1
|
Li X, Ma Y, Wu J, Ni M, Chen A, Zhou Y, Dai W, Chen Z, Jiang R, Ling Y, Yao Q, Chen W. Thiol oxidative stress-dependent degradation of transglutaminase2 via protein S-glutathionylation sensitizes 5-fluorouracil therapy in 5-fluorouracil-resistant colorectal cancer cells. Drug Resist Updat 2023; 67:100930. [PMID: 36736043 DOI: 10.1016/j.drup.2023.100930] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
5-Fluorouracil (5-Fu) is a first-line drug for colorectal cancer (CRC) therapy. However, the development of 5-Fu resistance limits its chemotherapeutic effectiveness and often leads to poor prognoses of CRC. Transglutaminase 2 (TGM2), a member of the transglutaminase family, is considered to be associated with chemoresistance through apoptotic prevention in various cancers including CRC. TGM2 was found to be overexpressed in two 5-Fu-resistant CRC cell lines and down-regulated by increased thiol oxidative stress induced by inhibition of glutathione reductase (GR). The present study aimed to explore the role of TGM2 in 5-Fu-resistant CRC and the mechanism of action by which the elevated thiol oxidative stress down-regulates TGM2 protein level. The results revealed that 5-Fu-resistance induced by overexpression of TGM2 in CRC cells was reversed through up-regulation of thiol oxidative stress. Knockdown of TGM2 increased the chemosensitivity of CRC cells to 5-Fu. Thiol oxidative stress potentially enhanced the therapeutic effect of 5-Fu in the resistant CRC cells by promotion of 5-Fu-induced apoptosis through down-regulation of TGM2. The elevated thiol oxidative stress increased the S-glutathionylation of TGM2 and led to proteasomal degradation of TGM2. Furthermore, Cys193 was identified as the S-glutathionylation site in TGM2, and its mutation resulted in thiol oxidative stress-mediated CRC cell apoptotic resistance. TGM2-induced EMT was also suppressed by the elevated thiol oxidative stress. A xenograft tumor model confirmed the effect of thiol oxidative stress in the reversal of 5-Fu resistance in CRC cells in vivo. TGM2 protein expression level was found to be significantly higher in human CRC specimens than in non-cancerous colorectal tissues. Taken together, the present data suggest an important role of TGM2 in 5-Fu resistance in CRC cells. Up-regulation of thiol oxidative stress could be a potential therapeutic approach for treating 5-Fu-resistant CRC and TGM2 may serve as a potential therapeutic target of thiol oxidative stress.
Collapse
Affiliation(s)
- Xia Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine on Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yan Ma
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Junzhou Wu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Aiping Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yun Zhou
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wumin Dai
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhongjian Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ruibin Jiang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yutian Ling
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qinghua Yao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine on Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wei Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine on Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
2
|
Maeda A, Nishino T, Matsunaga R, Yokoyama A, Suga H, Yagi T, Konishi H. Transglutaminase-mediated cross-linking of WDR54 regulates EGF receptor-signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:285-295. [DOI: 10.1016/j.bbamcr.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022]
|
3
|
Chihong Z, Yutian L, Danying W, Ruibin J, Huaying S, Linhui G, Jianguo F. Prognostic value of Transglutaminase 2 in non-small cell lung cancer patients. Oncotarget 2018; 8:45577-45584. [PMID: 28715877 PMCID: PMC5542209 DOI: 10.18632/oncotarget.17374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
Transglutaminase 2 (TG2) plays important roles in cell survival and cancer progression. In this study, we examined TG2 expression in specimen of 194 patients diagnosed with non-small cell lung cancer (NSCLC), and found that the TG2 gene expression was significantly higher in lung cancer tissues as compared to paired incisal marginal tissues or normal tissues. Our data revealed that patients with lower level of TG2 expression detected in cancer tissues had longer disease free survival and overall survival as compared to the patients with higher TG2 expression. We also found that TG2 expression level correlated to NSCLC recurrence. These results suggest a potential prognosis impact of TG2 for NSCLC patients.
Collapse
Affiliation(s)
- Zhu Chihong
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Ling Yutian
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Wan Danying
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jiang Ruibin
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Sheng Huaying
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Gu Linhui
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.,Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China
| | - Feng Jianguo
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.,Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Ha SH, Kang SK, Choi H, Kwak CH, Abekura F, Park JY, Kwon KM, Chang HW, Lee YC, Ha KT, Hou BK, Chung TW, Kim CH. Induction of GD3/α1-adrenergic receptor/transglutaminase 2-mediated erythroid differentiation in chronic myelogenous leukemic K562 cells. Oncotarget 2017; 8:72205-72219. [PMID: 29069780 PMCID: PMC5641123 DOI: 10.18632/oncotarget.20080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
The disialic acid-containing glycosphingolipid GD3 recruited membrane transglutaminase 2 (TG2) as a signaling molecule for erythroid differentiation in human chronic myelogenous leukemia (CML) K562 cells. The α1-adrenergic receptor (α1-AR)/TG2-mediated signaling pathway regulated GD3 functions, including gene expression and production, to differentiate CML K562 cells into erythroid lineage cells. Epinephrine, an AR agonist, increased membrane recruitment as well as GTP-photoaffinity of TG2, inducing GD3 synthase gene expression. Epinephrine activated PI3K/Akt signaling and GTPase downstream of TG2 activated Akt. The coupling of TG2 and GD3 production was specifically suppressed by prazosin (α1-AR antagonist), but not by propranolol (β-AR antagonist) or rauwolscine (α2-AR antagonist), indicating α1-AR specificity. Small interfering RNA (siRNA) experiment results indicated that the α1-AR/TG2-mediated signaling pathway activated PKCs α and δ to induce GD3 synthase gene expression. Transcription factors CREB, AP-1, and NF-κB regulated GD3 synthase gene expression during α1-AR-induced differentiation in CML K562 cells. In addition, GD3 synthase gene expression was upregulated in TG2-transfected cells via α1-AR with expression of erythroid lineage markers and benzidine-positive staining. α1-AR/TG2 signaling pathway-directed GD3 production is a crucial step in erythroid differentiation of K562 cells and GD3 interacts with α1-AR/TG2, inducing GD3/α1-AR/TG2-mediated erythroid differentiation. These results suggest that GD3, which acts as a membrane mediator of erythroid differentiation in CML cells, provides a therapeutic avenue for leukemia treatment.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Sung-Koo Kang
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
- Research Institute, Davinch-K Co., Ltd., Geumcheon-gu, Seoul, Korea
| | | | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Bo Kyeng Hou
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
5
|
Agnihotri N, Mehta K. Transglutaminase-2: evolution from pedestrian protein to a promising therapeutic target. Amino Acids 2016; 49:425-439. [PMID: 27562794 DOI: 10.1007/s00726-016-2320-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
The ability of cancer cells to metastasize represents the most devastating feature of cancer. Currently, there are no specific biomarkers or therapeutic targets that can be used to predict the risk or to treat metastatic cancer. Many recent reports have demonstrated elevated expression of transglutaminase 2 (TG2) in multiple drug-resistant and metastatic cancer cells. TG2 is a multifunctional protein mostly known for catalyzing Ca2+-dependent -acyl transferase reaction to form protein crosslinks. Besides this transamidase activity, many Ca2+-independent and non-enzymatic activities of TG2 have been identified. Both, the enzymatic and non-enzymatic activities of TG2 have been implicated in diverse pathophysiological processes such as wound healing, cell growth, cell survival, extracellular matrix modification, apoptosis, and autophagy. Tumors have been frequently referred to as 'wounds that never heal'. Based on the observation that TG2 plays an important role in wound healing and inflammation is known to facilitate cancer growth and progression, we discuss the evidence that TG2 can reprogram inflammatory signaling networks that play fundamental roles in cancer progression. TG2-regulated signaling bestows on cancer cells the ability to proliferate, to resist cell death, to invade, to reprogram glucose metabolism and to metastasize, the attributes that are considered important hallmarks of cancer. Therefore, inhibiting TG2 may offer a novel therapeutic approach for managing and treatment of metastatic cancer. Strategies to inhibit TG2-regulated pathways will also be discussed.
Collapse
Affiliation(s)
- Navneet Agnihotri
- Department of Experimental Therapeutics, Unit 1950, University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA. .,Department of Biochemistry, Panjab University, Sector 14, Chandigarh, 110 014, India.
| | - Kapil Mehta
- Department of Experimental Therapeutics, Unit 1950, University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA. .,MolQ Personalized Medicine, 4505 Maple Street, Bellaire, TX, 77401, USA.
| |
Collapse
|
6
|
Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun 2016; 7:11958. [PMID: 27302045 PMCID: PMC4912619 DOI: 10.1038/ncomms11958] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
Communication between the inner cell mass (ICM) and the trophoblast layer of the blastocyst is known to occur, but its functional consequences on early developmental events is unclear. Here we demonstrate that embryonic stem (ES) cells derived from the ICM generate and shed microvesicles (MVs), a major class of extracellular vesicles (EVs), which influence trophoblast behaviour during the implantation process. The MV cargo proteins laminin and fibronectin interact with integrins along the surfaces of the trophoblasts, triggering the activation of two signalling kinases, JNK and FAK, and stimulating trophoblast migration. We further show that injecting MVs isolated from ES cells into blastocysts results in an increase in their implantation efficiency. Thus, these findings highlight a unique mechanism by which ES cells communicate with trophoblasts within the blastocyst to increase their ability to migrate into the uterus, thereby promoting one of the earliest and most important steps during pregnancy. It is unclear how embryonic stem cells (ESC) communicate with surrounding cells during implantation. Here, the authors show that microvesicles (MV) are shed from ESCs, activating integrin and JNK/FAK kinases in trophoblasts, stimulating migration in vitro, and injecting MVs enhances blastocyst implantation.
Collapse
|
7
|
Katt WP, Antonyak MA, Cerione RA. Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol Pharm 2014; 12:46-55. [PMID: 25426679 PMCID: PMC4291776 DOI: 10.1021/mp500405h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most cancer cells undergo characteristic metabolic changes that are commonly referred to as the Warburg effect, with one of the hallmarks being a dramatic increase in the rate of lactic acid fermentation. This leads to the production of protons, which in turn acidifies the microenvironment surrounding tumors. Cancer cells have acquired resistance to acid toxicity, allowing them to survive and grow under these detrimental conditions. Kidney type glutaminase (GLS1), which is responsible for the conversion of glutamine to glutamate, produces ammonia as part of its catalytic activities and has been shown to modulate cellular acidity. In this study, we show that tissue, or type 2, transglutaminase (TG2), a γ-glutamyl transferase that is highly expressed in metastatic cancers and produces ammonia as a byproduct of its catalytic activity, is up-regulated by decreases in cellular pH and helps protect cells from acid-induced cell death. Since both TG2 and GLS1 can similarly function to protect cancer cells, we then proceeded to demonstrate that treatment of a variety of cancer cell types with inhibitors of each of these proteins results in synthetic lethality. The combination doses of the inhibitors induce cell death, while individual treatment with each compound shows little or no ability to kill cells. These results suggest that combination drug treatments that simultaneously target TG2 and GLS1 might provide an effective strategy for killing cancer cells.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine and Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-6401, United States
| | | | | |
Collapse
|
8
|
Olsen KC, Epa AP, Kulkarni AA, Kottmann RM, McCarthy CE, Johnson GV, Thatcher TH, Phipps RP, Sime PJ. Inhibition of transglutaminase 2, a novel target for pulmonary fibrosis, by two small electrophilic molecules. Am J Respir Cell Mol Biol 2014; 50:737-47. [PMID: 24175906 DOI: 10.1165/rcmb.2013-0092oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrotic destruction of normal lung architecture. Due to a lack of effective treatment options, new treatment approaches are needed. We previously identified transglutaminase (TG)2, a multifunctional protein expressed by human lung fibroblasts (HLFs), as a positive driver of fibrosis. TG2 catalyzes crosslinking of extracellular matrix proteins, enhances cell binding to fibronectin and integrin, and promotes fibronectin expression. We investigated whether the small electrophilic molecules 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2) inhibit the expression and profibrotic functions of TG2. CDDO and 15d-PGJ2 reduced expression of TG2 mRNA and protein in primary HLFs from control donors and donors with IPF. CDDO and 15d-PGJ2 also decreased the in vitro profibrotic effector functions of HLFs including collagen gel contraction and cell migration. The decrease in TG2 expression did not occur through activation of the peroxisome proliferator activated receptor γ or generation of reactive oxidative species. CDDO and 15d-PGJ2 inhibited the extracellular signal-regulated kinase pathway, resulting in the suppression of TG2 expression. This is the first study to show that small electrophilic compounds inhibit the expression and profibrotic effector functions of TG2, a key promoter of fibrosis. These studies identify new and important antifibrotic activities of these two small molecules, which could lead to new treatments for fibrotic lung disease.
Collapse
|
9
|
Yen JH, Yang DJ, Chen MC, Yi-Ying W, Hsieh YF, Cheng YM, Huang WN, Szondy Z, Tsay GJ. Daidzein enhances efferocytosis via transglutaminase 2 and augmentation of Rac1 activity. Mol Immunol 2014; 60:135-42. [PMID: 24859791 DOI: 10.1016/j.molimm.2014.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/14/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
Clearance of apoptotic cells, termed "efferocytosis", is the mechanism required to prevent secondary necrosis and release of proinflammatory cytokines. Defective efferocytosis is cumulatively regarded as one of mechanisms in the development of autoimmune and chronic inflammatory diseases. Our previous finding showed that ethanolic extract from Glycine tomentella Hayata (GTH) can enhance mouse macrophage RAW264.7 efferocytosis (clearance of apoptotic cells). We have demonstrated that the major components of GTH are daidzein, catechin, epicatechin and naringin. Here, we explore the potential of each component in modulating efferocytic capability. For this, RAW264.7 cells were cultured with CFDA-stained apoptotic cells and assayed by flow cytometry. We found that daidzein is the main component of GTH, and it can enhance RAW264.7 efferocytosis dose-dependently. Moreover, the enhancive effect of daidzein on macrophage efferocytic capability is accompanied by increased transglutaminase 2 (TG2) at both mRNA and protein levels. TG2 knockdown attenuated daidzein increased macrophage efferocytic capability. After treatment with daidzein, increased phosphorylation was observed in Erk, but not in p38 and JNK. Finally, we report that after daidzein treatment, Rac1 activity was markedly increased and the mitochondrial membrane potential was decreased, which may contribute to efferocytosis. Taken together, these data suggest that enhancement of macrophage efferocytic capability by daidzein treatment was mainly through up-regulation of TG2 expression and Rac1 activity. Daidzein may have the therapeutical potential in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jia-Hau Yen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Deng-Jye Yang
- School of Health Diet and Industry Management, Chung Shan Medical University, Taichung, Taiwan
| | | | - Wu Yi-Ying
- Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, Taichung, Taiwan
| | - Yu-Fan Hsieh
- Institute of Microbiology and Immunology, Taiwan
| | | | - Wen-Nan Huang
- Department of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taiwan
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Apoptosis and Genomics Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Gregory J Tsay
- Institute of Microbiology and Immunology, Taiwan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
10
|
Takeuchi H, Nakatsuji N, Suemori H. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture. Sci Rep 2014; 4:4488. [PMID: 24671046 PMCID: PMC3967149 DOI: 10.1038/srep04488] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/10/2014] [Indexed: 12/11/2022] Open
Abstract
Insulin-producing cells (IPCs) derived from human pluripotent stem cells (hPSCs) may be useful in cell therapy and drug discovery for diabetes. Here, we examined various growth factors and small molecules including those previously reported to develop a robust differentiation method for induction of mature IPCs from hPSCs. We established a protocol that induced PDX1-positive pancreatic progenitor cells at high efficiency, and further induced mature IPCs by treatment with forskolin, dexamethasone, Alk5 inhibitor II and nicotinamide in 3D culture. The cells that differentiated into INSULIN-positive and C-PEPTIDE-positive cells secreted insulin in response to glucose stimulation, indicating a functional IPC phenotype. We also found that this method was applicable to different types of hPSCs.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Embryonic Stem Cell Research, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Norio Nakatsuji
- 1] Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Ushinomiya-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan [2] Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirofumi Suemori
- Department of Embryonic Stem Cell Research, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
11
|
Boroughs LK, Antonyak MA, Cerione RA. A novel mechanism by which tissue transglutaminase activates signaling events that promote cell survival. J Biol Chem 2014; 289:10115-25. [PMID: 24569994 DOI: 10.1074/jbc.m113.464693] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue transglutaminase (tTG) functions as a GTPase and an acyl transferase that catalyzes the formation of protein cross-links. tTG expression is frequently up-regulated in human cancer, where it has been implicated in various aspects of cancer progression, including cell survival and chemo-resistance. However, the extent to which tTG cooperates with other proteins within the context of a cancer cell, versus its intrinsic ability to confer transformed characteristics to cells, is poorly understood. To address this question, we asked what effect the ectopic expression of tTG in a non-transformed cellular background would have on the behavior of the cells. Using NIH3T3 fibroblasts stably expressing a Myc-tagged form of tTG, we found that tTG strongly protected these cells from serum starvation-induced apoptosis and triggered the activation of the PI3-kinase/mTOR Complex 1 (mTORC1)/p70 S6-kinase pathway. We determined that tTG forms a complex with the non-receptor tyrosine kinase c-Src and PI3-kinase, and that treating cells with inhibitors to block tTG function (monodansylcadaverine; MDC) or c-Src kinase activity (PP2) disrupted the formation of this complex, and prevented tTG from activating the PI3-kinase pathway. Moreover, treatment of fibroblasts over-expressing tTG with PP2, or with inhibitors that inactivate components of the PI3-kinase pathway, including PI3-kinase (LY294002) and mTORC1 (rapamycin), ablated the tTG-promoted survival of the cells. These findings demonstrate that tTG has an intrinsic capability to stimulate cell survival through a novel mechanism that activates PI3-kinase signaling events, thus highlighting tTG as a potential target for the treatment of human cancer.
Collapse
Affiliation(s)
- Lindsey K Boroughs
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
12
|
Cai G, Serafini-Fracassini D, Del Duca S. Regulation of Pollen Tube Growth by Transglutaminase. PLANTS 2013; 2:87-106. [PMID: 27137368 PMCID: PMC4844290 DOI: 10.3390/plants2010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022]
Abstract
In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin). Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via Mattioli 4, Siena 53100, Italy.
| | - Donatella Serafini-Fracassini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, via Irnerio, Bologna 40126, Italy.
| | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, via Irnerio, Bologna 40126, Italy.
| |
Collapse
|
13
|
Cho SY, Jeong EM, Lee JH, Kim HJ, Lim J, Kim CW, Shin DM, Jeon JH, Choi K, Kim IG. Doxorubicin induces the persistent activation of intracellular transglutaminase 2 that protects from cell death. Mol Cells 2012; 33:235-41. [PMID: 22382681 PMCID: PMC3887707 DOI: 10.1007/s10059-012-2201-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/01/2012] [Accepted: 01/13/2012] [Indexed: 12/18/2022] Open
Abstract
The activation of transglutaminase 2 (TG2), an enzyme that catalyzes post-translational modifications of proteins, has been implicated in apoptosis, cell adhesion and inflammatory responses. We previously reported that intracellular TG2 is activated under oxidative stress conditions, such as ultraviolet irradiation, ischemia-reperfusion, and hypoxia. In this study, we examined the effect of genotoxic stress on the intracellular activity of TG2 using doxorubicin which generates reactive oxygen species that lead to double-strand breakage of DNA. We demonstrated that doxorubicin elicits the persistent activation of TG2. Doxorubicin-induced TG2 activity was suppressed by treatment with caffeine at the early phase, N-acetylcysteine at the mid-phase, and EGTA at the late phase. However, treatment with a blocking antibody against TGFβ or toll-like receptor 2 showed no effect on TG2 activity, indicating that at least three different signaling pathways may be involved in the process of TG2 activation. In addition, using MEF cells defective for TG2 and cells overexpressing an activesite mutant of TG2, we revealed that doxorubicin-induced cell death is inversely correlated with TG2 activity. Our findings indicate that the persistent activation of TG2 by doxorubicin contributes to cell survival, suggesting that the mechanism-based inhibition of TG2 may be a novel strategy to prevent drug-resistance in doxorubicin treatment.
Collapse
Affiliation(s)
- Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jisun Lim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Chai-Wan Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | | | | | | | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
14
|
Bliss SP, Navratil AM, Xie J, Miller A, Baccarini M, Roberson MS. ERK signaling, but not c-Raf, is required for gonadotropin-releasing hormone (GnRH)-induced regulation of Nur77 in pituitary gonadotropes. Endocrinology 2012; 153:700-11. [PMID: 22186412 PMCID: PMC3275385 DOI: 10.1210/en.2011-0247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of pituitary gonadotropes by hypothalamic GnRH leads to the rapid expression of several immediate early genes that play key roles in orchestrating the response of the gonadotrope to hypothalamic stimuli. Elucidation of the signaling mechanisms that couple the GnRH receptor to this immediate early gene repertoire is critical for understanding the molecular basis of GnRH action. Here we identify signaling mechanisms that underlie regulation of the orphan nuclear receptor Nur77 as a GnRH-responsive immediate early gene in αT3-1 cells and mouse gonadotropes in culture. Using a variety of approaches, we show that GnRH-induced transcriptional upregulation of Nur77 in αT3-1 cells is dependent on calcium, protein kinase C (PKC), and ERK signaling. Transcriptional activity of Nur77 within the gonadotrope is regulated posttranslationally by GnRH signaling via PKC but not ERK activity. Surprisingly, neither activation of the ERK pathway nor the transcriptional response of Nur77 to GnRH requires the activity of c-Raf kinase. In corroboration of these results, Nur77 responsiveness to GnRH was maintained in gonadotropes from mice with pituitary-targeted ablation of c-Raf kinase. In contrast, gonadotropes from mice with pituitary deficiency of ERK signaling failed to up-regulate Nur77 after GnRH stimulation. These results further clarify the role of ERK and PKC signaling in regulation of the GnRH-induced immediate early gene program as well as GnRH-induced transcription-stimulating activity of Nur77 in the gonadotrope and shed new light on the complex functional organization of this signaling pathway in the pituitary gonadotrope.
Collapse
Affiliation(s)
- Stuart P Bliss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
15
|
Budillon A, Carbone C, Di Gennaro E. Tissue transglutaminase: a new target to reverse cancer drug resistance. Amino Acids 2011; 44:63-72. [PMID: 22130737 PMCID: PMC3535412 DOI: 10.1007/s00726-011-1167-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/18/2011] [Indexed: 12/26/2022]
Abstract
Cancer resistance mechanisms, which result from intrinsic genetic alterations of tumor cells or acquired genetic and epigenetic changes, limit the long-lasting benefits of anti-cancer treatments. Tissue transglutaminase (TG2) has emerged as a putative gene involved in tumor cell drug resistance and evasion of apoptosis. Although some reports have indicated that TG2 can suppress tumor growth and enhance the growth inhibitory effects of anti-tumor agents, several studies have presented both pro-survival and anti-apoptotic roles for TG2 in malignant cells. Increased TG2 expression has been found in several tumors, where it was considered a potential negative prognostic marker, and it is often associated with advanced stages of disease, metastatic spread and drug resistance. TG2 mediates drug resistance through the activation of survival pathways and the inhibition of apoptosis, but also by regulating extracellular matrix (ECM) formation, the epithelial-to-mesenchymal transition (EMT) or autophagy. Because TG2 knockdown or inhibition of TG2 enzymatic activity may reverse drug resistance and sensitize cancer cells to drug-induced apoptosis, many small molecules capable of blocking TG2 have recently been developed. Additional insight into the multifunctional nature of TG2 as well as translational studies concerning the correlation between TG2 expression, function or location and cancer behavior will aid in translating these findings into new therapeutic approaches for cancer patients.
Collapse
Affiliation(s)
- Alfredo Budillon
- Experimental Pharmacology Unit, Department of Research, Istituto Nazionale Tumori, National Cancer Institute G. Pascale, Via M. Semmola, 80131 Naples, Italy.
| | | | | |
Collapse
|
16
|
Piacentini M, D'Eletto M, Falasca L, Farrace MG, Rodolfo C. Transglutaminase 2 at the crossroads between cell death and survival. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:197-246. [PMID: 22220475 DOI: 10.1002/9781118105771.ch5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | |
Collapse
|
17
|
Li B, Cerione RA, Antonyak M. Tissue transglutaminase and its role in human cancer progression. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:247-93. [PMID: 22220476 DOI: 10.1002/9781118105771.ch6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bo Li
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
18
|
Transglutaminases and receptor tyrosine kinases. Amino Acids 2011; 44:19-24. [DOI: 10.1007/s00726-011-1113-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
|
19
|
Monitoring of transglutaminase 2 under different oxidative stress conditions. Amino Acids 2011; 42:1037-43. [PMID: 21805137 DOI: 10.1007/s00726-011-1018-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/05/2011] [Indexed: 10/17/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional calcium-dependent enzyme which catalyzes the post-translational protein crosslinking with formation of intra- or inter-molecular epsilon(gamma-glutamyl)lysine bonds or polyamine incorporation. The up-regulation and activation of TG2 have been reported in a variety of physiological events, including cell differentiation, signal transduction, apoptosis, and wound healing, as well as in cell response to stress evoked by different internal and external stimuli. Here we review TG2 role in cell response to redox state imbalance both under physiological and pathological conditions, such as neurodegenerative disorders, inflammation, autoimmune diseases and cataractogenesis, in which oxidative stress plays a pathogenetic role and also accelerates disease progression. The increase in TG activity together with mitochondrial impairment and collapse of antioxidant enzymatic cell defences have been reported to be the prominent biochemical alterations becoming evident prior to neurodegeneration. Moreover, oxidative stress-induced TG2 pathway is involved in autophagy inhibition and aggresome formation, and TG2 has been suggested to function as a link between oxidative stress and inflammation by driving the decision as to whether a protein should undergo SUMO-mediated regulation or proteasomal degradation. Literature data suggest a strong association between oxidative stress and TG2 up-regulation, which in turn may result in cell survival or apoptosis, depending on cell type, kind of stressor, duration of insult, as well as TG2 intracellular localization and activity state. In particular, it may be suggested that TG2 plays a pro-survival role when the alteration of cell redox state homeostasis is not associated with intracellular calcium increase triggering TG2 transamidation activity.
Collapse
|
20
|
Cho SY, Lee JH, Bae HD, Jeong EM, Jang GY, Kim CW, Shin DM, Jeon JH, Kim IG. Transglutaminase 2 inhibits apoptosis induced by calcium- overload through down-regulation of Bax. Exp Mol Med 2011; 42:639-50. [PMID: 20676023 DOI: 10.3858/emm.2010.42.9.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An abrupt increase of intracellular Ca(2+) is observed in cells under hypoxic or oxidatively stressed conditions. The dysregulated increase of cytosolic Ca(2+) triggers apoptotic cell death through mitochondrial swelling and activation of Ca(2+)-dependent enzymes. Transglutaminase 2 (TG2) is a Ca(2+)-dependent enzyme that catalyzes transamidation reaction producing cross-linked and polyaminated proteins. TG2 activity is known to be involved in the apoptotic process. However, the pro-apoptotic role of TG2 is still controversial. In this study, we investigate the role of TG2 in apoptosis induced by Ca(2+)-overload. Overexpression of TG2 inhibited the A23187-induced apoptosis through suppression of caspase-3 and -9 activities, cytochrome c release into cytosol, and mitochondria membrane depolarization. Conversely, down-regulation of TG2 caused the increases of cell death, caspase-3 activity and cytochrome c in cytosol in response to Ca(2+)-overload. Western blot analysis of Bcl-2 family proteins showed that TG2 reduced the expression level of Bax protein. Moreover, overexpression of Bax abrogated the anti-apoptotic effect of TG2, indicating that TG2-mediated suppression of Bax is responsible for inhibiting cell death under Ca(2+)-overloaded conditions. Our findings revealed a novel anti-apoptotic pathway involving TG2, and suggested the induction of TG2 as a novel strategy for promoting cell survival in diseases such as ischemia and neurodegeneration.
Collapse
Affiliation(s)
- Sung-Yup Cho
- Department of Biochemistry and Molecular Biology/Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hölzel M, Huang S, Koster J, Øra I, Lakeman A, Caron H, Nijkamp W, Xie J, Callens T, Asgharzadeh S, Seeger RC, Messiaen L, Versteeg R, Bernards R. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 2010; 142:218-29. [PMID: 20655465 PMCID: PMC2913027 DOI: 10.1016/j.cell.2010.06.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/04/2010] [Accepted: 05/26/2010] [Indexed: 11/26/2022]
Abstract
Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.
Collapse
Affiliation(s)
- Michael Hölzel
- Divisions of Molecular Carcinogenesis, Molecular Genetics, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Sidong Huang
- Divisions of Molecular Carcinogenesis, Molecular Genetics, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Jan Koster
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Ingrid Øra
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Arjan Lakeman
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Huib Caron
- Dept of Pediatric Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Wouter Nijkamp
- Divisions of Molecular Carcinogenesis, Molecular Genetics, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Jing Xie
- Department of Genetics, Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tom Callens
- Department of Genetics, Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shahab Asgharzadeh
- Department of Pediatrics, Division of Hematology/Oncology and Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Robert C. Seeger
- Department of Pediatrics, Division of Hematology/Oncology and Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Ludwine Messiaen
- Department of Genetics, Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rogier Versteeg
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - René Bernards
- Divisions of Molecular Carcinogenesis, Molecular Genetics, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands telephone: +31 20 512 1952, fax: +31 20 512 1954
| |
Collapse
|
22
|
Park D, Choi SS, Ha KS. Transglutaminase 2: a multi-functional protein in multiple subcellular compartments. Amino Acids 2010; 39:619-31. [PMID: 20148342 DOI: 10.1007/s00726-010-0500-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/23/2010] [Indexed: 12/16/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that can function as a transglutaminase, G protein, kinase, protein disulfide isomerase, and as an adaptor protein. These multiple biochemical activities of TG2 account for, at least in part, its involvement in a wide variety of cellular processes encompassing differentiation, cell death, inflammation, cell migration, and wound healing. The individual biochemical activities of TG2 are regulated by several cellular factors, including calcium, nucleotides, and redox potential, which vary depending on its subcellular location. Thus, the microenvironments of the subcellular compartments to which TG2 localizes, such as the cytosol, plasma membrane, nucleus, mitochondria, or extracellular space, are important determinants to switch on or off various TG2 biochemical activities. Furthermore, TG2 interacts with a distinct subset of proteins and/or substrates depending on its subcellular location. In this review, the biological functions and molecular interactions of TG2 will be discussed in the context of the unique environments of the subcellular compartments to which TG2 localizes.
Collapse
Affiliation(s)
- Donghyun Park
- Department of Molecular and Cellular Biochemistry, Vascular System Research Center, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, 200-701, Republic of Korea
| | | | | |
Collapse
|
23
|
Antonyak MA, Li B, Regan AD, Feng Q, Dusaban SS, Cerione RA. Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion. J Biol Chem 2009; 284:17914-25. [PMID: 19403524 DOI: 10.1074/jbc.m109.013037] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor (EGF) exerts pleiotropic effects during oncogenesis, including the stimulation of cell migration and invasiveness. Although a number of traditional signaling proteins (e.g. Ras and Rho GTPases) have been implicated in EGF-stimulated cancer cell migration, less is known about the identity of those proteins functioning further downstream in this growth factor pathway. Here we have used HeLa carcinoma cells as a model system for investigating the role of tissue transglutaminase (TGase), a protein that has been linked to oncogenesis, in EGF-stimulated cancer cell migration and invasion. Treatment of HeLa cells with EGF resulted in TGase activation and its accumulation at their leading edges, whereas knocking down TGase expression, or treating cells with a TGase inhibitor, blocked EGF-stimulated cell migration and invasion. We show that EGF signaling through Ras and c-Jun N-terminal kinase is responsible for targeting TGase to the leading edges of cells and activating it. The requirement for EGF to properly localize and activate TGase can be circumvented by the expression of oncogenic Ras (G12V), whose ability to stimulate migration is also dependent on TGase. We further show that, in the highly aggressive breast cancer cell line MDAMB231, where EGF stimulation is unnecessary for migration and invasive activity, TGase is already at the leading edge and activated. These findings demonstrate that TGase plays a key role in cancer cell motility and invasiveness and represents a previously unappreciated participant in the EGF pathway that stimulates these processes in cancer cells.
Collapse
Affiliation(s)
- Marc A Antonyak
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sun Y, Mi W, Cai J, Ying W, Liu F, Lu H, Qiao Y, Jia W, Bi X, Lu N, Liu S, Qian X, Zhao X. Quantitative proteomic signature of liver cancer cells: tissue transglutaminase 2 could be a novel protein candidate of human hepatocellular carcinoma. J Proteome Res 2008; 7:3847-59. [PMID: 18646787 DOI: 10.1021/pr800153s] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common diseases worldwide, with extremely poor prognosis due to failure in diagnosing it early. Alpha-fetoprotein (AFP) is the only available biomarker for HCC diagnosis; however, its use in the early detection of HCC is limited, especially because about one-third of patients afflicted with HCC have normal levels of serum AFP. Thus, identifying additional biomarkers that may be used in combination with AFP to improve early detection of HCC is greatly needed. A quantitative proteomic analysis approach using stable isotope labeling with amino acids in cell culture (SILAC) combined with LTQ-FT-MS/MS identification was used to explore differentially expressed protein profiles between normal (HL-7702) and cancer (HepG2 and SK-HEP-1) cells. A total of 116 proteins were recognized as potential markers that could distinguish between HCC and normal liver cells. Certain proteins, such as AFP, intercellular adhesion molecule-1 (ICAM-1), IQ motif containing GTPase activating protein 2 (IQGAP2), claudin-1 (CLDN1) and tissue transglutaminase 2 (TGM2), were validated both in multiple cell lines and in 61 specimens of clinical HCC cases. TGM2 was overexpressed in some of the AFP-deficient HCC cells (SK-HEP-1 and Bel-7402) and in about half of the tumor tissues with low levels of serum AFP (17/32, AFP-negative HCC). Trace amounts of TGM2 were found to be expressed in the samples with high serum AFP (26/29, AFP-positive HCC). Moreover, TGM2 expression in liver tissues showed an inverse correlation with the level of serum AFP in HCC patients. Notably, TGM2 existed in the supernatant of the AFP-deficient SK-HEP-1, SMMC-7721 and HLE cells, and it was found to be induced in AFP-producing cells (HepG2) by specific siRNA silence assay. Serum TGM2 levels of 109 HCC patients and 42 healthy controls were further measured by an established ELISA assay; the levels were significantly higher in HCC patients, and they correlated with the histological grade and tumor size. These data suggest that TGM2 may serve as a novel histological/serologic candidate involved in HCC, especially for the individuals with normal serum AFP. These novel findings may provide important clues to identify new biomarkers of HCC and indirectly improve early detection of the disease.
Collapse
Affiliation(s)
- Yulin Sun
- State Key Laboratory of Molecular Oncology, Department of Abdominal Surgery, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021 P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park EY, Wilder ET, Chipuk JE, Lane MA. Retinol decreases phosphatidylinositol 3-kinase activity in colon cancer cells. Mol Carcinog 2008; 47:264-74. [PMID: 17918208 DOI: 10.1002/mc.20381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previously, we showed that retinol inhibited all-trans-retinoic acid (ATRA)-resistant human colon cancer cell invasion via a retinoic acid receptor-independent mechanism. Because phosphatidylinositol 3-kinase (PI3K) regulates cell invasion, the objective of the current study was to determine if retinol affected PI3K activity. Following 24 h of serum starvation, the ATRA resistant human colon cancer cell lines HCT-116 and SW620 were treated with 0, 1, or 10 microM retinol. Thirty minutes of retinol treatment resulted in a significant decrease in PI3K activity in both cell lines. To determine the mechanism by which retinol reduces PI3K activity, the levels and heterodimerization of the regulatory subunit, p85, and the catalytic subunit, p110, of PI3K were examined. Retinol treatment did not alter p85 or p110 protein levels or the heterodimerization of these subunits at any time point examined. To determine if retinol affected the ability of PI3K to phosphorylate the substrate, phosphatidylinositol (PI), PI3K was immunoprecipitated from control cells and incubated with 10 microg PI and increasing concentrations of retinol or 10 microg retinol and increasing concentrations of PI. Retinol decreased PI3K activity in a dose-responsive manner and increased PI suppressed the inhibitory effect of retinol on PI3K activity. Finally, the PI3K inhibitor, LY294002, mimicked the ability of retinol to decrease cell invasion. Computational modeling revealed that retinol may inhibit PI3K activity in a manner similar to that of wortmannin. Thus, a decrease in PI3K activity due to retinol treatment may confer the ability of retinol to inhibit ATRA-resistant colon cancer cell invasion.
Collapse
Affiliation(s)
- Eun Young Park
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
26
|
Datta S, Antonyak MA, Cerione RA. GTP-binding-defective forms of tissue transglutaminase trigger cell death. Biochemistry 2007; 46:14819-29. [PMID: 18052077 PMCID: PMC2527651 DOI: 10.1021/bi701422h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tissue transglutaminase (TGase-2), which binds GTP and catalyzes the cross-linking of proteins (transamidation), has been implicated both in the promotion of cell death and in the protection of cells against apoptotic insults. However, a novel transcript originally identified from the brains of Alzheimer's patients, encoding a truncated form of TGase-2 (called TGase-S), shows strong apoptotic activity. TGase-S exhibits no detectable GTP-binding capability, suggesting that its ability to induce cell death might be due to its inability to bind GTP. Thus, we have examined whether eliminating the GTP-binding capability of full-length human TGase-2 would prevent it from conferring protection against apoptotic challenges and instead convert it into a protein that causes cell death. A number of point mutants of human TGase-2 defective for binding GTP, as well as a mutant that shows impaired GTP-hydrolytic activity, were generated. Similar to what we had found for TGase-S, there was a time-dependent decrease in the expression of the GTP-binding-defective TGase-2 mutants in different cell lines, whereas the expression of wild-type TGase-2 and the GTP hydrolysis-defective mutant was sustained. Moreover, the GTP-binding-defective TGase-2 mutants induced cell death. The cell death responses triggered by these mutants were not due to their transdamidation activity, because double-mutants that were both GTP-binding- and transamidation-defective also stimulated cell death. Therefore, these results point to the inability to bind GTP as being sufficient for the apoptotic activity exhibited by the TGase-S protein. They also highlight a novel example of how the loss of GTP-binding activity can convert a protein that provides protection against apoptotic stimuli into a cell death-promoting factor.
Collapse
Affiliation(s)
- Sunando Datta
- Department of Chemistry and Chemical Biology, Baker Laboratory
| | - Marc A. Antonyak
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Baker Laboratory
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
27
|
Verma A, Mehta K. Tissue transglutaminase-mediated chemoresistance in cancer cells. Drug Resist Updat 2007; 10:144-51. [PMID: 17662645 DOI: 10.1016/j.drup.2007.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/08/2007] [Accepted: 06/11/2007] [Indexed: 12/30/2022]
Abstract
Drug resistance and metastasis are major impediments for the successful treatment of cancer. A common feature among drug resistant and metastatic tumor cells is that they exhibit profound resistance to apoptosis. This property enables cancer cells not only to grow and survive in stressful environments (metastasis) but also to display resistance against many anticancer agents. Therefore, perturbation of the intrinsic apoptotic pathways of cancer cells will affect their ability to respond to chemotherapy and to metastasize and survive in distant sites. Recent studies have demonstrated that cancer cells and cancer cell lines selected for resistance against chemotherapeutic drugs or isolated from metastatic sites, express elevated levels of the multifunctional protein, tissue transglutaminase (TG2). TG2 is the most diverse and ubiquitous member of the transglutaminase family of proteins that is implicated to play a role in apoptosis, wound healing, cell migration, cell attachment, cell growth, angiogenesis, and matrix assembly. TG2 can associate with certain beta members of the integrin family of proteins (beta1, beta3, beta4, and beta5) and promote stable interaction between cells and the extracellular matrix (ECM), resulting in increased cell survival, cell migration, and invasion. Additionally, TG2 forms a ternary complex with IkappaB/p65:p50 and results in constitutive activation of the nuclear transcription factor-kappaB (NF-kappaB). Moreover, TG2 expression in cancer cells leads to constitutive activation of the focal adhesion kinase (FAK) and its downstream PI3K/Akt survival pathway. Importantly, the inhibition of endogenous TG2 by small interfering RNA (siRNA) resulted in the reversal of drug resistance and the invasive phenotype. Conversely, ectopic expression of TG2 promoted cell survival, cell motility and invasive functions of cancer cells. This review discusses the current thinking and implications of increased TG2 expression in development of drug resistance and metastasis by cancer cells.
Collapse
Affiliation(s)
- Amit Verma
- Department of Experimental Therapeutics, Unit 362, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | | |
Collapse
|
28
|
Ren X, Li Y, Ma X, Zheng L, Xu Y, Wang J. Activation of p38/MEF2C pathway by all-trans retinoic acid in cardiac myoblasts. Life Sci 2007; 81:89-96. [PMID: 17568621 DOI: 10.1016/j.lfs.2007.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/07/2007] [Accepted: 04/17/2007] [Indexed: 01/31/2023]
Abstract
Myocyte enhancer factor 2C (MEF2C) is a transcription factor particularly expressed in cardiac muscle. While the effects of all-trans retinoic acid (atRA) on embryonic heart are well described, the mechanism of atRA action on MEF2C activity in cardiomyocytes is less known. The aim of the present study was to investigate whether and how atRA regulates MEF2C activity in H9c2 rat ventricular cells. Here, our results, obtained from Western blot and protein kinase assays, showed that the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and MEF2C was induced by atRA in H9c2 myocardial cells. And the result from luciferase assays showed that the transactivation activity of MEF2C was upregulated by p38. Furthermore, using confocal microscopy and immunoprecipitation, we found that atRA hastened p38 translocation into nuclei to interact with MEF2C, and SB202190 inhibited nuclear translocation of p38. These results suggest that atRA may mediate p38/MEF2C signaling pathway during heart development.
Collapse
Affiliation(s)
- Xia Ren
- Laboratory of Development Molecular Biology, Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Antonyak MA, Jansen JM, Miller AM, Ly TK, Endo M, Cerione RA. Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proc Natl Acad Sci U S A 2006; 103:18609-14. [PMID: 17116873 PMCID: PMC1654133 DOI: 10.1073/pnas.0604844103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Opposing cellular responses are typically regulated by distinct sets of genes. However, tissue transglutaminase (TGase) provides an interesting example of a single gene product that has been implicated both in affording protection against cellular insults as well as in promoting cell death. Here, we shed some light on how these conflicting activities might be manifested by demonstrating that alternative transcripts of TGase differentially affect cell viability. We show that although the full-length TGase protein affords strong protection against cell death signals, a shorter version of TGase that is truncated at the 3' end, and thus called TGase-short (TGase-S), is cytotoxic. The apoptotic activity of TGase-S is not dependent on its transamidation activity because the mutation of a cysteine residue that is essential for catalyzing this reaction does not compromise the ability of TGase-S to induce cell death. Intriguingly, TGase-S undergoes inappropriate oligomer formation in cells before cell death, suggesting a novel mechanism for the apoptotic effects of this protein.
Collapse
Affiliation(s)
- Marc A. Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Jaclyn M. Jansen
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Allison M. Miller
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Thi K. Ly
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Makoto Endo
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- *To whom correspondence should be addressed at:
Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401. E-mail:
| |
Collapse
|
30
|
Sánchez-Molina S, Oliva J, García-Vargas S, Valls E, Rojas J, Martínez-Balbás M. The histone acetyltransferases CBP/p300 are degraded in NIH 3T3 cells by activation of Ras signalling pathway. Biochem J 2006; 398:215-24. [PMID: 16704373 PMCID: PMC1550303 DOI: 10.1042/bj20060052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/07/2006] [Accepted: 05/17/2006] [Indexed: 11/17/2022]
Abstract
The CBP [CREB (cAMP-response-element-binding protein)-binding protein]/p300 acetyltransferases function as transcriptional co-activators and play critical roles in cell differentiation and proliferation. Accumulating evidence shows that alterations of the CBP/p300 protein levels are linked to human tumours. In the present study, we show that the levels of the CBP/p300 co-activators are decreased dramatically by continuous PDGF (platelet-derived growth factor) and Ras signalling pathway activation in NIH 3T3 fibroblasts. This effect occurs by reducing the expression levels of the CBP/p300 genes. In addition, CBP and p300 are degraded by the 26 S proteasome pathway leading to an overall decrease in the levels of the CBP/p300 proteins. Furthermore, we provide evidence that Mdm2 (murine double minute 2), in the presence of active H-Ras or N-Ras, induces CBP/p300 degradation in NIH 3T3 cells. These findings support a novel mechanism for modulating other signalling transduction pathways that require these common co-activators.
Collapse
Key Words
- acetylation
- camp-response-element-binding-protein-binding protein/p300 (cbp/p300)
- histone acetyltransferase activity (hat activity)
- murine double minute 2 (mdm2)
- nih 3t3 cell
- ras pathway
- alln, n-acetyl-l-leucyl-l-leucylnorleucinal
- creb, camp-response-element-binding protein
- cbp, creb-binding protein
- cs, calf serum
- dapi, 4′,6-diamidino-2-phenylindole
- erk, extracellular-signal-regulated kinase
- gds, guanine nucleotide dissociation stimulator
- gst, glutathione s-transferase
- ha, haemagglutinin
- hat, histone acetyltransferase
- hdac, histone deacetylase
- mapk, mitogen-activated protein kinase
- mdm2, murine double minute 2
- mek, mapk/erk kinase
- p/caf, p300/cbp-associated factor
- pdgf, platelet-derived growth factor
- pi3k, phosphoinositide 3-kinase
- ra, retinoic acid
- ral-bd, ral-binding domain
- rts, rubinstein–taybi syndrome
- sirna, small interfering rna
- tafii, tata-box-binding-protein-associated factor
- tgase, transglutaminase
- tk, thymidine kinase
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- *Instituto de Biología Molecular de Barcelona, CID, Consejo Superior de Investigaciones Científicas (CSIC), Parc Cientific de Barcelona (PCB), Josep Samitier 1–5, 08028 Barcelona, Spain
| | - José Luis Oliva
- †Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Susana García-Vargas
- †Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Ester Valls
- *Instituto de Biología Molecular de Barcelona, CID, Consejo Superior de Investigaciones Científicas (CSIC), Parc Cientific de Barcelona (PCB), Josep Samitier 1–5, 08028 Barcelona, Spain
| | - José M. Rojas
- †Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Marian A. Martínez-Balbás
- *Instituto de Biología Molecular de Barcelona, CID, Consejo Superior de Investigaciones Científicas (CSIC), Parc Cientific de Barcelona (PCB), Josep Samitier 1–5, 08028 Barcelona, Spain
| |
Collapse
|
31
|
Abstract
The ESCRT complexes and associated proteins comprise a major pathway for the lysosomal degradation of transmembrane proteins and are critical for receptor downregulation, budding of the HIV virus, and other normal and pathological cell processes. The ESCRT system is conserved from yeast to humans. The ESCRT complexes form a network that recruits monoubiquitinated proteins and drives their internalization into lumenal vesicles within a type of endosome known as a multivesicular body. The structures and interactions of many of the components have been determined over the past three years, revealing mechanisms for membrane and cargo recruitment and for complex assembly.
Collapse
Affiliation(s)
- James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, U. S.
Department of Health and Human Services, Bethesda, MD 20892-0580.
| | - Scott D. Emr
- Department of Cellular and Molecular Medicine and Howard Hughes
Medical Institute, University of California at San Diego, 9500 Gilman Dr., La
Jolla, CA 92093-0668.
| |
Collapse
|
32
|
Tucholski J, Roth KA, Johnson GVW. Tissue transglutaminase overexpression in the brain potentiates calcium-induced hippocampal damage. J Neurochem 2006; 97:582-94. [PMID: 16539654 DOI: 10.1111/j.1471-4159.2006.03780.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue transglutaminase (tTG) post-translationally modifies proteins in a calcium-dependent manner by incorporation of polyamines, deamination or crosslinking. Moreover, tTG can also bind and hydrolyze GTP. tTG is the major transglutaminase in the mammalian nervous system, localizing predominantly in neurons. Although tTG has been clearly demonstrated to be elevated in neurodegenerative diseases and in response to acute CNS injury, its role in these pathogenic processes remains unclear. Transgenic mice that overexpress human tTG (htTG) primarily in CNS neurons were generated to explore the role of tTG in the nervous system and its contribution to neuropathological processes. tTG transgenic mice were phenotypically normal and were born with the expected Mendelian frequency. However, when challenged systemically with kainic acid, tTG transgenic mice, in comparison to wild-type (WT) mice, developed more extensive hippocampal neuronal damage. This was evidenced by a decreased number of healthy neurons, and increased terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) labeling as an indicator of neuronal cell death in the kainic acid-treated transgenic mice. Moreover, the duration and severity of seizures developed by htTG transgenics in response to kainic acid administration were significantly more pronounced than those observed in WT mice. These data indicate for the first time that tTG may play an active role in excitatory amino acid-induced neuronal cell death, which has been postulated to be an important component of acute CNS injury and chronic CNS neurodegenerative conditions.
Collapse
Affiliation(s)
- Janusz Tucholski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
33
|
Wakshlag JJ, McNeill CJ, Antonyak MA, Boehm JE, Fuji R, Balkman CE, Zgola M, Cerione RA, Page RL. Expression and Activity of Transglutaminase II in Spontaneous Tumours of Dogs and Cats. J Comp Pathol 2006; 134:202-10. [PMID: 16615935 DOI: 10.1016/j.jcpa.2005.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/01/2005] [Indexed: 10/24/2022]
Abstract
Tissue transglutaminase II (TGase II) is a dual function protein with both transamidating and guanidine triphosphate (GTP)-binding capabilities. Previous studies have implicated TGase as a pro-apoptotic molecule; however, our recent findings indicate that TGase II may act as a survival factor in various cell types. The purpose of this study was to survey TGase II expression in normal tissue and spontaneous tumours of dogs and cats, by Western blotting and immunohistochemistry. Bladder, liver and adrenal gland exhibited prominent expression of TGase II while other tissues, including mammary gland, displayed limited expression and activity. TGase II GTP-binding in normal tissues was proportional to the level of expression in all tissues examined. Normal mammary tissue and that showing benign hyperplasia did not express TGase II. However, 11/25 (44%) of canine mammary carcinomas and 10/12 (83%) of feline mammary carcinomas strongly expressed TGase II in either a stromal, cellular or combined pattern. The pattern of expression was not related to the classification of mammary carcinoma (solid, tubulopapillary, complex or anaplastic), except that two anaplastic canine mammary carcinomas showed prominent TGase II expression. Two canine mammary carcinoma cell lines showed prominent TGase expression, and when the TGase activity was inhibited, the cells became more sensitive to doxorubicin-induced cell death. Thus, TGase II was significantly expressed in mammary cancers from dogs and cats and immunoreactivity of TGase II was similar to that reported in humans beings. The pro-survival effect of TGase II in canine mammary carcinoma cell lines was similar to that previously reported in humans patients.
Collapse
Affiliation(s)
- J J Wakshlag
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, 14853 NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mehta K, Fok J, Miller FR, Koul D, Sahin AA. Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 2005; 10:8068-76. [PMID: 15585642 DOI: 10.1158/1078-0432.ccr-04-1107] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Drug resistance and metastasis pose major impediments in the successful treatment of cancer. We previously reported that multidrug-resistant breast cancer cells exhibit high levels of tissue transglutaminase (TG2; EC 2.3.2.13). Because the drug-resistant and metastatic phenotypes are thought to share some common pathways, we sought to determine whether metastatic breast cancer cells express high levels of TG2. EXPERIMENTAL DESIGN The metastatic breast cancer cell line MDA-MB-231 and the sublines derived from it were tested for TG2 expression. Similarly, several sublines derived from an immortal but normal breast epithelial cell line, MCF10A, representing various stages in breast cancer progression were studied for TG2 expression. The primary and nodal tumor samples from 30 patients with breast cancer were also studied for TG2 expression. RESULTS The MDA-MB-231 cells expressed high basal levels of TG2. Two clones derived from this cell line, MDA231/cl.9 and MDA231/cl.16, showed a 10- to 15-fold difference in TG2 level. TG2-deficient MDA231/cl.9 cells exhibited higher sensitivity to doxorubicin and were less invasive than were the TG2-sufficient MDA231/cl.16 cells. The MCF10A-derived sublines had increased TG2 expression as they advanced from noninvasive to an invasive phenotype. Importantly, the metastatic lymph node tumors from patients with breast cancer showed significant higher levels of TG2 expression compared with the primary tumors from the same patients. CONCLUSIONS TG2 expression is up-regulated in drug-resistant and metastatic breast cancer cells, and it can serve as a valuable prognostic marker for these phenotypes.
Collapse
Affiliation(s)
- Kapil Mehta
- Department of Experimental Therapeutics-Unit 422, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
35
|
Fésüs L, Szondy Z. Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 2005; 579:3297-302. [PMID: 15943974 DOI: 10.1016/j.febslet.2005.03.063] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2005] [Indexed: 12/17/2022]
Abstract
Transglutaminase 2 (TG2), a multifunctional enzyme with Ca(2+)-dependent protein crosslinking activity and GTP-dependent G protein functions, is often upregulated in cells undergoing apoptosis. In cultured cells TG2 may exert both pro- and anti-apoptotic effects depending upon the type of cell, the kind of death stimuli, the intracellular localization of the enzyme and the type of its activities switched on. The majority of data support the notion that transamidation by TG2 can both facilitate and inhibit apoptosis, while the GTP-bound form of the enzyme generally protects cells against death. In vivo studies confirm the Janus face of TG2 in the initiation of the apoptotic program. In addition, they reveal a further role: the prevention of inflammation, tissue injury and autoimmunity once the apoptosis has already been initiated. This function of TG2 is partially achieved by being expressed and activated also in macrophages digesting apoptotic cells and mediating a crosstalk between dying and phagocytic cells.
Collapse
Affiliation(s)
- László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Signaling and Apoptosis Research Group of the Hungarian Academy of Sciences, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.
| | | |
Collapse
|
36
|
Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY. Transglutaminase 2 Induces Nuclear Factor-κB Activation via a Novel Pathway in BV-2 Microglia. J Biol Chem 2004; 279:53725-35. [PMID: 15471861 DOI: 10.1074/jbc.m407627200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transglutaminase 2 (TGase 2) expression is increased in inflammatory diseases. We demonstrated previously that inhibitors of TGase 2 reduce nitric oxide (NO) generation in a lipopolysaccharide (LPS)-treated microglial cell line. However, the precise mechanism by which TGase 2 promotes inflammation remains unclear. We found that TGase 2 activates the transcriptional activator nuclear factor (NF)-kappaB and thereby enhances LPS-induced expression of inducible nitric-oxide synthase. TGase 2 activates NF-kappaB via a novel pathway. Rather than stimulating phosphorylation and degradation of the inhibitory subunit alpha of NF-kappaB (I-kappaBalpha), TGase2 induces its polymerization. This polymerization results in dissociation of NF-kappaB and its translocation to the nucleus, where it is capable of up-regulating a host of inflammatory genes, including inducible nitric-oxide synthase and tumor necrosis factor alpha (TNF-alpha). Indeed, TGase inhibitors prevent depletion of monomeric I-kappaBalpha in the cytosol of cells overexpressing TGase 2. In an LPS-induced rat brain injury model, TGase inhibitors significantly reduced TNF-alpha synthesis. The findings are consistent with a model in which LPS-induced NF-kappaB activation is the result of phosphorylation of I-kappaBalpha by I-kappaB kinase as well as I-kappaBalpha polymerization by TGase 2. Safe and stable TGase2 inhibitors may be effective agents in diseases associated with inflammation.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University and Burke Medical Research Institute, White Plains, NY 10605, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Antonyak MA, Miller AM, Jansen JM, Boehm JE, Balkman CE, Wakshlag JJ, Page RL, Cerione RA. Augmentation of tissue transglutaminase expression and activation by epidermal growth factor inhibit doxorubicin-induced apoptosis in human breast cancer cells. J Biol Chem 2004; 279:41461-7. [PMID: 15272014 DOI: 10.1074/jbc.m404976200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue transglutaminase (TGase) exhibits both a GTP binding/hydrolytic capability and an enzymatic transamidation activity. Increases in TGase expression and activation often occur in response to stimuli that promote cellular differentiation and apoptosis, yet the signaling mechanisms used by these stimuli to regulate TGase expression and activation and the role of TGase in these cellular processes are not well understood. Retinoic acid (RA) consistently induces TGase expression and activation, and it was shown recently that RA-induced TGase expression was inhibited in NIH3T3 mouse fibroblasts co-stimulated with epidermal growth factor (EGF). Here we investigate whether EGF also antagonized RA-induced TGase expression in breast cancer cells. We found that EGF stimulation affected TGase expression and activation very differently in these cancer cells. Not only did EGF fail to block RA-induced TGase expression, but also EGF alone was sufficient to potently up-regulate TGase expression and activation in SKBR3 cells, as well as MDAMB468 and BT-20 cells. Inhibiting phosphoinositide 3-kinase activity severely diminished the ability of EGF and RA to increase TGase protein levels, whereas a constitutively active form of phosphoinositide 3-kinase potentiated the induction of TGase expression by EGF in SKBR3 cells. Because EGF is an established antiapoptotic factor, we examined whether the protection afforded by EGF was dependent on its ability to up-regulate TGase activity in SKBR3 and BT-20 cells. Exposure of cells to a TGase inhibitor or expression of a dominant-negative form of TGase potently inhibited EGF-mediated protection from doxorubicin-induced apoptosis. Moreover, expression of exogenous TGase in SKBR3 cells mimicked the survival advantage of EGF, suggesting that TGase activation is necessary and sufficient for the antiapoptotic properties of EGF. These findings indicate for the first time that EGF can induce TGase expression and activation in human breast cancer cells and that this contributes to their oncogenic potential by promoting chemoresistance.
Collapse
Affiliation(s)
- Marc A Antonyak
- Departments of Molecular Medicine and Clinical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Diez del Corral R, Storey KG. Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. Bioessays 2004; 26:857-69. [PMID: 15273988 DOI: 10.1002/bies.20080] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Construction of the trunk/caudal region of the vertebrate embryo involves a set of distinct molecules and processes whose relationships are just coming into focus. In addition to the subdivision of the embryo into head and trunk domains, this "caudalisation" process requires the establishment and maintenance of a stem zone. This sequentially generates caudal tissues over a long period which then undergo differentiation and patterning in the extending body axis. Here we review recent studies that show that changes in the signalling properties of the paraxial mesoderm act as a switch that controls onset of differentiation and pattern in the spinal cord. These findings identify distinct roles for different caudalising factors; in particular, Fibroblast Growth Factor (FGF) inhibits differentiation in the caudal stem zone, while Retinoic acid (RA) provided rostrally by somitic mesoderm is required for neuronal differentiation and establishment of ventral neural pattern. Furthermore, the mutual opposition of FGF and RA pathways controls not only neural differentiation but also mesoderm segmentation and might also underlie the progressive assignment of rostrocaudal identity by regulating Hox gene availability and activation.
Collapse
Affiliation(s)
- Ruth Diez del Corral
- Division of Cell and Developmental Biology, Life Sciences Faculty, University of Dundee, UK.
| | | |
Collapse
|
39
|
Akimov SS, Belkin AM. Opposing roles of Ras/Raf oncogenes and the MEK1/ERK signaling module in regulation of expression and adhesive function of surface transglutaminase. J Biol Chem 2003; 278:35609-19. [PMID: 12832399 DOI: 10.1074/jbc.m303488200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tissue transglutaminase (tTG) serves as a potent and ubiquitous integrin-associated adhesion co-receptor for fibronectin on the cell surface and affects several key integrin functions. Here we report that in fibroblasts, activated H-Ras and Raf-1 oncogenes decrease biosynthesis, association with beta1 integrins, and surface expression of tTG because of down-regulation of tTG mRNA. In turn, the reduction of surface tTG inhibits adhesion of H-Ras- and Raf-1-transformed cells on fibronectin and, in particular, on its tTG-binding fragment I(6)II(1,2)I(7-9), which does not interact directly with integrins. Analysis of Ras/Raf downstream signaling with specific pharmacological inhibitors reveals that the decrease in tTG expression is mediated by the p38 MAPK, c-Jun NH2-terminal kinase, and phosphatidylinositol 3-kinase pathways. In contrast, increased activation of the ERK pathway by constitutively active MEK1 stimulates tTG mRNA expression, biosynthesis, and surface expression of tTG, whereas MEK inhibitors or dominant negative MEK1 exert an opposite effect. This modulation of surface tTG by ERK signaling alters adhesion of cells on fibronectin and its fragment that binds tTG. Furthermore, transient stimulation of ERK signaling in untransformed fibroblasts by adhesion on fibronectin or growth factors elevates tTG biosynthesis, increases complex formation with beta1 integrins, and raises surface expression of tTG. Finally, ERK activation is required for growth factor-induced redistribution of tTG on the surface of adherent fibroblasts and co-clustering of beta1 integrins and tTG at cell-matrix adhesion contacts. Together, our data indicate that down-regulation of surface tTG by Ras and Raf oncogenes contributes to adhesive deficiency of transformed fibroblasts, whereas stimulation of biosynthesis and surface expression of tTG by the MEK1/ERK module promotes and sustains cell-matrix adhesion of untransformed cells. Contrasting effects of Ras/Raf oncogenes and their immediate downstream signaling module, MEK1/ERK, on tTG expression are consistent with adhesive function of surface tTG.
Collapse
Affiliation(s)
- Sergey S Akimov
- Department of Biochemistry, The Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | |
Collapse
|