1
|
Aborode AT, Olamilekan Adesola R, Idris I, Adio WS, Scott GY, Chakoma M, Oluwaseun AA, Onifade IA, Adeoye AF, Aluko BA, Abok JI. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review. Gene 2024; 927:148651. [PMID: 38871035 DOI: 10.1016/j.gene.2024.148651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The troponin complex plays a crucial role in regulating skeletal and cardiac contraction. Congenital myopathies can occur due to several mutations in genes that encode skeletal troponin. Moreover, there is limited information regarding the composition of skeletal troponin. This review specifically examines a comprehensive review of the TNNC gene mutations on cardiac and skeletal regulations. MAIN BODY Troponin C (TNNC) has been linked to a newly discovered inherited muscle disorder. Genetic variations in genes that encode skeletal troponin can impair the function of sarcomeres. Various treatment approaches have been employed to mitigate the impact of variations, including the use of troponin activators, the injection of wild-type protein via AAV gene therapy, and myosin modification to enhance muscle contraction. The processes responsible for the pathophysiological implications of the variations in genes that encode skeletal troponin are not fully understood. CONCLUSION This comprehensive review will contribute to the understanding of the relationship between human cardiomyopathy and TNNC mutations and will guide the development of therapy approaches.
Collapse
Affiliation(s)
| | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ibrahim Idris
- Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria.
| | - Waheed Sakariyau Adio
- Department of Chemistry and Biochemistry, College of Health and Natural Science, The University of Tulsa, Tulsa, USA.
| | - Godfred Yawson Scott
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Mugove Chakoma
- Department of Primary Healthcare, Faculty of Medicine and Healthcare, University of Zimbabwe, Zimbabwe.
| | | | | | | | | | - Jeremiah I Abok
- Department of Chemistry & Chemical Biology University of New Mexico, USA.
| |
Collapse
|
2
|
Hejbøl EK, Andkjær SW, Dybdal J, Klindt M, Möller S, Lambertsen KL, Schrøder HD, Frich LH. Supraspinatus Muscle Regeneration Following Rotator Cuff Tear: A Study of the Biomarkers Pax7, MyoD, and Myogenin. Int J Mol Sci 2024; 25:11742. [PMID: 39519294 PMCID: PMC11546449 DOI: 10.3390/ijms252111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The success of rotator cuff tendon repair relies on both tendon healing and muscle recovery. The objective of this descriptive study was to investigate the regenerative potential of the supraspinatus muscle in rotator cuff tear conditions by quantifying the expression of Pax7, MyoD, and myogenin, basic factors that regulate myogenesis. Muscle biopsies were collected from thirty-three patients aged 34 to 73 years who underwent surgery for a rotator cuff tear affecting the supraspinatus muscle. Among these patients, twenty-seven percent were women, and the age of the lesions ranged from 2 to 72 months post-initial trauma. Biopsies were harvested from the supraspinatus muscle at the end closest to the tendon, and control biopsies were harvested from the ipsilateral deltoid muscle. The densities of immunohistochemically stained Pax7+, MyoD+, and myogenin+ nuclei/mm2 were used to estimate the myogenic potential of the muscle. Adjustments were made for patient age and lesion age. We found increased density of MyoD+ and myogenin+ cells in supraspinatus muscles compared to deltoid muscles (p < 0.001 and p = 0.003, respectively). Regression analyses that combined the density of positive nuclei with patient age showed a continuous increase in Pax7 with age but also a reduction of MyoD and myogenin in older patients. When combined with lesion age, there was a decline in the density of all myogenic markers after an initial rise. Pax7 density continued to be higher in supraspinatus compared to the deltoid muscle, but the density of MyoD and myogenin terminally dropped to a density lower than in the deltoid. Our findings suggest that the supraspinatus muscle in tear conditions showed signs of initial activation of muscle regeneration. When compared to the unaffected deltoid muscle, an apparent reduction in capacity to progress to full muscle fiber maturity was also demonstrated. This pattern of inhibited myogenesis seemed to increase with both patient age and lesion age. Our results on muscle regenerative capacity indicate that younger patients with rotator cuff tears have better chances of muscle recovery and may benefit from early surgical reconstruction.
Collapse
Affiliation(s)
- Eva Kildall Hejbøl
- The Orthopedic Research Unit, Hospital Sønderjylland, Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark; (E.K.H.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Stephanie Wej Andkjær
- The Orthopedic Research Unit, Hospital Sønderjylland, Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark; (E.K.H.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Julie Dybdal
- The Orthopedic Research Unit, Hospital Sønderjylland, Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark; (E.K.H.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Marie Klindt
- The Orthopedic Research Unit, Hospital Sønderjylland, Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark; (E.K.H.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Sören Möller
- Open Patient Data Explorative Network, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE, Brain Research Inter-Disciplinary Guided Excellence, University of Southern Denmark, 5230 Odense, Denmark
| | - Henrik Daa Schrøder
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Henrik Frich
- The Orthopedic Research Unit, Hospital Sønderjylland, Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark; (E.K.H.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Department of Orthopedics, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
3
|
Sun Z, Shan X, Fan C, Liu L, Li S, Wang J, Zhou N, Zhu M, Chen H. TMEM16A regulates satellite cell-mediated skeletal muscle regeneration by ensuring a moderate level of caspase 3 activity. Stem Cells 2024; 42:902-913. [PMID: 39097775 DOI: 10.1093/stmcls/sxae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
It has been documented that caspase 3 activity is necessary for skeletal muscle regeneration, but how its activity is regulated is largely unknown. Our previous report shows that intracellular TMEM16A, a calcium activated chloride channel, significantly regulates caspase 3 activity in myoblasts during skeletal muscle development. By using a mouse line with satellite cell (SC)-specific deletion of TMEM16A, we examined the role of TMEM16A in regulating caspase 3 activity in SC (or SC-derived myoblast) as well as skeletal muscle regeneration. The mutant animals displayed apparently impaired regeneration capacity in adult muscle along with enhanced ER stress and elevated caspase 3 activity in Tmem16a-/- SC derived myoblasts. Blockade of either excessive ER stress or caspase 3 activity by small molecules significantly restored the inhibited myogenic differentiation of Tmem16a-/- SCs, indicating that excessive caspase 3 activity resulted from TMEM16A deletion contributes to the impaired muscle regeneration and the upstream regulator of caspase 3 was ER stress. Our results revealed an essential role of TMEM16A in satellite cell-mediated skeletal muscle regeneration by ensuring a moderate level of caspase 3 activity.
Collapse
Affiliation(s)
- Zhiyuan Sun
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xinqi Shan
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Chun'e Fan
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Lutao Liu
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Shuai Li
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Jiahui Wang
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Na Zhou
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Minsheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Huaqun Chen
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
4
|
Bizieff A, Cheng M, Chang K, Mohammed H, Ziari N, Nyangau E, Fitch M, Hellerstein MK. Changes in protein fluxes and gene expression in non-injured muscle tissue distant from an acute myotoxic injury in male mice. J Physiol 2024; 602:3661-3691. [PMID: 38968395 DOI: 10.1113/jp286307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 07/07/2024] Open
Abstract
The response to acute myotoxic injury requires stimulation of local repair mechanisms in the damaged tissue. However, satellite cells in muscle distant from acute injury have been reported to enter a functional state between quiescence and active proliferation. Here, we asked whether protein flux rates are altered in muscle distant from acute local myotoxic injury and how they compare to changes in gene expression from the same tissue. Broad and significant alterations in protein turnover were observed across the proteome in the limb contralateral to injury during the first 10 days after. Interestingly, mRNA changes had almost no correlation with directly measured protein turnover rates. In summary, we show consistent and striking changes in protein flux rates in muscle tissue contralateral to myotoxic injury, with no correlation between changes in mRNA levels and protein synthesis rates. This work motivates further investigation of the mechanisms, including potential neurological factors, responsible for this distant effect. KEY POINTS: Previous literature demonstrates that stem cells of uninjured muscle respond to local necrotic muscle tissue damage and regeneration. We show that muscle tissue that was distant from a model of local necrotic damage had functional changes at both the gene expression and the protein turnover level. However, these changes in distant tissue were more pronounced during the earlier stages of tissue regeneration and did not correlate well with each other. The results suggest communication between directly injured tissue and non-affected tissues that are distant from injury, which warrants further investigation into the potential of this mechanism as a proactive measure for tissue regeneration from damage.
Collapse
Affiliation(s)
- Alec Bizieff
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Maggie Cheng
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Kelvin Chang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Naveed Ziari
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Edna Nyangau
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Mark Fitch
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| |
Collapse
|
5
|
Bizieff A, Cheng M, Chang K, Mohammed H, Ziari N, Nyangau E, Fitch M, Hellerstein MK. Changes in protein fluxes in skeletal muscle during sequential stages of muscle regeneration after acute injury in male mice. Sci Rep 2024; 14:13172. [PMID: 38849371 PMCID: PMC11161603 DOI: 10.1038/s41598-024-62115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Changes in protein turnover play an important role in dynamic physiological processes, including skeletal muscle regeneration, which occurs as an essential part of tissue repair after injury. The inability of muscle tissue to recapitulate this regenerative process can lead to the manifestation of clinical symptoms in various musculoskeletal diseases, including muscular dystrophies and pathological atrophy. Here, we employed a workflow that couples deuterated water (2H2O) administration with mass spectrometry (MS) to systematically measure in-vivo protein turnover rates across the muscle proteome in 8-week-old male C57BL6/J mice. We compared the turnover kinetics of over 100 proteins in response to cardiotoxin (CTX) induced muscle damage and regeneration at unique sequential stages along the regeneration timeline. This analysis is compared to gene expression data from mRNA-sequencing (mRNA-seq) from the same tissue. The data reveals quantitative protein flux signatures in response to necrotic damage, in addition to sequential differences in cell proliferation, energy metabolism, and contractile gene expression. Interestingly, the mRNA changes correlated poorly with changes in protein synthesis rates, consistent with post-transcriptional control mechanisms. In summary, the experiments described here reveal the signatures and timing of protein flux changes during skeletal muscle regeneration, as well as the inability of mRNA expression measurements to reveal changes in directly measured protein turnover rates. The results of this work described here provide a better understanding of the muscle regeneration process and could help to identify potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alec Bizieff
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA.
| | - Maggie Cheng
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Kelvin Chang
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Hussein Mohammed
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Naveed Ziari
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Edna Nyangau
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Mark Fitch
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Marc K Hellerstein
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Duan H, Chen S, Mai X, Fu L, Huang L, Xiao L, Liao M, Chen H, Liu G, Xie L. Low-intensity pulsed ultrasound (LIPUS) promotes skeletal muscle regeneration by regulating PGC-1α/AMPK/GLUT4 pathways in satellite cells/myoblasts. Cell Signal 2024; 117:111097. [PMID: 38355078 DOI: 10.1016/j.cellsig.2024.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Low-Intensity Pulsed Ultrasound (LIPUS) holds therapeutic potential in promoting skeletal muscle regeneration, a biological process mediated by satellite cells and myoblasts. Despite their central roles in regeneration, the detailed mechanistic of LIPUS influence on satellite cells and myoblasts are not fully underexplored. In the current investigation, we administrated LIPUS treatment to injured skeletal muscles and C2C12 myoblasts over five consecutive days. Muscle samples were collected on days 6 and 30 post-injury for an in-depth histological and molecular assessment, both in vivo and in vitro with immunofluorescence analysis. During the acute injury phase, LIPUS treatment significantly augmented the satellite cell population, concurrently enhancing the number and size of newly formed myofibers whilst reducing fibrosis levels. At 30 days post-injury, the LIPUS-treated group demonstrated a more robust satellite cell pool and a higher myofiber count, suggesting that early LIPUS intervention facilitates satellite cell proliferation and differentiation, thereby promoting long-term recovery. Additionally, LIPUS markedly accelerated C2C12 myoblast differentiation, with observed increases in AMPK phosphorylation in myoblasts, leading to elevated expression of Glut4 and PGC-1α, and subsequent glucose uptake and mitochondrial biogenesis. These findings imply that LIPUS-induced modulation of myoblasts may culminate in enhanced cellular energy availability, laying a theoretical groundwork for employing LIPUS in ameliorating skeletal muscle regeneration post-injury. NEW & NOTEWORTHY: Utilizing the cardiotoxin (CTX) muscle injury model, we investigated the influence of LIPUS on satellite cell homeostasis and skeletal muscle regeneration. Our findings indicate that LIPUS promotes satellite cell proliferation and differentiation, thereby facilitating skeletal muscle repair. Additionally, in vitro investigations lend credence to the hypothesis that the regulatory effect of LIPUS on satellite cells may be attributed to its capability to enhance cellular energy metabolism.
Collapse
Affiliation(s)
- Huimin Duan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shujie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Anesthesiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, Guangdong, China
| | - Xudong Mai
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Liping Fu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Liujing Huang
- Medical Affairs Department, Guangzhou Betrue Technology Co., Ltd, Guangzhou 510700, China
| | - Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Miaomiao Liao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Anesthesiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, Guangdong, China; Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China; Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; College of Life and Health Sciences, Guangdong Industry Polytechnic, Guangzhou, Guangdong 510300, China.
| |
Collapse
|
7
|
Xiao W, Jiang N, Ji Z, Ni M, Zhang Z, Zhao Q, Huang R, Li P, Hou L. Single-Cell RNA Sequencing Reveals the Cellular Landscape of Longissimus Dorsi in a Newborn Suhuai Pig. Int J Mol Sci 2024; 25:1204. [PMID: 38256277 PMCID: PMC10816681 DOI: 10.3390/ijms25021204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell profile of porcine LD is still in its infancy stage. In this study, we profiled the transcriptomes of 16,018 cells in the LD of a newborn Suhuai pig at single-cell resolution. Subsequently, we constructed a cellular atlas of the LD, identifying 11 distinct cell populations, including endothelial cells (24.39%), myotubes (18.82%), fibro-adipogenic progenitors (FAPs, 18.11%), satellite cells (16.74%), myoblasts (3.99%), myocytes (5.74%), Schwann cells (3.81%), smooth muscle cells (3.22%), dendritic cells (2.99%), pericytes (1.86%), and neutrophils (0.33%). CellChat was employed to deduce the cell-cell interactions by evaluating the gene expression of receptor-ligand pairs across different cell types. The results show that FAPs and pericytes are the primary signal contributors in LD. In addition, we delineated the developmental trajectory of myogenic cells and examined alterations in the expression of various marker genes and molecular events throughout various stages of differentiation. Moreover, we found that FAPs can be divided into three subclusters (NR2F2-FAPs, LPL-FAPs, and TNMD-FAPs) according to their biological functions, suggesting that the FAPs could be associated with the differentiation of tendon cell. Taken together, we constructed the cellular atlas and cell communication network in LD of a newborn Suhuai pig, and analyzed the developmental trajectory of myogenic cells and the heterogeneity of FAPs subpopulation cells. This enhances our comprehension of the molecular features involved in skeletal muscle development and the meat quality control in pigs.
Collapse
Affiliation(s)
- Wei Xiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Nengjing Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengyu Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengru Ni
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaobo Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingbo Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Huai’an Academy, Nanjing Agricultural University, Huai’an 223001, China
| | - Ruihua Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Huai’an Academy, Nanjing Agricultural University, Huai’an 223001, China
| | - Pinghua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Huai’an Academy, Nanjing Agricultural University, Huai’an 223001, China
| | - Liming Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.X.); (N.J.); (Z.J.); (M.N.); (Z.Z.); (Q.Z.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Huai’an Academy, Nanjing Agricultural University, Huai’an 223001, China
| |
Collapse
|
8
|
Yang X, Liang J, Shu Y, Wei L, Wen C, Luo H, Ma L, Qin T, Wang B, Zeng S, Liu Y, Zhou C. Asperosaponin VI facilitates the regeneration of skeletal muscle injury by suppressing GSK-3β-mediated cell apoptosis. J Cell Biochem 2024; 125:115-126. [PMID: 38079224 DOI: 10.1002/jcb.30510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
Asperosaponin VI (ASA VI) is a bioactive triterpenoid saponin extracted from Diptychus roots, of Diptyl, and has previously shown protective functions in rheumatoid arthritis and sepsis. This study investigates the effects and molecular mechanisms of ASA VI on skeletal muscle regeneration in a cardiotoxin (CTX)-induced skeletal muscle injury mouse model. Mice were subjected to CTX-induced injury in the tibialis anterior and C2C12 myotubes were treated with CTX. Muscle fiber histology was analyzed at 7 and 14 days postinjury. Apoptosis and autophagy-related protein expression were evaluated t s by Western blot, and muscle regeneration markers were quantified by quantitative polymerase chain reaction. Docking studies, cell viability assessments, and glycogen synthase kinase-3β (GSK-3β) activation analyses were performed to elucidate the mechanism. ASA VI was observed to improve muscle interstitial fibrosis, remodeling, and performance in CTX-treated mice, thereby increased skeletal muscle size, weight, and locomotion. Furthermore, ASA VI modulated the expression of apoptosis and autophagy-related proteins through GSK-3β inhibition and activated the transcription of regeneration genes. Our results suggest that ASA VI mitigates skeletal muscle injury by modulating apoptosis and autophagy via GSK-3β signaling and promotes regeneration, thus presenting a probable therapeutic agent for skeletal muscle injury.
Collapse
Affiliation(s)
- Xinru Yang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Liang
- Department of Pediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yue Shu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Linlin Wei
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cailing Wen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Luo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqing Ma
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tian Qin
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyu Zeng
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Liu
- Department of Pharmacology, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Chun Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
10
|
Sonavane M, Almeida JR, Rajan E, Williams HF, Townsend F, Cornish E, Mitchell RD, Patel K, Vaiyapuri S. Intramuscular Bleeding and Formation of Microthrombi during Skeletal Muscle Damage Caused by a Snake Venom Metalloprotease and a Cardiotoxin. Toxins (Basel) 2023; 15:530. [PMID: 37755956 PMCID: PMC10536739 DOI: 10.3390/toxins15090530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
The interactions between specific snake venom toxins and muscle constituents are the major cause of severe muscle damage that often result in amputations and subsequent socioeconomic ramifications for snakebite victims and/or their families. Therefore, improving our understanding of venom-induced muscle damage and determining the underlying mechanisms of muscle degeneration/regeneration following snakebites is critical to developing better strategies to tackle this issue. Here, we analysed intramuscular bleeding and thrombosis in muscle injuries induced by two different snake venom toxins (CAMP-Crotalus atrox metalloprotease (a PIII metalloprotease from the venom of this snake) and a three-finger toxin (CTX, a cardiotoxin from the venom of Naja pallida)). Classically, these toxins represent diverse scenarios characterised by persistent muscle damage (CAMP) and successful regeneration (CTX) following acute damage, as normally observed in envenomation by most vipers and some elapid snakes of Asian, Australasian, and African origin, respectively. Our immunohistochemical analysis confirmed that both CAMP and CTX induced extensive muscle destruction on day 5, although the effects of CTX were reversed over time. We identified the presence of fibrinogen and P-selectin exposure inside the damaged muscle sections, suggesting signs of bleeding and the formation of platelet aggregates/microthrombi in tissues, respectively. Intriguingly, CAMP causes integrin shedding but does not affect any blood clotting parameters, whereas CTX significantly extends the clotting time and has no impact on integrin shedding. The rates of fibrinogen clearance and reduction in microthrombi were greater in CTX-treated muscle compared to CAMP-treated muscle. Together, these findings reveal novel aspects of venom-induced muscle damage and highlight the relevance of haemostatic events such as bleeding and thrombosis for muscle regeneration and provide useful mechanistic insights for developing better therapeutic interventions.
Collapse
Affiliation(s)
- Medha Sonavane
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (E.R.)
| | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (E.R.)
| | - Elanchezhian Rajan
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (E.R.)
| | - Harry F. Williams
- Toxiven Biotech Private Limited, Coimbatore 641042, Tamil Nadu, India;
| | - Felix Townsend
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (F.T.); (E.C.); (K.P.)
| | - Elizabeth Cornish
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (F.T.); (E.C.); (K.P.)
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (F.T.); (E.C.); (K.P.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (E.R.)
| |
Collapse
|
11
|
HMGB1 Promotes In Vitro and In Vivo Skeletal Muscle Atrophy through an IL-18-Dependent Mechanism. Cells 2022; 11:cells11233936. [PMID: 36497194 PMCID: PMC9740799 DOI: 10.3390/cells11233936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle atrophy occurs due to muscle wasting or reductions in protein associated with aging, injury, and inflammatory processes. High-mobility group box-1 (HMGB1) protein is passively released from necrotic cells and actively secreted by inflammatory cells, and is implicated in the pathogenesis of various inflammatory and immune diseases. HMGB1 is upregulated in muscle inflammation, and circulating levels of the proinflammatory cytokine interleukin-18 (IL-18) are upregulated in patients with sarcopenia, a muscle-wasting disease. We examined whether an association exists between HMGB1 and IL-18 signaling in skeletal muscle atrophy. HMGB1-induced increases of IL-18 levels enhanced the expression of muscle atrophy markers and inhibited myogenic marker expression in C2C12 and G7 myoblast cell lines. HMGB1-induced increases of IL-18 production in C2C12 cells involved the RAGE/p85/Akt/mTOR/c-Jun signaling pathway. HMGB1 short hairpin RNA (shRNA) treatment rescued the expression of muscle-specific differentiation markers in murine C2C12 myotubes and in mice with glycerol-induced muscle atrophy. HMGB1 and IL-18 signaling was suppressed in the mice after HMGB1 shRNA treatment. These findings suggest that the HMGB1/IL-18 axis is worth targeting for the treatment of skeletal muscle atrophy.
Collapse
|
12
|
Singh G, Bloskie T, Storey KB. Tissue-specific response of the RB-E2F1 complex during mammalian hibernation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:1002-1009. [PMID: 35945704 DOI: 10.1002/jez.2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Metabolic rate depression during prolonged bouts of torpor is characteristic of mammalian hibernation, reducing energy expenditures over the winter. Cell cycle arrest is observed in quiescent cells during dormancy, partly due to the retinoblastoma (Rb) protein at G1 /S, given cell division and proliferation are metabolic-costly processes. Rb binds to E2F transcription factors and recruits corepressors (e.g., SUV39H1) to E2F target genes, blocking their transcription and cell cycle passage. Phosphorylation by cyclin-CDK complexes at S780 or S795 abolishes Rb-mediated repression, allowing transition into S phase. The present study compares Rb-E2F1 responses between euthermic and torpid states in five organs (brain, heart, kidney, liver, skeletal muscle) of 13-lined ground squirrels (Ictidomys tridecemlineatus). Immunoblotting assessed the expression of Rb, pRb (S780, S795), E2F1, and SUV39H1. Our findings demonstrate multi-tissue upregulation of Rb and SUV39H1 during torpor, with tissue-specific changes to E2F1 and pRb (S780), suggesting Rb-E2F1 contributes to cell cycle control in hibernation.
Collapse
Affiliation(s)
- Gurjit Singh
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Tighe Bloskie
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
14
|
Washington TA, Haynie WS, Schrems ER, Perry RA, Brown LA, Williams BM, Rosa-Caldwell ME, Lee DE, Brown JL. Effects of PGC-1α overexpression on the myogenic response during skeletal muscle regeneration. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:198-208. [PMID: 36090923 PMCID: PMC9453693 DOI: 10.1016/j.smhs.2022.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of skeletal muscle to regenerate from injury is crucial for locomotion, metabolic health, and quality of life. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1A) is a transcriptional coactivator required for mitochondrial biogenesis. Increased mitochondrial biogenesis is associated with improved muscle cell differentiation, however PGC1A's role in skeletal muscle regeneration following damage requires further investigation. The purpose of this study was to investigate the role of skeletal muscle-specific PGC1A overexpression during regeneration following damage. 22 C57BL/6J (WT) and 26 PGC1A muscle transgenic (A1) mice were injected with either phosphate-buffered saline (PBS, uninjured control) or Bupivacaine (MAR, injured) into their tibialis anterior (TA) muscle to induce skeletal muscle damage. TA muscles were extracted 3- or 28-days post-injury and analyzed for markers of regenerative myogenesis and protein turnover. Pgc1a mRNA was ∼10–20 fold greater in A1 mice. Markers of protein synthesis, AKT and 4EBP1, displayed decreases in A1 mice compared to WT at both timepoints indicating a decreased protein synthetic response. Myod mRNA was ∼75% lower compared to WT 3 days post-injection. WT mice exhibited decreased cross-sectional area of the TA muscle at 28 days post-injection with bupivacaine compared to all other groups. PGC1A overexpression modifies the myogenic response during regeneration.
Collapse
Affiliation(s)
- Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
- Corresponding author. University of Arkansas Department of Health, Human Performance, and Recreation, 155 Stadium Dr. HPER 309, Fayetteville, AR, 72701, USA.
| | - Wesley S. Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eleanor R. Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Breanna M. Williams
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Megan E. Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David E. Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jacob L. Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
15
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
16
|
Lee JY, Lee M, Lee DH, Lee YH, Lee BW, Kang ES, Cha BS. Protective Effect of Delta-Like 1 Homolog Against Muscular Atrophy in a Mouse Model. Endocrinol Metab (Seoul) 2022; 37:684-697. [PMID: 36065648 PMCID: PMC9449104 DOI: 10.3803/enm.2022.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGRUOUND Muscle atrophy is caused by an imbalance between muscle growth and wasting. Delta-like 1 homolog (DLK1), a protein that modulates adipogenesis and muscle development, is a crucial regulator of myogenic programming. Thus, we investigated the effect of exogenous DLK1 on muscular atrophy. METHODS We used muscular atrophy mouse model induced by dexamethasone (Dex). The mice were randomly divided into three groups: (1) control group, (2) Dex-induced muscle atrophy group, and (3) Dex-induced muscle atrophy group treated with DLK1. The effects of DLK1 were also investigated in an in vitro model using C2C12 myotubes. RESULTS Dex-induced muscular atrophy in mice was associated with increased expression of muscle atrophy markers and decreased expression of muscle differentiation markers, while DLK1 treatment attenuated these degenerative changes together with reduced expression of the muscle growth inhibitor, myostatin. In addition, electron microscopy revealed that DLK1 treatment improved mitochondrial dynamics in the Dex-induced atrophy model. In the in vitro model of muscle atrophy, normalized expression of muscle differentiation markers by DLK1 treatment was mitigated by myostatin knockdown, implying that DLK1 attenuates muscle atrophy through the myostatin pathway. CONCLUSION DLK1 treatment inhibited muscular atrophy by suppressing myostatin-driven signaling and improving mitochondrial biogenesis. Thus, DLK1 might be a promising candidate to treat sarcopenia, characterized by muscle atrophy and degeneration.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Molecular, Cellular and Cancer Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | | | - Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Meijboom KE, Sutton ER, McCallion E, McFall E, Anthony D, Edwards B, Kubinski S, Tapken I, Bünermann I, Hazell G, Ahlskog N, Claus P, Davies KE, Kothary R, Wood MJA, Bowerman M. Dysregulation of Tweak and Fn14 in skeletal muscle of spinal muscular atrophy mice. Skelet Muscle 2022; 12:18. [PMID: 35902978 PMCID: PMC9331072 DOI: 10.1186/s13395-022-00301-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle. METHODS We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn-/-; SMN2 and the less severe Smn2B/- SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations. RESULTS Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak-/-, and Fn14-/- mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models. CONCLUSIONS Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Gene Therapy Center, UMass Medical School, Worcester, USA
| | - Emma R Sutton
- School of Medicine, Keele University, Staffordshire, UK
| | - Eve McCallion
- School of Medicine, Keele University, Staffordshire, UK
| | - Emily McFall
- Regenerative Medicine Program and Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Benjamin Edwards
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sabrina Kubinski
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Ines Tapken
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Ines Bünermann
- SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Peter Claus
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Rashmi Kothary
- Regenerative Medicine Program and Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,School of Medicine, Keele University, Staffordshire, UK. .,Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK.
| |
Collapse
|
18
|
Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022; 284:121508. [PMID: 35421801 PMCID: PMC9289780 DOI: 10.1016/j.biomaterials.2022.121508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Satellite cells (SCs), the adult Pax7-expressing stem cells of skeletal muscle, are essential for muscle repair. However, in vitro investigations of SC function are challenging due to isolation-induced SC activation, loss of native quiescent state, and differentiation to myoblasts. In the present study, we optimized methods to deactivate in vitro expanded human myoblasts within a 3D culture environment of engineered human skeletal muscle tissues ("myobundles"). Immunostaining and gene expression analyses revealed that a fraction of myoblasts within myobundles adopted a quiescent phenotype (3D-SCs) characterized by increased Pax7 expression, cell cycle exit, and activation of Notch signaling. Similar to native SCs, 3D-SC quiescence is regulated by Notch and Wnt signaling while loss of quiescence and reactivation of 3D-SCs can be induced by growth factors including bFGF. Myobundle injury with a bee toxin, melittin, induces robust myofiber fragmentation, functional decline, and 3D-SC proliferation. By applying single cell RNA-sequencing (scRNA-seq), we discover the existence of two 3D-SC subpopulations (quiescent and activated), identify deactivation-associated gene signature using trajectory inference between 2D myoblasts and 3D-SCs, and characterize the transcriptomic changes within reactivated 3D-SCs in response to melittin-induced injury. These results demonstrate the ability of an in vitro engineered 3D human skeletal muscle environment to support the formation of a quiescent and heterogeneous SC population recapitulating several aspects of the native SC phenotype, and provide a platform for future studies of human muscle regeneration and disease-associated SC dysfunction.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Hou X, Wang Z, Shi L, Wang L, Zhao F, Liu X, Gao H, Shi L, Yan H, Wang L, Zhang L. Identification of imprinted genes in the skeletal muscle of newborn piglets by high-throughput sequencing. Anim Genet 2022; 53:479-486. [PMID: 35481679 DOI: 10.1111/age.13212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Imprinted genes - exhibiting parent-specific transcription - play essential roles in the process of mammalian development and growth. Skeletal muscle growth is crucial for meat production. To further understand the role of imprinted genes during the porcine skeletal muscle growth, DNA-seq and RNA-seq were used to explore the characteristics of imprinted genes from porcine reciprocal crosses. A total of 584 545 single-nucleotide variations were discovered in the DNA-seq data of F0 parents, heterozygous in two pig breeds (Yorkshire and Min pigs) but homozygous in each breed. These single-nucleotide variations were used to determine the allelic-specific expression in F1 individuals. Finally, eight paternal expression sites and three maternal expression sites were detected, whereas two paternally expressed imprinted genes (NDN and IGF2) and one maternally expressed imprinted gene (H1-3) were validated by Sanger sequencing. DNA methylation regulates the expression of imprinted genes, and all of the identified imprinted genes in this study were predicted to possess CpG islands. PBX1 and YY1 binding motifs were discovered in the promoter regions of all three imprinted genes, which were candidate elements regulating the transcription of imprinted genes. For these identified imprinted genes, IGF2 and NDN promoted muscle growth whereas H1-3 inhibited cell proliferation, corroborating the 'parental conflict' theory that paternally expressed imprinted genes assisted descendants' growth whereas maternally expressed imprinted genes inhibited it. This study discovered porcine imprinted genes in skeletal muscle and was the first to reveal that H1-3 was expressed by the maternal allele to our knowledge. Our findings provided valuable resources for the potential utilization of imprinted genes in pig breeding.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zishuai Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liangyu Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ligang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Nalbandian M, Zhao M, Kato H, Jonouchi T, Nakajima-Koyama M, Yamamoto T, Sakurai H. Single-cell RNA-seq reveals heterogeneity in hiPSC-derived muscle progenitors and E2F family as a key regulator of proliferation. Life Sci Alliance 2022; 5:5/8/e202101312. [PMID: 35459735 PMCID: PMC9034463 DOI: 10.26508/lsa.202101312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
This study identified and characterized four different populations of muscle progenitor cells derived from human induced pluripotent stem cells. Human pluripotent stem cell-derived muscle progenitor cells (hiPSC-MuPCs) resemble fetal-stage muscle progenitor cells and possess in vivo regeneration capacity. However, the heterogeneity of hiPSC-MuPCs is unknown, which could impact the regenerative potential of these cells. Here, we established an hiPSC-MuPC atlas by performing single-cell RNA sequencing of hiPSC-MuPC cultures. Bioinformatic analysis revealed four cell clusters for hiPSC-MuPCs: myocytes, committed, cycling, and noncycling progenitors. Using FGFR4 as a marker for noncycling progenitors and cycling cells and CD36 as a marker for committed and myocyte cells, we found that FGFR4+ cells possess a higher regenerative capacity than CD36+ cells. We also identified the family of E2F transcription factors are key regulators of hiPSC-MuPC proliferation. Our study provides insights on the purification of hiPSC-MuPCs with higher regenerative potential and increases the understanding of the transcriptional regulation of hiPSC-MuPCs.
Collapse
Affiliation(s)
- Minas Nalbandian
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hiroki Kato
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Asahi Kasei Co., Ltd., Tokyo, Japan
| | - Tatsuya Jonouchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - May Nakajima-Koyama
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Knockdown of CDR1as Decreases Differentiation of Goat Skeletal Muscle Satellite Cells via Upregulating miR-27a-3p to Inhibit ANGPT1. Genes (Basel) 2022; 13:genes13040663. [PMID: 35456469 PMCID: PMC9026999 DOI: 10.3390/genes13040663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Myogenesis is a complex process controlled by several coding and non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs) that are known to function as endogenous microRNAs (miRNAs) sponges. Cerebellar Degeneration-Related protein 1 antisense (CDR1as) is the most spotlighted circRNA that is known as an miR-7 sponge, which has bloomed circRNAs’ research in animal disease and physiology. Here, we screened for miRNAs and mRNA associated with CDR1as and further characterized their regulatory function during muscle differentiation. We found that a total of 43 miRNAs (including miR-107-3p, miR-125b-5p, miR-140-5p, miR-29a-3p, and miR-27a-3p upregulated) and 789 mRNAs (including ANGPT1, E2F2, CCN1, FGFR1, and MEF2C downregulated) were differentially expressed in goat skeletal muscle satellite cells (SMSCs). Further, knockdown of CDR1as and ANGPT1 inhibited SMSCs differentiation. miR-27a-3p was differentially upregulated after the knockdown of CDR1as in SMSCs. Overexpressed miR-27a-3p decreased SMSCs differentiation. Via RNAhybrid and luciferase, miR-27a-3p was identified to regulate ANGPT1. We discovered that miR-27a-3p has an inverse relationship with CDR1as and decreases the expression level of ANGPT1 during SMSCs differentiation. In summary, our study demonstrates that siCDR1as inhibits myoblast differentiation by downregulating ANGPT1 mRNA via miR-27a-3p in SMSCs.
Collapse
|
22
|
Dey P, Soyer MA, Dey BK. MicroRNA-24-3p promotes skeletal muscle differentiation and regeneration by regulating HMGA1. Cell Mol Life Sci 2022; 79:170. [PMID: 35238991 PMCID: PMC11072726 DOI: 10.1007/s00018-022-04168-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Numerous studies have established the critical roles of microRNAs in regulating post-transcriptional gene expression in diverse biological processes. Here, we report on the role and mechanism of miR-24-3p in skeletal muscle differentiation and regeneration. miR-24-3p promotes myoblast differentiation and skeletal muscle regeneration by directly targeting high mobility group AT-hook 1 (HMGA1) and regulating it and its direct downstream target, the inhibitor of differentiation 3 (ID3). miR-24-3p knockdown in neonatal mice increases PAX7-positive proliferating muscle stem cells (MuSCs) by derepressing Hmga1 and Id3. Similarly, inhibition of miR-24-3p in the tibialis anterior muscle prevents Hmga1 and Id3 downregulation and impairs regeneration. These findings provide evidence that the miR-24-3p/HMGA1/ID3 axis is required for MuSC differentiation and skeletal muscle regeneration in vivo.
Collapse
Affiliation(s)
- Paromita Dey
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Miles A Soyer
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bijan K Dey
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA.
- Department of Biological Sciences, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
23
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
24
|
Todaka H, Arikawa M, Noguchi T, Ichikawa A, Sato T. Donepezil, an anti-Alzheimer's disease drug, promotes differentiation and regeneration in injured skeletal muscle through the elevation of the expression of myogenic regulatory factors. Eur J Pharmacol 2021; 911:174528. [PMID: 34582845 DOI: 10.1016/j.ejphar.2021.174528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that donepezil, an anti-Alzheimer's disease drug, improved skeletal muscle atrophy by enhancing the angiogenesis of endothelial cells and activating the proliferation of satellite cells in a mouse model of peripheral arterial disease. However, the effect of donepezil on muscle differentiation during regeneration remains unclear. Therefore, we measured the expressions of myogenic regulatory factors and late muscle differentiation markers in donepezil-treated C2C12 myoblast cells before and after the induction of cell differentiation. The results indicate that the expressions of myogenin, troponin T (TnT) and myosin heavy chain (MyHC) were significantly increased and myotube formation was accelerated in donepezil-treated cells under the differentiation condition. However, the promotive effect of donepezil on muscle differentiation could not be reproduced by the addition of acetylcholine (ACh) and was not disrupted after treatment with ACh receptor blockers. Moreover, other kinds of acetylcholinesterase inhibitors failed to promote muscle differentiation in C2C12 cells. These results indicate that the specific characteristics of donepezil in the promotion of muscle differentiation are independent of its acetylcholinesterase-inhibitory action. We further found that donepezil induced an incremental shift of the cross-sectional area of myofibers and elevated the expressions of myogenin, TnT and MyHC in a mouse model of cardiotoxin injury. These results suggest that donepezil promotes the differentiation of muscle regeneration upon injury via the elevation of the expressions of myogenic regulatory factors and late muscle differentiation markers. Our findings suggest that donepezil can be a useful therapeutic agent for injured skeletal muscle treatment.
Collapse
Affiliation(s)
- Hiroshi Todaka
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan.
| | - Mikihiko Arikawa
- Department of Biological Sciences, Faculty of Science and Technology, Kochi University, Akebono, Kochi, Japan
| | - Tatsuya Noguchi
- Department of Cardiology and Geriatrics, Kochi Medical School, Nankoku, Kochi, Japan
| | - Atsushi Ichikawa
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan
| | - Takayuki Sato
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan
| |
Collapse
|
25
|
Ferdous A, Singh S, Luo Y, Abedin MJ, Jiang N, Perry CE, Evers BM, Gillette TG, Kyba M, Trojanowska M, Hill JA. Fli1 Promotes Vascular Morphogenesis by Regulating Endothelial Potential of Multipotent Myogenic Progenitors. Circ Res 2021; 129:949-964. [PMID: 34544261 DOI: 10.1161/circresaha.121.318986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anwarul Ferdous
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Sarvjeet Singh
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Yuxuan Luo
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Md J Abedin
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Nan Jiang
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Cameron E Perry
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Bret M Evers
- Pathology (B.M.E.), University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Michael Kyba
- Department of Pediatrics (M.K.), University of Minnesota, Minneapolis.,Lillehei Heart Institute (M.K.), University of Minnesota, Minneapolis
| | - Maria Trojanowska
- Section of Rheumatology, School of Medicine, Boston University, MA (M.T.)
| | - Joseph A Hill
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas.,Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
26
|
He S, Fu T, Yu Y, Liang Q, Li L, Liu J, Zhang X, Zhou Q, Guo Q, Xu D, Chen Y, Wang X, Chen Y, Liu J, Gan Z, Liu Y. IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay. J Clin Invest 2021; 131:143737. [PMID: 34283807 PMCID: PMC8409588 DOI: 10.1172/jci143737] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle can undergo a regenerative process from injury or disease to preserve muscle mass and function, which is critically influenced by cellular stress responses. Inositol-requiring enzyme 1 (IRE1) is an ancient endoplasmic reticulum (ER) stress sensor and mediates a key branch of the unfolded protein response (UPR). In mammals, IRE1α is implicated in the homeostatic control of stress responses during tissue injury and regeneration. Here, we show that IRE1α serves as a myogenic regulator in skeletal muscle regeneration in response to injury and muscular dystrophy. We found in mice that IRE1α was activated during injury-induced muscle regeneration, and muscle-specific IRE1α ablation resulted in impaired regeneration upon cardiotoxin-induced injury. Gain- and loss-of-function studies in myocytes demonstrated that IRE1αacts to sustain both differentiation in myoblasts and hypertrophy in myotubes through regulated IRE1-dependent decay (RIDD) of mRNA encoding Myostatin, a key negative regulator of muscle repair and growth. Furthermore, in the mouse model of Duchenne muscular dystrophy (DMD), loss of muscle IRE1α resulted in augmented Myostatin signaling and exacerbated the dystrophic phenotypes. Thus, these results reveal a pivotal role for the RIDD output of IRE1α in muscle regeneration, offering new insight into potential therapeutic strategies for muscle loss diseases.
Collapse
Affiliation(s)
- Shengqi He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yue Yu
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Qinhao Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Luyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xuan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Balberova OV, Bykov EV, Shnayder NA, Petrova MM, Gavrilyuk OA, Kaskaeva DS, Soloveva IA, Petrov KV, Mozheyko EY, Medvedev GV, Nasyrova RF. The "Angiogenic Switch" and Functional Resources in Cyclic Sports Athletes. Int J Mol Sci 2021; 22:ijms22126496. [PMID: 34204341 PMCID: PMC8234968 DOI: 10.3390/ijms22126496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Regular physical activity in cyclic sports can influence the so-called “angiogenic switch”, which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the “angiogenic switch” problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the “angiogenic switch” is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the “angiogenic switch” as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.
Collapse
Affiliation(s)
- Olga V. Balberova
- Research Institute of Olympic Sports, Ural State University of Physical Culture, 454091 Chelyabinsk, Russia;
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| | - Evgeny V. Bykov
- Research Institute of Olympic Sports, Ural State University of Physical Culture, 454091 Chelyabinsk, Russia;
| | - Natalia A. Shnayder
- V.M. Bekhterev National Medical Research Center for Neurology and Psychiatry, Department of Personalized Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| | - Marina M. Petrova
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
| | - Oksana A. Gavrilyuk
- The Department of Polyclinic Therapy and Family Medicine and Healthy Lifesttyle with a Course of PE, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
| | - Daria S. Kaskaeva
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
| | - Irina A. Soloveva
- Department of Hospital Therapy and Immunology with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
| | - Kirill V. Petrov
- Department of Physical and Rehabilitation Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (K.V.P.); (E.Y.M.)
| | - Elena Y. Mozheyko
- Department of Physical and Rehabilitation Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (K.V.P.); (E.Y.M.)
| | - German V. Medvedev
- R. R. Vreden National Medical Research Center for Traumatology and Orthopedics, Department of Hand Surgery with Microsurgical Equipment, 195427 Saint-Petersburg, Russia;
| | - Regina F. Nasyrova
- V.M. Bekhterev National Medical Research Center for Neurology and Psychiatry, Department of Personalized Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| |
Collapse
|
28
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic Profile of Primary Culture of Skeletal Muscle Cells Isolated from Semitendinosus Muscle of Beef and Dairy Bulls. Int J Mol Sci 2020; 21:E4794. [PMID: 32645861 PMCID: PMC7369917 DOI: 10.3390/ijms21134794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to identify differences in the transcriptomic profiles of primary muscle cell cultures derived from the semitendinosus muscle of bulls of beef breeds (Limousin (LIM) and Hereford (HER)) and a dairy breed (Holstein-Friesian (HF)) (n = 4 for each breed). Finding a common expression pattern for proliferating cells may point to such an early orientation of the cattle beef phenotype at the transcriptome level of unfused myogenic cells. To check this hypothesis, microarray analyses were performed. The analysis revealed 825 upregulated and 1300 downregulated transcripts similar in both beef breeds (LIM and HER) and significantly different when compared with the dairy breed (HF) used as a reference. Ontological analyses showed that the largest group of genes were involved in muscle organ development. Muscle cells of beef breeds showed higher expression of genes involved in myogenesis (including erbb-3, myf5, myog, des, igf-1, tgfb2) and those encoding proteins comprising the contractile apparatus (acta1, actc1, myh3, myh11, myl1, myl2, myl4, tpm1, tnnt2, tnnc1). The obtained results confirmed our hypothesis that the expression profile of several groups of genes is common in beef breeds at the level of proliferating satellite cells but differs from that observed in typical dairy breeds.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
29
|
Dalle S, Hiroux C, Poffé C, Ramaekers M, Deldicque L, Koppo K. Cardiotoxin-induced skeletal muscle injury elicits profound changes in anabolic and stress signaling, and muscle fiber type composition. J Muscle Res Cell Motil 2020; 41:375-387. [PMID: 32621158 DOI: 10.1007/s10974-020-09584-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
To improve muscle healing upon injury, it is of importance to understand the interplay of key signaling pathways during muscle regeneration. To study this, mice were injected with cardiotoxin (CTX) or PBS in the Tibialis Anterior muscle and were sacrificed 2, 5 and 12 days upon injection. The time points represent different phases of the regeneration process, i.e. destruction, repair and remodeling, respectively. Two days upon CTX-injection, p-mTORC1 signaling and stress markers such as BiP and p-ERK1/2 were upregulated. Phospho-ERK1/2 and p-mTORC1 peaked at d5, while BiP expression decreased towards PBS levels. Phospho-FOXO decreased 2 and 5 days following CTX-injection, indicative of an increase in catabolic signaling. Furthermore, CTX-injection induced a shift in the fiber type composition, characterized by an initial loss in type IIa fibers at d2 and at d5. At d5, new type IIb fibers appeared, whereas type IIa fibers were recovered at d12. To conclude, CTX-injection severely affected key modulators of muscle metabolism and histology. These data provide useful information for the development of strategies that aim to improve muscle molecular signaling and thereby recovery.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium.
| |
Collapse
|
30
|
Criado-Mesas L, Ballester M, Crespo-Piazuelo D, Castelló A, Fernández AI, Folch JM. Identification of eQTLs associated with lipid metabolism in Longissimus dorsi muscle of pigs with different genetic backgrounds. Sci Rep 2020; 10:9845. [PMID: 32555447 PMCID: PMC7300017 DOI: 10.1038/s41598-020-67015-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Intramuscular fat content and its fatty acid composition affect porcine meat quality and its nutritional value. The present work aimed to identify genomic variants regulating the expression in the porcine muscle (Longissimus dorsi) of 45 candidate genes for lipid metabolism and fatty acid composition in three experimental backcrosses based on the Iberian breed. Expression genome-wide association studies (eGWAS) were performed between the muscle gene expression values, measured by real-time quantitative PCR, and the genotypes of 38,426 SNPs distributed along all chromosomes. The eGWAS identified 186 eSNPs located in ten Sus scrofa regions and associated with the expression of ACSM5, ACSS2, ATF3, DGAT2, FOS and IGF2 (FDR < 0.05) genes. Two expression quantitative trait loci (eQTLs) for IGF2 and ACSM5 were classified as cis-acting eQTLs, suggesting a mutation in the same gene affecting its expression. Conversely, ten eQTLs showed trans-regulatory effects on gene expression. When the eGWAS was performed for each backcross independently, only three common trans-eQTL regions were observed, indicating different regulatory mechanisms or allelic frequencies among the breeds. In addition, hotspot regions regulating the expression of several genes were detected. Our results provide new data to better understand the functional regulatory mechanisms of lipid metabolism genes in muscle.
Collapse
Affiliation(s)
- Lourdes Criado-Mesas
- Departament de Genòmica Animal, Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain.
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca y Tecnologia Agraroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Genòmica Animal, Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, Spain
| | - Anna Castelló
- Departament de Genòmica Animal, Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, Spain
| | - Ana I Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Josep M Folch
- Departament de Genòmica Animal, Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, Spain
| |
Collapse
|
31
|
Girgis CM, Cha KM, So B, Tsang M, Chen J, Houweling PJ, Schindeler A, Stokes R, Swarbrick MM, Evesson FJ, Cooper ST, Gunton JE. Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. J Cachexia Sarcopenia Muscle 2019; 10:1228-1240. [PMID: 31225722 PMCID: PMC6903451 DOI: 10.1002/jcsm.12460] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It has long been recognized that vitamin D deficiency is associated with muscle weakness and falls. Vitamin D receptor (VDR) is present at very low levels in normal muscle. Whether vitamin D plays a direct role in muscle function is unknown and is a subject of hot debate. Myocyte-specific deletion of VDR would provide a strategy to answer this question. METHODS Myocyte-specific vitamin D receptor (mVDR) null mice were generated by crossing human skeletal actin-Cre mice with floxed VDR mice. The effects of gene deletion on the muscle phenotype were studied in terms of body tissue composition, muscle tissue histology, and gene expression by real-time PCR. RESULTS Unlike whole-body VDR knockout mice, mVDR mice showed a normal body size. The mVDR showed a distinct muscle phenotype featuring reduced proportional lean mass (70% vs. 78% of lean mass), reduced voluntary wheel-running distance (22% decrease, P = 0.009), reduced average running speed, and reduced grip strength (7-16% reduction depending on age at testing). With their decreased voluntary exercise, and decreased lean mass, mVDR have increased proportional fat mass at 20% compared with 13%. Surprisingly, their muscle fibres showed slightly increased diameter, as well as the presence of angular fibres and central nuclei suggesting ongoing remodelling. There were, however, no clear changes in fibre type and there was no increase in muscle fibrosis. VDR is a transcriptional regulator, and changes in the expression of candidate genes was examined in RNA extracted from skeletal muscle. Alterations were seen in myogenic gene expression, and there was decreased expression of cell cycle genes cyclin D1, D2, and D3 and cyclin-dependent kinases Cdk-2 and Cdk-4. Expression of calcium handling genes sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCA) Serca2b and Serca3 was decreased and Calbindin mRNA was lower in mVDR muscle. CONCLUSIONS This study demonstrates that vitamin D signalling is needed for myocyte function. Despite the low level of VDR protein normally found muscle, deleting myocyte VDR had important effects on muscle size and strength. Maintenance of normal vitamin D signalling is a useful strategy to prevent loss of muscle function and size.
Collapse
Affiliation(s)
- Christian M Girgis
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Diabetes and Endocrinology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Kuan Minn Cha
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin So
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Tsang
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer Chen
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron Schindeler
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Westmead, Australia
| | - Rebecca Stokes
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael M Swarbrick
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Frances J Evesson
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, The Discipline of Child and Adolescent Health, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Sandra T Cooper
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, The Discipline of Child and Adolescent Health, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jenny E Gunton
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Division of Immunology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Ogura Y, Sato S, Kurosaka M, Kotani T, Fujiya H, Funabashi T. Age-related decrease in muscle satellite cells is accompanied with diminished expression of early growth response 3 in mice. Mol Biol Rep 2019; 47:977-986. [PMID: 31734897 DOI: 10.1007/s11033-019-05189-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/09/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle regeneration is mostly dependent on muscle satellite cells. Proper muscle regeneration requires enough number of satellite cells. Recent studies have suggested that the number of satellite cells in skeletal muscle declines as we age, leading to the impairment of muscle regeneration in older population. Our earlier study demonstrated that zinc finger transcription factor early growth response 3 (Egr3) plays an important role for maintaining the number of myoblasts, suggesting that age-related decrease in muscle satellite cell should be associated with the expression levels of Egr3. The aim of this study was to investigate whether aging would alter the Egr3 expression in satellite cells. A couple groups of male C57BL/6J mice were examined in this study: young (3 Mo) and old (17 Mo). Immunohistochemical staining showed that the satellite cell number decreased in normal and injured muscles of old mice. In fluorescence-activated cell sorting-isolated muscle satellite cells from normal and injured muscles, the mRNA expression of Egr3 was significantly decreased with age regardless of injury. In harmony with these results, Pax7 mRNA levels also decreased in the satellite cells from old mice. Alternatively, inhibition of Egr3 expression by shRNA decreased Pax7 protein expression in cultured myoblasts. These results suggest that Egr3 is associated with the age-related decline of muscle satellite cells in older population. Also, Egr3 might be implicated in the regulation of Pax7. Therefore, the loss of Egr3 expression may elucidate attenuated MSCs function and muscle regeneration in older age.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Shuichi Sato
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA, USA
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Takashi Kotani
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Hiroto Fujiya
- Department of Sports Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
33
|
Hughes DC, Marcotte GR, Baehr LM, West DWD, Marshall AG, Ebert SM, Davidyan A, Adams CM, Bodine SC, Baar K. Alterations in the muscle force transfer apparatus in aged rats during unloading and reloading: impact of microRNA-31. J Physiol 2019; 596:2883-2900. [PMID: 29726007 DOI: 10.1113/jp275833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Force transfer is integral for maintaining skeletal muscle structure and function. One important component is dystrophin. There is limited understanding of how force transfer is impacted by age and loading. Here, we investigate the force transfer apparatus in muscles of adult and old rats exposed to periods of disuse and reloading. Our results demonstrate an increase in dystrophin protein during the reloading phase in the adult tibialis anterior muscle that is delayed in the old muscle. The consequence of this delay is an increased susceptibility towards contraction-induced muscle injury. Central to the lack of dystrophin protein is an increase in miR-31, a microRNA that inhibits dystrophin translation. In vivo electroporation with a miR-31 sponge led to increased dystrophin protein and decreased contraction-induced muscle injury in old skeletal muscle. Overall, our results detail the importance of the force transfer apparatus and provide new mechanisms for contraction-induced injury in ageing skeletal muscle. ABSTRACT In healthy muscle, the dystrophin-associated glycoprotein complex (DGC), the integrin/focal adhesion complex, intermediate filaments and Z-line proteins transmit force from the contractile proteins to the extracellular matrix. How loading and age affect these proteins is poorly understood. The experiments reported here sought to determine the effect of ageing on the force transfer apparatus following muscle unloading and reloading. Adult (9 months) and old (28 months) rats were subjected to 14 days of hindlimb unloading and 1, 3, 7 and 14 days of reloading. The DGC complex, intermediate filament and Z-line protein and mRNA levels, as well as dystrophin-targeting miRNAs (miR-31, -146b and -374) were examined in the tibialis anterior (TA) and medial gastrocnemius muscles at both ages. There was a significant increase in dystrophin protein levels (2.79-fold) upon 3 days of reloading in the adult TA muscle that did not occur in the old rats (P ≤ 0.05), and the rise in dystrophin protein occurred independent of dystrophin mRNA. The disconnect between dystrophin protein and mRNA levels can partially be explained by age-dependent differences in miR-31. The impaired dystrophin response in aged muscle was followed by an increase in other force transfer proteins (β-dystroglycan, desmuslin and LIM) that was not sufficient to prevent membrane disruption and muscle injury early in the reloading period. Inserting a miR-31 sponge increased dystrophin protein and decreased contraction-induced injury in the TA (P ≤ 0.05). Collectively, these data suggest that increased miR-31 with age contributes to an impaired dystrophin response and increased muscle injury after disuse.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - George R Marcotte
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - Leslie M Baehr
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Daniel W D West
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Andrea G Marshall
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Scott M Ebert
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Arik Davidyan
- Molecular, Cellular, and Integrative Physiology Graduate Group, University of California Davis, Davis, CA, USA
| | - Christopher M Adams
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Sue C Bodine
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
34
|
Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019; 221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies. Furthermore, we describe strategies to increase the functional maturation of engineered muscle, and motivate the importance of incorporating multiple tissue types on the same chip to model organ cross-talk and generate more predictive drug development platforms. Finally, we review the ability of available in vitro systems to model diseases such as type II diabetes, Duchenne muscular dystrophy, Pompe disease, and dysferlinopathy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keith Vandusen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
35
|
Biotoxins in muscle regeneration research. J Muscle Res Cell Motil 2019; 40:291-297. [PMID: 31359301 DOI: 10.1007/s10974-019-09548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
Skeletal muscles are characterized by their unique regenerative capacity following injury due to the presence of muscle precursor cells, satellite cells. This characteristic allows researchers to study muscle regeneration using experimental injury models. These injury models should be stable and reproducible. Variety of injury models have been used, among which the intramuscular injection of myotoxic biotoxins is considered the most common and widespread method in muscle regeneration research. By using isolated biotoxins, researchers could induce acute muscle damage and regeneration in a controlled and reproducible manner. Therefore, it is considered an easy method for inducing muscle injury in order to understand the different mechanisms involved in muscle injuries and tissue response following injury. However, different toxins and venoms have different compositions and subsequently the possible effects of these toxins on skeletal muscle vary according to their composition. Moreover, regeneration of injured muscle by venoms and toxins varies according to the target of toxin or venom. Therefore, it is essential for researcher to be aware of the mechanism and possible target of toxin-induced injury. The current paper provides an overview of the biotoxins used in skeletal muscle research.
Collapse
|
36
|
Smith LR, Irianto J, Xia Y, Pfeifer CR, Discher DE. Constricted migration modulates stem cell differentiation. Mol Biol Cell 2019; 30:1985-1999. [PMID: 31188712 PMCID: PMC6727770 DOI: 10.1091/mbc.e19-02-0090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell types and mesenchymal stem cells (MSCs) increases nuclear rupture, increases DNA damage, and modulates differentiation. Fewer myoblasts fuse into regenerating muscle in vivo after constricted migration in vitro, and myodifferentiation in vitro is likewise suppressed. Myosin II inhibition rescues rupture and DNA damage, implicating nuclear forces, while mitosis and the cell cycle are suppressed by constricted migration, consistent with a checkpoint. Although perturbed proliferation fails to explain defective differentiation, nuclear rupture mislocalizes differentiation-relevant MyoD and KU80 (a DNA repair factor), with nuclear entry of the DNA-binding factor cGAS. Human MSCs exhibit similar damage, but osteogenesis increases-which is relevant to bone and to calcified fibrotic tissues, including diseased muscle. Tissue repair can thus be modulated up or down by the curvature of pores through which stem cells squeeze.
Collapse
Affiliation(s)
- Lucas R. Smith
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616,Department of Physical Medicine and Rehabilitation, University of California, Davis, Sacramento, CA 95817
| | - Jerome Irianto
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Yuntao Xia
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Charlotte R. Pfeifer
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Dennis E. Discher
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104,*Address correspondence to: Dennis E. Discher ()
| |
Collapse
|
37
|
Kami K, Ohira T, Oishi Y, Nakajima T, Goto K, Ohira Y. Role of 72-kDa Heat Shock Protein in Heat-stimulated Regeneration of Injured Muscle in Rat. J Histochem Cytochem 2019; 67:791-799. [PMID: 31233366 DOI: 10.1369/0022155419859861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regeneration of injured muscles is facilitated by intermittent heat stress. The 72-kDa heat shock protein (HSP72), the level of which is increased by heat stress, is likely involved in this effect, but the precise mechanism remains unclear. This study was conducted to investigate the localization and role(s) of HSP72 in the regenerating muscles in heat-stressed rats using immunohistochemistry. Heat stress was applied by immersion of the rat lower body into hot water (42C, 30 min, every other day) following injection of bupivacaine into the soleus muscles. After 1 week, we found that HSP72 was expressed at high levels not only in the surviving myofibers but also in the blood vessels of the regenerating muscles in heated rats. In addition, leukocytes, possibly granulocytes, expressing cluster of differentiation 43 within the blood capillaries surrounding the regenerating myofibers also highly expressed HSP72. In contrast, marked expression of HSP72 was not observed in the intact or regenerating muscles without heat stress. These results suggest that heat-stress-induced HSP72 within the myofibers, blood vessels, and circulating leukocytes may play important roles in enhancing regeneration of injured muscles by heat stress. Our findings would be useful to investigate cell-specific role(s) of HSP72 during skeletal muscle regeneration.
Collapse
Affiliation(s)
- Katsuya Kami
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Ohira
- Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Research Center for Space and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yasuharu Oishi
- Faculty of Education, Kumamoto University, Kumamoto, Japan.,Research Center for Space and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takayuki Nakajima
- Department of Clinical Medicine, The Jikei University Hospital, Tokyo, Japan
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan.,Research Center for Space and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yoshinobu Ohira
- Graduate School of Medicine, Osaka University, Osaka, Japan.,Research Center for Space and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
38
|
Addison WN, Hall KC, Kokabu S, Matsubara T, Fu MM, Gori F, Baron R. Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation. Mol Cell Biol 2019; 39:e00447-18. [PMID: 30692273 PMCID: PMC6447414 DOI: 10.1128/mcb.00447-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/07/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Satellite cells (SCs) are skeletal muscle stem cells that proliferate in response to injury and provide myogenic precursors for growth and repair. Zfp423 is a transcriptional cofactor expressed in multiple immature cell populations, such as neuronal precursors, mesenchymal stem cells, and preadipocytes, where it regulates lineage allocation, proliferation, and differentiation. Here, we show that Zfp423 regulates myogenic progression during muscle regeneration. Zfp423 is undetectable in quiescent SCs but becomes expressed during SC activation. After expansion, Zfp423 is gradually downregulated as committed SCs terminally differentiate. Mice with satellite-cell-specific Zfp423 deletion exhibit severely impaired muscle regeneration following injury, with aberrant SC expansion, defective cell cycle exit, and failure to transition efficiently from the proliferative stage toward commitment. Consistent with a cell-autonomous role of Zfp423, shRNA-mediated knockdown of Zfp423 in myoblasts inhibits differentiation. Surprisingly, forced expression of Zfp423 in myoblasts induces differentiation into adipocytes and arrests myogenesis. Affinity purification of Zfp423 in myoblasts identified Satb2 as a nuclear partner of Zfp423 that cooperatively enhances Zfp423 transcriptional activity, which in turn affects myoblast differentiation. In conclusion, by controlling SC expansion and proliferation, Zfp423 is essential for muscle regeneration. Tight regulation of Zfp423 expression is essential for normal progression of muscle progenitors from proliferation to differentiation.
Collapse
MESH Headings
- Adipocytes/cytology
- Animals
- Cell Differentiation/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Mesenchymal Stem Cells/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Development/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/physiology
- Signal Transduction
- Stem Cells/cytology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wound Healing
Collapse
Affiliation(s)
- William N Addison
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Katherine C Hall
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Martin M Fu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Forcina L, Miano C, Pelosi L, Musarò A. An Overview about the Biology of Skeletal Muscle Satellite Cells. Curr Genomics 2019; 20:24-37. [PMID: 31015789 PMCID: PMC6446479 DOI: 10.2174/1389202920666190116094736] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The peculiar ability of skeletal muscle tissue to operate adaptive changes during post-natal de-velopment and adulthood has been associated with the existence of adult somatic stem cells. Satellite cells, occupying an exclusive niche within the adult muscle tissue, are considered bona fide stem cells with both stem-like properties and myogenic activities. Indeed, satellite cells retain the capability to both maintain the quiescence in uninjured muscles and to be promptly activated in response to growth or re-generative signals, re-engaging the cell cycle. Activated cells can undergo myogenic differentiation or self-renewal moving back to the quiescent state. Satellite cells behavior and their fate decision are finely controlled by mechanisms involving both cell-autonomous and external stimuli. Alterations in these regu-latory networks profoundly affect muscle homeostasis and the dynamic response to tissue damage, con-tributing to the decline of skeletal muscle that occurs under physio-pathologic conditions. Although the clear myogenic activity of satellite cells has been described and their pivotal role in muscle growth and regeneration has been reported, a comprehensive picture of inter-related mechanisms guiding muscle stem cell activity has still to be defined. Here, we reviewed the main regulatory networks determining satellite cell behavior. In particular, we focused on genetic and epigenetic mechanisms underlining satel-lite cell maintenance and commitment. Besides intrinsic regulations, we reported current evidences about the influence of environmental stimuli, derived from other cell populations within muscle tissue, on satel-lite cell biology.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Carmen Miano
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| |
Collapse
|
40
|
Mokalled MH, Poss KD. A Regeneration Toolkit. Dev Cell 2019; 47:267-280. [PMID: 30399333 DOI: 10.1016/j.devcel.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
The ability of animals to replace injured body parts has been a subject of fascination for centuries. The emerging importance of regenerative medicine has reinvigorated investigations of innate tissue regeneration, and the development of powerful genetic tools has fueled discoveries into how tissue regeneration occurs. Here, we present an overview of the armamentarium employed to probe regeneration in vertebrates, highlighting areas where further methodology advancement will deepen mechanistic findings.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
41
|
Mademtzoglou D, Asakura Y, Borok MJ, Alonso-Martin S, Mourikis P, Kodaka Y, Mohan A, Asakura A, Relaix F. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. eLife 2018; 7:33337. [PMID: 30284969 PMCID: PMC6172026 DOI: 10.7554/elife.33337] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance between proliferation and growth arrest.
Collapse
Affiliation(s)
- Despoina Mademtzoglou
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Yoko Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Matthew J Borok
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Sonia Alonso-Martin
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Philippos Mourikis
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Yusaku Kodaka
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Frederic Relaix
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France.,Etablissement Français du Sang, Créteil, France.,APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, Créteil, France
| |
Collapse
|
42
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
43
|
Maden M, Brant JO, Rubiano A, Sandoval AGW, Simmons C, Mitchell R, Collin-Hooper H, Jacobson J, Omairi S, Patel K. Perfect chronic skeletal muscle regeneration in adult spiny mice, Acomys cahirinus. Sci Rep 2018; 8:8920. [PMID: 29892004 PMCID: PMC5995887 DOI: 10.1038/s41598-018-27178-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/23/2018] [Indexed: 12/31/2022] Open
Abstract
The spiny mouse, Acomys cahirinus, is an adult mammal capable of remarkable feats of scar-free tissue regeneration after damage to several organs including the skin and the heart. Here we investigate the regenerative properties of the skeletal muscle of A. cahirinus tibialis anterior in comparison to the lab mouse, Mus musculus. The A. cahirinus TA showed a similar distribution of myosin heavy chain fibre types and a reduced proportion of oxidative fibres compared to M. musculus. There were differences in the matrix components of the TA with regard to collagen VI and the biomechanical properties. A. cahirinus TA regenerated faster with a more rapid induction of embryonic myosin and higher levels of dystrophin than in M. musculus fibres. There were lower levels of inflammation (NF-kB), fibrosis (TGFβ-1, collagens) and higher levels of the anti-inflammatory cytokine Cxcl12. There was a difference in macrophage profile between the two species. After multiple rounds of muscle regeneration the M. musculus TA failed to regenerate muscle fibres and instead produced a large numbers of adipocytes whereas the A. cahirinus TA regenerated perfectly. This clearly improved regeneration performance can be explained by differing levels of growth factors such as adiponectin between the two species.
Collapse
Affiliation(s)
- Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Florida, USA.
| | - Jason Orr Brant
- Department of Biology & UF Genetics Institute, University of Florida, Florida, USA
| | - Andres Rubiano
- Department of Aerospace & Mechanical Engineering, University of Florida, Florida, USA
| | | | - Chelsey Simmons
- Department of Aerospace & Mechanical Engineering, University of Florida, Florida, USA
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, England
| | | | - Jason Jacobson
- School of Biological Sciences, University of Reading, Reading, England
| | - Saleh Omairi
- School of Biological Sciences, University of Reading, Reading, England
- College of Medicine, Wasit University, Kut, Iraq
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, England
| |
Collapse
|
44
|
Mahdy MAA. Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res 2018; 374:233-241. [DOI: 10.1007/s00441-018-2846-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
45
|
Pham TL, St-Pierre ME, Ravel-Chapuis A, Parks TEC, Langlois S, Penuela S, Jasmin BJ, Cowan KN. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy. J Cell Physiol 2018; 233:7057-7070. [PMID: 29744875 DOI: 10.1002/jcp.26629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/30/2018] [Indexed: 01/17/2023]
Abstract
Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles.
Collapse
Affiliation(s)
- Tammy L Pham
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Tara E C Parks
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Kyle N Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Low-level laser irradiation induces a transcriptional myotube-like profile in C2C12 myoblasts. Lasers Med Sci 2018; 33:1673-1683. [PMID: 29717386 DOI: 10.1007/s10103-018-2513-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Low-level laser irradiation (LLLI) has been used as a non-invasive method to improve muscular regeneration capability. However, the molecular mechanisms by which LLLI exerts these effects remain largely unknown. Here, we described global gene expression profiling analysis in C2C12 myoblasts after LLLI that identified 514 differentially expressed genes (DEG). Gene ontology and pathway analysis of the DEG revealed transcripts among categories related to cell cycle, ribosome biogenesis, response to stress, cell migration, and cell proliferation. We further intersected the DEG in C2C12 myoblasts after LLLI with publicly available transcriptomes data from myogenic differentiation studies (myoblasts vs myotube) to identify transcripts with potential effects on myogenesis. This analysis revealed 42 DEG between myoblasts and myotube that intersect with altered genes in myoblasts after LLLI. Next, we performed a hierarchical cluster analysis with this set of shared transcripts that showed that LLLI myoblasts have a myotube-like profile, clustering away from the myoblast profile. The myotube-like transcriptional profile of LLLI myoblasts was further confirmed globally considering all the transcripts detected in C2C12 myoblasts after LLLI, by bi-dimensional clustering with myotubes transcriptional profiles, and by the comparison with 154 gene sets derived from previous published in vitro omics data. In conclusion, we demonstrate for the first time that LLLI regulates a set of mRNAs that control myoblast proliferation and differentiation into myotubes. Importantly, this set of mRNAs revealed a myotube-like transcriptional profile in LLLI myoblasts and provide new insights to the understanding of the molecular mechanisms underlying the effects of LLLI on skeletal muscle cells.
Collapse
|
47
|
Gibbons MC, Fisch KM, Pichika R, Cheng T, Engler AJ, Schenk S, Lane JG, Singh A, Ward SR. Heterogeneous muscle gene expression patterns in patients with massive rotator cuff tears. PLoS One 2018; 13:e0190439. [PMID: 29293645 PMCID: PMC5749784 DOI: 10.1371/journal.pone.0190439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/14/2017] [Indexed: 01/26/2023] Open
Abstract
Detrimental changes in the composition and function of rotator cuff (RC) muscles are hallmarks of RC disease progression. Previous studies have demonstrated both atrophic and degenerative muscle loss in advanced RC disease. However, the relationship between gene expression and RC muscle pathology remains poorly defined, in large part due to a lack of studies correlating gene expression to tissue composition. Therefore, the purpose of this study was to determine how tissue composition relates to gene expression in muscle biopsies from patients undergoing reverse shoulder arthroplasty (RSA). Gene expression related to myogenesis, atrophy and cell death, adipogenesis and metabolism, inflammation, and fibrosis was measured in 40 RC muscle biopsies, including 31 biopsies from reverse shoulder arthroplasty (RSA) cases that had available histology data and 9 control biopsies from patients with intact RC tendons. After normalization to reference genes, linear regression was used to identify relationships between gene expression and tissue composition. Hierarchical clustering and principal component analysis (PCA) identified unique clusters, and fold-change analysis was used to determine significant differences in expression between clusters. We found that gene expression profiles were largely dependent on muscle presence, with muscle fraction being the only histological parameter that was significantly correlated to gene expression by linear regression. Similarly, samples with histologically-confirmed muscle distinctly segregated from samples without muscle. However, two sub-groups within the muscle-containing RSA biopsies suggest distinct phases of disease, with one group expressing markers of both atrophy and regeneration, and another group not significantly different from either control biopsies or biopsies lacking muscle. In conclusion, this study provides context for the interpretation of gene expression in heterogeneous and degenerating muscle, and provides further evidence for distinct stages of RC disease in humans.
Collapse
Affiliation(s)
- Michael C. Gibbons
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Kathleen M. Fisch
- Department of Computational Biology, University of California San Diego, La Jolla, California, United States of America
| | - Rajeswari Pichika
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Timothy Cheng
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - John G. Lane
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Anshu Singh
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
- Department of Orthopedic Surgery, Kaiser Permanente, San Diego, La Jolla, California, United States of America
| | - Samuel R. Ward
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Gatta L, Vitiello L, Gorini S, Chiandotto S, Costelli P, Giammarioli AM, Malorni W, Rosano G, Ferraro E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget 2017; 8:113938-113956. [PMID: 29371959 PMCID: PMC5768376 DOI: 10.18632/oncotarget.23044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Trimetazidine (TMZ) is a metabolic reprogramming agent able to partially inhibit mitochondrial free fatty acid β-oxidation while enhancing glucose oxidation. Here we have found that the metabolic shift driven by TMZ enhances the myogenic potential of skeletal muscle progenitor cells leading to MyoD, Myogenin, Desmin and the slow isoforms of troponin C and I over-expression. Moreover, similarly to exercise, TMZ stimulates the phosphorylation of the AMP-activated protein kinase (AMPK) and up-regulates the peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), both of which are known to enhance the mitochondrial biogenesis necessary for myoblast differentiation. TMZ also induces autophagy which is required during myoblast differentiation and promotes myoblast alignment which allows cell fusion and myofiber formation. Finally, we found that intraperitoneally administered TMZ (5mg/kg) is able to stimulate myogenesis in vivo both in a mice model of cancer cachexia (C26 mice) and upon cardiotoxin damage. Collectively, our work demonstrates that TMZ enhances myoblast differentiation and promotes myogenesis, which might contribute recovering stem cell blunted regenerative capacity and counteracting muscle wasting, thanks to the formation of new myofibers; TMZ is already in use in humans as an anti-anginal drug and its repositioning might impact significantly on aging and regeneration-impaired disorders, including cancer cachexia, as well as have implications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Gatta
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefania Gorini
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sergio Chiandotto
- Department of Molecular and Clinical Medicine (DMCM), C/o Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Interuniversity Institute of Myology-IIM, Chieti, Italy
| | - Anna Maria Giammarioli
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita, Rome, Italy
| | - Walter Malorni
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita, Rome, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
49
|
Eren Cimenci C, Uzunalli G, Uysal O, Yergoz F, Karaca Umay E, Guler MO, Tekinay AB. Laminin mimetic peptide nanofibers regenerate acute muscle defect. Acta Biomater 2017; 60:190-200. [PMID: 28690008 DOI: 10.1016/j.actbio.2017.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
Abstract
Skeletal muscle cells are terminally differentiated and require the activation of muscle progenitor (satellite) cells for their regeneration. There is a clinical need for faster and more efficient treatment methods for acute muscle injuries, and the stimulation of satellite cell proliferation is promising in this context. In this study, we designed and synthesized a laminin-mimetic bioactive peptide (LM/E-PA) system that is capable of accelerating satellite cell activation by emulating the structure and function of laminin, a major protein of the basal membrane of the skeletal muscle. The LM/E-PA nanofibers enhance myogenic differentiation in vitro and the clinical relevance of the laminin-mimetic bioactive scaffold system was demonstrated further by assessing its effect on the regeneration of acute muscle injury in a rat model. Laminin mimetic peptide nanofibers significantly promoted satellite cell activation in skeletal muscle and accelerated myofibrillar regeneration following acute muscle injury. In addition, the LM/E-PA scaffold treatment significantly reduced the time required for the structural and functional repair of skeletal muscle. This study represents one of the first examples of molecular- and tissue-level regeneration of skeletal muscle facilitated by bioactive peptide nanofibers following acute muscle injury. SIGNIFICANCE STATEMENT Sports, heavy lifting and other strength-intensive tasks are ubiquitous in modern life and likely to cause acute skeletal muscle injury. Speeding up regeneration of skeletal muscle injuries would not only shorten the duration of recovery for the patient, but also support the general health and functionality of the repaired muscle tissue. In this work, we designed and synthesized a laminin-mimetic nanosystem to enhance muscle regeneration. We tested its activity in a rat tibialis anterior muscle by injecting the bioactive nanosystem. The evaluation of the regeneration and differentiation capacity of skeletal muscle suggested that the laminin-mimetic nanosystem enhances skeletal muscle regeneration and provides a suitable platform that is highly promising for the regeneration of acute muscle injuries. This work demonstrates for the first time that laminin-mimetic self-assembled peptide nanosystems facilitate myogenic differentiation in vivo without the need for additional treatment.
Collapse
Affiliation(s)
- Cagla Eren Cimenci
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey; Materials Science and Nanotechnology Graduate Program, Bilkent University, Ankara 06800, Turkey
| | - Gozde Uzunalli
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey; Materials Science and Nanotechnology Graduate Program, Bilkent University, Ankara 06800, Turkey
| | - Ozge Uysal
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey; Neuroscience Graduate Program, Bilkent University, Ankara 06800, Turkey
| | - Fatih Yergoz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey; Materials Science and Nanotechnology Graduate Program, Bilkent University, Ankara 06800, Turkey
| | - Ebru Karaca Umay
- Diskapi Yildirim Beyazit Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Ankara 06800, Turkey
| | - Mustafa O Guler
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey; Materials Science and Nanotechnology Graduate Program, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
50
|
Alharby E, Albalawi A, Nasir A, Alhijji S, Mahmood A, Ramzan K, Abdusamad F, Aljohani A, Abdelsalam O, Eldardear A, Basit S. A homozygous potentially pathogenic variant in thePAXBP1gene in a large family with global developmental delay and myopathic hypotonia. Clin Genet 2017; 92:579-586. [DOI: 10.1111/cge.13051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/26/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Affiliation(s)
- E. Alharby
- Center for Genetics and Inherited Diseases; Taibah University; Almadinah Almunawwarah Saudi Arabia
| | - A.M. Albalawi
- Center for Genetics and Inherited Diseases; Taibah University; Almadinah Almunawwarah Saudi Arabia
| | - A. Nasir
- Synthetic Protein Engineering Laboratory (SPEL); Ajou University; Suwon Korea
| | - S.A. Alhijji
- Paediatric Neurology Department; King Abdullah Medical City, Madinah Maternity and Children Hospital; Almadinah Almunawwarah Saudi Arabia
| | - A. Mahmood
- Stem Cells Unit, Department of Anatomy; King Khalid University Hospital, King Saud University; Riyadh Saudi Arabia
| | - K. Ramzan
- Department of Genetics, Research Centre; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - F. Abdusamad
- Center for Genetics and Inherited Diseases; Taibah University; Almadinah Almunawwarah Saudi Arabia
| | - A. Aljohani
- College of Applied Medical Sciences; Taibah University; Almadinah Almunawwarah Saudi Arabia
| | | | - A. Eldardear
- College of Medicine; Taibah University; Almadinah Almunawwarah Saudi Arabia
| | - S. Basit
- Center for Genetics and Inherited Diseases; Taibah University; Almadinah Almunawwarah Saudi Arabia
| |
Collapse
|