1
|
Rashid K, Kalthoff H, Abdulkadir SA, Adam D. Death ligand receptor (DLR) signaling: Its non-apoptotic functions in cancer and the consequences of DLR-directed therapies. Drug Discov Today 2025; 30:104299. [PMID: 39842503 DOI: 10.1016/j.drudis.2025.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Death ligands (DLs), particularly tumor necrosis factor alpha (TNF-α), FAS ligand (FASL), and TNF-related apoptosis-inducing ligand (TRAIL), collectively termed TFT, are pivotal members of the TNF superfamily. While traditionally linked to apoptosis, TFT proteins have emerged as key regulators of various non-apoptotic processes. This review summarizes the non-apoptotic functions of TFT in cancer and explores the intricate crosstalk signaling pathways and their impact on nuclear factor kappa B (NF-κB) signaling, inflammation, and pro-tumorigenic function. It also highlights the potential connections and hurdles that exist in translating synthetic lethality strategies involving DLs into clinical applications. Lastly, it discusses the challenges and opportunities associated with TFT-targeted therapeutic strategies for both malignant and non-malignant diseases.
Collapse
Affiliation(s)
- Khalid Rashid
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Kiel University (CAU), Kiel, Germany
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University (CAU), Kiel, Germany
| |
Collapse
|
2
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Su H, Zhang Y, He Z, Yang Y, Ren Y, Cao W, Liu Y, Ren J, Wang Y, Wang G, Gong C, Hou J. Functional analysis of the ube3a response in Japanese flounder (Paralichthys olivaceus) to CSBV infection. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109495. [PMID: 38461876 DOI: 10.1016/j.fsi.2024.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Ube3a is a member of the E3 ubiquitin ligase HECTc family, and its role has been established in neurodevelopmental disorders. However, studies on its role in Japanese flounder are scarce. Thus, in this study, the ube3a of Japanese flounder was cloned, and its role in conferring resistance against Chinook salmon bafnivirus (CSBV) was analyzed. Japanese flounder ube3a encoded a protein containing 834 amino acids. Interestingly, its homology with the Atlantic halibut was determined to be 94%. In addition, there were differential expressions of ube3a in different tissues of Japanese flounder, with the highest expression level observed in the fin, followed by the gills and skin (P ≤ 0.05). Subcellular localization analysis revealed that Ube3a is a cytoplasmic protein. We established an in vitro CSBV infection model using Japanese flounder gill cell line (FG). After ube3a overexpression, the viral load was significantly lower than that of the control group (P ≤ 0.05). Contrastingly, after incubation of FG cells with an E3 ubiquitin ligase inhibitor, the viral load was significantly higher than in the control group (P ≤ 0.01). Then, the expression levels of nf-κb, traf3, and tnf-α after incubation with an E3 ubiquitin ligase inhibitor were examined. The results demonstrated that ube3a may exerted a significant antiviral effect in Japanese flounder via the ubiquitination pathway.
Collapse
Affiliation(s)
- Huaxing Su
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Ocean College, Hebei Agricultural University, Qinhuangdao, 066009, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yitong Zhang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Zhongwei He
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yucong Yang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuqin Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Wei Cao
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufeng Liu
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Jiangong Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufen Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Guixing Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Chunguang Gong
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066009, China.
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China.
| |
Collapse
|
4
|
Frankish J, Mukherjee D, Romano E, Billian-Frey K, Schröder M, Heinonen K, Merz C, Redondo Müller M, Gieffers C, Hill O, Thiemann M, Honeychurch J, Illidge T, Sykora J. The CD40 agonist HERA-CD40L results in enhanced activation of antigen presenting cells, promoting an anti-tumor effect alone and in combination with radiotherapy. Front Immunol 2023; 14:1160116. [PMID: 37304285 PMCID: PMC10251205 DOI: 10.3389/fimmu.2023.1160116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The ability to modulate and enhance the anti-tumor immune responses is critical in developing novel therapies in cancer. The Tumor Necrosis Factor (TNF) Receptor Super Family (TNFRSF) are potentially excellent targets for modulation which result in specific anti-tumor immune responses. CD40 is a member of the TNFRSF and several clinical therapies are under development. CD40 signaling plays a pivotal role in regulating the immune system from B cell responses to myeloid cell driven activation of T cells. The CD40 signaling axis is well characterized and here we compare next generation HERA-Ligands to conventional monoclonal antibody based immune modulation for the treatment of cancer. Methods & results HERA-CD40L is a novel molecule that targets CD40 mediated signal transduction and demonstrates a clear mode of action in generating an activated receptor complex via recruitment of TRAFs, cIAP1, and HOIP, leading to TRAF2 phosphorylation and ultimately resulting in the enhanced activation of key inflammatory/survival pathway and transcription factors such asNFkB, AKT, p38, ERK1/2, JNK, and STAT1 in dendritic cells. Furthermore, HERA-CD40L demonstrated a strong modulation of the tumor microenvironment (TME) via the increase in intratumoral CD8+ T cells and the functional switch from pro-tumor macrophages (TAMs) to anti-tumor macrophages that together results in a significant reduction of tumor growth in a CT26 mouse model. Furthermore, radiotherapy which may have an immunosuppressive modulation of the TME, was shown to have an immunostimulatory effect in combination with HERA-CD40L. Radiotherapy in combination with HERA-CD40L treatment resulted in an increase in detected intratumoral CD4+/8+ T cells compared to RT alone and, additionally, the repolarization of TAMs was also observed, resulting in an inhibition of tumor growth in a TRAMP-C1 mouse model. Discussion Taken together, HERA-CD40L resulted in activating signal transduction mechanisms in dendritic cells, resulting in an increase in intratumoral T cells and manipulation of the TME to be pro-inflammatory, repolarizing M2 macrophages to M1, enhancing tumor control.
Collapse
Affiliation(s)
| | - Debayan Mukherjee
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Erminia Romano
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tim Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
5
|
Abe T, Hanawa H, Fujii Y. Gene Expression of Inflammatory Cytokines in Major Organs by Extracorporeal Circulation. J Clin Med 2023; 12:jcm12082813. [PMID: 37109150 PMCID: PMC10145324 DOI: 10.3390/jcm12082813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Extracorporeal circulation (ECC) is indispensable for cardiac surgery. Despite the fact that ECC causes non-physiological damage to blood components, its pathophysiology has not been fully elucidated. In our previous study, we constructed a rat ECC system and observed a systemic inflammatory response during and after blood tests assessing ECC, while the damage per organ localization caused by ECC was not examined. In this study, we used a rat model to assess the gene expression of inflammatory cytokines in major organs during ECC. (2) Methods: The ECC system consisted of a membranous oxygenator, tubing line, and a small roller pump. Rats were divided into a SHAM (which received surgical preparation only, without ECC) group and an ECC group. Proinflammatory cytokines were measured using real-time PCR in major organs after ECC to evaluate local inflammatory responses in the organs. (3) Results: Interleukin (IL)-6 levels were significantly elevated in the ECC group compared to the SHAM group, especially in the heart and lungs. (4) Conclusions: This study suggests that ECC promotes organ damage and the inflammatory response, but the degree of gene expression of proinflammatory cytokines varies from organ to organ, suggesting that it does not uniformly cause organ damage.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Haruo Hanawa
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Yutaka Fujii
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
6
|
The Roles of TRAF3 in Immune Responses. DISEASE MARKERS 2023; 2023:7787803. [PMID: 36845015 PMCID: PMC9949957 DOI: 10.1155/2023/7787803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
Seven tumor necrosis factor receptor- (TNFR-) associated factors (TRAFs) have been found in mammals, which are primarily involved in the signal translation of the TNFR superfamily, the Toll-like receptor (TLR) family, and the retinoic acid-inducible gene I- (RIG-I-) like receptor (RLR) family. TRAF3 is one of the most diverse members of the TRAF family. It can positively regulate type I interferon production while negatively regulating signaling pathways of classical nuclear factor-κB, nonclassical nuclear factor-κB, and mitogen-activated protein kinase (MAPK). This review summarizes the roles of TRAF3 signaling and the related immune receptors (e.g., TLRs) in several preclinical and clinical diseases and focuses on the roles of TRAF3 in immune responses, the regulatory mechanisms, and its role in disease.
Collapse
|
7
|
Lang I, Zaitseva O, Wajant H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. Int J Mol Sci 2022; 23:12869. [PMID: 36361658 PMCID: PMC9655775 DOI: 10.3390/ijms232112869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2024] Open
Abstract
Inhibitory targeting of the CD40L-CD40 system is a promising therapeutic option in the field of organ transplantation and is also attractive in the treatment of autoimmune diseases. After early complex results with neutralizing CD40L antibodies, it turned out that lack of Fcγ receptor (FcγR)-binding is the crucial factor for the development of safe inhibitory antibodies targeting CD40L or CD40. Indeed, in recent years, blocking CD40 antibodies not interacting with FcγRs, has proven to be well tolerated in clinical studies and has shown initial clinical efficacy. Stimulation of CD40 is also of considerable therapeutic interest, especially in cancer immunotherapy. CD40 can be robustly activated by genetically engineered variants of soluble CD40L but also by anti-CD40 antibodies. However, the development of CD40L-based agonists is biotechnologically and pharmacokinetically challenging, and anti-CD40 antibodies typically display only strong agonism in complex with FcγRs or upon secondary crosslinking. The latter, however, typically results in poorly developable mixtures of molecule species of varying stoichiometry and FcγR-binding by anti-CD40 antibodies can elicit unwanted side effects such as antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of CD40 expressing immune cells. Here, we summarize and compare strategies to overcome the unwanted target cell-destroying activity of anti-CD40-FcγR complexes, especially the use of FcγR type-specific mutants and the FcγR-independent cell surface anchoring of bispecific anti-CD40 fusion proteins. Especially, we discuss the therapeutic potential of these strategies in view of the emerging evidence for the dose-limiting activities of systemic CD40 engagement.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Department of Internal Medicine II, Division of Molecular Internal Medicine, University Hospital Würzburg, Auvera Haus, Grombühlstrasse 12, 97080 Würzburg, Germany
| |
Collapse
|
8
|
Han X, Ren J, Lohner H, Yakoumatos L, Liang R, Wang H. SGK1 negatively regulates inflammatory immune responses and protects against alveolar bone loss through modulation of TRAF3 activity. J Biol Chem 2022; 298:102036. [PMID: 35588785 PMCID: PMC9190018 DOI: 10.1016/j.jbc.2022.102036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/05/2022] Open
Abstract
Serum- and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that plays important roles in the cellular stress response. While SGK1 has been reported to restrain inflammatory immune responses, the molecular mechanisms involved remain elusive, especially in oral bacteria-induced inflammatory milieu. Here, we found that SGK1 curtails Porphyromonas gingivalis-induced inflammatory responses through maintaining levels of tumor necrosis factor receptor-associated factor (TRAF) 3, thereby suppressing NF-κB signaling. Specifically, SGK1 inhibition significantly enhances production of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, IL-1β, and IL-8 in P. gingivalis-stimulated innate immune cells. The results were confirmed with siRNA and LysM-Cre-mediated SGK1 KO mice. Moreover, SGK1 deletion robustly increased NF-κB activity and c-Jun expression but failed to alter the activation of mitogen-activated protein kinase signaling pathways. Further mechanistic data revealed that SGK1 deletion elevates TRAF2 phosphorylation, leading to TRAF3 degradation in a proteasome-dependent manner. Importantly, siRNA-mediated traf3 silencing or c-Jun overexpression mimics the effect of SGK1 inhibition on P. gingivalis-induced inflammatory cytokines and NF-κB activation. In addition, using a P. gingivalis infection-induced periodontal bone loss model, we found that SGK1 inhibition modulates TRAF3 and c-Jun expression, aggravates inflammatory responses in gingival tissues, and exacerbates alveolar bone loss. Altogether, we demonstrated for the first time that SGK1 acts as a rheostat to limit P. gingivalis-induced inflammatory immune responses and mapped out a novel SGK1-TRAF2/3-c-Jun-NF-κB signaling axis. These findings provide novel insights into the anti-inflammatory molecular mechanisms of SGK1 and suggest novel interventional targets to inflammatory diseases relevant beyond the oral cavity.
Collapse
Affiliation(s)
- Xiao Han
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Junling Ren
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hannah Lohner
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Huizhi Wang
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
9
|
Novel Functions of Integrins as Receptors of CD154: Their Role in Inflammation and Apoptosis. Cells 2022; 11:cells11111747. [PMID: 35681441 PMCID: PMC9179867 DOI: 10.3390/cells11111747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022] Open
Abstract
CD154, an inflammatory mediator also known as CD40 ligand, has been identified as a novel binding partner for some members of the integrin family. The αIIbβ3, specifically expressed on platelets, was the first integrin to be described as a receptor for CD154 after CD40. Its interaction with soluble CD154 (sCD154) highly contributes to thrombus formation and stability. Identifying αIIbβ3 opened the door for investigating other integrins as partners of CD154. The αMβ2 expressed on myeloid cells was shown capable of binding CD154 and contributing as such to cell activation, adhesion, and release of proinflammatory mediators. In parallel, α5β1 communicates with sCD154, inducing pro-inflammatory responses. Additional pathogenic effects involving apoptosis-preventing functions were exhibited by the CD154–α5β1 dyad in T cells, conferring a role for such interaction in the survival of malignant cells, as well as the persistence of autoreactive T cells. More recently, CD154 receptors integrated two new integrin members, αvβ3 and α4β1, with little known as to their biological significance in this context. This article provides an overview of the novel role of integrins as receptors of CD154 and as critical players in pro-inflammatory and apoptotic responses.
Collapse
|
10
|
Gissler MC, Stachon P, Wolf D, Marchini T. The Role of Tumor Necrosis Factor Associated Factors (TRAFs) in Vascular Inflammation and Atherosclerosis. Front Cardiovasc Med 2022; 9:826630. [PMID: 35252400 PMCID: PMC8891542 DOI: 10.3389/fcvm.2022.826630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
TNF receptor associated factors (TRAFs) represent a family of cytoplasmic signaling adaptor proteins that regulate, bundle, and transduce inflammatory signals downstream of TNF- (TNF-Rs), interleukin (IL)-1-, Toll-like- (TLRs), and IL-17 receptors. TRAFs play a pivotal role in regulating cell survival and immune cell function and are fundamental regulators of acute and chronic inflammation. Lately, the inhibition of inflammation by anti-cytokine therapy has emerged as novel treatment strategy in patients with atherosclerosis. Likewise, growing evidence from preclinical experiments proposes TRAFs as potent modulators of inflammation in atherosclerosis and vascular inflammation. Yet, TRAFs show a highly complex interplay between different TRAF-family members with partially opposing and overlapping functions that are determined by the level of cellular expression, concomitant signaling events, and the context of the disease. Therefore, inhibition of specific TRAFs may be beneficial in one condition and harmful in others. Here, we carefully discuss the cellular expression and signaling events of TRAFs and evaluate their role in vascular inflammation and atherosclerosis. We also highlight metabolic effects of TRAFs and discuss the development of TRAF-based therapeutics in the future.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Dennis Wolf
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
11
|
Ge X, Frank-Bertoncelj M, Klein K, McGovern A, Kuret T, Houtman M, Burja B, Micheroli R, Shi C, Marks M, Filer A, Buckley CD, Orozco G, Distler O, Morris AP, Martin P, Eyre S, Ospelt C. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability. Genome Biol 2021; 22:247. [PMID: 34433485 PMCID: PMC8385949 DOI: 10.1186/s13059-021-02460-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genome-wide association studies have reported more than 100 risk loci for rheumatoid arthritis (RA). These loci are shown to be enriched in immune cell-specific enhancers, but the analysis so far has excluded stromal cells, such as synovial fibroblasts (FLS), despite their crucial involvement in the pathogenesis of RA. Here we integrate DNA architecture, 3D chromatin interactions, DNA accessibility, and gene expression in FLS, B cells, and T cells with genetic fine mapping of RA loci. RESULTS We identify putative causal variants, enhancers, genes, and cell types for 30-60% of RA loci and demonstrate that FLS account for up to 24% of RA heritability. TNF stimulation of FLS alters the organization of topologically associating domains, chromatin state, and the expression of putative causal genes such as TNFAIP3 and IFNAR1. Several putative causal genes constitute RA-relevant functional networks in FLS with roles in cellular proliferation and activation. Finally, we demonstrate that risk variants can have joint-specific effects on target gene expression in RA FLS, which may contribute to the development of the characteristic pattern of joint involvement in RA. CONCLUSION Overall, our research provides the first direct evidence for a causal role of FLS in the genetic susceptibility for RA accounting for up to a quarter of RA heritability.
Collapse
Affiliation(s)
- Xiangyu Ge
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kerstin Klein
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Amanda McGovern
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tadeja Kuret
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia
| | - Miranda Houtman
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Blaž Burja
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia
| | - Raphael Micheroli
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Andrew Filer
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK
| | - Caroline Ospelt
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Ai Q, Lin X, Xie H, Li B, Liao M, Fan H. Proteome Analysis in PAM Cells Reveals That African Swine Fever Virus Can Regulate the Level of Intracellular Polyamines to Facilitate Its Own Replication through ARG1. Viruses 2021; 13:v13071236. [PMID: 34206713 PMCID: PMC8310191 DOI: 10.3390/v13071236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
In 2018, African swine fever broke out in China, and the death rate after infection was close to 100%. There is no effective and safe vaccine in the world. In order to better characterize and understand the virus–host-cell interaction, quantitative proteomics was performed on porcine alveolar macrophages (PAM) infected with ASFV through tandem mass spectrometry (TMT) technology, high-performance liquid chromatography (HPLC), and mass spectrometry (MS). The proteome difference between the simulated group and the ASFV-infected group was found at 24 h. A total of 4218 proteins were identified, including 306 up-regulated differentially expressed proteins and 238 down-regulated differentially expressed proteins. Western blot analysis confirmed changes in the expression level of the selected protein. Pathway analysis is used to reveal the regulation of protein and interaction pathways after ASFV infection. Functional network and pathway analysis can provide an insight into the complexity and dynamics of virus–host cell interactions. Further study combined with proteomics data found that ARG1 has a very important effect on ASFV replication. It should be noted that the host metabolic pathway of ARG1-polyamine is important for virus replication, revealing that the virus may facilitate its own replication by regulating the level of small molecules in the host cell.
Collapse
Affiliation(s)
- Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiwei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China;
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (M.L.); (H.F.); Tel.: +86-20-85280240 (M.L.); +86-20-85283309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (M.L.); (H.F.); Tel.: +86-20-85280240 (M.L.); +86-20-85283309 (H.F.)
| |
Collapse
|
13
|
Tu J, Fang Y, Han D, Tan X, Jiang H, Gong X, Wang X, Hong W, Wei W. Activation of nuclear factor-κB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 2020; 54:e12929. [PMID: 33300633 PMCID: PMC7848966 DOI: 10.1111/cpr.12929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most commonly observed primary intracranial tumour and is associated with massive angiogenesis. Glioma neovascularization provides nutrients for the growth and metabolism of tumour tissues, promotes tumour cell division and proliferation, and provides conditions ideal for the infiltration and migration of tumour cells to distant places. Growing evidence suggests that there is a correlation between the activation of nuclear factor (NF)‐κB and the angiogenesis of glioma. In this review article, we highlighted the functions of NF‐κB in the angiogenesis of glioma, showing that NF‐κB activation plays a pivotal role in the growth and progression of glioma angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed at glioma.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Workman LM, Zhang L, Fan Y, Zhang W, Habelhah H. TRAF2 Ser-11 Phosphorylation Promotes Cytosolic Translocation of the CD40 Complex To Regulate Downstream Signaling Pathways. Mol Cell Biol 2020; 40:e00429-19. [PMID: 32041822 PMCID: PMC7156217 DOI: 10.1128/mcb.00429-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/14/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
Abstract
CD40 plays an important role in immune responses by activating the c-Jun N-terminal protein kinase (JNK) and NF-κB pathways; however, the precise mechanisms governing the spatiotemporal activation of these two signaling pathways are not fully understood. Here, using four different TRAF2-deficient cell lines (A20.2J, CH12.LX, HAP1, and mouse embryonic fibroblasts [MEFs]) reconstituted with wild-type or phosphorylation mutant forms of TRAF2, along with immunoprecipitation, immunoblotting, gene expression, and immunofluorescence analyses, we report that CD40 ligation elicits TANK-binding kinase 1 (TBK1)-mediated phosphorylation of TRAF2 at Ser-11. This phosphorylation interfered with the interaction between TRAF2's RING domain and membrane phospholipids and enabled translocation of the TRAF2 complex from CD40 to the cytoplasm. We also observed that this cytoplasmic translocation is required for full activation of the JNK pathway and the secondary phase of the NF-κB pathway. Moreover, we found that in the absence of Ser-11 phosphorylation, the TRAF2 RING domain interacts with phospholipids, leading to the translocation of the TRAF2 complex to lipid rafts, resulting in its degradation and activation of the noncanonical NF-κB pathway. Thus, our results provide new insights into the CD40 signaling mechanisms whereby Ser-11 phosphorylation controls RING domain-dependent subcellular localization of TRAF2 to modulate the spatiotemporal activation of the JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Lauren M Workman
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Laiqun Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yumei Fan
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Weizhou Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Hasem Habelhah
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Muller J, Baeyens A, Dustin ML. Tumor Necrosis Factor Receptor Superfamily in T Cell Priming and Effector Function. Adv Immunol 2018; 140:21-57. [PMID: 30366518 DOI: 10.1016/bs.ai.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) and their ligands mediate lymphoid tissue development and homeostasis in addition to key aspects of innate and adaptive immune responses. T cells of the adaptive immune system express a number of TNFRSF members that are used to receive signals at different instructive stages and produce several tumor necrosis factor superfamily (TNFSF) members as effector molecules. There is also one example of a TNFRSF member serving as a ligand for negative regulatory checkpoint receptors. In most cases, the ligands in afferent and efferent phases are membrane proteins and thus the interaction with TNFRSF members must take place in immunological synapses and other modes of cell-cell interaction. A particular feature of the TNFRSF-mediated signaling is the prominent use of linear ubiquitin chains as scaffolds for signaling complexes that activate nuclear factor κ-B and Fos/Jun transcriptional regulators. This review will focus on the signaling mechanisms triggered by TNFRSF members in their role as costimulators of early and late phases of T cell instruction and the delivery mechanism of TNFSF members through the immunological synapses of helper and cytotoxic effector cells.
Collapse
Affiliation(s)
- James Muller
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Audrey Baeyens
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States; Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Wang Q, Gao G, Zhang T, Yao K, Chen H, Park MH, Yamamoto H, Wang K, Ma W, Malakhova M, Bode AM, Dong Z. TRAF1 Is Critical for Regulating the BRAF/MEK/ERK Pathway in Non-Small Cell Lung Carcinogenesis. Cancer Res 2018; 78:3982-3994. [PMID: 29748372 DOI: 10.1158/0008-5472.can-18-0429] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) is a unique TRAF protein that can interact directly or indirectly with multiple TNFR family members, regulatory proteins, kinases, and adaptors that contribute to its diverse functions in specific tissues. However, the role of TRAF1 in non-small cell lung cancer (NSCLC) remains unknown. In this study, we report that TRAF1 is overexpressed in human lung cancer cells and tissues. TRAF1 expression level inversely correlated with patient survival probability. Loss of TRAF1 decelerated tumor invasion in a urethane-induced lung carcinogenesis mouse model. Furthermore, TRAF1 expression affected TRAF2-mediated BRAF Lys48-linked ubiquitination, which was followed by the inhibition of growth and differentiation, and the induction of death in lung cancer cells. Overall, our work suggests that TRAF1 plays a novel role in the regulation of the BRAF/MEK/ERK signaling pathway in NSCLC and offers a candidate molecular target for lung cancer prevention and therapy.Significance: These findings identify TRAF1 as a new therapeutic target for NSCLC. Cancer Res; 78(14); 3982-94. ©2018 AACR.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ge Gao
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Mi Hee Park
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Weiya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota. .,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
18
|
Seigner J, Basilio J, Resch U, de Martin R. CD40L and TNF both activate the classical NF-κB pathway, which is not required for the CD40L induced alternative pathway in endothelial cells. Biochem Biophys Res Commun 2017; 495:1389-1394. [PMID: 29183724 DOI: 10.1016/j.bbrc.2017.11.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/16/2022]
Abstract
CD40L and TNF signal through engagement of their respective receptors, which are both members of the TNF receptor family. They use partially common signaling molecules leading, among others, to activation of the NF-κB pathway. However, whereas TNF activates the classical, CD40L has been reported to activate the alternative NF-κB pathway, leading to the anticipation that differences in the pattern of inflammatory gene expression would occur. Here, we have compared the gene expression repertoire of CD40L (CD154) and TNF stimulated HUVEC and report that unexpectedly, apart from a stronger response to TNF, no major qualitative differences could be observed. This applies for the period of up to 6 h, a time where the alternative pathway has already been activated. Analysis of the early events after receptor engagement revealed that both TNF and CD40L activate the classical NF-κB pathway, and confirm activation of the alternative by the latter. Furthermore, using genetic and pharmacological inhibition of the classical pathway we show that activation of the alternative occurs independently of the former. This reveals novel insights into NF-κB signaling by CD40L and TNF in endothelial cells.
Collapse
Affiliation(s)
- J Seigner
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - J Basilio
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - U Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - R de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
19
|
Qi X, Qin L, Du R, Chen Y, Lei M, Deng M, Wang J. Lipopolysaccharide Upregulated Intestinal Epithelial Cell Expression of Fn14 and Activation of Fn14 Signaling Amplify Intestinal TLR4-Mediated Inflammation. Front Cell Infect Microbiol 2017; 7:315. [PMID: 28744451 PMCID: PMC5504244 DOI: 10.3389/fcimb.2017.00315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
TLR4 in intestinal epithelial cells has been shown both inflammatory and homeostatic roles following binding of its cognate ligand lipopolysaccharide (LPS). TWEAK-Fn14 axis plays an important role in pathologies caused by excessive or abnormal inflammatory responses. This study aimed to evaluate potential cross-talk between TLR4 and TWEAK/Fn14 system in porcine small intestinal epithelial cells. Our in vivo results showed that, compared with the age-matched normal control piglets, increased expression of Fn14 in epithelium and decreased TWEAK expression in lamina propria were detected in the small intestinal of piglets stimulated with LPS. Consistent with this finding, treatment with LPS increased the expression of Fn14 and TLR4 while decreased TWEAK expression in porcine small intestinal epithelial cell lines SIEC02. Interestingly, modulating Fn14 activation using agonistic anti-Fn14 decreased TLR4-mediated TNF-α production by SIEC02. In addition, pretreatment of LPS-stimulated SIEC02 with recombinant TWEAK protein suppresses the expression of Fn14 and TNF-α and inhibits the negative impact of LPS on the tight junctional protein occludin expression. In conclusion, this study demonstrates that the TWEAK-independent Fn14 activation augments TLR4-mediated inflammatory responses in the intestine of piglets. Furthermore, the TWEAK-dependent suppression of Fn14 signaling may play a role in intestinal homeostasis.
Collapse
Affiliation(s)
- Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Lijuan Qin
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Ruijing Du
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yungang Chen
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Mingzhu Lei
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Meiyu Deng
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
20
|
von Karstedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 2017; 17:352-366. [PMID: 28536452 DOI: 10.1038/nrc.2017.28] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery that the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis of cancer cells without causing toxicity in mice has led to the in-depth study of pro-apoptotic TRAIL receptor (TRAIL-R) signalling and the development of biotherapeutic drug candidates that activate TRAIL-Rs. The outcome of clinical trials with these TRAIL-R agonists has, however, been disappointing so far. Recent evidence indicates that many cancers, in addition to being TRAIL resistant, use the endogenous TRAIL-TRAIL-R system to their own advantage. However, novel insight on two fronts - how resistance of cancer cells to TRAIL-based pro-apoptotic therapies might be overcome, and how the pro-tumorigenic effects of endogenous TRAIL might be countered - gives reasonable hope that the TRAIL system can be harnessed to treat cancer. In this Review we assess the status quo of our understanding of the biology of the TRAIL-TRAIL-R system - as well as the gaps therein - and discuss the opportunities and challenges in effectively targeting this pathway.
Collapse
Affiliation(s)
- Silvia von Karstedt
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonella Montinaro
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
21
|
Waight JD, Gombos RB, Wilson NS. Harnessing co-stimulatory TNF receptors for cancer immunotherapy: Current approaches and future opportunities. Hum Antibodies 2017; 25:87-109. [PMID: 28085016 DOI: 10.3233/hab-160308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Co-stimulatory tumor necrosis factor receptors (TNFRs) can sculpt the responsiveness of T cells recognizing tumor-associated antigens. For this reason, agonist antibodies targeting CD137, CD357, CD134 and CD27 have received considerable attention for their therapeutic utility in enhancing anti-tumor immune responses, particularly in combination with other immuno-modulatory antibodies targeting co-inhibitory pathways in T cells. The design of therapeutic antibodies that optimally engage and activate co-stimulatory TNFRs presents an important challenge of how to promote effective anti-tumor immunity while avoiding serious immune-related adverse events. Here we review our current understanding of the expression, signaling and structural features of CD137, CD357, CD134 and CD27, and how this may inform the design of pharmacologically active immuno-modulatory antibodies targeting these receptors. This includes the integration of our emerging knowledge of the role of Fcγ receptors (FcγRs) in facilitating antibody-mediated receptor clustering and forward signaling, as well as promoting immune effector cell-mediated activities. Finally, we bring our current preclinical and clinical knowledge of co-stimulatory TNFR antibodies into the context of opportunities for next generation molecules with improved pharmacologic properties.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Gene Expression Regulation
- Humans
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Receptors, IgG/agonists
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Signal Transduction
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
|
22
|
Zhang R, Yang N, Ji C, Zheng J, Liang Z, Hou CY, Liu YY, Zuo PP. Neuroprotective effects of Aceglutamide on motor function in a rat model of cerebral ischemia and reperfusion. Restor Neurol Neurosci 2016; 33:741-59. [PMID: 26444640 DOI: 10.3233/rnn-150509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To investigate the effect and underlying mechanism of Aceglutamide on motor dysfunction in rats after cerebral ischemia-reperfusion. METHODS Adult male Sprague-Dawley rats were subjected to 2 h transient middle cerebral artery occlusion (MCAO). Aceglutamide or vehicle was intraperitoneally given to rats at 24 h after reperfusion and lasted for 14 days. Subsequently functional recovery was assessed and number of tyrosine hydroxylase (TH)-positive neurons in substantia nigra (SN) was analyzed. Tumor necrosis factor receptor-associated factor 1(TRAF1), P-Akt and Bcl-2/Bax were determined in mesencephalic tissue by Western blot method. PC12 cells and primary cultured mesencephalic neurons were employed to further investigate the mechanism of Aceglutamide. RESULTS Aceglutamide treatment improved behavioral functions, reduced the infarction volume, and elevated the number of TH-positive neurons in the SN. Moreover, Aceglutamide significantly attenuated neuronal apoptosis in the SN. Meanwhile Aceglutamide treatment significantly inhibited the expression of TRAF1 and up-regulated the expression of P-Akt and Bcl-2/Bax ratio both in vitro and in vivo. CONCLUSIONS Aceglutamide ameliorated motor dysfunction and delayed neuronal death in the SN after ischemia, which involved the inhibition of pro-apoptotic factor TRAF1 and activation of Akt/Bcl-2 signaling pathway. These data provided experimental information for applying Aceglutamide to ischemic stroke treatment.
Collapse
|
23
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
24
|
Zhao T, Tang X, Umeshappa CS, Ma H, Gao H, Deng Y, Freywald A, Xiang J. Simulated Microgravity Promotes Cell Apoptosis Through Suppressing Uev1A/TICAM/TRAF/NF-κB-Regulated Anti-Apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-Controlled DNA-Damage Response Pathways. J Cell Biochem 2016; 117:2138-48. [PMID: 26887372 DOI: 10.1002/jcb.25520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/12/2016] [Indexed: 11/11/2022]
Abstract
Microgravity has been known to induce cell death. However, its underlying mechanism is less studied. In this study, BL6-10 melanoma cells were cultured in flasks under simulated microgravity (SMG). We examined cell apoptosis, and assessed expression of genes associated with apoptosis and genes regulating apoptosis in cells under SMG. We demonstrate that SMG induces cell morphological changes and microtubule alterations by confocal microscopy, and enhances apoptosis by flow cytometry, which was associated with up- and down-regulation of pro-apoptotic and anti-apoptotic genes, respectively. Moreover, up- and down-regulation of pro-apoptotic (Caspases 3, 7, 8) and anti-apoptotic (Bcl2 and Bnip3) molecules was confirmed by Western blotting analysis. Western blot analysis also indicates that SMG causes inhibition of an apoptosis suppressor, pNF-κB-p65, which is complemented by the predominant localization of NF-κB-p65 in the cytoplasm. SMG also reduces expression of molecules regulating the NF-κB pathway including Uev1A, TICAM, TRAF2, and TRAF6. Interestingly, 10 DNA repair genes are down-regulated in cells exposed to SMG, among which down-regulation of Parp, Ercc8, Rad23, Rad51, and Ku70 was confirmed by Western blotting analysis. In addition, we demonstrate a significant inhibition of molecules involved in the DNA-damage response, such as p53, PCNA, ATM/ATR, and Chk1/2. Taken together, our work reveals that SMG promotes the apoptotic response through a combined modulation of the Uev1A/TICAM/TRAF/NF-κB-regulated apoptosis and the p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. Thus, our investigation provides novel information, which may help us to determine the cause of negative alterations in human physiology occurring at spaceflight environment. J. Cell. Biochem. 117: 2138-2148, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuo Zhao
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xin Tang
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | | | - Hong Ma
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Haijun Gao
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China.,Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Yang XD, Sun SC. Targeting signaling factors for degradation, an emerging mechanism for TRAF functions. Immunol Rev 2015; 266:56-71. [PMID: 26085207 PMCID: PMC4473799 DOI: 10.1111/imr.12311] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of nuclear factor-κB (NF-κB)-inducing kinase (NIK), an action required for the control of NIK-regulated non-canonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
26
|
Toufighi K, Yang JS, Luis NM, Aznar Benitah S, Lehner B, Serrano L, Kiel C. Dissecting the calcium-induced differentiation of human primary keratinocytes stem cells by integrative and structural network analyses. PLoS Comput Biol 2015; 11:e1004256. [PMID: 25946651 PMCID: PMC4422705 DOI: 10.1371/journal.pcbi.1004256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 12/19/2022] Open
Abstract
The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products ('di-chromatic'), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation.
Collapse
Affiliation(s)
- Kiana Toufighi
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jae-Seong Yang
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuno Miguel Luis
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Salvador Aznar Benitah
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain
- * E-mail: (SAB); (BL); (LS); (CK)
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- * E-mail: (SAB); (BL); (LS); (CK)
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- * E-mail: (SAB); (BL); (LS); (CK)
| | - Christina Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (SAB); (BL); (LS); (CK)
| |
Collapse
|
27
|
Pappalardo A, Thompson K. Novel immunostimulatory effects of osteoclasts and macrophages on human γδ T cells. Bone 2015; 71:180-8. [PMID: 25445456 PMCID: PMC4289917 DOI: 10.1016/j.bone.2014.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 11/29/2022]
Abstract
It has been widely reported that T cells are capable of influencing osteoclast formation and bone remodelling, yet relatively little is known of the reciprocal effects of osteoclasts for affecting T cell function and/or activity. In this study we investigated the effects of human osteoclasts on the function of γδ T cells, a subset of non-CD4(+) T cells implicated in a variety of inflammatory disease states. γδ T cells and CD4(+) T cells were isolated from peripheral blood of healthy volunteers and were co-cultured with autologous mature osteoclasts (generated by treatment with M-CSF and RANKL) before phenotypical and functional changes in the T cell populations were assessed. Macrophages, osteoclasts, and conditioned medium derived from macrophages or osteoclasts induced activation of γδ T cells, as determined by the expression of the early activation marker CD69. TNFα was a major mediator of this stimulatory effect on γδ T cells. Consistent with this stimulatory effect, osteoclasts augmented proliferation of IL-2-stimulated γδ T cells and also supported the survival of unstimulated γδ and CD4(+) T cells, although these effects required co-culture with osteoclasts. Co-culture with osteoclasts also increased the proportion of γδ T cells producing IFNγ, but did not modulate IFNγ or IL-17 production by CD4(+) T cells. We provide new insights into the in vitro interactions between human γδ T cells and osteoclasts/macrophages, and demonstrate that osteoclasts or their precursors are capable of influencing γδ T function both via the release of soluble factors and also through direct cell-cell interactions.
Collapse
Affiliation(s)
- Angela Pappalardo
- Musculoskeletal Research Programme, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Keith Thompson
- Musculoskeletal Research Programme, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
28
|
Herbal substance, acteoside, alleviates intestinal mucositis in mice. Gastroenterol Res Pract 2015; 2015:327872. [PMID: 25628651 PMCID: PMC4300033 DOI: 10.1155/2015/327872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
This study investigated the role of acteoside in the amelioration of mucositis. C57BL/6 mice were gavaged daily with acteoside 600 μg for 5 d prior to induction of mucositis and throughout the experimental period. Mucositis was induced by methotrexate (MTX; 12.5 mg/kg; s.c.). Mice were culled on d 5 and d 11 after MTX. The duodenum, jejunum, and ileum were collected for myeloperoxidase (MPO) activity, metallothionein (MT) levels, and histology. Acteoside reduced histological severity scores by 75, 78, and 88% in the duodenum, jejunum, and ileum, respectively, compared to MTX-controls on d 5. Acteoside reduced crypt depth by 49, 51, and 33% and increased villus height by 19, 38, and 10% in the duodenum, jejunum, and ileum, respectively, compared to MTX-controls on d 5. Acteoside decreased MT by 50% compared to MTX-control mice on d 5. Acteoside decreased MPO by 60% and 30% in the duodenum and jejunum, respectively, compared to MTX-controls on d 5. Acteoside alleviated MTX-induced small intestinal mucositis possibly by preventing inflammation.
Collapse
|
29
|
Rue-Albrecht K, Magee DA, Killick KE, Nalpas NC, Gordon SV, MacHugh DE. Comparative functional genomics and the bovine macrophage response to strains of the mycobacterium genus. Front Immunol 2014; 5:536. [PMID: 25414700 PMCID: PMC4220711 DOI: 10.3389/fimmu.2014.00536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Mycobacterial infections are major causes of morbidity and mortality in cattle and are also potential zoonotic agents with implications for human health. Despite the implementation of comprehensive animal surveillance programs, many mycobacterial diseases have remained recalcitrant to eradication in several industrialized countries. Two major mycobacterial pathogens of cattle are Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis (MAP), the causative agents of bovine tuberculosis (BTB) and Johne's disease (JD), respectively. BTB is a chronic, granulomatous disease of the respiratory tract that is spread via aerosol transmission, while JD is a chronic granulomatous disease of the intestines that is transmitted via the fecal-oral route. Although these diseases exhibit differential tissue tropism and distinct complex etiologies, both M. bovis and MAP infect, reside, and replicate in host macrophages - the key host innate immune cell that encounters mycobacterial pathogens after initial exposure and mediates the subsequent immune response. The persistence of M. bovis and MAP in macrophages relies on a diverse series of immunomodulatory mechanisms, including the inhibition of phagosome maturation and apoptosis, generation of cytokine-induced necrosis enabling dissemination of infection through the host, local pathology, and ultimately shedding of the pathogen. Here, we review the bovine macrophage response to infection with M. bovis and MAP. In particular, we describe how recent advances in functional genomics are shedding light on the host macrophage-pathogen interactions that underlie different mycobacterial diseases. To illustrate this, we present new analyses of previously published bovine macrophage transcriptomics data following in vitro infection with virulent M. bovis, the attenuated vaccine strain M. bovis BCG, and MAP, and discuss our findings with respect to the differing etiologies of BTB and JD.
Collapse
Affiliation(s)
- Kévin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Kate E. Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Nicolas C. Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
31
|
Carmona Arana JA, Seher A, Neumann M, Lang I, Siegmund D, Wajant H. TNF Receptor-Associated Factor 1 is a Major Target of Soluble TWEAK. Front Immunol 2014; 5:63. [PMID: 24600451 PMCID: PMC3927163 DOI: 10.3389/fimmu.2014.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
Soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), in contrast to membrane TWEAK and TNF, is only a weak activator of the classical NFκB pathway. We observed that soluble TWEAK was regularly more potent than TNF with respect to the induction of TNF receptor-associated factor 1 (TRAF1), a NFκB-controlled signaling protein involved in the regulation of inflammatory signaling pathways. TNF-induced TRAF1 expression was efficiently blocked by inhibition of the classical NFκB pathway using the IKK2 inhibitor, TPCA1. In contrast, in some cell lines, TWEAK-induced TRAF1 production was only partly inhibited by TPCA1. The NEDD8-activating enzyme inhibitor MLN4924, however, which inhibits classical and alternative NFκB signaling, blocked TNF- and TWEAK-induced TRAF1 expression. This suggests that TRAF1 induction by soluble TWEAK is based on the cooperative activity of the two NFκB signaling pathways. We have previously shown that oligomerization of soluble TWEAK results in ligand complexes with membrane TWEAK-like activity. Oligomerization of soluble TWEAK showed no effect on the dose response of TRAF1 induction, but potentiated the ability of soluble TWEAK to trigger production of the classical NFκB-regulated cytokine IL8. Transfectants expressing soluble TWEAK and membrane TWEAK showed similar induction of TRAF1 while only the membrane TWEAK expressing cells robustly stimulated IL8 production. These data indicate that soluble TWEAK may efficiently induce a distinct subset of the membrane TWEAK-targeted genes and argue again for a crucial role of classical NFκB pathway-independent signaling in TWEAK-induced TRAF1 expression. Other TWEAK targets, which can be equally well induced by soluble and membrane TWEAK, remain to be identified and the relevance of the ability of soluble TWEAK to induce such a distinct subset of membrane TWEAK-targeted genes for TWEAK biology will have to be clarified in future studies.
Collapse
Affiliation(s)
- José Antonio Carmona Arana
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg , Würzburg , Germany
| | - Manfred Neumann
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
32
|
Dore-Duffy P. Pericytes and adaptive angioplasticity: the role of tumor necrosis factor-like weak inducer of apoptosis (TWEAK). Methods Mol Biol 2014; 1135:35-52. [PMID: 24510853 DOI: 10.1007/978-1-4939-0320-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The TNF superfamily member TWEAK has emerged as a pleiotropic cytokine that regulates many cellular functions that include immune/inflammatory activity, angiogenesis, cell proliferation, and fate. TWEAK through its inducible receptor, FGF-inducible molecule 14 (Fn14), can induce both beneficial and deleterious activity that has a profound effect on cell survival. Thus it is highly likely that TWEAK and Fn14 expressed by cells of the neurovascular unit help regulate and maintain vascular and tissue homeostasis. In this chapter we discuss the expression of TWEAK and Fn14 signaling in the cerebral microvascular pericyte. Pericytes are a highly enigmatic population of microvascular cells that are important in regulatory pathways that modulate physiological angiogenesis in response to chronic mild hypoxic stress. A brief introduction will identify the microvascular pericyte. A more detailed discussion of pericyte TWEAK signaling during adaptive angioplasticity will follow.
Collapse
Affiliation(s)
- Paula Dore-Duffy
- Division of Neuroimmunology, Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
33
|
Hu YC, Wang F, Zhang DD, Sun Q, Li W, Dai YX, Zhou ML, Hang CH. Expression of intestinal CD40 after experimental traumatic brain injury in rats. J Surg Res 2013; 184:1022-7. [DOI: 10.1016/j.jss.2013.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
|
34
|
Gridley DS, Mao XW, Cao JD, Bayeta EJM, Pecaut MJ. Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation. Free Radic Res 2013; 47:811-20. [DOI: 10.3109/10715762.2013.826351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
TRAF1-C5 affects quality of life in patients with primary biliary cirrhosis. Clin Dev Immunol 2013; 2013:510547. [PMID: 23710202 PMCID: PMC3655458 DOI: 10.1155/2013/510547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/06/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies reported associations between specific alleles of non-HLA immunoregulatory genes and higher fatigue scores in patients with primary biliary cirrhosis (PBC). AIM To study the relationship between variables of health-related quality of life (HRQoL) and single nucleotide polymorphisms of TRAF1-C5, a member of the tumor necrosis factor receptor family. PATIENTS AND METHODS TRAF1-C5 gene polymorphisms, rs2900180 and rs3761847, were analysed in 120 Caucasian PBCs. The HRQoL was assessed with SF-36, PBC-40, and PBC-27 questionnaires. RESULTS We found a negative association between TT genotype of rs2900180 and SF-36's domains vitality (P < 0.05), mental health (P < 0.05), and mental component summary score (P < 0.05). GG homozygotes of rs3761847 had lower vitality (P < 0.05), mental health (P < 0.05), mental component summary score (P < 0.05) and impairment of social functioning (P < 0.01). Allelic analysis has shown that T allele of rs2900180 and G allele of rs3761847 related to SF-36's vitality (P < 0.05 and P < 0.01), social functioning (P < 0.05 and P < 0.05), mental health (P < 0.01 and P < 0.05), and mental component summary score (P < 0.01 and P < 0.05), respectively. Genotyping and allelic analysis did not reveal correlation with PBC-40 and PBC-27 domains. CONCLUSION The association between rs2900180 and rs3761847 polymorphisms and HRQoL variables indicates that TRAF1 is involved in the induction of impaired QoL in PBC.
Collapse
|
36
|
Cheng T, Choi Y, Finkel TH, Tsao PY, Ji MQ, Eisenberg RA. Tumor necrosis factor receptor-associated factor 1 influences KRN/I-Ag7 mouse arthritis autoantibody production. J Clin Immunol 2013; 33:759-66. [PMID: 23354839 DOI: 10.1007/s10875-013-9866-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/09/2013] [Indexed: 01/13/2023]
Abstract
PURPOSE Recently, genomewide association analysis has revealed that the Tumor Necrosis Factor Receptor-associated factor 1-Complement 5 (TRAF1-C5) containing locus on chromosome 9 was associated with an increased risk for RA. Studies in model systems suggested that either gain- or loss-of-function TRAF1 mutations have immune effects that could plausibly lead to or exacerbate the arthritis phenotype. KRN/I-A(g7) (KxB/N) is a genetic mouse model of inflammatory arthritis. We aimed to assess the impact of TRAF1 deficiency on KRN/I-A(g7) mice. METHODS We have bred KRN/I-A(g7) mice onto a TRAF1-deficient background and followed cohorts for the spontaneous appearance of arthritis. We have also transferred KxB/N serum to B6.I-A(g7) TRAF1KO recipients. In addition, systemic autoimmunity was induced through cGVH by injecting bm12 splenocytes into TRAF1KO recipient mice. RESULTS TRAF1-deficient KRN/I-A(g7) mice spontaneously developed severe, progressive arthritis, comparable to that seen in TRAF1-intact KRN/I-A(g7) mice. However, the anti-GPI antibody titer was significantly lower in the former group. Interestingly, the TRAF1KO mice that had background levels of anti-GPI antibodies still showed severe arthritis, although with a brief delay compared to TRAF1 sufficient mice. In addition, TRAF1KO mice were fully susceptible to passive, serum transfer experiments. In another model of autoimmunity, TRAF1KO had no effect on cGVH autoantibodies production; nor was the response to an exogenous antigen impaired. CONCLUSION The pathogenesis of spontaneous KRN/I-A(g7) arthritis can largely proceed by TRAF1-independent pathways. The production of anti-GPI autoantibody, but not other autoantibody or antibody responses, was markedly impaired by TRAF1 deficiency. The spontaneous arthritis model in KRN mice appears to be much less antibody dependent than previously believed.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Rheumatology, First Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Lu YY, Li ZZ, Jiang DS, Wang L, Zhang Y, Chen K, Zhang XF, Liu Y, Fan GC, Chen Y, Yang Q, Zhou Y, Zhang XD, Liu DP, Li H. TRAF1 is a critical regulator of cerebral ischaemia-reperfusion injury and neuronal death. Nat Commun 2013; 4:2852. [PMID: 24284943 PMCID: PMC3868160 DOI: 10.1038/ncomms3852] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/31/2013] [Indexed: 01/08/2023] Open
Abstract
Stroke is a leading global cause of mortality and disability. Less than 5% of patients are able to receive tissue plasminogen activator thrombolysis within the necessary timeframe. Focusing on the process of neuronal apoptosis in the penumbra, which lasts from hours to days after ischaemia, appears to be promising. Here we report that tumour necrosis factor receptor-associated factor 1 (TRAF1) expression is markedly induced in wild-type mice 6 h after stroke onset. Using genetic approaches, we demonstrate that increased neuronal TRAF1 leads to elevated neuronal death and enlarged ischaemic lesions, whereas TRAF1 deficiency is neuroprotective. In addition, TRAF1-mediated neuroapoptosis correlates with the activation of the JNK pro-death pathway and inhibition of the Akt cell survival pathway. Finally, TRAF1 is found to exert pro-apoptotic effects via direct interaction with ASK1. Thus, ASK1 positively and negatively regulates the JNK and Akt signalling pathways, respectively. Targeting the TRAF1/ASK1 pathway may provide feasible therapies for stroke long after onset.
Collapse
Affiliation(s)
- Yan-Yun Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
- These authors contributed equally to this work
| | - Zuo-Zhi Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- These authors contributed equally to this work
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
- These authors contributed equally to this work
| | - Lang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Ke Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | - Yingjie Chen
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-3360, USA
| | - Yan Zhou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Dong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| |
Collapse
|
38
|
TRAF1 gene polymorphism correlates with the titre of Gp210 antibody in patients with primary biliary cirrhosis. Clin Dev Immunol 2012; 2012:487521. [PMID: 23125866 PMCID: PMC3485529 DOI: 10.1155/2012/487521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/22/2012] [Indexed: 12/25/2022]
Abstract
Background. Polymorphisms of TRAF1 (Tumor necrosis factor receptor-associated factor 1) are associated with rheumatoid arthritis (RA). Whether TRAF1 polymorphisms confer increased risk for primary biliary cirrhosis (PBC), an autoimmune liver disease which can co-exist with RA, is unknown.
Aim of the Study. To assess the frequency of the RA-conferring susceptibility TRAF1 polymorphisms rs3761847 and rs2900180 in a cohort of PBC patients. The association of TRAF1 polymorphisms with clinical features and autoantibody markers was also analyzed.
Methods. We studied 179 PBC patients and 300 controls. Samples were genotyped for TRAF1 gene polymorphisms by real-time PCR. Autoantibodies were tested by ELISA.
Results. The frequency of rs3761847 and rs2900180 polymorphisms did not differ between patients and controls. Laboratory or clinical features were not associated with specific polymorphisms. Gp210 autoantibody titres were conspicuously higher among GG homozygotes of rs3761847 as compared with AA homozygotes (P = 0.02). In contrast, antichromatin titers were higher in AA compared to GG rs3761847 homozygotes (P = 0.04). Rheumatoid factor IgG titres were significantly higher in rs2900180 TT homozygotes than CC homozygotes (P = 0.02).
Conclusions. TRAF1 polymorphisms occur with the similar frequency in PBC patients and in the general population, but their presence is probably involved in the regulation of specific PBC-related autoantibodies.
Collapse
|
39
|
Zhou Y, He J, Gou LT, Mu B, Liao WC, Ma C, Tang P, Zhou SJ, Zhou YJ, Yang JL. Expression of CD40 and growth-inhibitory activity of CD40 agonist in ovarian carcinoma cells. Cancer Immunol Immunother 2012; 61:1735-43. [PMID: 22406982 PMCID: PMC11029153 DOI: 10.1007/s00262-011-1194-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 12/20/2011] [Indexed: 01/13/2023]
Abstract
The CD40 receptor is a member of the tumour necrosis factor receptor family and is widely expressed on various cell types. The antitumour activity of CD40 agonist antibody has been observed in B-cell-derived malignancies, but its activity on ovarian cancer remains unclear. However, in this paper, we first confirmed that the anti-CD40 agonist antibody could inhibit the growth of ovarian cancer cells and induce apoptosis. This study investigated the expression of CD40 by ovarian carcinoma tissues and cell lines, at the same time, we evaluated the effect of a recombinant soluble human CD40L (rshCD40L) and an anti-CD40 agonist antibody on cell growth and apoptosis. Flow cytometry and immunohistochemistry assay demonstrated that CD40 was expressed on ovarian carcinoma cell lines and primary ovarian carcinoma cells derived from ascites, as well as on ovarian carcinoma tissues. The growth inhibition of rshCD40L and the anti-CD40 agonist antibody on ovarian carcinoma cells was examined by MTT assay, and the proportion of apoptotic tumour cells was analysed by flow cytometry and Hoechst staining. Our study showed that CD40 was expressed on all ovarian carcinoma cell lines and was examined in 86.2% (162/188) of ovarian cancer tissue samples, but not in normal ovarian tissues (n = 20). Treatment with rshCD40L or anti-CD40 agonist antibody significantly inhibited ovarian carcinoma cell growth and induced apoptosis. Theses results suggest that CD40 is expressed on ovarian carcinoma cells, moreover, that rshCD40L and anti-CD40 agonist antibody have therapeutic potential to inhibit human ovarian cancer growth.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Jing He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Lan-tu Gou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Bo Mu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Wei-chan Liao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Cong Ma
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Ping Tang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Shi-jie Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Yong-jun Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| | - Jin-liang Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Keyuan Road 4, Chengdu, 610041 Sichuan China
| |
Collapse
|
40
|
McPherson AJ, Snell LM, Mak TW, Watts TH. Opposing roles for TRAF1 in the alternative versus classical NF-κB pathway in T cells. J Biol Chem 2012; 287:23010-9. [PMID: 22570473 PMCID: PMC3391120 DOI: 10.1074/jbc.m112.350538] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Indexed: 12/20/2022] Open
Abstract
T cells lacking TRAF1 hyperproliferate in response to T cell receptor signaling but have impaired signaling downstream of specific TNFR family members such as 4-1BB. Here we resolve this paradox by showing that while TRAF1 is required for maximal activation of the classical NF-κB pathway downstream of 4-1BB in primary T cells, TRAF1 also restricts the constitutive activation of NIK in anti-CD3-activated T cells. Activation of the alternative NF-κB pathway is restricted in unstimulated cells by a cIAP1/2:TRAF2:TRAF3:NIK complex. Using knockdown of NIK by siRNA we show that in activated CD8 T cells TRAF1 is also involved in this process and that constitutive activation of the alternative NF-κB pathway is responsible for costimulation independent hyperproliferation and excess cytokine production in TRAF1-deficient CD8 T cells compared with WT CD8 T cells. The T cell costimulatory molecule 4-1BB critically regulates the survival of activated and memory CD8 T cells. We demonstrate that stimulation through 4-1BB induces cIAP1-dependent TRAF3 degradation and activation of the alternative NF-κB pathway. We also show that while both TRAF1 and cIAP1 have non-redundant roles in suppressing the alternative NF-κB pathway in T cells activated in the absence of costimulation, activation of the classical NF-κB pathway downstream of 4-1BB requires TRAF1, whereas cIAP1 plays a redundant role with cIAP2. Collectively these results demonstrate that TRAF1 plays a critical role in regulating T cell activation both through restricting the costimulation independent activation of NIK in activated T cells and by promoting the 4-1BB-induced classical NF-κB pathway.
Collapse
Affiliation(s)
| | | | - Tak W. Mak
- From the Department of Immunology and
- The Campbell Family Cancer Research Institute at Princess Margaret Hospital and Department of Medical Biophysics, University of Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
41
|
Emmerich CH, Schmukle AC, Walczak H. The Emerging Role of Linear Ubiquitination in Cell Signaling. Sci Signal 2011; 4:re5. [DOI: 10.1126/scisignal.2002187] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Shamsara J, Mohammadpour AH, Behravan J, Falsoleiman H, Ramezani M. Pentoxifylline decreases soluble CD40 ligand concentration and CD40 gene expression in coronary artery disease patients. Immunopharmacol Immunotoxicol 2011; 34:523-9. [PMID: 21999662 DOI: 10.3109/08923973.2011.621435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
CONTEXT AND OBJECTIVE Increased level of inflammatory mediators plays a central role in the features of coronary artery diseases (CAD). As pentoxifylline could suppress the inflammatory process and has shown some promising beneficial effects in inflammatory diseases, we evaluated the effect of 2 months pentoxifylline administration in patients with CAD. MATERIALS AND METHODS A randomized placebo-controlled double-blind study design was used. Forty CAD patients (32 males and 8 females) were randomized into either 2 months of pentoxifylline treatment (1200 mg/day) (n = 20) or placebo treatment (n = 20). Blood samples were obtained before and after treatment. Gene expression analysis for mRNA of CD40, p65 and IκBα in peripheral blood mononuclear cells (PBMCs) were performed using real-time reverse-transcription polymerase chain reaction (RT-PCR). Plasma concentration of soluble CD40 (sCD40) ligand as well as protein concentration of p50 were measured by ELISA method. RESULTS Pentoxifylline decreased CD40 mRNA by 45% (p < 0.05) in PBMCs and sCD40 ligand level in plasma of CAD patients by 34% (p < 0.01). DISCUSSION AND CONCLUSION Pentoxifylline treatment can suppress the CD40/CD40 ligand system activation in CAD patients. As this system has a role in plaque progression and plaque rupture, pentoxifylline could be a good choice for future studies in preventing cardiovascular events.
Collapse
Affiliation(s)
- Jamal Shamsara
- Department of Biotechnology, School of Pharmacy, Mashhad, Iran
| | | | | | | | | |
Collapse
|
43
|
CD40-mediated cell death requires TRAF6 recruitment. Immunobiology 2011; 217:375-83. [PMID: 21813202 DOI: 10.1016/j.imbio.2011.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/15/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022]
Abstract
CD40 has an important role in T cell-B cell interaction which rescues B lymphocytes from undergoing apoptosis. However, various studies have demonstrated that CD40 can also play a direct role in the induction of specific cell death and thus in the inhibition of tumour cell proliferation. Our previous studies showed that CD40-mediated cell death was independent of caspases and required no de novo protein synthesis. Knowing that CD40 signaling is mediated by its association with several intracellular effectors, including members of TNFR-associated factors (TRAFs) family, the goal of the present study is to investigate the mechanisms involved in the induction of cell death by CD40. Our data reveals that CD40-mediated cell death required lysosomal membrane permeabilization and the subsequent cathepsin B release. In addition, CD40 homodimer formation, a phenomenon known to be necessary for some CD40-mediated signals, was shown to negatively regulate cell death induced by CD40. Moreover, using HEK293 cells ectopically expressing CD40 deficient in TRAF binding, we showed that CD40-mediated apoptosis occurred in the absence of TRAF2 and TRAF3 association, but was significantly reduced when CD40 was deficient in its TRAF6 binding. Therefore, by outlining the role of lysosomal pathways and intracellular effectors, namely TRAF6 in CD40-mediated cell death, our study identifies new targets for anti-cancer therapy.
Collapse
|
44
|
The TRAF2 and TRAF6 expression in myomas and myometrium of women in reproduction and perimenopausal age. Folia Histochem Cytobiol 2010; 48:407-16. [DOI: 10.2478/v10042-010-0039-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Prakobwong S, Khoontawad J, Yongvanit P, Pairojkul C, Hiraku Y, Sithithaworn P, Pinlaor P, Aggarwal BB, Pinlaor S. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int J Cancer 2010; 129:88-100. [PMID: 20824699 DOI: 10.1002/ijc.25656] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/23/2010] [Indexed: 01/13/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly metastatic tumor linked to liver fluke infection and consumption of nitrosamine-contaminated foods and is a major health problem especially in South-Eastern Asia. In search for a suitable chemopreventive agents, we investigated the effect of curcumin, a traditional anti-inflammatory agent derived from turmeric (Curcuma longa), on CCA development in an animal model by infection with the liver fluke Opisthorchis viverrini and administration of N-nitrosodimethylamine and fed with curcumin-supplemented diet. The effect of curcumin-supplemented diet on histopathological changes and survival were assessed in relation to NF-κB activation, and the expression of NF-κB-related gene products involved in inflammation, DNA damage, apoptosis, cell proliferation, angiogenesis and metastasis. Our results showed that dietary administration of this nutraceutical significantly reduced the incidence of CCA and increased the survival of animals. This correlated with the suppression of the activation of transcription factors including NF-κB, AP-1 and STAT-3, and reduction in the expression of proinflammatory proteins such as COX-2 and iNOS. The formation of iNOS-dependent DNA lesions (8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine) was inhibited. Curcumin suppressed the expression of proteins related to cell survival (bcl-2 and bcl-xL), proliferation (cyclin D1 and c-myc), tumor invasion (MMP-9 and ICAM-1) and angiogenesis (VEGF), and microvessel density. Induction of apoptotic events as indicated by caspase activation and PARP cleavage was also noted. Our results suggest that curcumin exhibits an anticarcinogenic potential via suppression of various events involved in multiple steps of carcinogenesis, which is accounted for by its ability to suppress proinflammatory pathways.
Collapse
Affiliation(s)
- Suksanti Prakobwong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sughra K, Birbach A, de Martin R, Schmid JA. Interaction of the TNFR-receptor associated factor TRAF1 with I-kappa B kinase-2 and TRAF2 indicates a regulatory function for NF-kappa B signaling. PLoS One 2010; 5:e12683. [PMID: 20856938 PMCID: PMC2938345 DOI: 10.1371/journal.pone.0012683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/12/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND I-kappa B kinase 2 (IKK2 or IKK-beta) is one of the most crucial signaling kinases for activation of NF-kappa B, a transcription factor that is important for inflammation, cell survival and differentiation. Since many NF-kappa B activating pathways converge at the level of IKK2, molecular interactions of this kinase are pivotal for regulation of NF-kappa B signaling. METHODOLOGY/PRINCIPAL FINDINGS We searched for proteins interacting with IKK2 using the C-terminal part (amino acids 466-756) as bait in a yeast two-hybrid system and identified the N-terminal part (amino acids 1-228) of the TNF-receptor associated factor TRAF1 as putative interaction partner. The interaction was confirmed in human cells by mammalian two-hybrid and coimmunoprecipitation experiments. The IKK2/TRAF1 interaction seemed weaker than the interaction between TRAF1 and TRAF2, an important activating adapter molecule of NF-kappa B signaling. Reporter gene and kinase assays using ectopic expression of TRAF1 indicated that it can both activate and inhibit IKK2 and NF-kappa B. Co-expression of fluorescently tagged TRAF1 and TRAF2 at different ratios implied that TRAF1 can affect clustering and presumably the activating function of TRAF2 in a dose dependent manner. CONCLUSIONS/SIGNIFICANCE The observation that TRAF1 can either activate or inhibit the NF-kappa B pathway and the fact that it influences the oligomerization of TRAF2 indicates that relative levels of IKK2, TRAF1 and TRAF2 may be important for regulation of NF-kappa B activity. Since TRAF1 is an NF-kappa B induced gene, it might act as a feedback effector molecule.
Collapse
Affiliation(s)
- Kalsoom Sughra
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Andreas Birbach
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
47
|
Gerken M, Krippner-Heidenreich A, Steinert S, Willi S, Neugart F, Zappe A, Wrachtrup J, Tietz C, Scheurich P. Fluorescence correlation spectroscopy reveals topological segregation of the two tumor necrosis factor membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1081-9. [DOI: 10.1016/j.bbamem.2010.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/15/2022]
|
48
|
Broos S, Lundberg K, Akagi T, Kadowaki K, Akashi M, Greiff L, Borrebaeck CAK, Lindstedt M. Immunomodulatory nanoparticles as adjuvants and allergen-delivery system to human dendritic cells: Implications for specific immunotherapy. Vaccine 2010; 28:5075-85. [PMID: 20478343 DOI: 10.1016/j.vaccine.2010.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/27/2010] [Accepted: 05/03/2010] [Indexed: 01/29/2023]
Abstract
Novel adjuvants and antigen-delivery systems with immunomodulatory properties that shift the allergenic Th2 response towards a Th1 or regulatory T cell response are desired for allergen-specific immunotherapy. This study demonstrates that 200-nm sized biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs) are activators of human monocyte-derived dendritic cells (MoDCs). Gamma-PGA NPs are efficiently internalized by immature MoDCs and strongly stimulate production of chemokines and inflammatory cytokines as well as up-regulation of co-stimulatory molecules and immunomodulatory mediators involved in efficient T cell priming. Furthermore, MoDCs from allergic subjects stimulated in vitro with a mixture of gamma-PGA NPs and extract of grass pollen allergen Phleum pratense (Phl p) augment allergen-specific IL-10 production and proliferation of autologous CD4(+) memory T cells. Thus, gamma-PGA NPs are promising as sophisticated adjuvants and allergen-delivery systems in allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Sissela Broos
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010; 38:101-13. [PMID: 20385093 DOI: 10.1016/j.molcel.2010.03.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/04/2009] [Accepted: 03/22/2010] [Indexed: 12/30/2022]
Abstract
TRAF1/2 and cIAP1/2 are members of the TNF receptor-associated factor (TRAF) and the inhibitor of apoptosis (IAP) families, respectively. They are critical for canonical and noncanonical NF-kappaB signaling pathways. Here, we report the crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes. A TRAF2 trimer interacts with one cIAP2 both in the crystal and in solution. Two chains of the TRAF2 trimer directly contact cIAP2, and key residues at the interface are confirmed by mutagenesis. TRAF1 and TRAF2 preferentially form the TRAF1: (TRAF2)(2) heterotrimer, which interacts with cIAP2 more strongly than TRAF2 alone. In contrast, TRAF1 alone interacts very weakly with cIAP2. Surprisingly, TRAF1 and one chain of TRAF2 in the TRAF1: (TRAF2)(2): cIAP2 ternary complex mediate interaction with cIAP2. Because TRAF1 is upregulated by many stimuli, it may modulate the interaction of TRAF2 with cIAP1/2, which explains regulatory roles of TRAF1 in TNF signaling.
Collapse
|
50
|
Missiou A, Köstlin N, Varo N, Rudolf P, Aichele P, Ernst S, Münkel C, Walter C, Stachon P, Sommer B, Pfeifer D, Zirlik K, MacFarlane L, Wolf D, Tsitsikov E, Bode C, Libby P, Zirlik A. Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall. Circulation 2010; 121:2033-44. [PMID: 20421522 DOI: 10.1161/circulationaha.109.895037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Members of the tumor necrosis factor superfamily, such as tumor necrosis factor-alpha, potently promote atherogenesis in mice and humans. Tumor necrosis factor receptor-associated factors (TRAFs) are cytoplasmic adaptor proteins for this group of cytokines. METHODS AND RESULTS This study tested the hypothesis that TRAF1 modulates atherogenesis in vivo. TRAF1(-/-)/LDLR(-/-) mice that consumed a high-cholesterol diet for 18 weeks developed significantly smaller atherosclerotic lesions than LDLR(-/-) (LDL receptor-deficient) control animals. As the most prominent change in histological composition, plaques of TRAF1-deficient animals contained significantly fewer macrophages. Bone marrow transplantations revealed that TRAF1 deficiency in both hematopoietic and vascular resident cells contributed to the reduction in atherogenesis observed. Mechanistic studies showed that deficiency of TRAF1 in endothelial cells and monocytes reduced adhesion of inflammatory cells to the endothelium in static and dynamic assays. Impaired adhesion coincided with reduced cell spreading, actin polymerization, and CD29 expression in macrophages, as well as decreased expression of the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in endothelial cells. Small interfering RNA studies in human cells verified these findings. Furthermore, TRAF1 messenger RNA levels were significantly elevated in the blood of patients with acute coronary syndrome. CONCLUSIONS TRAF1 deficiency attenuates atherogenesis in mice, most likely owing to impaired monocyte recruitment to the vessel wall. These data identify TRAF1 as a potential treatment target for atherosclerosis.
Collapse
Affiliation(s)
- Anna Missiou
- Department of Cardiology, University of Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|