1
|
SMAD proteins: Mediators of diverse outcomes during infection. Eur J Cell Biol 2022; 101:151204. [DOI: 10.1016/j.ejcb.2022.151204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022] Open
|
2
|
Chen J, Chen JG, Sun B, Wu JH, Du CY. Integrative analysis of immune microenvironment-related CeRNA regulatory axis in gastric cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3953-3971. [PMID: 32987562 DOI: 10.3934/mbe.2020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed to identify significant immune microenvironment-related competing endogenous RNA (CeRNA) regulatory axis in gastric cancer (GC). Analysis of differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs) was performed for the microarray datasets. After abundance analysis of immune cell's infiltration, immune-related mRNAs and lncRNAs were obtained. Meanwhile, according to the Pearson correlation coefficient between immune-related mRNAs and lncRNAs, the co-expression mRNA-lncRNA pairs were screened. Furthermore, the target genes of co-existance miRNAs were predicted, and miRNA-lncRNA pairs were identified. Finally, the lncRNA-miRNA and miRNA-mRNA relationship regulated by the same miRNA was screened. Combining with the co-expression relationship between lncRNA and mRNA, the CeRNA network was constructed. In abundance analysis of immune cell's infiltration, a total of eight immune cells were obtained, in addition, 83 immune-related DElncRNAs and 705 immune-related DEmRNAs were screened. KEGG pathway enrichment analysis showed that these mRNAs were mainly involved in PI3K-Akt signaling pathway and human papillomavirus infection, while lncRNA were relevant to gastric acid secretion. A total of 25 miRNAs were significantly associated with immune-related mRNAs, such as hsa-miR-148a-3p, hsa-miR-17-5p, and hsa-miR-25-3p. From the mRNA-miRNA-lncRNA CeRNA network, we observed that AC104389.28─miR-17-5─SMAD5 axis and LINC01133─miR-17-5p─PBLD axis played a crucial role in the development of GC. Furthermore, resting memory CD4 T cells and plasma cells were closely associated with the pathogenesis of GC, and these immune cells might be affected by the key genes. The present study identified key genes that associated with immune microenvironment in GC, providing potential molecular targets for immunotherapy of GC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jing Gui Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jiang Hong Wu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chun Yan Du
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
3
|
Zhang Y, Que J. BMP Signaling in Development, Stem Cells, and Diseases of the Gastrointestinal Tract. Annu Rev Physiol 2020; 82:251-273. [PMID: 31618602 DOI: 10.1146/annurev-physiol-021119-034500] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bone morphogenetic protein (BMP) pathway is essential for the morphogenesis of multiple organs in the digestive system. Abnormal BMP signaling has also been associated with disease initiation and progression in the gastrointestinal (GI) tract and associated organs. Recent studies using animal models, tissue organoids, and human pluripotent stem cells have significantly expanded our understanding of the roles played by BMPs in the development and homeostasis of GI organs. It is clear that BMP signaling regulates GI function and disease progression that involve stem/progenitor cells and inflammation in a tissue-specific manner. In this review we discuss these new findings with a focus on the esophagus, stomach, and intestine.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; .,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; .,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Jing JJ, Wang ZY, Li H, Sun LP, Yuan Y. Key elements involved in Epstein-Barr virus-associated gastric cancer and their network regulation. Cancer Cell Int 2018; 18:146. [PMID: 30258285 PMCID: PMC6151003 DOI: 10.1186/s12935-018-0637-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background The molecular mechanism of Epstein–Barr virus (EBV)-associated gastric cancer (EBVaGC) remains elusive. A collection of molecular regulators including transcription factor and noncoding RNA (ncRNAs) may affect the carcinogenesis of EBVaGC by regulating the expression and function of key genes. In this study, integration of multi-level expression data and bioinformatics approach was used to identify key elements and their interactions involved in mechanism of EBVaGC and their network regulation. Methods Data of the gene expression profiling data sets (GSE51575) was downloaded from GEO database. Differentially expressed genes between EBVaGC and normal samples were identified by GEO2R. Gene ontology and pathway enrichment analyses were performed using R packages Cluster profiler. STRING database was used to find interacting proteins between different genes. Transcription factors in differentially expressed genes were obtained from TF Checkpoint database. Using Cytoscape, we built transcription factor regulation network. miRNAs involved in the gene-interacting proteins and the miRNA-targeted lncRNA were predicted through miRWalk. Using ViRBase, EBV related miRNA regulation network was built. Overlapping genes and regulators of the above three networks were further identified, and the cross network was constructed using Cytoscape software. Moreover, the differential expressions of the target genes and transcription factors in the cross network were explored in different molecular subtypes of GC using cBioPortal. By histological verification, the expression of two main target genes in the cross network were further analyzed. Results A total of 104 genes showed differential expressions between EBVaGC and normal tissues, which were associated with digestion, G-protein coupled receptor binding, gastric acid secretion, etc. Pathway analysis showed that the differentially expressed genes were mainly enriched in gastric acid secretion and protein digestion and absorption. Using STRING dataset, a total of 54 proteins interacted with each other. Based on the transcription factor network, the hub transcription factors IRX3, NKX6-2, PTGER3 and SMAD5 were identified to regulate their target genes SST and GDF5, etc. After screening and matching in miRwalk datasets, a ceRNA network was established, in which the top five miRNAs were hsa-miR-4446-3p, hsa-miR-5787, hsa-miR-1915-3p, hsa-miR-335-3p and hsa-miR-6877-3p, and the top two lncRNAs were RP5-1039K5.19 and TP73-AS1. According to the EBV related miRNA regulation network, CXCL10 and SMAD5 were found to be regulated by EBV-miR-BART1-3p and EBV-mir-BART22, respectively. By overlapping the three networks, CXCL10, GDF5, PTGER3, SMAD5, miR-6877-3p, RP5-1039K5.19, TP73-AS1, EBV-miR-BART1-3p and EBV-mir-BART22 were found to be key elements of regulation mechanism of EBVaGC. CXCL10, GDF5, PTGER3 and SMAD5 were also differentially expressed among the four molecular subtypes of GC. The histological verification experiment showed differential expressions of the two main target genes GDF5 and CXCL10 between EBVaGC and non-tumor tissues as well as EBVnGC. Conclusion In the current study, our results revealed key elements and their interactions involved in EBVaGC. Some hub transcription factors, miRNAs, lncRNAs and EBV related miRNAs were observed to regulate their target genes. Overlapping genes and regulators were observed in diverse regulation networks, such as CXCL10, GDF5, PTGER3, SMAD5, miR-6877-3p, RP5-1039K5.19, TP73-AS1, EBV-miR-BART1-3p and EBV-mir-BART22. Moreover, CXCL10, GDF5, PTGER3 and SMAD5 were also differentially expressed among the four molecular subtypes of GC. The histological verification experiment showed differential expressions of the two main target genes GDF5 and CXCL10 between EBVaGC and non-tumor tissues as well as EBVnGC. Therefore, the identified key elements and their network regulation may be specifically involved in EBVaGC mechanisms. Electronic supplementary material The online version of this article (10.1186/s12935-018-0637-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Jing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning China
| | - Ze-Yang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning China
| | - Hao Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning China
| |
Collapse
|
5
|
Sinha PB, Tesfaye D, Rings F, Hossien M, Hoelker M, Held E, Neuhoff C, Tholen E, Schellander K, Salilew-Wondim D. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J Ovarian Res 2017. [PMID: 28629378 PMCID: PMC5477299 DOI: 10.1186/s13048-017-0336-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Oocyte maturation and preimplantation embryo development are controlled by array of genes that are post-transcriptionally regulated by microRNAs. With respect to this, previously, we identified altered expression of microRNA-130b (miR-130b) during oocyte maturation. Here, we aimed to investigate the role of miR-130b in bovine granulosa and cumulus cell function, oocyte maturation and preimplantation embryo development using gain- and loss-of- function approach. Methods For this study, the granulosa cells, cumulus cells and the oocytes were collected from ovaries obtained from slaughterhouse. The genes targeted by miR-130b were identified using dual-luciferase reporter assay. The role of miR-130b in granulosa and cumulus cell function was investigated by increasing and inhibiting its expression in in vitro cultured cells using miR-130b precursor and inhibitor, respectively while the role of miR-130b on oocyte development, immature oocytes were microinjected with miR-130b precursor and inhibitor and the polar body extrusion, the proportion of oocytes reaching to metaphase II stage and the mitochondrial were determined in each oocyte group 22 h after microinjection. Moreover, to investigate the role of miR-130b during preimplantation embryo development, zygote stage embryos were microinjected with miR-130b precursor or inhibitor and the cleavage rate, morula and blastocyst formation was analyzed in embryos derived from each zygote group after in vitro culture. Results The luciferase assay showed that SMAD5 and MSK1 genes were identified as the direct targets of miR-130b. Overexpression of miR-130b increased the granulosa and cumulus cell proliferation, while inhibition showed the opposite phenotype. Apart from these, modulation of miR-130b altered the lactate production and cholesterol biosynthesis in cumulus cells. Furthermore, inhibition of miR-130b expression during oocyte in vitro maturation reduced the first polar body extrusion, the proportion of oocytes reaching to metaphase II stage and the mitochondrial activity, while inhibition of miR-130b during preimplantation embryo development significantly reduced morula and blastocyst formation. Conclusion This study demonstrated that in vitro functional modulation of miR-130b affected granulosa and cumulus cell proliferation and survival, oocyte maturation, morula and blastocyst formation suggesting that miR-130b is involved in bovine oocyte maturation and preimplantation embryo development. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0336-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pritam Bala Sinha
- Present address: Department of Biotechnology, Engineering and Applied Sciences, Amity University Ranchi, Ranchi, Jharkhand, 834002, India
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Meckenheimer Allee 172, 53115, Bonn, Germany
| | - Franca Rings
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany
| | - Munir Hossien
- Present address: Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, -2202, Bangladesh
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Meckenheimer Allee 172, 53115, Bonn, Germany
| | - Eva Held
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany
| | - Christaine Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Meckenheimer Allee 172, 53115, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Helicobacter pylori CagA Suppresses Apoptosis through Activation of AKT in a Nontransformed Epithelial Cell Model of Glandular Acini Formation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:761501. [PMID: 26557697 PMCID: PMC4628739 DOI: 10.1155/2015/761501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
H. pylori infection is the most important environmental risk to develop gastric cancer, mainly through its virulence factor CagA. In vitro models of CagA function have demonstrated a phosphoprotein activity targeting multiple cellular signaling pathways, while cagA transgenic mice develop carcinomas of the gastrointestinal tract, supporting oncogenic functions. However, it is still not completely clear how CagA alters cellular processes associated with carcinogenic events. In this study, we evaluated the capacity of H. pylori CagA positive and negative strains to alter nontransformed MCF-10A glandular acini formation. We found that CagA positive strains inhibited lumen formation arguing for an evasion of apoptosis activity of central acini cells. In agreement, CagA positive strains induced a cell survival activity that correlated with phosphorylation of AKT and of proapoptotic proteins BIM and BAD. Anoikis is a specific type of apoptosis characterized by AKT and BIM activation and it is the mechanism responsible for lumen formation of MCF-10A acini in vitro and mammary glands in vivo. Anoikis resistance is also a common mechanism of invading tumor cells. Our data support that CagA positive strains signaling function targets the AKT and BIM signaling pathway and this could contribute to its oncogenic activity through anoikis evasion.
Collapse
|
7
|
Eftang LL, Esbensen Y, Tannæs TM, Bukholm IRK, Bukholm G. Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells. BMC Microbiol 2012; 12:9. [PMID: 22248188 PMCID: PMC3292955 DOI: 10.1186/1471-2180-12-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/17/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The association between Helicobacter pylori infection and upper gastrointestinal disease is well established. However, only a small fraction of H. pylori carriers develop disease, and there are great geographical differences in disease penetrance. The explanation to this enigma lies in the interaction between the bacterium and the host. H. pylori Outer Membrane Phospholipase A (OMPLA) has been suggested to play a role in the virulence of this bacterium. The aim of this study was to profile the most significant cellular pathways and biological processes affected in gastric epithelial cells during 24 h of H. pylori exposure, and to study the inflammatory response to OMPLA⁺ and OMPLA⁻ H. pylori variants. RESULTS Interleukin-8 was the most significantly up-regulated gene and appears to play a paramount role in the epithelial cell response to H. pylori infection and in the pathological processes leading to gastric disease. MAPK and NF-kappaB cellular pathways were powerfully activated, but did not seem to explain the impressive IL-8 response. There was marked up-regulation of TP53BP2, whose corresponding protein ASPP2 may interact with H. pylori CagA and cause marked p53 suppression of apoptosis. Other regulators of apoptosis also showed abberant regulation. We also identified up-regulation of several oncogenes and down-regulation of tumor suppressor genes as early as during the first 24 h of infection. H. pylori OMPLA phase variation did not seem to influence the inflammatory epithelial cell gene response in this experiment. CONCLUSION In whole genome analysis of the epithelial response to H. pylori exposure, IL-8 demonstrated the most marked up-regulation, and was involved in many of the most important cellular response processes to the infection. There was dysregulation of apoptosis, tumor suppressor genes and oncogenes as early as in the first 24 h of H. pylori infection, which may represent early signs of gastric tumorigenesis. OMPLA⁺/⁻ did not affect the acute inflammatory response to H. pylori.
Collapse
Affiliation(s)
- Lars L Eftang
- Department of Clinical Molecular Biology (Epigen), Institute of Clinical Medicine, University of Oslo, Akershus University Hospital, Lørenskog, Norway
- Department of Gastroenterological Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Ying Esbensen
- Department of Clinical Molecular Biology (Epigen), Institute of Clinical Medicine, University of Oslo, Akershus University Hospital, Lørenskog, Norway
| | - Tone M Tannæs
- Department of Clinical Molecular Biology (Epigen), Akershus University Hospital, Lørenskog, Norway
| | - Ida RK Bukholm
- Department of Gastroenterological Surgery, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | - Geir Bukholm
- Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Role of p38 MAPK pathway in BMP4-mediated Smad-dependent premature senescence in lung cancer cells. Biochem J 2011; 433:333-43. [PMID: 21050181 DOI: 10.1042/bj20100404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BMP4 (bone morphogenetic protein 4) is a multifunctional cytokine known to exert its biological effects through a variety of signalling pathways. The diverse function of BMP4 appears to be due to multiple pathways activated by BMP4 itself. Our previous studies have demonstrated that BMP4 is able to drive lung cancer cells into a process of premature senescence; however, the signalling pathways, as well their interplays and roles associated with this process, are not well understood. To address these questions, in the present study we investigated the signalling and molecular mechanisms underlying the BMP4-induced senescence, and our data demonstrated that p38 MAPK (mitogen-activated protein kinase) and Smad pathways were necessary for this process. Meanwhile, the ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which is required for senescence, was not activated by BMP4 in the lung cancer cell line NCI-H460. We also showed that the BMP4-responsive R-Smads (receptor-regulated Smads), i.e. Smad1 and Smad5, were necessary for the up-regulation of p16(INK)⁴(a) and p21(WAF)¹(/cip)¹ and for the induction of premature senescence. Furthermore, we found that activation of the p38 MAPK pathway by BMP4 was essential for the full activation of transcription potential of Smad1/5. Overall, the results of the present study implicate a complex co-operation between p38 MAPK and Smad pathways in BMP4-mediated premature senescence.
Collapse
|
9
|
Zaidi SFH, Yoshida I, Butt F, Yusuf MA, Usmanghani K, Kadowaki M, Sugiyama T. Potent bactericidal constituents from Mallotus philippinensis against clarithromycin and metronidazole resistant strains of Japanese and Pakistani Helicobacter pylori. Biol Pharm Bull 2009; 32:631-6. [PMID: 19336896 DOI: 10.1248/bpb.32.631] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the quest for potent anti-Helicobacter pylori agents, we found 70% EtOH extract of Mallotus philippinensis (LAM.) MUELL. (MPM) with strong bactericidal activity at the concentration of 15.6-31.2 mg/l against eight H. pylori strains. Further fractionation and purification of 70% EtOH extract of MPM led to the isolation of 5 compounds, namely 5,7-dihydroxy-8-methyl-6-prenylflavanone (1), 3'-prenylrubranine (2), red compound (3), isorottlerin (4), and rottlerin (5) which were elucidated on the basis of nuclear magnetic resonance and mass spectroscopy. Among the isolated compounds, rottlerin exhibited most potent bactericidal activity with minimum bactericidal concentration (MBC) value of 3.12-6.25 mg/l against several clinical H. pylori isolates including Japanese and Pakistani strains, nine clarithromycin resistant (CR), and seven metronidazole resistant (MR) strains. Minimum inhibitory concentration (MIC) values of CR (8->256 mg/l) and MR (>256 mg/l) strains were analyzed by E test. Moreover, the clarithromycin resistant strains were evaluated for A2143G and A2144G point mutations of 23s rRNA gene to correlate the MBC values with mutation type. Our results revealed the potent in vitro anti-H. pylori activity of MPM and rottlerin, specially against CR and MR strains, which could be gainfully utilized for the development of novel antimicrobials to prevent H. pylori related disorders.
Collapse
Affiliation(s)
- Syed Faisal Haider Zaidi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Hayes SL, Waltmann M, Donohue M, Lye DJ, Vesper SJ. Predicting virulence of Aeromonas isolates based on changes in transcription of c-jun and c-fos in human tissue culture cells. J Appl Microbiol 2009; 107:964-9. [PMID: 19320953 DOI: 10.1111/j.1365-2672.2009.04276.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To screen for the virulence potential of Aeromonas isolates based on the change in regulation of c-jun and c-fos in the human intestinal tissue culture cell line Caco-2. METHODS AND RESULTS Aeromonas cells were added to Caco-2 cells at a ratio of approx. 1 : 1. After 1-, 2- and 3-h incubation at 37 degrees C, mRNA was extracted from the cells and gene expression of two host genes, c-jun and c-fos, quantified. Aeromonas isolates which were pathogenic in the neonatal mouse model demonstrated up-regulation of c-jun and c-fos compared to avirulent isolates. CONCLUSIONS Human cell culture results showed that c-jun and c-fos were predictive of Aeromonas virulence. SIGNIFICANCE AND IMPACT OF THE STUDY An Aeromonas relative virulence scale is proposed for use in the testing of Aeromonas drinking water isolates.
Collapse
Affiliation(s)
- S L Hayes
- USEPA, National Risk Management Research Laboratory, Water Supply/Water Resources Division, Cincinnati, OH 45268, USA
| | | | | | | | | |
Collapse
|
11
|
Galamb O, Gyõrffy B, Sipos F, Dinya E, Krenács T, Berczi L, Szõke D, Spisák S, Solymosi N, Németh AM, Juhász M, Molnár B, Tulassay Z. Helicobacter pylori and antrum erosion-specific gene expression patterns: the discriminative role of CXCL13 and VCAM1 transcripts. Helicobacter 2008; 13:112-126. [PMID: 18321301 DOI: 10.1111/j.1523-5378.2008.00584.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Chronic Helicobacter pylori infection affects approximately half of the world, leads to chronic gastritis and peptic ulceration, and is linked to gastric carcinoma. Our aims were to compare the gene expression profile (GEP) of H. pylori-positive and H. pylori-negative gastric erosions and adjacent mucosa to explain the possible role and response to H. pylori infection and to get erosion-related mRNA expression patterns. METHODS Total RNA was extracted, amplified, and biotinylated from gastric biopsies of patients with H. pylori-positive and H. pylori-negative antrum erosions (ER) (8/8) and adjacent macroscopically normal mucosae (8/8). The GEP was evaluated using HGU133plus2.0 microarrays. Two independent normalizations (MAS5.0, RMA), PAM feature selection, hierarchical cluster analysis, and discriminant analysis were done. The expression of 14 genes was also measured by real-time-polymerase chain reaction. VCAM-1 and CXCL13 immunohistochemistry (IHC) was done. RESULTS In H. pylori infection, significant overexpression of MHC class II antigen-presenting genes, interleukin-7 receptor, ubiquitin-D, CXCR4, lactoferrin immune response-related genes, CXCL-2 and -13, CCL18 chemokine ligand, and VCAM-1 genes were established. In erosive gastritis, increased proliferation (MET) and transport (UCP2, SCFD1, KPNA4) were found, while genes associated with adhesion (SIGLEC11), transcription regulation (ESRRG), and electron and ion transport (ACADM, CLIC6) were down-regulated. Discriminant analysis successfully classified all samples into four groups (HP+ER-, HP+ER+, HP-ER+, HP-ER-) using a reduced gene set (20). Significant overexpression of VCAM-1 and CXC13 protein was detected by IHC in HP+ samples (p < .05). CONCLUSIONS Whole genomic microarray analysis yielded new H. pylori infection and erosion-related gene expression changes. Discriminative genes can be used in mRNA-based diagnostic classification of gastric biopsies.
Collapse
Affiliation(s)
- Orsolya Galamb
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Minohara Y, Boyd DK, Hawkins HK, Ernst PB, Patel J, Crowe SE. The effect of the cag pathogenicity island on binding of Helicobacter pylori to gastric epithelial cells and the subsequent induction of apoptosis. Helicobacter 2007; 12:583-90. [PMID: 18001397 PMCID: PMC3036973 DOI: 10.1111/j.1523-5378.2007.00537.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori infection leads to gastritis, peptic ulcer, and gastric cancer, in part due to epithelial damage following bacteria binding to the epithelium. Infection with cag pathogenicity island (PAI) bearing strains of H. pylori is associated with increased gastric inflammation and a higher incidence of gastroduodenal diseases. It is now known that various effector molecules are injected into host epithelial cells via a type IV secretion apparatus, resulting in cytoskeletal changes and chemokine secretion. Whether binding of bacteria and subsequent apoptosis of gastric epithelial cells are altered by cag PAI status was examined in this study. METHODS AGS, Kato III, and N87 human gastric epithelial cell lines were incubated with cag PAI-positive or cag PAI-negative strains of H. pylori in the presence or absence of clarithromycin. Binding was evaluated by flow cytometry and scanning electron microscopy. Apoptosis was assessed by detection of DNA degradation and ELISA detection of exposed histone residues. RESULTS cag PAI-negative strains bound to gastric epithelial cells to the same extent as cag PAI-positive strains. Both cag PAI-positive and cag PAI-negative strains induced apoptosis. However, cag PAI-positive strains induced higher levels of DNA degradation. Incubation with clarithromycin inactivated H. pylori but did not affect binding. However, pretreatment with clarithromycin decreased infection-induced apoptosis. CONCLUSIONS cag PAI status did not affect binding of bacteria to gastric epithelial cells but cag PAI-positive H. pylori induced apoptosis more rapidly than cag PAI-negative mutant strains, suggesting that H. pylori binding and subsequent apoptosis are differentially regulated with regard to bacterial properties.
Collapse
Affiliation(s)
- Yutaka Minohara
- Department of Pediatrics, University of Texas Medical Branch at Galveston, TX, USA
| | - David K. Boyd
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hal K. Hawkins
- Department of Pathology, University of Texas Medical Branch at Galveston, TX, USA
| | - Peter B. Ernst
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Janak Patel
- Department of Pediatrics, University of Texas Medical Branch at Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, TX, USA
| | - Sheila E. Crowe
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
13
|
Hayes SL, Rodgers MR, Lye DJ, Stelma GN, McKinstry CA, Malard JM, Vesper SJ. Evaluating virulence of waterborne and clinical Aeromonas isolates using gene expression and mortality in neonatal mice followed by assessing cell culture's ability to predict virulence based on transcriptional response. J Appl Microbiol 2007; 103:811-20. [PMID: 17897183 DOI: 10.1111/j.1365-2672.2007.03318.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To assess the virulence of Aeromonas spp. using two models, a neonatal mouse assay and a mouse intestinal cell culture. METHODS AND RESULTS After artificial infection with a variety of Aeromonas spp., mRNA extracts from the two models were processed and hydridized to murine microarrays to determine host gene response. Definition of virulence was determined based on host mRNA production in murine neonatal intestinal tissue and mortality of infected animals. Infections of mouse intestinal cell cultures were then performed to determine whether this simpler model system's mRNA responses correlated to neonatal results and therefore be predictive of virulence of Aeromonas spp. Virulent aeromonads up-regulated transcripts in both models including multiple host defense gene products (chemokines, regulation of transcription and apoptosis and cell signalling). Avirulent species exhibited little or no host response in neonates. Mortality results correlated well with both bacterial dose and average fold change of up-regulated transcripts in the neonatal mice. CONCLUSIONS Cell culture results were less discriminating but showed promise as potentially being able to be predictive of virulence. Jun oncogene up-regulation in murine cell culture is potentially predictive of Aeromonas virulence. SIGNIFICANCE AND IMPACT OF THE STUDY Having the ability to determine virulence of waterborne pathogens quickly would potentially assist public health officials to rapidly assess exposure risks.
Collapse
Affiliation(s)
- S L Hayes
- USEPA, National Risk Management Research Laboratory, Water Supply/Water Resources Division, Cincinnati, OH 45268, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
MUELLER NANCYE, BIRMANN BRENDAM, PARSONNET JULIE, SCHIFFMAN MARKH, STUVER SHERRIO. Infectious Agents. CANCER EPIDEMIOLOGY AND PREVENTION 2006:507-548. [DOI: 10.1093/acprof:oso/9780195149616.003.0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
AbstractThere is substantial evidence that infectious agents play a causal role in a variety of human malignancies. These cancers include the liver, cervix, stomach, nasopharynx, bladder, and bile duct as well as Kaposi sarcoma (KS) and several lymphomas. This chapter summarizes the biological and epidemiologic features of each of the major oncogenic infections, beginning with the viruses, followed by H. pylori, and with a brief summary of the relevant parasites.
Collapse
|
15
|
Hossain H, Chakraborty T. [Microarray-based transcriptome analyses in infectious diseases. A new diagnostic method]. Internist (Berl) 2006; 47 Suppl 1:S6, S8-13. [PMID: 16773368 DOI: 10.1007/s00108-006-1627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The complex interaction between a pathogen and a host is the molecular basis of infectious diseases. Microarray technology is a powerful tool to investigate the crosstalk between pathogen and the host as it assesses whole genome expression profiles in response to disease. Deciphering the molecular details on both sides of the host-pathogen interaction will increase our understanding of the pathogenesis of infectious diseases and offer improvements in their diagnosis, treatment, prognosis, and prevention.
Collapse
Affiliation(s)
- H Hossain
- Institut für Medizinische Mikrobiologie, Frankfurter Strasse 107, 35392 , Giessen.
| | | |
Collapse
|
16
|
Edelblum KL, Yan F, Yamaoka T, Polk DB. Regulation of apoptosis during homeostasis and disease in the intestinal epithelium. Inflamm Bowel Dis 2006; 12:413-24. [PMID: 16670531 DOI: 10.1097/01.mib.0000217334.30689.3e] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A single epithelial layer serves as the interface between the organism and the contents of the gastrointestinal tract, underlining the importance of regulating cellular viability despite an onslaught of pathogens, toxins, waste by-products, and cytokines. A balance between cellular proliferation and apoptosis is necessary to maintain this critical barrier. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD) and predispose to inflammation-associated neoplasia. This review focuses on the regulation of physiological apoptosis in development and homeostasis and on pathological apoptosis in intestinal disease, inflammation, and neoplasia, identifying remaining questions and areas of needed investigation.
Collapse
Affiliation(s)
- Karen L Edelblum
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0696, USA
| | | | | | | |
Collapse
|
17
|
Manzo BA, Crabtree JE, Fiona Campbell M, Tweedle D, Potten CS, Bajaj-Elliott M, Sanderson IR, Wilson JW. Helicobacter pylori regulates the expression of inhibitors of DNA binding (Id) proteins by gastric epithelial cells. Microbes Infect 2006; 8:1064-74. [PMID: 16473539 DOI: 10.1016/j.micinf.2005.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/27/2005] [Accepted: 11/02/2005] [Indexed: 11/25/2022]
Abstract
Id transcription factors control proliferation, differentiation and apoptosis by inhibiting the DNA binding of basic helix-loop-helix transcription factors. Increased expression of Id proteins promotes proliferation, inhibits differentiation, and is associated with intestinal tumorigenesis. We aimed to determine how Helicobacter pylori may alter the expression of Id proteins by gastric epithelial cells: it was hypothesised that H. pylori, a known carcinogen, would result in increased expression of one or more Id family members. In vitro and in vivo models of infection were employed, including treatment of AGS gastric epithelial cells with wild-type H. pylori strains, 60190 and SS1, and Mongolian gerbils infected with H. pylori SS1. A small cohort of human gastric mucosal biopsies was also examined. Treatment of AGS cells with H. pylori resulted in down-regulation of Id1 and Id3. Unexpectedly, expression of the main target of Id proteins, the basic helix-loop-helix transcription factor E2A, was also suppressed, with an associated decrease in E-box binding activity. In contrast, H. pylori induced the expression of the CDK inhibitor p21(WAF-1/cip1), and the homeobox transcription factor, Cdx2, an early marker of intestinal metaplasia of the stomach epithelium. Gastric epithelium from H. pylori-infected gerbils demonstrated similar changes, with decreased Id2, Id3 and E2A, and elevated p21(WAF-1/cip1) expression. In human gastric epithelium also, H. pylori infection was associated with reduced Id and E2A expression. In conclusion, H. pylori alters the expression of Id proteins, in vitro and in vivo; it is hypothesised that these changes contribute to H. pylori-associated pathologies.
Collapse
Affiliation(s)
- Barbara Ada Manzo
- Research Centre for Gastroenterology, Institute of Cell and Molecular Sciences, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT,UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ito M, Tanaka S, Kamada T, Haruma K, Chayama K. Causal role of Helicobacter pylori infection and eradication therapy in gastric carcinogenesis. World J Gastroenterol 2006; 12:10-16. [PMID: 16440410 PMCID: PMC4077482 DOI: 10.3748/wjg.v12.i1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 06/22/2005] [Accepted: 06/22/2005] [Indexed: 02/06/2023] Open
Abstract
Many epidemiological reports indicate that Helicobacter pylori (H pylori) infection plays an important role in gastric carcinogenesis. Several genetic and epigenetic alterations contribute to the initiation, promotion, and progression of the cancer cells in a multi-step manner. H pylori is known to induce chronic inflammation in the gastric mucosa. Its products, including superoxides, participate in the DNA damage followed by initiation, and the inflammation-derived cytokines and growth factors contribute to the promotion of gastric carcinogenesis. By eradicating H pylori, gastric inflammation can be cured; the therapy diminishes the levels not only of inflammatory cell infiltration, but also atrophy/intestinal metaplasia in part. A randomized controlled trial revealed that the eradication therapy diminished the gastric cancer prevalence in cases without pre-cancerous conditions. In addition, recent epidemiological studies from Japanese groups demonstrated that the development of gastric cancer, especially of the intestinal type, was decreased by successful eradication therapy, although these were designed in a non-randomized manner. However, it should be mentioned that endoscopic detection is the only way to evaluate the degree of gastric carcinogenesis. We have reported that the endoscopic and histological morphologies could be modified by eradication therapy and it might contribute to the prevalence of gastric cancer development. Considering the biological nature of cancer cell proliferation, it is considered that a sufficiently long-term follow-up would be essential to discuss the anticancer effect of eradication therapy.
Collapse
|
19
|
Bohgaki T, Amasaki Y, Nishimura N, Bohgaki M, Yamashita Y, Nishio M, Sawada KI, Jodo S, Atsumi T, Koike T. Up regulated expression of tumour necrosis factor {alpha} converting enzyme in peripheral monocytes of patients with early systemic sclerosis. Ann Rheum Dis 2005; 64:1165-73. [PMID: 16014681 PMCID: PMC1755608 DOI: 10.1136/ard.2004.030338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is accompanied by abnormalities in humoral and cellular immune systems. OBJECTIVE To determine the genes specifically expressed in the immune system in SSc by analysis of the gene expression profile of peripheral blood mononuclear cells (PBMC) from patients with SSc, including those treated with haematopoietic stem cell transplantation (HSCT). Additionally, to investigate the clinical significance of the up regulation of tumour necrosis factor alpha (TNFalpha) converting enzyme (TACE). METHODS PBMC from patients with SSc (n = 23) and other autoimmune diseases (systemic lupus erythematosus (SLE, n = 16), rheumatoid arthritis (RA, n = 29)), and from disease-free controls (n = 36) were examined. Complementary DNA arrays were used to evaluate gene expression of PBMC, in combination with real time quantitative polymerase chain reactions. TACE protein expression in PBMC was examined by fluorescence activated cell sorter (FACS). RESULTS In patients with SSc 118 genes were down regulated after HSCT. Subsequent comparative analysis of SSc without HSCT and healthy controls indicated SSc-specific up regulation for three genes: monocyte chemoattractant protein-3 (p = 0.0015), macrophage inflammatory protein 3alpha (p = 0.0339), and TACE (p = 0.0251). In the FACS analysis, TACE protein was mainly expressed on CD14(+) monocytes both in patients with SSc and controls. TACE expression on CD14(+) cells was significantly increased in patients with early SSc (p = 0.0096), but not in those with chronic SSc, SLE, or RA. TACE protein levels in SSc monocytes correlated with the intracellular CD68 levels (p = 0.0016). CONCLUSIONS Up regulation of TACE expression was a unique profile in early SSc, and may affect the function of TNFalpha and other immunoregulatory molecules.
Collapse
Affiliation(s)
- T Bohgaki
- Department of Medicine II, Hokkaido University Graduate School of Medicine, Address: N-15 W-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu MS, Chen CJ, Lin JT. Host-Environment Interactions: Their Impact on Progression from Gastric Inflammation to Carcinogenesis and on Development of New Approaches to Prevent and Treat Gastric Cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:1878-82. [PMID: 16103430 DOI: 10.1158/1055-9965.epi-04-0792] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Revelation of the connection between Helicobacter pylori infection and gastric adenocarcinoma has prompted new investigations pertaining to its basic and clinical aspects. H. pylori-induced persistent and uncontrolled gastric inflammation nearly always precedes the development of cancer and is instrumental in initiating a multistep process leading to carcinogenesis. Despite initial optimism about the potential of combination anti-H. pylori therapy to ultimately eradicate gastric adenocarcinoma, recent investigations suggest its use should be targeted and tailored to a selected patient group considering the multifaceted role of H. pylori in disease and the disease heterogeneity of gastric adenocarcinoma. The clinical spectrum of H. pylori infection ranges from asymptomatic gastritis and peptic ulcer to gastric malignancies. The occurrence of one versus another is the result of differences in the magnitude of gastritis, and the current disease paradigm suggests gastric inflammation is common to all H. pylori-associated gastroduodenal diseases. Therefore, the host inflammatory responses to environmental triggers, rather than to bacteria or environmental factors per se, would dictate the variable outcomes of H. pylori infection. Putative factors that are expected to play an important role in stimulating inflammatory pathways and modulating the cross-talk between host and environment are age at the time of infection, environmental cofactors, H. pylori virulence, and host genetics. Elucidation of the intimate relationship between host-environment interaction and gastric inflammation, although currently a formidable task, is essential in the development of new prevention and treatment strategies. Such knowledge might provide clues that allow more accurate prediction of variable outcomes of gastric inflammation and appropriate adjustment of treatment strategies, and might open up novel areas for studying gastric carcinogenesis. The evolving new technologies, such as microarray, proteomic, and functional genomic analyses, promise to shed new light on the immense complexity of the presumed host-environment interactions and will reveal more useful markers for the diagnosis and prognosis of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S. Road, Taipei, Taiwan
| | | | | |
Collapse
|
21
|
Basak C, Pathak SK, Bhattacharyya A, Pathak S, Basu J, Kundu M. The secreted peptidyl prolyl cis,trans-isomerase HP0175 of Helicobacter pylori induces apoptosis of gastric epithelial cells in a TLR4- and apoptosis signal-regulating kinase 1-dependent manner. THE JOURNAL OF IMMUNOLOGY 2005; 174:5672-80. [PMID: 15843568 DOI: 10.4049/jimmunol.174.9.5672] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Apoptosis contributes to the pathology of gastric epithelial cell damage that characterizes Helicobacter pylori infection. The secreted peptidyl prolyl cis, trans-isomerase of H. pylori, HP0175 executed apoptosis of the gastric epithelial cell line AGS in a dose- and time-dependent manner. The effect of HP0175 was confirmed by generating an isogenic mutant of H. pylori disrupted in the HP0175 gene. The apoptosis-inducing ability of this mutant was impaired compared with that of the wild type. The effect of HP0175 was mediated through TLR4. Preincubation of the gastric epithelial cell line AGS with anti-TLR4 mAb inhibited apoptosis induced by HP0175. Downstream of TLR4, apoptosis signal-regulating kinase 1 activated MAPK p38, leading to the caspase 8-dependent cleavage of Bid, its translocation to the mitochondria, mitochondrial pore formation, cytochrome c release, and activation of caspases 9 and 3. We show for the first time that a secreted bacterial Ag with peptidyl prolyl cis,trans-isomerase activity signals through TLR4, and that this Ag executes gastric epithelial cell apoptosis through a signaling pathway in which TLR4 and apoptosis signal-regulating kinase 1 are central players.
Collapse
|
22
|
Mannick EE, Schurr JR, Zapata A, Lentz JJ, Gastanaduy M, Cote RL, Delgado A, Correa P, Correa H. Gene expression in gastric biopsies from patients infected with Helicobacter pylori. Scand J Gastroenterol 2004; 39:1192-200. [PMID: 15742995 DOI: 10.1080/00365520410003588] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Helicobacter pylori infection has protean effects on gene expression in the host gastric mucosa, which have been investigated by gene chip analysis in vitro. In this study the effects of H. pylori infection on host gene expression in the gastric antral mucosa in patients were examined. METHODS One gastric antral biopsy was obtained from a total of 18 untreated patients undergoing routine endoscopic evaluation of chronic abdominal complaints. Nine patients had histologic evidence of H. pylori infection and 9 age- and sex-matched patients had no histologic evidence of H. pylori infection. A microarray analysis was performed using a gene chip containing 35,000 human expressed sequence tags on RNA extracted from endoscopic, gastric antral biopsies, and average gene expression among infected and uninfected patients was compared. RESULTS Underexpressed genes in infected patients' mucosa included gastric intrinsic factor and several metallothionein isoforms. Overexpressed genes in infected patients' mucosa comprised MHC Class II molecules, immunoglobulin and B-cell activation genes, as well as genes known to induce apoptosis. Changes in expression were confirmed for a subset of genes by SYBR green real-time PCR. CONCLUSIONS Microarray analysis of antral biopsies from patients with and without H. pylori infection revealed differential expression of metal regulatory, immunity and inflammation-related genes.
Collapse
Affiliation(s)
- E E Mannick
- Louisiana State University, Stanley S Scott Cancer and Depts of Pathology and Genetics, New Orlands, Louisiana 70112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cao X, Tsukamoto T, Nozaki K, Shimizu N, Mizoshita T, Kumagai T, Kaminishi M, Tatematsu M. Eradication of Helicobacter pylori induces apoptosis and inhibits proliferation of heterotopic proliferative glands in infected Mongolian gerbils. Cancer Sci 2004; 95:872-7. [PMID: 15546504 PMCID: PMC11158429 DOI: 10.1111/j.1349-7006.2004.tb02196.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/18/2004] [Accepted: 09/22/2004] [Indexed: 01/24/2023] Open
Abstract
Mongolian gerbils infected with Helicobacter pylori (H. pylori ) develop heterotopic proliferative glands (HPGs) in the glandular stomach submucosa. To investigate the effects of H. pylori eradication on cell turnover in HPGs, three antibiotics, lansoprazole, amoxicillin and clarithromycin, were administered at 50 or 75 weeks after inoculation of H. pylori, and the stomachs were excised for histological examination at 1, 2, 4, 8 or 25 weeks thereafter. The HPGs were classified into gastric type (G-type) and others (GI + I-type), which included both pure intestinal (I-type) and gastric-and-intestinal mixed type (GI-type). Apoptosis and cell proliferation were evaluated by means of TUNEL assay and BrdU labeling, respectively. At 8 weeks post-eradication, apoptotic indices were significantly increased in the eradication group (G-type: 2.5%; GI + I-type: 7.2%) compared to the non-eradication group (G-type: 0.6%; GI + I-type: 2.1%: P < 0.01), while BrdU labeling indices were significantly decreased (G-type: 1.9%; GI + I-type: 6.8% as compared with 4.3% and 13.2%, respectively, P < 0.01 for both). At 25 weeks, the apoptotic indices were similarly higher [G-type: 0.4 (eradication group) vs. 0.2% (non-eradication group); GI + I-type: 5.8 vs. 1.1%, both P < 0.01], and the BrdU labeling indices (G-type: 0.8 vs. 2.2%, P < 0.01; GI + I-type: 5.1 vs. 11%, P < 0.05) continued to be lower in HPGs. Furthermore, there were highly significant reductions in the areas of HPGs at 8 and 25 weeks post-eradication. These findings demonstrated that eradication results in apoptosis and reduction of proliferation of HPGs in H. pylori-infected gerbils, these lesions thus being apparently reversible through regulation of cell kinetics.
Collapse
Affiliation(s)
- Xueyuan Cao
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Aichi 464-8681
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Huff JL, Hansen LM, Solnick JV. Gastric transcription profile of Helicobacter pylori infection in the rhesus macaque. Infect Immun 2004; 72:5216-26. [PMID: 15322016 PMCID: PMC517414 DOI: 10.1128/iai.72.9.5216-5226.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection with Helicobacter pylori is usually asymptomatic but sometimes progresses to peptic ulcer disease or gastric adenocarcinoma. The development of disease involves both host and bacterial factors. In order to better understand host factors in pathogenesis, we studied the gastric transcription profile of H. pylori infection in the rhesus macaque by using DNA microarrays. Significant changes were found in the expression of genes important for innate immunity, chemokines and cytokines, cell growth and differentiation, apoptosis, structural proteins, and signal transduction and transcription factors. This broad transcription profile demonstrated expected up-regulation of cell structural elements and the host inflammatory and immune response, as well as the novel finding of down-regulation of heat shock proteins. These results provide a unique view of acute H. pylori infection in a relevant animal model system and will direct future studies regarding the host response to H. pylori infection.
Collapse
Affiliation(s)
- Jennifer L Huff
- Department of Medical Microbiology and Immunology, Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
25
|
Ruzsovics A, Molnar B, Tulassay Z. Review article: Deoxyribonucleic acid-based diagnostic techniques to detect Helicobacter pylori. Aliment Pharmacol Ther 2004; 19:1137-1146. [PMID: 15153166 DOI: 10.1111/j.1365-2036.2004.01934.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is an important cause of many gastrointestinal disorders, ranging from chronic gastritis to gastric lymphoma and adenocarcinoma. The deoxyribonucleic acid-based assays have the potential to be a powerful diagnostic tool given its ability to specifically identify H. pylori deoxyribonucleic acid. Markers used to include general H. pylori structures and pathogenetic factors like ureaseA, cagA, vacA, iceA. Deoxyribonucleic acid or bacterial ribonucleic acid for polymerase chain reaction assays can be collected from gastric biopsy, gastric juice, stool, buccal specimens. Polymerase chain reaction can yield quantitative and genotyping results with sensitivity and specificity that approaches 100%. A clear trend in the direction of the determination of quantitative H. pylori infection by real-time polymerase chain reaction can be observed. Fluorescent in situ hybridization is suggested for routine antibiotic resistance determination. To identify the organism, deoxyribonucleic acid structure and its virulence factors may be feasible by using oligonucleotide microarray specifically recognizing and discriminating bacterial deoxyribonucleic acid and various virulence factors. Deoxyribonucleic acid-based H. pylori diagnosis yields higher sensitivity, however, specificity requires sophisticated labour environment and associated with higher costs.
Collapse
Affiliation(s)
- A Ruzsovics
- Semmelweis University, Faculty of Medicine, Second Department of Medicine Budapest, Budapest, Hungary
| | | | | |
Collapse
|
26
|
Bryant PA, Venter D, Robins-Browne R, Curtis N. Chips with everything: DNA microarrays in infectious diseases. THE LANCET. INFECTIOUS DISEASES 2004; 4:100-11. [PMID: 14871635 DOI: 10.1016/s1473-3099(04)00930-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two developments are set to revolutionise research in and clinical management of infectious diseases. First, the completion of the human genome project together with the sequencing of many pathogen genomes, and second, the development of microarray technology. This review explains the principles underlying DNA microarrays and highlights the uses to which they are being put to investigate the molecular basis of infectious diseases. Pathogen studies enable identification of both known and novel organisms, understanding of genetic evolution, and investigation of determinants of pathogenicity. Host studies show the complexities of development and activation of both innate and adaptive immunity. Host-pathogen studies allow global analysis of gene expression during pathogenesis. Microarray technology will accelerate our understanding of the complex genetic processes underlying the interaction between microorganisms and the host, with consequent improvements in the diagnosis, treatment, and prevention of infectious diseases.
Collapse
Affiliation(s)
- Penelope A Bryant
- Department of Paediatrics, University of Melbourne, Murdoch Children's Research Institute, Victoria, Australia
| | | | | | | |
Collapse
|
27
|
Varro A, Noble PJM, Pritchard DM, Kennedy S, Hart CA, Dimaline R, Dockray GJ. Helicobacter pyloriInduces Plasminogen Activator Inhibitor 2 in Gastric Epithelial Cells through Nuclear Factor-κB and RhoA. Cancer Res 2004; 64:1695-702. [PMID: 14996729 DOI: 10.1158/0008-5472.can-03-2399] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The gastric pathogen Helicobacter pylori is associated with a progression to gastric cancer. The specific targets of H. pylori that might influence this progression are still unclear. Previous studies indicated that the gastric hormone gastrin, which may be increased in H. pylori infection, stimulates gastric expression of plasminogen activator inhibitor (PAI)-2, which is an inhibitor of the urokinase plasminogen activator and has previously been shown to be increased in gastric adenocarcinoma. Here, we report that H. pylori also increases PAI-2 expression. In gastric biopsies of H. pylori-positive subjects there was increased PAI-2, including subjects with plasma gastrin concentrations in the normal range. PAI-2 was expressed mainly in chief and mucous cells. In a gastric cancer cell line (AGS), H. pylori increased PAI-2 expression, which was associated with inhibition of H. pylori-stimulated cell invasion and apoptosis. The induction of PAI-2 by H. pylori was mediated by release of interleukin-8 and activation of cyclooxygenase-2, and interestingly, gastrin stimulated PAI-2 expression by similar paracrine pathways. The activation of NFkappaB was required for interleukin-8 and cyclooxygenase-2 activation but did not occur in cells responding to these paracrine mediators. The data suggest that induction of PAI-2 is a specific target in H. pylori infection, mediated at least partly by paracrine factors; induction of PAI-2 inhibits cell invasion and apoptosis and is a candidate for influencing the progression to gastric cancer.
Collapse
Affiliation(s)
- Andrea Varro
- Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Normark S, Nilsson C, Normark BH, Hornef MW. Persistent infection with Helicobacter pylori and the development of gastric cancer. Adv Cancer Res 2004; 90:63-89. [PMID: 14710947 DOI: 10.1016/s0065-230x(03)90002-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastric malignancies have been closely linked to infection of the gastric mucosa with Helicobacter pylori, but the individual factors involved in the multistage process of tumor development are still poorly understood. H. pylori evades the host defense system and causes persistent infection and chronic inflammation. Immune activation leads to DNA damage by the release of oxygen and nitrogen radicals. Ongoing tissue repair mechanisms and the secretion of cytokines and growth factors, as well as bacterial effector molecules, cause disturbances in the balance between epithelial cell proliferation and apoptosis, promote the accumulation of potential oncogenic mutations, and support neovascularization and tumor growth. In addition, H. pylori might hamper the development of an efficient antitumor immunity and provoke immune-mediated pathology. This review summarizes the recent progress in the understanding of the intimate bacteria-host relationship and the mechanisms by which H. pylori may promote the process of tumor development.
Collapse
Affiliation(s)
- Staffan Normark
- Microbiology and Tumor Biology Center and Smittskyddsinstitutet, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
29
|
Jüllig M, Stott NS. Mitochondrial localization of Smad5 in a human chondrogenic cell line. Biochem Biophys Res Commun 2003; 307:108-13. [PMID: 12849988 DOI: 10.1016/s0006-291x(03)01139-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily and regulate the formation of cartilage and bone tissues as well as other key events during development. TGF-beta superfamily signaling is mediated intracellularly by Smad proteins, some of which can translocate into the cell nucleus and influence gene expression. Although much progress has been made in understanding how TGF-beta superfamily signaling regulates expression of target genes, little formal proof has been presented regarding the intracellular distribution of the Smad proteins before their entry into the nucleus. In the literature, non-nuclear Smad proteins are generally referred to as cytoplasmic. Using confocal microscopy, we here show for the first time that immunofluorescent labeling of Smad5, one of the Smad proteins associated with BMP signaling, colocalizes with the mitochondrion-specific probe MitoTracker, demonstrating a mitochondrial distribution of Smad5 in non-stimulated chondroprogenitor cells.
Collapse
Affiliation(s)
- Mia Jüllig
- Department of Surgery, Faculty of Medicine and Health Science, University of Auckland, Room 3421, 85 Park Road, Grafton, Auckland, New Zealand
| | | |
Collapse
|