1
|
Kim MH, Jang SY, Choi JS, Kim S, Lee Y, Park S, Kwon SJ, Seo JK. HSP90 interacts with VP37 to facilitate the cell-to-cell movement of broad bean wilt virus 2. mBio 2025; 16:e0250024. [PMID: 39969167 PMCID: PMC11898612 DOI: 10.1128/mbio.02500-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
The systemic spread of viruses in plants requires successful viral cell-to-cell movement through plasmodesmata (PD). Viral movement proteins (MPs) interact with cellular proteins to modify and utilize host transport routes. Broad bean wilt virus 2 (BBWV2) moves from cell to cell as a virion through the PD gated by VP37, the MP of BBWV2. However, the host proteins that function in the cell-to-cell movement of BBWV2 remain unclear. In this study, we identified cellular heat shock protein 90 (HSP90) as an interacting partner of VP37. The interaction between HSP90 and VP37 was assessed using the yeast two-hybrid assay, co-immunoprecipitation, and bimolecular fluorescence complementation. Tobacco rattle virus-based virus-induced gene silencing analysis revealed that HSP90 silencing significantly inhibited the systemic spread of BBWV2 in Nicotiana benthamiana plants. Furthermore, in planta treatment with geldanamycin (GDA), an inhibitor of the chaperone function of HSP90, demonstrated the necessity of HSP90 in successful cell-to-cell movement and systemic infection of BBWV2. Interestingly, GDA treatment inhibited the HSP90-VP37 interaction at the PD, resulting in the inhibition of VP37-derived tubule formation through the PD. Our results suggest that the HSP90-VP37 interaction regulates VP37-derived tubule formation through the PD, thereby facilitating the cell-to-cell movement of BBWV2.IMPORTANCEThis study highlights the regulatory role of heat shock protein 90 (HSP90) in facilitating the cell-to-cell movement of broad bean wilt virus 2 (BBWV2). HSP90 interacted with VP37, the movement protein of BBWV2, specifically at plasmodesmata (PD). This study demonstrated that the HSP90-VP37 interaction is crucial for viral cell-to-cell movement and the formation of VP37-derived tubules, which are essential structures for virus transport through the PD. The ATP-dependent chaperone activity of HSP90 is integral to this interaction, as demonstrated by the inhibition of virus movement upon treatment with geldanamycin, which disrupts the function of HSP90. These findings elucidate the molecular mechanisms underlying the cell-to-cell movement of plant viruses and highlight the role of HSP90 in viral infection. This study suggests that the chaperone activity of HSP90 may function in changing the conformational structure of VP37, thereby facilitating the assembly and function of virus-induced structures required for viral cell-to-cell movement.
Collapse
Affiliation(s)
- Myung-Hwi Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seok-Yeong Jang
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Ji-Soo Choi
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Sora Kim
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Yubin Lee
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Suejin Park
- Department of Horticulture, Jeonbuk National University, Jeonju, South Korea
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Jang-Kyun Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
2
|
Hu B, Feng X, Xu M, Huang Y, Guo C, Yuan R, Li Y, Wei Z, Chen J, Sun Z. A pentatomomorpha-specific salivary protein activates plant immunity and is critical for insect feeding. Proc Natl Acad Sci U S A 2025; 122:e2425190122. [PMID: 39888915 PMCID: PMC11804711 DOI: 10.1073/pnas.2425190122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/02/2025] Open
Abstract
The stinkbug Riptortus pedestris, notorious for inducing soybean staygreen-like syndrome, employs a range of salivary proteins to manipulate the host plant for its benefit. Here, we show that RpSP1, a salivary protein specific to Pentatomomorpha, triggers plant defense responses in multiple plant species. RpSP1 interacts with and stabilizes a HSP40 family protein GmSPIP1 and is dependent on GmSPIP1 to induce cell death. We show that a critical 22-amino acid peptide within RpSP1 acts as an intracellular insect-derived elicitor. Furthermore, RpSP1 enhances insect-feeding efficiency. The dual functionality of RpSP1 is highlighted by the significant reduction of soybean staygreen-like syndrome following its overexpression in soybean plants or knockdown in insects. Our findings elucidate the complex molecular interactions between plants and herbivores, positioning RpSP1 as a crucial target for developing advanced pest management strategies with broad implications for agricultural biology.
Collapse
Affiliation(s)
- Biao Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Xiuli Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Manru Xu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yue Huang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Chunyun Guo
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Ruikun Yuan
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yiyuan Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Zhongyan Wei
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Zongtao Sun
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| |
Collapse
|
3
|
Cantila AY, Chen S, Siddique KHM, Cowling WA. Heat shock responsive genes in Brassicaceae: genome-wide identification, phylogeny, and evolutionary associations within and between genera. Genome 2024; 67:464-481. [PMID: 39412080 DOI: 10.1139/gen-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.
Collapse
Affiliation(s)
- Aldrin Y Cantila
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Sheng Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Wallace A Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| |
Collapse
|
4
|
Hoogstra SJ, Hendricks KN, McMullin DR, Renaud JB, Bora J, Sumarah MW, Garnham CP. Enzymatic Hydrolysis of Resorcylic Acid Lactones by an Aeromicrobium sp. Toxins (Basel) 2024; 16:404. [PMID: 39330862 PMCID: PMC11435890 DOI: 10.3390/toxins16090404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Zearalenone and radicicol are resorcylic acid lactones produced by numerous plant pathogenic fungi. Zearalenone is a non-steroidal estrogen mimic that can cause serious reproductive issues in livestock that consume contaminated feed. Radicicol is a potent inhibitor of the molecular chaperone Hsp90, which, in plants, has an important role in coordinating the host's immune response during infection. Here, we describe the identification and characterization of a soil-borne strain of the Gram-positive bacterium Aeromicrobium sp. capable of hydrolyzing the macrolide ring of resorcylic acid lactones, including zearalenone and radicicol. Proteomic analysis of biochemically enriched fractions from the isolated and cultured bacterium identified an α/β-hydrolase responsible for this activity. A recombinantly expressed and purified form of the hydrolase (termed RALH) was active against both zearalenone and radicicol. Interpretation of high-resolution mass spectrometry and NMR data confirmed the structures of the enzymatic products as the previously reported non-toxic metabolite hydrolyzed zearalenone and hydrolyzed radicicol. Hydrolyzed radicicol was demonstrated to no longer inhibit the ATPase activity of the Saccharomyces cerevisiae Hsp90 homolog in vitro. Enzymatic degradation of resorcylic acid lactones will enable insight into their biological functions.
Collapse
Affiliation(s)
- Shawn J. Hoogstra
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| | - Kyle N. Hendricks
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - David R. McMullin
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Justin B. Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| | - Juhi Bora
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| | - Mark W. Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| | - Christopher P. Garnham
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| |
Collapse
|
5
|
Zhang D, Yang X, Wen Z, Li Z, Zhang X, Zhong C, She J, Zhang Q, Zhang H, Li W, Zhao X, Xu M, Su Z, Li D, Dinesh-Kumar SP, Zhang Y. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. MOLECULAR PLANT 2024; 17:1369-1391. [PMID: 39066482 DOI: 10.1016/j.molp.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
Collapse
Affiliation(s)
- Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiajie She
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianshen Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Zheng X, Li Y, Liu Y. Plant Immunity against Tobamoviruses. Viruses 2024; 16:530. [PMID: 38675873 PMCID: PMC11054417 DOI: 10.3390/v16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.
Collapse
Affiliation(s)
- Xiyin Zheng
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiqing Li
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
7
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
8
|
Peng J, Liu S, Wu J, Liu T, Liu B, Xiong Y, Zhao J, You M, Lei X, Ma X. Genome-Wide Analysis of the Oat ( Avena sativa) HSP90 Gene Family Reveals Its Identification, Evolution, and Response to Abiotic Stress. Int J Mol Sci 2024; 25:2305. [PMID: 38396983 PMCID: PMC10889330 DOI: 10.3390/ijms25042305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Oats (Avena sativa) are an important cereal crop and cool-season forage worldwide. Heat shock protein 90 (HSP90) is a protein ubiquitously expressed in response to heat stress in almost all plants. To date, the HSP90 gene family has not been comprehensively reported in oats. Herein, we have identified twenty HSP90 genes in oats and elucidated their evolutionary pathways and responses to five abiotic stresses. The gene structure and motif analyses demonstrated consistency across the phylogenetic tree branches, and the groups exhibited relative structural conservation. Additionally, we identified ten pairs of segmentally duplicated genes in oats. Interspecies synteny analysis and orthologous gene identification indicated that oats share a significant number of orthologous genes with their ancestral species; this implies that the expansion of the oat HSP90 gene family may have occurred through oat polyploidization and large fragment duplication. The analysis of cis-acting elements revealed their influential role in the expression pattern of HSP90 genes under abiotic stresses. Analysis of oat gene expression under high-temperature, salt, cadmium (Cd), polyethylene glycol (PEG), and abscisic acid (ABA) stresses demonstrated that most AsHSP90 genes were significantly up-regulated by heat stress, particularly AsHSP90-7, AsHSP90-8, and AsHSP90-9. This study offers new insights into the amplification and evolutionary processes of the AsHSP90 protein, as well as its potential role in response to abiotic stresses. Furthermore, it lays the groundwork for understanding oat adaptation to abiotic stress, contributing to research and applications in plant breeding.
Collapse
Affiliation(s)
- Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Siyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiqiang Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Boyang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Barghahn S, Saridis G, Mantz M, Meyer U, Mellüh JC, Misas Villamil JC, Huesgen PF, Doehlemann G. Combination of transcriptomic, proteomic, and degradomic profiling reveals common and distinct patterns of pathogen-induced cell death in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:574-596. [PMID: 37339931 DOI: 10.1111/tpj.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Regulated cell death (RCD) is crucial for plant development, as well as in decision-making in plant-microbe interactions. Previous studies revealed components of the molecular network controlling RCD, including different proteases. However, the identity, the proteolytic network as well as molecular components involved in the initiation and execution of distinct plant RCD processes, still remain largely elusive. In this study, we analyzed the transcriptome, proteome, and N-terminome of Zea mays leaves treated with the Xanthomonas effector avrRxo1, the mycotoxin Fumonisin B1 (FB1), or the phytohormone salicylic acid (SA) to dissect plant cellular processes related to cell death and plant immunity. We found highly distinct and time-dependent biological processes being activated on transcriptional and proteome levels in response to avrRxo1, FB1, and SA. Correlation analysis of the transcriptome and proteome identified general, as well as trigger-specific markers for cell death in Zea mays. We found that proteases, particularly papain-like cysteine proteases, are specifically regulated during RCD. Collectively, this study characterizes distinct RCD responses in Z. mays and provides a framework for the mechanistic exploration of components involved in the initiation and execution of cell death.
Collapse
Affiliation(s)
- Sina Barghahn
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Georgios Saridis
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Ute Meyer
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | | | - Johana C Misas Villamil
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Spiegelman Z, Dinesh-Kumar SP. Breaking Boundaries: The Perpetual Interplay Between Tobamoviruses and Plant Immunity. Annu Rev Virol 2023; 10:455-476. [PMID: 37254097 DOI: 10.1146/annurev-virology-111821-122847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant viruses of the genus Tobamovirus cause significant economic losses in various crops. The emergence of new tobamoviruses such as the tomato brown rugose fruit virus (ToBRFV) poses a major threat to global agriculture. Upon infection, plants mount a complex immune response to restrict virus replication and spread, involving a multilayered defense system that includes defense hormones, RNA silencing, and immune receptors. To counter these defenses, tobamoviruses have evolved various strategies to evade or suppress the different immune pathways. Understanding the interactions between tobamoviruses and the plant immune pathways is crucial for the development of effective control measures and genetic resistance to these viruses. In this review, we discuss past and current knowledge of the intricate relationship between tobamoviruses and host immunity. We use this knowledge to understand the emergence of ToBRFV and discuss potential approaches for the development of new resistance strategies to cope with emerging tobamoviruses.
Collapse
Affiliation(s)
- Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel;
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and Genome Center, College of Biological Sciences, University of California, Davis, California, USA
| |
Collapse
|
12
|
Zhang Y, Zhang Y, Gao C, Zhang Z, Yuan Y, Zeng X, Hu W, Yang L, Li F, Yang Z. Uncovering genomic and transcriptional variations facilitates utilization of wild resources in cotton disease resistance improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:204. [PMID: 37668681 DOI: 10.1007/s00122-023-04451-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Upland cotton wild/landraces represent a valuable resource for disease resistance alleles. Genetic differentiation between genotypes, as well as variation in Verticillium wilt (VW) resistance, has been poorly characterized for upland cotton accessions on the domestication spectrum (from wild/landraces to elite lines). RESULTS To illustrate the effects of modern breeding on VW resistance in upland cotton, 37 wild/landraces were resequenced and phenotyped for VW resistance. Genomic patterns of differentiation were identified between wild/landraces and improved upland cotton, and a significant decline in VW resistance was observed in association with improvement. Four genotypes representing different degrees of improvement were used in a full-length transcriptome analysis to study the genetic basis of VW resistance. ROS signaling was highly conserved at the transcriptional level, likely providing the basis for VW resistance in upland cotton. ASN biosynthesis and HSP90-mediated resistance moderated the response to VW in wild/landraces, and loss of induction activity of these genes resulted in VW susceptibility. The observed genomic differentiation contributed to the loss of induction of some important VW resistance genes such as HSP90.4 and PR16. CONCLUSIONS Besides providing new insights into the evolution of upland cotton VW resistance, this study also identifies important resistance pathways and genes for both fundamental research and cotton breeding.
Collapse
Affiliation(s)
- Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yaning Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhibin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuan Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaolin Zeng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
13
|
Shan S, Huang Y, Guo C, Hu B, Zhang H, Li Y, Chen J, Wei Z, Sun Z. A salivary secretory protein from Riptortus pedestris facilitates pest infestation and soybean staygreen syndrome. MOLECULAR PLANT PATHOLOGY 2023; 24:560-569. [PMID: 36916884 DOI: 10.1111/mpp.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 05/18/2023]
Abstract
The bean bug (Riptortus pedestris), one of the most important pests of soybean, causes staygreen syndrome, delaying plant maturation and affecting pod development, resulting in severe crop yield loss. However, little is known about the underlying mechanism of this pest. In this study, we found that a salivary secretory protein, Rp614, induced cell death in nonhost Nicotiana benthamiana leaves. NbSGT1 and NbNDR1 are involved in Rp614-induced cell death. Tissue specificity analysis showed that Rp614 is mainly present in salivary glands and is highly induced during pest feeding. RNA interference experiments showed that staygreen syndrome caused by R. pedestris was significantly attenuated when Rp614 was silenced. Together, our results indicate that Rp614 plays an essential role in R. pedestris infestation and provide a promising RNA interference target for pest control.
Collapse
Affiliation(s)
- Shiqi Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yue Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chunyun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Jiao Q, Deng J, Zhao X, Yao X, Li M, Pei Z, Li X, Jiang X, Zhang F. Physiological and biochemical regulation of tobacco by oxathiapiprolin under Phytophthora nicotianae infection. PHYSIOLOGIA PLANTARUM 2023; 175:e13891. [PMID: 36917080 DOI: 10.1111/ppl.13891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
As a fungicide, oxathiapiprolin has excellent effects on diseases caused by oomycetes. Fungicides generally protect crops by inhibiting pathogens, but little research has addressed the effects of fungicides on crops. This study combined transcriptomic and metabolomic analyses to systematically analyze the physiological regulatory mechanisms of oxathiapiprolin on tobacco under Phytophthora nicotianae infection. The results showed that under P. nicotianae infection, tobacco's photosynthetic rate and antioxidant enzyme activity increased after the application of oxathiapiprolin. Omics results showed that the genes related to carbon metabolism, disease-resistant proteins, and amino acid synthesis were highly expressed, and the amino acid content increased in tobacco leaves. This study is the first comprehensive investigation of the physiological regulatory effects of oxathiapiprolin on tobacco in response to P. nicotianae infection. These findings provide a basis for the balance between regulating tobacco growth and development and enhancing disease resistance under the stimulation of oxathiapiprolin and provide new research and development opportunities for identifying new disease-resistance genes and the development of high-yielding disease-resistant crop varieties.
Collapse
Affiliation(s)
- Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xiaoyan Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Min Li
- China Tobacco Hebei Industrial Co., Ltd, ShiJiazhuang, China
| | | | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| |
Collapse
|
15
|
Pascual S, Rodríguez-Álvarez CI, Kaloshian I, Nombela G. Hsp90 Gene Is Required for Mi-1-Mediated Resistance of Tomato to the Whitefly Bemisia tabaci. PLANTS (BASEL, SWITZERLAND) 2023; 12:641. [PMID: 36771723 PMCID: PMC9919380 DOI: 10.3390/plants12030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required for Mi-1-mediated resistance to nematodes, aphids, and whiteflies, and several additional proteins also play a role in this resistance. Among them, the involvement of the chaperone HSP90 has been demonstrated in Mi-1-mediated resistance for aphids and nematodes, but not for whiteflies. In this work, we studied the implication of the Hsp90 gene in the Mi-1 resistance against the whitefly Bemisia tabaci by means of Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). The silencing of the Hsp90 gene in tomato Motelle plants carrying the Mi-1 gene resulted in a decrease in resistance to whiteflies, as oviposition values were significantly higher than those on non-silenced plants. This decrease in resistance was equivalent to that caused by the silencing of the Mi-1 gene itself. Infiltration with the control TRV vector did not alter Mi-1 mediated resistance to B. tabaci. Similar to the Mi-1 gene, silencing of Hsp90-1 occurs partially, as silenced plants showed a significant but not complete suppression of gene expression. Thus, our results demonstrate the requirement of Hsp90 in the Mi-1-mediated resistance to B. tabaci and reinforce the hypothesis of a common model for this resistance to nematodes and insects.
Collapse
Affiliation(s)
- Susana Pascual
- Entomology Group, Plant Protection Department, National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Ctra. Coruña km 7, 28040 Madrid, Spain
| | - Clara I. Rodríguez-Álvarez
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Gloria Nombela
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain
| |
Collapse
|
16
|
Palukaitis P, Akbarimotlagh M, Baek E, Yoon JY. The Secret Life of the Inhibitor of Virus Replication. Viruses 2022; 14:2782. [PMID: 36560786 PMCID: PMC9787567 DOI: 10.3390/v14122782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The inhibitor of virus replication (IVR) is an inducible protein that is not virus-target-specific and can be induced by several viruses. The GenBank was interrogated for sequences closely related to the tobacco IVR. Various RNA fragments from tobacco, tomato, and potato and their genomic DNA contained IVR-like sequences. However, IVRs were part of larger proteins encoded by these genomic DNA sequences, which were identified in Arabidopsis as being related to the cyclosome protein designated anaphase-promoting complex 7 (APC7). Sequence analysis of the putative APC7s of nine plant species showed proteins of 558-561 amino acids highly conserved in sequence containing at least six protein-binding elements of 34 amino acids called tetratricopeptide repeats (TPRs), which form helix-turn-helix structures. The structures of Arabidopsis APC7 and the tobacco IVR proteins were modeled using the AlphaFold program and superimposed, showing that IVR had the same structure as the C-terminal 34% of APC7, indicating that IVR was a product of the APC7 gene. Based on the presence of various transcription factor binding sites in the APC7 sequences upstream of the IVR coding sequences, we propose that IVR could be expressed by these APC7 gene sequences involving the transcription factor SHE1.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Masoud Akbarimotlagh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Eseul Baek
- Department of Horticulture Sciences, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Ju-Yeon Yoon
- Department of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
17
|
Yu M, Liu H, Guo L, Zhou T, Shan Y, Xia Z, Li X, An M, Wu Y. Antiviral modes of action of the novel compound GLY-15 containing pyrimidine heterocycle and moroxydine skeleton against tobacco mosaic virus. PEST MANAGEMENT SCIENCE 2022; 78:5259-5270. [PMID: 36054181 DOI: 10.1002/ps.7147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plant virus diseases are difficult to prevent and control, causing serious economic losses to the agricultural production world. To develop new pesticides with antiviral activity, a serial of compounds containing the structure of pyrimidine and moroxydine were synthesized, among which GLY-15 exhibited good antiviral activity against tobacco mosaic virus (TMV), while the mechanism of antiviral activity remains to be clarified. RESULTS GLY-15 treatment significantly inhibited the formation of necrotic spots caused by TMV in Nicotiana glutinosa, and effectively suppressed the systemic transportation of TMV expressing a reporter gene (p35S-30B:GFP) in N. benthamiana and markedly reduced the accumulation of a movement deficient TMV in plants as well as viral RNA accumulation in tobacco protoplasts. The results of RNA sequencing showed that GLY-15 induced significant differential expression of genes or pathways involved in the stress response, defense response and signal transduction, phytohormone response and metabolism. Among them, real-time quantitative PCR validated that the expression of 12 critical genes such as heat shock protein, receptor kinase, cell-wall-related protein, disease-related protein and glucan endo-1,3-β-glucosidase were significantly up-regulated. In addition, GLY-15 triggered reactive oxygen species (ROS) production and induced the activity of several crucial defense related enzymes in plants. The results of molecular docking showed potential binding ability of GLY-15 with TMV helicase and the coat protein. CONCLUSION This study provide valuable insights into antiviral mechanism of action for GLY-15, which is expected to be applied as a pesticide for the management of plant viruses. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miao Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Longyu Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuhang Shan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinghai Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
18
|
Gill-Hille M, Wang A, Murcha MW. Presequence translocase-associated motor subunits of the mitochondrial protein import apparatus are dual-targeted to mitochondria and plastids. FRONTIERS IN PLANT SCIENCE 2022; 13:981552. [PMID: 36438081 PMCID: PMC9695410 DOI: 10.3389/fpls.2022.981552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The import and assembly of most of the mitochondrial proteome is regulated by protein translocases located within the mitochondrial membranes. The Presequence Translocase-Associated Motor (PAM) complex powers the translocation of proteins across the inner membrane and consists of Hsp70, the J-domain containing co-chaperones, Pam16 and Pam18, and their associated proteins Tim15 and Mge1. In Arabidopsis, multiple orthologues of Pam16, Pam18, Tim15 and Mge1 have been identified and a mitochondrial localization has been confirmed for most. As the localization of Pam18-1 has yet to be determined and a plastid localization has been observed for homologues of Tim15 and Mge1, we carried out a comprehensive targeting analysis of all PAM complex orthologues using multiple in vitro and in vivo methods. We found that, Pam16 was exclusively targeted to the mitochondria, but Pam18 orthologues could be targeted to both the mitochondria and plastids, as observed for the PAM complex interacting partner proteins Tim15 and Mge1.
Collapse
Affiliation(s)
- Mabel Gill-Hille
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Andre Wang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Monika W. Murcha
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Zhang W, Forester NT, Moon CD, Maclean PH, Gagic M, Arojju SK, Card SD, Matthew C, Johnson RD, Johnson LJ, Faville MJ, Voisey CR. Epichloë seed transmission efficiency is influenced by plant defense response mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:1025698. [PMID: 36340377 PMCID: PMC9635450 DOI: 10.3389/fpls.2022.1025698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Asexual Epichloë are endophytic fungi that form mutualistic symbioses with cool-season grasses, conferring to their hosts protection against biotic and abiotic stresses. Symbioses are maintained between grass generations as hyphae are vertically transmitted from parent to progeny plants through seed. However, endophyte transmission to the seed is an imperfect process where not all seeds become infected. The mechanisms underpinning the varying efficiencies of seed transmission are poorly understood. Host gene expression in response to Epichloë sp. LpTG-3 strain AR37 was examined within inflorescence primordia and ovaries of high and low endophyte transmission genotypes within a single population of perennial ryegrass. A genome-wide association study was conducted to identify population-level single nucleotide polymorphisms (SNPs) and associated genes correlated with vertical transmission efficiency. For low transmitters of AR37, upregulation of perennial ryegrass receptor-like kinases and resistance genes, typically associated with phytopathogen detection, comprised the largest group of differentially expressed genes (DEGs) in both inflorescence primordia and ovaries. DEGs involved in signaling and plant defense responses, such as cell wall modification, secondary metabolism, and reactive oxygen activities were also abundant. Transmission-associated SNPs were associated with genes for which gene ontology analysis identified "response to fungus" as the most significantly enriched term. Moreover, endophyte biomass as measured by quantitative PCR of Epichloë non-ribosomal peptide synthetase genes, was significantly lower in reproductive tissues of low-transmission hosts compared to high-transmission hosts. Endophyte seed-transmission efficiency appears to be influenced primarily by plant defense responses which reduce endophyte colonization of host reproductive tissues.
Collapse
Affiliation(s)
- Wei Zhang
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Natasha T. Forester
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Christina D. Moon
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Paul H. Maclean
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Milan Gagic
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Sai Krishna Arojju
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Stuart D. Card
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Cory Matthew
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Richard D. Johnson
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Linda J. Johnson
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Marty J. Faville
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Christine R. Voisey
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| |
Collapse
|
20
|
Chen X, Li X, Duan Y, Pei Z, Liu H, Yin W, Huang J, Luo C, Chen X, Li G, Xie K, Hsiang T, Zheng L. A secreted fungal subtilase interferes with rice immunity via degradation of SUPPRESSOR OF G2 ALLELE OF skp1. PLANT PHYSIOLOGY 2022; 190:1474-1489. [PMID: 35861434 PMCID: PMC9516721 DOI: 10.1093/plphys/kiac334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Serine protease subtilase, found widely in both eukaryotes and prokaryotes, participates in various biological processes. However, how fungal subtilase regulates plant immunity is a major concern. Here, we identified a secreted fungal subtilase, UvPr1a, from the rice false smut (RFS) fungus Ustilaginoidea virens. We characterized UvPr1a as a virulence effector localized to the plant cytoplasm that inhibits plant cell death induced by Bax. Heterologous expression of UvPr1a in rice (Oryza sativa) enhanced plant susceptibility to rice pathogens. UvPr1a interacted with the important rice protein SUPPRESSOR OF G2 ALLELE OF skp1 (OsSGT1), a positive regulator of innate immunity against multiple rice pathogens, degrading OsSGT1 in a protease activity-dependent manner. Furthermore, host-induced gene silencing of UvPr1a compromised disease resistance of rice plants. Our work reveals a previously uncharacterized fungal virulence strategy in which a fungal pathogen secretes a subtilase to interfere with rice immunity through degradation of OsSGT1, thereby promoting infection. These genetic resources provide tools for introducing RFS resistance and further our understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Yuhang Duan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangxin Pei
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kabin Xie
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | | |
Collapse
|
21
|
Wang H, Dong Z, Chen J, Wang M, Ding Y, Xue Q, Liu W, Niu Z, Ding X. Genome-wide identification and expression analysis of the Hsp20, Hsp70 and Hsp90 gene family in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:979801. [PMID: 36035705 PMCID: PMC9399769 DOI: 10.3389/fpls.2022.979801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale, an important orchid plant with great horticultural and medicinal values, frequently suffers from abiotic or biotic stresses in the wild, which may influence its well-growth. Heat shock proteins (Hsps) play essential roles in the abiotic stress response of plants. However, they have not been systematically investigated in D. officinale. Here, we identified 37 Hsp20 genes (DenHsp20s), 43 Hsp70 genes (DenHsp70s) and 4 Hsp90 genes (DenHsp90s) in D. officinale genome. These genes were classified into 8, 4 and 2 subfamilies based on phylogenetic analysis and subcellular predication, respectively. Sequence analysis showed that the same subfamily members have relatively conserved gene structures and similar protein motifs. Moreover, we identified 33 pairs of paralogs containing 30 pairs of tandem duplicates and 3 pairs of segmental duplicates among these genes. There were 7 pairs in DenHsp70s under positive selection, which may have important functions in helping cells withstand extreme stress. Numerous gene promoter sequences contained stress and hormone response cis-elements, especially light and MeJA response elements. Under MeJA stress, DenHsp20s, DenHsp70s and DenHsp90s responded to varying degrees, among which DenHsp20-5,6,7,16 extremely up-regulated, which may have a strong stress resistance. Therefore, these findings could provide useful information for evolutional and functional investigations of Hsp20, Hsp70 and Hsp90 genes in D. officinale.
Collapse
Affiliation(s)
- Hongman Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zuqi Dong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Jianbing Chen
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yuting Ding
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| |
Collapse
|
22
|
Zhang C, Wang D, Li W, Zhang B, Abdel-Fattah Ouf GM, Su X, Li J. The coat protein p25 from maize chlorotic mottle virus involved in symptom development and systemic movement of tobacco mosaic virus hybrids. Front Microbiol 2022; 13:951479. [PMID: 35992724 PMCID: PMC9389212 DOI: 10.3389/fmicb.2022.951479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Viral coat protein (CP) has numerous critical functions in plant infection, but little is known about p25, the CP of maize chlorotic mottle virus (MCMV; Machlomovirus), which causes severe yield losses in maize worldwide. Here, we investigated the roles of p25 in pathogenicity and systemic movement, as well as potential interactions with host plants, using a hybrid tobacco mosaic virus (TMV)-based expression system. Highly conserved protein p25 is predicted to contain a membrane-anchored nuclear localization signal (NLS) sequence and an extracellular sequence. In transgenic Nicotiana benthamiana plants containing the movement protein (MP) of TMV (TMV-MP), p25 induced severe symptoms, including dwarf and foliar necrosis, and was detected in inoculated and non-inoculated leaves. After the deletion of NLS from nuclear-located p25, the protein was found throughout the host cell, and plant stunting and starch granule deformity were reduced. Systemic movement and pathogenicity were significantly impaired when the C-terminal regions of p25 were absent. Using virus-induced gene silencing (VIGS), the transcript level of heat shock protein HSP90 was distinctly lower in host plants in association with the absence of leaf necrosis induced by TMV-p25. Our results revealed crucial roles for MCMV p25 in viral pathogenicity, long-distance movement, and interactions with N. benthamiana.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baolong Zhang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gamal M. Abdel-Fattah Ouf
- Department of Botany and Applied Microbiology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
23
|
Basu D, Codjoe JM, Veley KM, Haswell ES. The Mechanosensitive Ion Channel MSL10 Modulates Susceptibility to Pseudomonas syringae in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:567-582. [PMID: 34775835 DOI: 10.1094/mpmi-08-21-0207-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plants sense and respond to molecular signals associated with the presence of pathogens and their virulence factors. Mechanical signals generated during pathogenic invasion may also be important, but their contributions have rarely been studied. Here, we investigate the potential role of a mechanosensitive ion channel, MscS-like (MSL)10, in defense against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. We previously showed that overexpression of MSL10-GFP, phospho-mimetic versions of MSL10, and the gain-of-function allele msl10-3G all produce dwarfing, spontaneous cell death, and the hyperaccumulation of reactive oxygen species. These phenotypes are shared by many autoimmune mutants and are frequently suppressed by growth at high temperature in those lines. We found that the same was true for all three MSL10 hypermorphs. In addition, we show that the SGT1/RAR1/HSP90 cochaperone complex was required for dwarfing and ectopic cell death, PAD4 and SID2 were partially required, and the immune regulators EDS1 and NDR1 were dispensable. All MSL10 hypermorphs exhibited reduced susceptibility to infection by P. syringae strain Pto DC3000 and Pto DC3000 expressing the avirulence genes avrRpt2 or avrRpm1 but not Pto DC3000 hrpL and showed an accelerated induction of PR1 expression compared with wild-type plants. Null msl10-1 mutants were delayed in PR1 induction and displayed modest susceptibility to infection by coronatine-deficient P. syringae pv. tomato. Finally, stomatal closure was reduced in msl10-1 loss-of-function mutants in response to P. syringae pv. tomato COR-. These data show that MSL10 modulates pathogen responses and begin to address the possibility that mechanical signals are exploited by the plant for pathogen perception.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Debarati Basu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
- NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| | - Jennette M Codjoe
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
- NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| | - Kira M Veley
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| | - Elizabeth S Haswell
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
- NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| |
Collapse
|
24
|
Amoroso CG, Andolfo G, Capuozzo C, Di Donato A, Martinez C, Tomassoli L, Ercolano MR. Transcriptomic and genomic analysis provides new insights in molecular and genetic processes involved in zucchini ZYMV tolerance. BMC Genomics 2022; 23:371. [PMID: 35578183 PMCID: PMC9109310 DOI: 10.1186/s12864-022-08596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cucurbita pepo is highly susceptible to Zucchini yellow mosaic virus (ZYMV) and the resistance found in several wild species cannot be considered as complete or broad-spectrum resistance. In this study, a source of tolerance introgressed in C. pepo (381e) from C. moschata, in True French (TF) background, was investigated 12 days post-inoculation (DPI) at transcriptomic and genomic levels. RESULTS The comparative RNA-sequencing (RNA-Seq) of TF (susceptible to ZYMV) and 381e (tolerant to ZYMV) allowed the evaluation of about 33,000 expressed transcripts and the identification of 146 differentially expressed genes (DEGs) in 381e, mainly involved in photosynthesis, transcription, cytoskeleton organization and callose synthesis. By contrast, the susceptible cultivar TF triggered oxidative processes related to response to biotic stimulus and activated key regulators of plant virus intercellular movement. In addition, the discovery of variants located in transcripts allowed the identification of two chromosome regions rich in Single Nucleotide Polymorphisms (SNPs), putatively introgressed from C. moschata, containing genes exclusively expressed in 381e. CONCLUSION 381e transcriptome analysis confirmed a global improvement of plant fitness by reducing the virus titer and movement. Furthermore, genes implicated in ZYMV tolerance in C. moschata introgressed regions were detected. Our work provides new insight into the plant virus recovery process and a better understanding of the molecular basis of 381e tolerance.
Collapse
Affiliation(s)
- C G Amoroso
- Department of Agricultural Science, University of Naples "Federico II", Portici, NA, Naples, Italy
| | - G Andolfo
- Department of Agricultural Science, University of Naples "Federico II", Portici, NA, Naples, Italy
| | - C Capuozzo
- Department of Agricultural Science, University of Naples "Federico II", Portici, NA, Naples, Italy
| | - A Di Donato
- Department of Agricultural Science, University of Naples "Federico II", Portici, NA, Naples, Italy
| | - C Martinez
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, 04120, Almería, Spain
| | - L Tomassoli
- Consiglio Per La Ricerca in Agricoltura e l'Analisi Dell'Economia Agraria, Research Centre of Plant Control and Certification, Rome, Italy
| | - M R Ercolano
- Department of Agricultural Science, University of Naples "Federico II", Portici, NA, Naples, Italy.
| |
Collapse
|
25
|
Khalilzadeh M, Weber KC, Dutt M, El-Mohtar CA, Levy A. Comparative transcriptome analysis of Citrus macrophylla tree infected with Citrus tristeza virus stem pitting mutants provides new insight into the role of phloem regeneration in stem pitting disease. FRONTIERS IN PLANT SCIENCE 2022; 13:987831. [PMID: 36267951 PMCID: PMC9577373 DOI: 10.3389/fpls.2022.987831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 05/21/2023]
Abstract
Stem pitting is a complex and economically important virus-associated disease of perennial woody plants. Molecular mechanisms and pathways occurring during virus-plant interaction that result in this phenomenon are still obscure. Previous studies indicated that different Citrus tristeza virus (CTV) mutants induce defined stem pitting phenotypes ranging from mild (CTVΔp13) to severe (CTVΔp33) in Citrus macrophylla trees. In this study, we conducted comparative transcriptome analyses of C. macrophylla trees infected with CTV mutants (CTVΔp13 and CTVΔp33) and a full-length virus in comparison to healthy plants as control. The mild CTV stem pitting mutant had very few differentially expressed genes (DEGs) related to plant defense mechanism and plant growth and development. In contrast, substantial gene expression changes were observed in plants infected with the severe mutant and the full-length virus, indicating that both the p13 and p33 proteins of CTV acted as a regulator of symptom production by activating and modulating plant responses, respectively. The analysis of transcriptome data for CTVΔp33 and the full-length virus suggested that xylem specification has been blocked by detecting several genes encoding xylem, cell wall and lignin degradation, and cell wall loosening enzymes. Furthermore, stem pitting was accompanied by downregulation of transcription factors involved in regulation of xylem differentiation and downregulation of some genes involved in lignin biosynthesis, showing that the xylem differentiation and specification program has been shut off. Upregulation of genes encoding transcription factors associated with phloem and cambium development indicated the activation of this program in stem pitting disease. Furthermore, we detected the induction of several DEGs encoding proteins associated with cell cycle re-entry such as chromatin remodeling factors and cyclin, and histone modification. This kind of expression pattern of genes related to xylem differentiation and specification, phloem and cambium development, and cell cycle re-entry is demonstrated during secondary vascular tissue (SVT) regeneration. The microscopy analysis confirmed that the regeneration of new phloem is associated with stem pitting phenotypes. The findings of this study, thus, provide evidence for the association between stem pitting phenotypes and SVT regeneration, suggesting that the expression of these genes might play important roles in development of stem pitting symptoms. Overall, our findings suggest that phloem regeneration contributes to development of stem pitting symptoms.
Collapse
Affiliation(s)
- Maryam Khalilzadeh
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Kyle Clark Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Choaa Amine El-Mohtar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Amit Levy
| |
Collapse
|
26
|
Lee H, Seo Y, Lee JH, Lee SE, Oh S, Kim J, Jung S, Kim H, Park H, Kim S, Mang H, Choi D. Plasma membrane-localized plant immune receptor targets H + -ATPase for membrane depolarization to regulate cell death. THE NEW PHYTOLOGIST 2022; 233:934-947. [PMID: 34632584 PMCID: PMC9298278 DOI: 10.1111/nph.17789] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The hypersensitive response (HR) is a robust immune response mediated by nucleotide-binding, leucine-rich repeat receptors (NLRs). However, the early molecular event that links activated NLRs to cell death is unclear. Here, we demonstrate that NLRs target plasma membrane H+ -ATPases (PMAs) that generate electrochemical potential, an essential component of living cells, across the plasma membrane. CCA 309, an autoactive N-terminal domain of a coiled-coil NLR (CNL) in pepper, is associated with PMAs. Silencing or overexpression of PMAs reversibly affects cell death induced by CCA 309 in Nicotiana benthamiana. CCA 309-induced extracellular alkalization causes plasma membrane depolarization, followed by cell death. Coimmunoprecipitation analyses suggest that CCA 309 inhibits PMA activation by preoccupying the dephosphorylated penultimate threonine residue of PMA. Moreover, pharmacological experiments using fusicoccin, an irreversible PMA activator, showed that inhibition of PMAs contributes to CNL-type (but not Toll interleukin-1 receptor NLR-type) resistance protein-induced cell death. We suggest PMAs as primary targets of plasma membrane-associated CNLs leading to HR-associated cell death by disturbing the electrochemical gradient across the membrane. These results provide new insight into NLR-mediated cell death in plants, as well as innate immunity in higher eukaryotes.
Collapse
Affiliation(s)
- Hye‐Young Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Ye‐Eun Seo
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Joo Hyun Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - So Eui Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Soohyun Oh
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Jihyun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Seungmee Jung
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Haeun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Hyojeong Park
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Sejun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Hyunggon Mang
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Doil Choi
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| |
Collapse
|
27
|
Akamatsu A, Fujiwara M, Hamada S, Wakabayashi M, Yao A, Wang Q, Kosami KI, Dang TT, Kaneko-Kawano T, Fukada F, Shimamoto K, Kawano Y. The Small GTPase OsRac1 Forms Two Distinct Immune Receptor Complexes Containing the PRR OsCERK1 and the NLR Pit. PLANT & CELL PHYSIOLOGY 2021; 62:1662-1675. [PMID: 34329461 DOI: 10.1093/pcp/pcab121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Plants employ two different types of immune receptors, cell surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat-containing proteins (NLRs), to cope with pathogen invasion. Both immune receptors often share similar downstream components and responses but it remains unknown whether a PRR and an NLR assemble into the same protein complex or two distinct receptor complexes. We have previously found that the small GTPase OsRac1 plays key roles in the signaling of OsCERK1, a PRR for fungal chitin, and of Pit, an NLR for rice blast fungus, and associates directly and indirectly with both of these immune receptors. In this study, using biochemical and bioimaging approaches, we revealed that OsRac1 formed two distinct receptor complexes with OsCERK1 and with Pit. Supporting this result, OsCERK1 and Pit utilized different transport systems for anchorage to the plasma membrane (PM). Activation of OsCERK1 and Pit led to OsRac1 activation and, concomitantly, OsRac1 shifted from a small to a large protein complex fraction. We also found that the chaperone Hsp90 contributed to the proper transport of Pit to the PM and the immune induction of Pit. These findings illuminate how the PRR OsCERK1 and the NLR Pit orchestrate rice immunity through the small GTPase OsRac1.
Collapse
Affiliation(s)
- Akira Akamatsu
- Department of Biosciences, Kwansei Gakuin University, 2-1 Gakuen, Hyogo, 669-1337, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Masayuki Fujiwara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Yanmar Holdings Co., Ltd, 1-32 Chayamachi, Kita Ward, Osaka 530-8311, Japan
| | - Satoshi Hamada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Megumi Wakabayashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Field Solutions North East Asia, Agronomic Operations Japan, Agronomic Technology Station East Japan, Bayer Crop Science K.K., 9511-4 Yuki, Ibaraki 307-0001, Japan
| | - Ai Yao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Qiong Wang
- Department of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ken-Ichi Kosami
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, China
- Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Matsuyama, 1618 Shimoidaicho, Ehime 791-0112, Japan
| | - Thu Thi Dang
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d'Angers, Beaucouzé 49071, France
| | - Takako Kaneko-Kawano
- College of Pharmaceutical Sciences, Ritsumeikan University, 1 Chome-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Fumi Fukada
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Ko Shimamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yoji Kawano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, China
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maiokachō, Totsuka Ward, Yokohama, Kanagawa 244-0813, Japan
| |
Collapse
|
28
|
Genome-Wide Identification of Hsp90 Gene Family in Perennial Ryegrass and Expression Analysis under Various Abiotic Stresses. PLANTS 2021; 10:plants10112509. [PMID: 34834872 PMCID: PMC8622807 DOI: 10.3390/plants10112509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
The heat shock protein 90 (Hsp90) is a protein produced in plants in response to stress. This study identified and analyzed Hsp90 gene family members in the perennial ryegrass genome. From the results, eight Hsp90 proteins were obtained and their MW, pI and number of amino acid bases varied. The amino acid bases ranged from 526 to 862. The CDS also ranged from 20 (LpHsp0-4) to 1 (LpHsp90-5). The least number of CDS regions was 1 (LpHsp90-5) with 528 kb amino acids, while the highest was 20 (LpHsp90-4) with 862 kb amino acids, which showed diversity among the protein sequences. The phylogenetic tree revealed that Hsp90 genes in Lolium perenne, Arabidopsis thaliana, Oryza sativa and Brachypodium distachyon could be divided into two groups with five paralogous gene pairs and three orthologous gene pairs. The expression analysis after perennial ryegrass was subjected to heat, salt, chromium (Cr), cadmium (Cd), polyethylene glycol (PEG) and abscisic acid (ABA) revealed that LpHsp90 genes were generally highly expressed under heat stress, but only two LpHsp90 proteins were expressed under Cr stresses. Additionally, the expression of the LpHsp90 proteins differed at each time point in all treatments. This study provides the basis for an understanding of the functions of LpHsp90 proteins in abiotic stress studies and in plant breeding.
Collapse
|
29
|
Zhao X, Chen Z, Wu Q, Cai Y, Zhang Y, Zhao R, Yan J, Qian X, Li J, Zhu M, Hong L, Xing J, Khan NU, Ji Y, Wu P, Huang C, Ding XS, Zhang H, Tao X. The Sw-5b NLR nucleotide-binding domain plays a role in oligomerization, and its self-association is important for activation of cell death signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6581-6595. [PMID: 34115862 DOI: 10.1093/jxb/erab279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Plant and animal intracellular nucleotide-binding and leucine-rich repeat (NLR) receptors play important roles in sensing pathogens and activating defense signaling. However, the molecular mechanisms underlying the activation of host defense signaling by NLR proteins remain largely unknown. Many studies have determined that the coil-coil (CC) or Toll and interleukin-1 receptor/resistance protein (TIR) domain of NLR proteins and their dimerization/oligomerization are critical for activating downstream defense signaling. In this study, we demonstrated that, in tomato, the nucleotide-binding (NB) domain Sw-5b NLR alone can activate downstream defense signaling, leading to elicitor-independent cell death. Sw-5b NB domains can self-associate, and this self-association is crucial for activating cell death signaling. The self-association was strongly compromised after the introduction of a K568R mutation into the P-loop of the NB domain. Consequently, the NBK568R mutant induced cell death very weakly. The NBCΔ20 mutant lacking the C-terminal 20 amino acids can self-associate but cannot activate cell death signaling. The NBCΔ20 mutant also interfered with wild-type NB domain self-association, leading to compromised cell death induction. By contrast, the NBK568R mutant did not interfere with wild-type NB domain self-association and its ability to induce cell death. Structural modeling of Sw-5b suggests that NB domains associate with one another and likely participate in oligomerization. As Sw-5b-triggered cell death is dependent on helper NLR proteins, we propose that the Sw-5b NB domain acts as a nucleation point for the assembly of an oligomeric resistosome, probably by recruiting downstream helper partners, to trigger defense signaling.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Zhengqiang Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qian Wu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yazhen Cai
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ruizhen Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jiaoling Yan
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jia Li
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lizhou Hong
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Jincheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Nasr Ullah Khan
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peijun Wu
- Financial Department, Nanjing Agricultural University, Nanjing, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Liu S, Wang C, Liu X, Navas-Castillo J, Zang L, Fan Z, Zhu X, Zhou T. Tomato chlorosis virus-encoded p22 suppresses auxin signalling to promote infection via interference with SKP1-Cullin-F-box TIR1 complex assembly. PLANT, CELL & ENVIRONMENT 2021; 44:3155-3172. [PMID: 34105183 DOI: 10.1111/pce.14125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Phytohormone auxin plays a fundamental role in plant growth and defense against pathogens. However, how auxin signalling is regulated during virus infection in plants remains largely unknown. Auxin/indole-3-acetic acid (Aux/IAA) is the repressor of auxin signalling and can be recognized by an F-box protein transport inhibitor response 1 (TIR1). Ubiquitination and degradation of Aux/IAA by SKP1-Cullin-F-boxTIR1 (SCFTIR1 ) complex can trigger auxin signalling. Here, with an emerging important plant virus worldwide, we showed that tomato chlorosis virus (ToCV) infection or stable transgenic overexpression of its p22 protein does not alter auxin accumulation level but significantly decreases the expression of auxin signalling-responsive genes, suggesting that p22 can attenuate host auxin signalling. Further, p22 could bind the C-terminal of SKP1.1 and compete with TIR1 to interfere with the SCFTIR1 complex assembly, leading to a suppression of Aux/IAA degradation. Silencing and over-expression assays suggested that both NbSKP1.1 and NbTIR1 suppress ToCV accumulation and disease symptoms. Altogether, ToCV p22 disrupts the auxin signalling through destabilizing SCFTIR1 by interacting with the C-terminal of NbSKP1.1 to promote ToCV infection. Our findings uncovered a previously unknown molecular mechanism employed by a plant virus to manipulate SCF complex-mediated ubiquitin pathway and to reprogram auxin signalling for efficient infection.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Cuilin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xuedong Liu
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| | - Lianyi Zang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Heenan-Daly D, Coughlan S, Dillane E, Doyle Prestwich B. Volatile Compounds From Bacillus, Serratia, and Pseudomonas Promote Growth and Alter the Transcriptional Landscape of Solanum tuberosum in a Passively Ventilated Growth System. Front Microbiol 2021; 12:628437. [PMID: 34367077 PMCID: PMC8333284 DOI: 10.3389/fmicb.2021.628437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
The interaction of an array of volatile organic compounds (VOCs) termed bacterial volatile compounds (BVCs) with plants is now a major area of study under the umbrella of plant-microbe interactions. Many growth systems have been developed to determine the nature of these interactions in vitro. However, each of these systems have their benefits and drawbacks with respect to one another and can greatly influence the end-point interpretation of the BVC effect on plant physiology. To address the need for novel growth systems in BVC-plant interactions, our study investigated the use of a passively ventilated growth system, made possible via Microbox® growth chambers, to determine the effect of BVCs emitted by six bacterial isolates from the genera Bacillus, Serratia, and Pseudomonas. Solid-phase microextraction GC/MS was utilized to determine the BVC profile of each bacterial isolate when cultured in three different growth media each with varying carbon content. 66 BVCs were identified in total, with alcohols and alkanes being the most abundant. When cultured in tryptic soy broth, all six isolates were capable of producing 2,5-dimethylpyrazine, however BVC emission associated with this media were deemed to have negative effects on plant growth. The two remaining media types, namely Methyl Red-Voges Proskeur (MR-VP) and Murashige and Skoog (M + S), were selected for bacterial growth in co-cultivation experiments with Solanum tuberosum L. cv. ‘Golden Wonder.’ The BVC emissions of Bacillus and Serratia isolates cultured on MR-VP induced alterations in the transcriptional landscape of potato across all treatments with 956 significantly differentially expressed genes. This study has yielded interesting results which indicate that BVCs may not always broadly upregulate expression of defense genes and this may be due to choice of plant-bacteria co-cultivation apparatus, bacterial growth media and/or strain, or likely, a complex interaction between these factors. The multifactorial complexities of observed effects of BVCs on target organisms, while intensely studied in recent years, need to be further elucidated before the translation of lab to open-field applications can be fully realized.
Collapse
Affiliation(s)
- Darren Heenan-Daly
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Simone Coughlan
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Eileen Dillane
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Barbara Doyle Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Gupta R, Leibman-Markus M, Marash I, Kovetz N, Rav-David D, Elad Y, Bar M. Root zone warming represses foliar diseases in tomato by inducing systemic immunity. PLANT, CELL & ENVIRONMENT 2021; 44:2277-2289. [PMID: 33506959 DOI: 10.1111/pce.14006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Plants employ systemic-induced resistance as part of their defence arsenal against pathogens. In recent years, the application of mild heating has been found to induce resistance against several pathogens. In the present study, we investigated the effect of root zone warming (RZW) in promoting tomato's resistance against the necrotrophic fungus Botrytis cinerea (Bc), the hemibiotrophic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) and the biotrophic fungus Oidium neolycopersici (On). We demonstrate that RZW enhances tomato's resistance to Bc, On and Xcv through a process that is dependent on salicylic acid and ethylene. RZW induced tomato immunity, resulting in increased defence gene expression, reactive oxygen species (ROS) and ethylene output when plants were challenged, even in the absence of pathogens. Overall, the results provide novel insights into the underlying mechanisms of warming-induced immune responses against phytopathogens with different lifestyles in tomato.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Neta Kovetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
33
|
Yang Z, Li N, Kitano T, Li P, Spindel JE, Wang L, Bai G, Xiao Y, McCouch SR, Ishihara A, Zhang J, Yang X, Chen Z, Wei J, Ge H, Jander G, Yan J. Genetic mapping identifies a rice naringenin O-glucosyltransferase that influences insect resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1401-1413. [PMID: 33745166 DOI: 10.1111/tpj.15244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/16/2021] [Indexed: 05/20/2023]
Abstract
Naringenin, the biochemical precursor for predominant flavonoids in grasses, provides protection against UV damage, pathogen infection and insect feeding. To identify previously unknown loci influencing naringenin accumulation in rice (Oryza sativa), recombinant inbred lines derived from the Nipponbare and IR64 cultivars were used to map a quantitative trait locus (QTL) for naringenin abundance to a region of 50 genes on rice chromosome 7. Examination of candidate genes in the QTL confidence interval identified four predicted uridine diphosphate-dependent glucosyltransferases (Os07g31960, Os07g32010, Os07g32020 and Os07g32060). In vitro assays demonstrated that one of these genes, Os07g32020 (UGT707A3), encodes a glucosyltransferase that converts naringenin and uridine diphosphate-glucose to naringenin-7-O-β-d-glucoside. The function of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which accumulated more naringenin and less naringenin-7-O-β-d-glucoside and apigenin-7-O-β-d-glucoside than wild-type Nipponbare. Expression of Os12g13800, which encodes a naringenin 7-O-methyltransferase that produces sakuranetin, was elevated in the mutant lines after treatment with methyl jasmonate and insect pests, Spodoptera litura (cotton leafworm), Oxya hyla intricata (rice grasshopper) and Nilaparvata lugens (brown planthopper), leading to a higher accumulation of sakuranetin. Feeding damage from O. hyla intricata and N. lugens was reduced on the Os07g32020 mutant lines relative to Nipponbare. Modification of the Os07g32020 gene could be used to increase the production of naringenin and sakuranetin rice flavonoids in a more targeted manner. These findings may open up new opportunities for selective breeding of this important rice metabolic trait.
Collapse
Affiliation(s)
- Zhongyan Yang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Nana Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Takashige Kitano
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Ping Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jennifer E Spindel
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Lishuo Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Genxiang Bai
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yiying Xiao
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Susan R McCouch
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Jili Zhang
- China Tobacco Guangxi Industrial Co. Ltd, Nanning, Guangxi, 530001, People's Republic of China
| | - Xin Yang
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510610, People's Republic of China
| | - Zepeng Chen
- Guangdong Provincial Tobacco Shaoguan Co. Ltd, Shaoguan, Guangdong, 512000, People's Republic of China
| | - Jianyu Wei
- China Tobacco Guangxi Industrial Co. Ltd, Nanning, Guangxi, 530001, People's Republic of China
| | - Honghua Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
34
|
Schwarczinger I, Kolozsváriné Nagy J, Király L, Mészáros K, Bányai J, Kunos V, Fodor J, Künstler A. Heat Stress Pre-Exposure May Differentially Modulate Plant Defense to Powdery Mildew in a Resistant and Susceptible Barley Genotype. Genes (Basel) 2021; 12:genes12050776. [PMID: 34069722 PMCID: PMC8160753 DOI: 10.3390/genes12050776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Heat stress negatively affects barley production and under elevated temperatures defense responses to powdery mildew (Blumeria graminis f. sp. hordei, Bgh) are altered. Previous research has analyzed the effects of short-term (30 s to 2 h) heat stress, however, few data are available on the influence of long-term exposure to heat on powdery mildew infections. We simultaneously assessed the effects of short and long term heat pre-exposure on resistance/susceptibility of barley to Bgh, evaluating powdery mildew infection by analyzing symptoms and Bgh biomass with RT-qPCR in barley plants pre-exposed to high temperatures (28 and 35 °C from 30 s to 5 days). Plant defense gene expression after heat stress pre-exposure and inoculation was also monitored. Our results show that prolonged heat stress (24, 48 and 120 h) further enhanced Bgh susceptibility in a susceptible barley line (MvHV118-17), while a resistant line (MvHV07-17) retained its pathogen resistance. Furthermore, prolonged heat stress significantly repressed the expression of several defense-related genes (BAX inhibitor-1, Pathogenesis related-1b and Respiratory burst oxidase homologue F2) in both resistant and susceptible barley lines. Remarkably, heat-suppressed defense gene expression returned to normal levels only in MvHV07-17, a possible reason why this barley line retains Bgh resistance even at high temperatures.
Collapse
Affiliation(s)
- Ildikó Schwarczinger
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - Judit Kolozsváriné Nagy
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - Lóránt Király
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
- Correspondence: ; Tel.: +36-1-487-7527
| | - Klára Mészáros
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - Judit Bányai
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - Viola Kunos
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - József Fodor
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - András Künstler
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| |
Collapse
|
35
|
Murphree C, Kim S, Karre S, Samira R, Balint‐Kurti P. Use of virus-induced gene silencing to characterize genes involved in modulating hypersensitive cell death in maize. MOLECULAR PLANT PATHOLOGY 2020; 21:1662-1676. [PMID: 33037769 PMCID: PMC7694674 DOI: 10.1111/mpp.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant-pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.
Collapse
Affiliation(s)
- Colin Murphree
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research Institute (FBRI)Department of Plant and Soil ScienceTexas Tech UniversityTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
36
|
Deng Y, Ning Y, Yang DL, Zhai K, Wang GL, He Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. MOLECULAR PLANT 2020; 13:1402-1419. [PMID: 32979566 DOI: 10.1016/j.molp.2020.09.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 05/24/2023]
Abstract
Crop diseases are major factors responsible for substantial yield losses worldwide, which affects global food security. The use of resistance (R) genes is an effective and sustainable approach to controlling crop diseases. Here, we review recent advances on R gene studies in the major crops and related wild species. Current understanding of the molecular mechanisms underlying R gene activation and signaling, and susceptibility (S) gene-mediated resistance in crops are summarized and discussed. Furthermore, we propose some new strategies for R gene discovery, how to balance resistance and yield, and how to generate crops with broad-spectrum disease resistance. With the rapid development of new genome-editing technologies and the availability of increasing crop genome sequences, the goal of breeding next-generation crops with durable resistance to pathogens is achievable, and will be a key step toward increasing crop production in a sustainable way.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
37
|
Zhou J, Zhao H, Huang Z, Ye X, Zhang L, Li Q, Zhao Z, Su X, Liu G, Du J. Differential transcriptomic analysis of crayfish (Procambarus clarkii) from a rice coculture system challenged by Vibrio parahaemolyticus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100741. [PMID: 32919192 DOI: 10.1016/j.cbd.2020.100741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Rice-crayfish (Procambarus clarkii) coculture is an effective farming mode and has been promoted in various regions of China. However, infection in crayfish can be a significant economic drain. We found crayfish infected with Vibrio parahemolyticus (VP), and to understand the molecular mechanisms of the immune responses of crayfish to VP infection, Illumina sequencing was employed to identify changes in the mRNA of hepatopancreatic tissue. A total of 47.30 and 43.01million high-quality transcriptome reads were generated from the hepatopancreatic samples of the experimental group (EG) and control group (CG), respectively. We found 5559 genes were significantly differentially expressed, including 2521 up-regulated genes (45.35%) and 3038 down-regulated genes (54.65%). These genes were enriched in 126 GO terms and 76 KEGG pathways (P ≤ 0.05), including the MAPK and PI3K-Akt signaling pathways and cell adhesion molecules, with 23 up-regulated genes and 3 down-regulated genes related to immune responses in the EG relative to the CG. Histopathological analysis revealed that the epithelial cells of the hepatopancreatic tubules in the EG were severely atrophic, necrotic, and exfoliated, resulting in thin and collapsing hepatopancreatic tubules. The expression patterns of 8 differentially expressed genes involved in immune responses were validated by quantitative real-time RT-PCR. These results provide a valuable basis for the immune responses of crayfish to acute hepatopancreatic necrosis disease at transcriptome level.
Collapse
Affiliation(s)
- Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Zhipeng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Xianlin Ye
- Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - XuTao Su
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - GuangXun Liu
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China.
| |
Collapse
|
38
|
Li W, Chen Y, Ye M, Wang D, Chen Q. Evolutionary history of the heat shock protein 90 (Hsp90) family of 43 plants and characterization of Hsp90s in Solanum tuberosum. Mol Biol Rep 2020; 47:6679-6691. [PMID: 32780253 DOI: 10.1007/s11033-020-05722-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
Abstract
Heat shock protein 90 genes/proteins (Hsp90s) are related to the stress resistance found in various plant species. These proteins affect the growth and development of plants and have important effects on the plants under various stresses (cold, drought and salt) in the environment. In this study, we identified 334 Hsp90s from 43 plant species, and Hsp90s were found in all species. Phylogenetic tree and conserved domain database analysis of all Hsp90s showed three independent clades. The analysis of motifs, gene duplication events, and the expression data from PGSC website revealed the gene structures, evolution relationships, and expression patterns of the Hsp90s. In addition, analysis of the transcript levels of the 7 Hsp90s in potato (Solanum tuberosum) under low temperature and high temperature stresses showed that these genes were related to the temperature stresses. Especially StHsp90.2 and StHsp90.4, under high or low temperature conditions, the expression levels in leaves, stems, or roots were significantly up-regulated. Our findings revealed the evolution of the Hsp90s, which had guiding significance for further researching the precise functions of the Hsp90s.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Minghui Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
39
|
Sun Y, Zhu YX, Balint-Kurti PJ, Wang GF. Fine-Tuning Immunity: Players and Regulators for Plant NLRs. TRENDS IN PLANT SCIENCE 2020; 25:695-713. [PMID: 32526174 DOI: 10.1016/j.tplants.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated innate immune system to defend against pathogen infection, and intracellular nucleotide-binding, leucine-rich repeat (NLR or NB-LRR) immune receptors are one of the main components of this system. NLR activity is fine-tuned by intra- and intermolecular interactions. We survey what is known about the conservation and diversity of NLR-interacting proteins, and divide them into seven major categories. We discuss the molecular mechanisms by which NLR activities are regulated and how understanding this regulation has potential to facilitate the engineering of NLRs for crop improvement.
Collapse
Affiliation(s)
- Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA; US Department of Agriculture Agricultural Research Service, Plant Science Research Unit, Raleigh, NC 27695, USA
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
40
|
Ganusova EE, Reagan BC, Fernandez JC, Azim MF, Sankoh AF, Freeman KM, McCray TN, Patterson K, Kim C, Burch-Smith TM. Chloroplast-to-nucleus retrograde signalling controls intercellular trafficking via plasmodesmata formation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190408. [PMID: 32362251 DOI: 10.1098/rstb.2019.0408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The signalling pathways that regulate intercellular trafficking via plasmodesmata (PD) remain largely unknown. Analyses of mutants with defects in intercellular trafficking led to the hypothesis that chloroplasts are important for controlling PD, probably by retrograde signalling to the nucleus to regulate expression of genes that influence PD formation and function, an idea encapsulated in the organelle-nucleus-PD signalling (ONPS) hypothesis. ONPS is supported by findings that point to chloroplast redox state as also modulating PD. Here, we have attempted to further elucidate details of ONPS. Through reverse genetics, expression of select nucleus-encoded genes with known or predicted roles in chloroplast gene expression was knocked down, and the effects on intercellular trafficking were then assessed. Silencing most genes resulted in chlorosis, and the expression of several photosynthesis and tetrapyrrole biosynthesis associated nuclear genes was repressed in all silenced plants. PD-mediated intercellular trafficking was changed in the silenced plants, consistent with predictions of the ONPS hypothesis. One striking observation, best exemplified by silencing the PNPase homologues, was that the degree of chlorosis of silenced leaves was not correlated with the capacity for intercellular trafficking. Finally, we measured the distribution of PD in silenced leaves and found that intercellular trafficking was positively correlated with the numbers of PD. Together, these results not only provide further support for ONPS but also point to a genetic mechanism for PD formation, clarifying a longstanding question about PD and intercellular trafficking. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon C Reagan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amie F Sankoh
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Tyra N McCray
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kelsey Patterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chinkee Kim
- Departments of Science and Mathematics, RIT/National Technical Institute for the Deaf (NTID), Rochester, NY 14623, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
41
|
Grech-Baran M, Witek K, Szajko K, Witek AI, Morgiewicz K, Wasilewicz-Flis I, Jakuczun H, Marczewski W, Jones JDG, Hennig J. Extreme resistance to Potato virus Y in potato carrying the Ry sto gene is mediated by a TIR-NLR immune receptor. PLANT BIOTECHNOLOGY JOURNAL 2020. [PMID: 31397954 DOI: 10.1101/445031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.
Collapse
Affiliation(s)
- Marta Grech-Baran
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Katarzyna Szajko
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów, Poland
| | | | - Karolina Morgiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów, Poland
| | - Henryka Jakuczun
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów, Poland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów, Poland
| | | | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
van Wersch S, Tian L, Hoy R, Li X. Plant NLRs: The Whistleblowers of Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100016. [PMID: 33404540 PMCID: PMC7747998 DOI: 10.1016/j.xplc.2019.100016] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 05/19/2023]
Abstract
The study of plant diseases is almost as old as agriculture itself. Advancements in molecular biology have given us much more insight into the plant immune system and how it detects the many pathogens plants may encounter. Members of the primary family of plant resistance (R) proteins, NLRs, contain three distinct domains, and appear to use several different mechanisms to recognize pathogen effectors and trigger immunity. Understanding the molecular process of NLR recognition and activation has been greatly aided by advancements in structural studies, with ZAR1 recently becoming the first full-length NLR to be visualized. Genetic and biochemical analysis identified many critical components for NLR activation and homeostasis control. The increased study of helper NLRs has also provided insights into the downstream signaling pathways of NLRs. This review summarizes the progress in the last decades on plant NLR research, focusing on the mechanistic understanding that has been achieved.
Collapse
Affiliation(s)
- Solveig van Wersch
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Lei Tian
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Zheng X, Wu M, Li X, Cao J, Li J, Wang J, Huang S, Liu Y, Wang Y. Actin filaments are dispensable for bulk autophagy in plants. Autophagy 2019; 15:2126-2141. [PMID: 30907219 PMCID: PMC6844523 DOI: 10.1080/15548627.2019.1596496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022] Open
Abstract
Actin filament, also known as microfilament, is one of two major cytoskeletal elements in plants and plays important roles in various biological processes. Like in animal cells, actin filaments have been thought to participate in autophagy in plants. However, surprisingly, in this study we found that actin filaments are dispensable for the occurrence of autophagy in plants. Disruption of actin filaments by short term treatment with actin polymerization inhibitors, cytochalasin D and latrunculin B, or transient overexpression of Profilin 3 in Nicotiana benthamiana had no effect on basal autophagy as well as the upregulation of nocturnal autophagy and salt stress-induced autophagy. Furthermore, anti-microfilament drug treatment affected neither basal nor salt stress-induced autophagy in Arabidopsis. In addition, prolonged perturbation of actin filaments by silencing Actin7 or 24-h treatment with microfilament-disrupting agents in N. benthamiana caused endoplasmic reticulum (ER) disorganization and subsequent degradation via autophagy involving ATG2, 3, 5, 6 and 7. Our findings reveal that, unlike mammalian cells, actin filaments are unnecessary for bulk autophagy in plants.Abbreviations: ATG: autophagy-related; CD: cytochalasin D; Cvt pathway: cytoplasm to vacuole targeting pathway; DMSO: dimethyl sulfoxide; ER: endoplasmic reticulum; LatB: latrunculin B; Nb: Nicotiana benthamiana; PAS: phagophore assembly site; PRF3: Profilin 3; RER: rough ER; SER: smooth ER; TEM: transmission electron microscopy; TRV: Tobacco rattle virus; VIGS: virus-induced gene silencing; wpi: weeks post-agroinfiltration.
Collapse
Affiliation(s)
- Xiyin Zheng
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ming Wu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinyi Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jidong Cao
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinlin Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jieling Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
A Bacterial Effector Mimics a Host HSP90 Client to Undermine Immunity. Cell 2019; 179:205-218.e21. [PMID: 31522888 DOI: 10.1016/j.cell.2019.08.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/21/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.
Collapse
|
45
|
Das PP, Macharia MW, Lin Q, Wong SM. In planta proximity-dependent biotin identification (BioID) identifies a TMV replication co-chaperone NbSGT1 in the vicinity of 126 kDa replicase. J Proteomics 2019; 204:103402. [PMID: 31158515 DOI: 10.1016/j.jprot.2019.103402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
Tobacco mosaic virus (TMV) is a positive, single-stranded RNA virus. It encodes two replicases (126 kDa and 183 kDa), a movement protein and a coat protein. These proteins interact with host proteins for successful infection. Some host proteins such as eEF1α, Tm-1, TOM1, 14-3-3 proteins directly interact with Tobamovirus replication proteins. There are host proteins in the virus replication complex which do not interact with viral replicases directly, such as pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase. We have used Proximity-dependent biotin identification (BioID) technique to screen for transient or weak protein interactions of host proteins and viral replicase in vivo. We transiently expressed BirA* tagged TMV 126 kDa replicase in TMV infected Nicotiana benthamiana plants. Among 18 host proteins, we identified NbSGT1 as a potential target for further characterization. Silencing of NbSGT1 in N. benthamiana plants increased its susceptibility to TMV infection, and overexpression of NbSGT1 increased resistance to TMV infection. There were weak interactions between NbSGT1 and TMV replicases but no interaction between them was found in Y2H assay. It suggests that the interaction might be transient or indirect. Therefore, the BioID technique is a valuable method to identify weak or transient/indirect interaction(s) between pathogen proteins and host proteins in plants. BIOLOGICAL SIGNIFICANCE: TMV is a well characterized positive-strand RNA virus model for study of virus-plant host interactions. It infects >350 plant species and is one of the significant pathogens of crop loss globally. Many host proteins are involved in TMV replication complex formation. To date there are few techniques available for identifying interacting host proteins to viral proteins. There is limited knowledge on transient or non-interacting host proteins during virus infection/replication. In this study, we used agroinfiltration-mediated in planta BioID technique to identify transiently or non-interacting host proteins to viral proteins in TMV-infected N. benthamiana plants. This technique allowed us to identify potential candidate proteins in the vicinity of TMV 126 kDa replicase. We have selected NbSGT1 and its overexpression suppresses TMV replication and increase plant resistance. NbSGT1 is believed to interact transiently or indirectly with TMV replicases in the presence of Hsp90/Hsp70. BioID is a novel and powerful technique to identify transiently or indirectly interacting proteins in the study of pathogen-host interactions.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Mercy Wairimu Macharia
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China.
| |
Collapse
|
46
|
Zhang Y, Song G, Lal NK, Nagalakshmi U, Li Y, Zheng W, Huang PJ, Branon TC, Ting AY, Walley JW, Dinesh-Kumar SP. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat Commun 2019; 10:3252. [PMID: 31324801 PMCID: PMC6642208 DOI: 10.1038/s41467-019-11202-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) immune receptors play a critical role in defence against pathogens in plants and animals. However, we know very little about NLR-interacting proteins and the mechanisms that regulate NLR levels. Here, we used proximity labeling (PL) to identify the proteome proximal to N, which is an NLR that confers resistance to Tobacco mosaic virus (TMV). Evaluation of different PL methods indicated that TurboID-based PL provides more efficient levels of biotinylation than BioID and BioID2 in plants. TurboID-based PL of N followed by quantitative proteomic analysis and genetic screening revealed multiple regulators of N-mediated immunity. Interestingly, a putative E3 ubiquitin ligase, UBR7, directly interacts with the TIR domain of N. UBR7 downregulation leads to an increased amount of N protein and enhanced TMV resistance. TMV-p50 effector disrupts the N-UBR7 interaction and relieves negative regulation of N. These findings demonstrate the utility of TurboID-based PL in plants and the N-interacting proteins we identified enhance our understanding of the mechanisms underlying NLR regulation.
Collapse
Affiliation(s)
- Yongliang Zhang
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA.
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Neeraj K Lal
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yuanyuan Li
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Wenjie Zheng
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Pin-Jui Huang
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Tess C Branon
- Departments of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alice Y Ting
- Departments of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
47
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
48
|
Donato M, Geisler M. HSP
90 and co‐chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett 2019; 593:1415-1430. [DOI: 10.1002/1873-3468.13499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Donato
- Department of Biology University of Fribourg Switzerland
| | - Markus Geisler
- Department of Biology University of Fribourg Switzerland
| |
Collapse
|
49
|
Shi Y, Sun H, Wang X, Jin W, Chen Q, Yuan Z, Yu H. Physiological and transcriptomic analyses reveal the molecular networks of responses induced by exogenous trehalose in plant. PLoS One 2019; 14:e0217204. [PMID: 31116769 PMCID: PMC6530874 DOI: 10.1371/journal.pone.0217204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
It is well known that exogenous trehalose can improve resistances of plants to some abiotic and biotic stresses. Nonetheless, information respecting the molecular responses of tobacco leaves to Tre treatment is limited. Here we show that exogenous Tre can rapidly reduce stomatal aperture, up-regulate NADPH oxidase genes and increase O2•-andH2O2 on tobacco leaves at 2 h after treatment. We further demonstrated that imidazole and DPI, inhibitors of NADPH oxidase, can promote recovery of stomatal aperture of tobacco leaves upon trehalose treatment. Exogenous trehalose increased tobacco leaf resistance to tobacco mosaic disease significantly in a concentration-dependent way. To elucidate the molecular mechanisms in response to exogenous trehalose, the transcriptomic responses of tobacco leaves with 10 (low concentration) or 50 (high concentration) mM of trehalose treatment at 2 or 24h were investigated through RNA-seq approach. In total, 1288 differentially expressed genes (DEGs) were found with different conditions of trehalose treatments relative to control. Among them, 1075 (83.5%) were triggered by low concentration of trehalose (10mM), indicating that low concentration of Tre is a better elicitor. Functional annotations with KEGG pathway analysis revealed that the DEGs are involved in metabolic pathway, biosynthesis of secondary metabolites, plant hormone signal transduction, plant-pathogen interaction, protein processing in ER, flavonoid synthesis and circadian rhythm and so on. The protein-protein interaction networks generated from the core DEGs regulated by all conditions strikingly revealed that eight proteins, including ClpB1, HSP70, DnaJB1-like protein, universal stress protein (USP) A-like protein, two FTSH6 proteins, GolS1-like protein and chloroplastics HSP, play a core role in responses to exogenous trehalose in tobacco leaves. Our data suggest that trehalose triggers a signal transduction pathway which involves calcium and ROS-mediated signalings. These core components could lead to partial resistance or tolerance to abiotic and biotic stresses. Moreover, 19 DEGs were chosen for analysis of quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR for the 19 candidate genes coincided with the DEGs identified via the RNA-seq analysis, sustaining the reliability of our RNA-seq data.
Collapse
Affiliation(s)
- Yongchun Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hui Sun
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaoran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qianyi Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhengdong Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
50
|
Kozeko LY. The Role of HSP90 Chaperones in Stability and Plasticity of Ontogenesis of Plants under Normal and Stressful Conditions (Arabidopsis thaliana). CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719020063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|