apoptosis-refractory) and provided evidence that NF kappa B1 (p50) homodimers contribute to the expression of Bcl-2 in the LY-ar line. In the present study, we investigated the upstream signals leading to p50 homodimer activation and Bcl-2 expression. We found that in LY-ar cells, ERK1 and ERK2 were constitutively phosphorylated, whereas LY-as cells had no detectable ERK1 or ERK2 phosphorylation. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK1 and ERK2, a reversal of nuclear p50 homodimer DNA binding, and a decrease in Bcl-2 protein expression. Similarly, activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with tumor necrosis factor-alpha, an I kappa B kinase activator, did not alter the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an I kappa B kinase-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. We conclude that the MEK/ERK pathway acts upstream of p50 homodimer activity and Bcl-2 expression in this B-cell lymphoma cell system and suggest that the use of MEK inhibitors could be useful clinically in combination with ionizing radiation to treat lymphoid malignancies.
Collapse
Affiliation(s)
- John F Kurland
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|