1
|
Marino F, Petrella L, Cimmino F, Pizzella A, Monda A, Allocca S, Rotondo R, D'Angelo M, Musco N, Iommelli P, Catapano A, Bagnato C, Paolini B, Cavaliere G. From Obesity to Mitochondrial Dysfunction in Peripheral Tissues and in the Central Nervous System. Biomolecules 2025; 15:638. [PMID: 40427531 DOI: 10.3390/biom15050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Obesity is a condition of chronic low-grade inflammation affecting peripheral organs of the body, as well as the central nervous system. The adipose tissue dysfunction occurring under conditions of obesity is a key factor in the onset and progression of a variety of diseases, including neurodegenerative disorders. Mitochondria, key organelles in the production of cellular energy, play an important role in this tissue dysfunction. Numerous studies highlight the close link between obesity and adipocyte mitochondrial dysfunction, resulting in excessive ROS production and adipose tissue inflammation. This inflammation is transmitted systemically, leading to metabolic disorders that also impact the central nervous system, where pro-inflammatory cytokines impair mitochondrial and cellular functions in different areas of the brain, leading to neurodegenerative diseases. To date, several bioactive compounds are able to prevent and/or slow down neurogenerative processes by acting on mitochondrial functions. Among these, some molecules present in the Mediterranean diet, such as polyphenols, carotenoids, and omega-3 PUFAs, exert a protective action due to their antioxidant and anti-inflammatory ability. The aim of this review is to provide an overview of the involvement of adipose tissue dysfunction in the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, emphasizing the central role played by mitochondria, the main actors in the cross-talk between adipose tissue and the central nervous system.
Collapse
Affiliation(s)
- Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Telematic University, 00166 Rome, Italy
| | - Salvatore Allocca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Margherita D'Angelo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Piera Iommelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Carmela Bagnato
- Clinical Nutrition Unit, Madonna Delle Grazie Hospital, 75100 Matera, Italy
| | - Barbara Paolini
- Unit of Dietetics and Clinical Nutrition, Department of Innovation, Experimentation and Clinical Research, S. Maria Alle Scotte Hospital, University of Siena, 53100 Siena, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
2
|
Musthafa T, Nizami SK, Mishra A, Hasan G, Gopurappilly R. Altered Mitochondrial Bioenergetics and Calcium Kinetics in Young-Onset PLA2G6 Parkinson's Disease iPSCs. J Neurochem 2025; 169:e70059. [PMID: 40189860 PMCID: PMC11973445 DOI: 10.1111/jnc.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Parkinson's disease (PD) has emerged as a multisystem disorder affecting multiple cellular and organellar systems in addition to the dopaminergic neurons. Disease-specific induced pluripotent stem cells (iPSCs) model early developmental changes and cellular perturbations that are otherwise inaccessible from clinical settings. Here, we report the early changes in patient-derived iPSCs carrying a homozygous recessive mutation, R741Q, in the PLA2G6 gene. A gene-edited R747W iPSC line mirrored these phenotypes, thus validating our initial findings. Bioenergetic dysfunction and hyperpolarization of mitochondrial membrane potentials were hallmarks of the PD iPSCs. Further, a concomitant increase in glycolytic activity indicated a possible compensation for mitochondrial respiration. Elevated basal reactive oxygen species (ROS) and decreased catalase expression were also observed in the disease iPSCs. No change in autophagy was detected. These inceptive changes could be potential targets for early intervention of prodromal PD in the absence of disease-modifying therapies. However, additional investigations are crucial to delineate the cause-effect relationships of these observations.
Collapse
Affiliation(s)
- Thasneem Musthafa
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Syed Kavish Nizami
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Ankita Mishra
- NKure Therapeutics Pvt LtdCentre for Cellular and Molecular PlatformsBangaloreIndia
| | - Gaiti Hasan
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
- Centre for High Impact Neuroscience and Translational ApplicationsKolkataIndia
| | - Renjitha Gopurappilly
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
- NKure Therapeutics Pvt LtdCentre for Cellular and Molecular PlatformsBangaloreIndia
| |
Collapse
|
3
|
Eggers B, Steinbach S, Aldea IG, Keers S, Molina M, Grinberg LT, Heinsen H, Paraizo Leite RE, Attems J, May C, Marcus K. The Aging Substantia Nigra is Characterized by ROS Accumulation Potentially Resulting in Increased Neuroinflammation and Cytoskeletal Remodeling. Adv Biol (Weinh) 2025; 9:e2400814. [PMID: 40071644 PMCID: PMC12001008 DOI: 10.1002/adbi.202400814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Indexed: 04/17/2025]
Abstract
Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease. To gain a comprehensive overview three study groups are utilized: young individuals (mean age: 28.7 years), middle-aged (mean age: 62.3 years), and elderly individuals (mean age: 83.9 years). Using the proteomic approach, crucial features of physiological aging are able to be identified. These include heightened oxidative stress, enhanced lysosomal degradation, autophagy, remodeling of the cytoskeleton, changes in the structure of the mitochondria, alterations in vesicle transportation, and synaptic plasticity.
Collapse
Affiliation(s)
- Britta Eggers
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| | - Simone Steinbach
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
| | - Isabel Gil Aldea
- Navarrabiomed BiobankHospital Universitario de NavarraPamplonaNavarra31008Spain
| | - Sharon Keers
- Institute of Neuroscience and Newcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Mariana Molina
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Institute of Forensic MedicineUniversity of WuerzburgVersbacher Str. 397078WuerzburgGermany
| | - Lea T. Grinberg
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Department of NeurologyMemory and Aging CenterUniversity of CaliforniaSan FranciscoCA94158USA
| | - Helmut Heinsen
- Institute of Forensic MedicineUniversity of WuerzburgVersbacher Str. 397078WuerzburgGermany
| | - Renata E. Paraizo Leite
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloNE1 7RUBrazil
| | - Johannes Attems
- Translational and Clinical Research InstituteNewcastle UniversityEdwardson building, Campus for Ageing and VitalityNewcastle‐upon‐TyneNE4 5PLUK
| | - Caroline May
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| | - Katrin Marcus
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| |
Collapse
|
4
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
5
|
Chen L, Wang C, Qin L, Zhang H. Parkinson's disease and glucose metabolism impairment. Transl Neurodegener 2025; 14:10. [PMID: 39962629 PMCID: PMC11831814 DOI: 10.1186/s40035-025-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. PD patients exhibit varying degrees of abnormal glucose metabolism throughout disease stages. Abnormal glucose metabolism is closely linked to the PD pathogenesis and progression. Key glucose metabolism processes involved in PD include glucose transport, glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, the pentose phosphate pathway, and gluconeogenesis. Recent studies suggest that glucose metabolism is a potential therapeutic target for PD. In this review, we explore the connection between PD and abnormal glucose metabolism, focusing on the underlying pathophysiological mechanisms. We also summarize potential therapeutic drugs related to glucose metabolism based on results from current cellular and animal model studies.
Collapse
Affiliation(s)
- Liangjing Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunyu Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lixia Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
6
|
Subhan I, Siddique YH. Modeling of Parkinson's Disease in Different Models. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:102-114. [PMID: 39354776 DOI: 10.2174/0118715273326866240922193029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 10/03/2024]
Abstract
Parkinson's Disease (PD) is a progressive disorder worldwide and its etiology remains unidentified. Over the last few decades, animal models of PD have been extensively utilized to explore the development and mechanisms of this neurodegenerative condition. Toxic and transgenic animal models for PD possess unique characteristics and constraints, necessitating careful consideration when selecting the appropriate model for research purposes. Animal models have played a significant role in uncovering the causes and development of PD, including its cellular and molecular processes. These models suggest that the disorder arises from intricate interplays between genetic predispositions and environmental influences. Every model possesses its unique set of strengths and weaknesses. This review provides a critical examination of animal models for PD and compares them with the features observed in the human manifestation of the disease.
Collapse
Affiliation(s)
- Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
7
|
Khan S, Haider MF. A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson's Disease: An Updated Patent and Clinical Trials. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:181-195. [PMID: 39400019 DOI: 10.2174/0118715273323074241001071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.
Collapse
Affiliation(s)
- Sara Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
8
|
Duret LC, Nagoshi E. The intertwined relationship between circadian dysfunction and Parkinson's disease. Trends Neurosci 2025; 48:62-76. [PMID: 39578132 DOI: 10.1016/j.tins.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Neurodegenerative disorders represent a leading cause of disability among the elderly population, and Parkinson's disease (PD) is the second most prevalent. Emerging evidence suggests a frequent co-occurrence of circadian disruption and PD. However, the nature of this relationship remains unclear: is circadian disruption a cause, consequence, or a parallel feature of the disease that shares the same root cause? This review seeks to address this question by highlighting and discussing clinical evidence and findings from experiments using vertebrate and invertebrate animal models. While research on causality is still in its early stages, the available data suggest reciprocal interactions between PD progression and circadian disruption.
Collapse
Affiliation(s)
- Lou C Duret
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
9
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
10
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
11
|
Coleman CR, Pallos J, Arreola-Bustos A, Wang L, Raftery D, Promislow DEL, Martin I. Natural variation in age-related dopamine neuron degeneration is glutathione dependent and linked to life span. Proc Natl Acad Sci U S A 2024; 121:e2403450121. [PMID: 39388265 PMCID: PMC11494315 DOI: 10.1073/pnas.2403450121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss, and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Strains with naturally short-lived animals exhibit a loss of dopamine neurons without generalized neurodegeneration, while animals from long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress, and vulnerability to silencing the familial PD gene parkin. Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (Gcl) overexpression is sufficient to normalize ROS levels, extend life span, and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is reported to occur in the idiopathic PD patient brain through unknown mechanisms. Building on this, we find reduced expression of the Gcl catalytic subunit in both Drosophila strains vulnerable to age-related dopamine neuron loss and in the human brain from familial PD patients harboring the common LRRK2 G2019S mutation. Our study across Drosophila and human PD systems suggests that glutathione synthesis and levels play a conserved role in regulating age-related dopamine neuron health.
Collapse
Affiliation(s)
- Colin R. Coleman
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR 97239
| | - Judit Pallos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR 97239
| | - Alicia Arreola-Bustos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR 97239
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA98195
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA98109
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA98057
- Department of Biology, University of Washington School of Medicine, Seattle, WA98195
| | - Ian Martin
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
12
|
Flores-Ponce X, Velasco I. Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease. Metabolomics 2024; 20:116. [PMID: 39397188 PMCID: PMC11471710 DOI: 10.1007/s11306-024-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons. AIM OF REVIEW In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.
Collapse
Affiliation(s)
- Xóchitl Flores-Ponce
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| |
Collapse
|
13
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Nakai A, Fukushima Y, Yamamoto A, Amatsu Y, Chen X, Nishigori M, Yoshioka Y, Kaneko M, Koshiba T, Watanabe T. Increased ROS levels in mitochondrial outer membrane protein Mul1-deficient oocytes result in abnormal preimplantation embryogenesis. FEBS Lett 2024; 598:1740-1752. [PMID: 38639871 DOI: 10.1002/1873-3468.14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Reactive oxygen species (ROS) are associated with oocyte maturation inhibition, and N-acetyl-l-cysteine (NAC) partially reduces their harmful effects. Mitochondrial E3 ubiquitin ligase 1 (Mul1) localizes to the mitochondrial outer membrane. We found that female Mul1-deficient mice are infertile, and their oocytes contain high ROS concentrations. After fertilization, Mul1-deficient embryos showed a DNA damage response (DDR) and abnormal preimplantation embryogenesis, which was rescued by NAC addition and ROS depletion. These observations clearly demonstrate that loss of Mul1 in oocytes increases ROS concentrations and triggers DDR, resulting in abnormal preimplantation embryogenesis. We conclude that manipulating the mitochondrial ROS levels in oocytes may be a potential therapeutic approach to target infertility.
Collapse
Affiliation(s)
- Ann Nakai
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Yuki Fukushima
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Ayaka Yamamoto
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Yuki Amatsu
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Xiaoyan Chen
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | | | - Yukino Yoshioka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| |
Collapse
|
16
|
Goldman C, Kareva T, Sarrafha L, Schuldt BR, Sahasrabudhe A, Ahfeldt T, Blanchard JW. Genetically Encoded and Modular SubCellular Organelle Probes (GEM-SCOPe) reveal lysosomal and mitochondrial dysfunction driven by PRKN knockout. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594886. [PMID: 38979135 PMCID: PMC11230217 DOI: 10.1101/2024.05.21.594886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cellular processes including lysosomal and mitochondrial dysfunction are implicated in the development of many diseases. Quantitative visualization of mitochondria and lysosoesl is crucial to understand how these organelles are dysregulated during disease. To address a gap in live-imaging tools, we developed GEM-SCOPe (Genetically Encoded and Modular SubCellular Organelle Probes), a modular toolbox of fluorescent markers designed to inform on localization, distribution, turnover, and oxidative stress of specific organelles. We expressed GEM-SCOPe in differentiated astrocytes and neurons from a human pluripotent stem cell PRKN-knockout model of Parkinson's disease and identified disease-associated changes in proliferation, lysosomal distribution, mitochondrial transport and turnover, and reactive oxygen species. We demonstrate GEM-SCOPe is a powerful panel that provide critical insight into the subcellular mechanisms underlying Parkinson's disease in human cells. GEM-SCOPe can be expanded upon and applied to a diversity of cellular models to glean an understanding of the mechanisms that promote disease onset and progression.
Collapse
Affiliation(s)
- Camille Goldman
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Tatyana Kareva
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Lily Sarrafha
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Braxton R. Schuldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Abhishek Sahasrabudhe
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Joel W. Blanchard
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Lead Contact
| |
Collapse
|
17
|
Trease AJ, Totusek S, Lichter EZ, Stauch KL, Fox HS. Mitochondrial DNA Instability Supersedes Parkin Mutations in Driving Mitochondrial Proteomic Alterations and Functional Deficits in Polg Mutator Mice. Int J Mol Sci 2024; 25:6441. [PMID: 38928146 PMCID: PMC11203920 DOI: 10.3390/ijms25126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function.
Collapse
Affiliation(s)
- Andrew J. Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Steven Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Eliezer Z. Lichter
- Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| |
Collapse
|
18
|
Vekaria HJ, Kalimon OJ, Prajapati P, Velmurugan GV, Sullivan PG. An efficient and high-throughput method for the evaluation of mitochondrial dysfunction in frozen brain samples after traumatic brain injury. Front Mol Biosci 2024; 11:1378536. [PMID: 38983247 PMCID: PMC11232470 DOI: 10.3389/fmolb.2024.1378536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 07/11/2024] Open
Abstract
Mitochondrial function analysis is a well-established method used in preclinical and clinical investigations to assess pathophysiological changes in various disease states, including traumatic brain injury (TBI). Although there are multiple approaches to assess mitochondrial function, one common method involves respirometric assays utilizing either Clark-type oxygen electrodes or fluorescent-based Seahorse analysis (Agilent). However, these functional analysis methods are typically limited to the availability of freshly isolated tissue samples due to the compromise of the electron transport chain (ETC) upon storage, caused by freeze-thaw-mediated breakdown of mitochondrial membranes. In this study, we propose and refine a method for evaluating electron flux through the ETC, encompassing complexes I, II, and IV, in frozen homogenates or mitochondrial samples within a single well of a Seahorse plate. Initially, we demonstrate the impact of TBI on freshly isolated mitochondria using the conventional oxidative phosphorylation protocol (OxPP), followed by a comparison with ETC analysis conducted on frozen tissue samples within the context of a controlled cortical impact (CCI) model of TBI. Additionally, we explore the effects of mitochondrial isolation from fresh versus snap-frozen brain tissues and their storage at -80°C, assessing its impact on electron transport chain protocol (ETCP) activity. Our findings indicate that while both sets of samples were frozen at a single time point, mitochondria from snap-frozen tissues exhibited reduced injury effects compared to preparations from fresh tissues, which were either homogenized or isolated into mitochondria and subsequently frozen for later use. Thus, we demonstrate that the preparation of homogenates or isolated mitochondria can serve as an appropriate method for storing brain samples, allowing for later analysis of mitochondrial function, following TBI using ETCP.
Collapse
Affiliation(s)
- Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
- Lexington VA Medical Center, United States Department of Veterans Affairs, Lexington, KY, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Olivia J. Kalimon
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
- Lexington VA Medical Center, United States Department of Veterans Affairs, Lexington, KY, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
- Lexington VA Medical Center, United States Department of Veterans Affairs, Lexington, KY, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
19
|
Dong M, Zhang T, Liang X, Cheng X, Shi F, Yuan H, Zhang F, Jiang Q, Wang X. Sesamin alleviates lipid accumulation induced by oleic acid via PINK1/Parkin-mediated mitophagy in HepG2 cells. Biochem Biophys Res Commun 2024; 708:149815. [PMID: 38531220 DOI: 10.1016/j.bbrc.2024.149815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Sesamin, a special compound present in sesame and sesame oil, has been reported a role in regulating lipid metabolism, while the underlying mechanisms remain unclear. Autophagy has been reported associated with lipid metabolism and regarded as a key modulator in liver steatosis. The present work aimed to investigate whether sesamin could exert its protective effects against lipid accumulation via modulating autophagy in HepG2 cells stimulated with oleic acid (OA). Cell viability was evaluated using the CCK-8 method, and triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein, cholesterol (LDL-C), alanine aminotransferase (ALT), along with aspartate aminotransferase (AST) were assessed by oil red O staining, transmission electron microscopy (TEM), and biochemical kits to investigate the lipid-lowering effects of sesamin. Differentially expressed genes were screened by RNA sequencing and validated using real-time quantitative PCR and Western blot. Autophagy and mitophagy related molecules were analyzed employing TEM, Western blot, and immunofluorescence. The data shows that in HepG2 cells stimulated by OA, sesamin reduces levels of TG, TC, LDL-C, ALT, and AST while elevating HDL-C, alleviates the lipid accumulation and improves fatty acid metabolism through modulating the levels of fat metabolism related genes including PCSK9, FABP1, CD36, and SOX4. Sesamin restores the suppressed autophagy in HepG2 cells caused by OA, which could be blocked by autophagy inhibitors. This indicates that sesamin improves fatty acid metabolism by enhancing autophagy levels, thereby mitigating the intracellular lipid accumulation. Furthermore, sesamin significantly enhances the mitophagy and improves mitochondrial homeostasis via activating the PINK/Parkin pathway. These data suggest that sesamin alleviates the excessive lipid accumulation in HepG2 caused by OA by restoring the impaired mitophagy via the PINK1/Parkin pathway, probably playing a preventive or therapeutic role in hepatic steatosis.
Collapse
Affiliation(s)
- Mengyun Dong
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Xueli Liang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Xinyi Cheng
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Fuyan Shi
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Hang Yuan
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Fengxiang Zhang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Qiqi Jiang
- Department of Gastroenterology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, China.
| | - Xia Wang
- Department of Gastroenterology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, China.
| |
Collapse
|
20
|
Hembach S, Schmidt S, Orschmann T, Burtscher I, Lickert H, Giesert F, Weisenhorn DV, Wurst W. Engrailed 1 deficiency induces changes in ciliogenesis during human neuronal differentiation. Neurobiol Dis 2024; 194:106474. [PMID: 38518837 DOI: 10.1016/j.nbd.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation. Although the EN1 ko didn't interfere with neuronal differentiation and generation of tyrosine hydroxylase positive (TH+) neurons per se, the neurons exhibited shorter neurites. Furthermore, mitochondrial respiration, as well as mitochondrial complex I abundance was significantly reduced in fully differentiated neurons. To understand the implications of an EN1 ko during differentiation, we performed a transcriptome analysis of human neuronal precursor cells (hNPCs) which unveiled alterations in cilia-associated pathways. Further analysis of ciliary morphology revealed an elongation of primary cilia in EN1-deficient hNPCs. Besides, also Wnt signaling pathways were severely affected. Upon stimulating hNPCs with Wnt which drastically increased EN1 expression in WT lines, the phenotypes concerning mitochondrial function and cilia were exacerbated in EN1 ko hNPCs. They failed to enhance the expression of the complex I subunits NDUFS1 and 3, and now displayed a reduced mitochondrial respiration. Furthermore, Wnt stimulation decreased ciliogenesis in EN1 ko hNPCs but increased ciliary length even further. This further highlights the relevance of primary cilia next to mitochondria for the functionality and correct maintenance of human DAns and provides new possibilities to establish neuroprotective therapies for PD.
Collapse
Affiliation(s)
- Sina Hembach
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Neurobiological Engineering, Munich Institute of Biomedical Engineering, TUM School of Natural Sciences, Garching, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany
| | - Tanja Orschmann
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technische Universität München, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany; Technische Universität München-Weihenstephan, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
21
|
Sharma K, Chib S, Gupta A, Singh R, Chalotra R. Interplay between α-synuclein and parkin genes: Insights of Parkinson's disease. Mol Biol Rep 2024; 51:586. [PMID: 38683365 DOI: 10.1007/s11033-024-09520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Parkinson's disease (PD) is a complex and debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The pathogenesis of PD is intimately linked to the roles of two key molecular players, α-synuclein (α-syn) and Parkin. Understanding the intricate interplay between α-syn and Parkin is essential for unravelling the molecular underpinnings of PD. Their roles in synaptic function and protein quality control underscore their significance in neuronal health. Dysregulation of these processes, as seen in PD, highlights the potential for targeted therapeutic strategies aimed at restoring normal protein homeostasis and mitigating neurodegeneration. Investigating the connections between α-syn, Parkin, and various pathological mechanisms provides insights into the complex web of factors contributing to PD pathogenesis and offers hope for the development of more effective treatments for this devastating neurological disorder. The present compilation provides an overview of their structures, regional and cellular locations, associations, physiological functions, and pathological roles in the context of PD.
Collapse
Affiliation(s)
- Kajal Sharma
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Aniket Gupta
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
22
|
Miano-Burkhardt A, Alvarez Jerez P, Daida K, Bandres Ciga S, Billingsley KJ. The Role of Structural Variants in the Genetic Architecture of Parkinson's Disease. Int J Mol Sci 2024; 25:4801. [PMID: 38732020 PMCID: PMC11084710 DOI: 10.3390/ijms25094801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD) significantly impacts millions of individuals worldwide. Although our understanding of the genetic foundations of PD has advanced, a substantial portion of the genetic variation contributing to disease risk remains unknown. Current PD genetic studies have primarily focused on one form of genetic variation, single nucleotide variants (SNVs), while other important forms of genetic variation, such as structural variants (SVs), are mostly ignored due to the complexity of detecting these variants with traditional sequencing methods. Yet, these forms of genetic variation play crucial roles in gene expression and regulation in the human brain and are causative of numerous neurological disorders, including forms of PD. This review aims to provide a comprehensive overview of our current understanding of the involvement of coding and noncoding SVs in the genetic architecture of PD.
Collapse
Affiliation(s)
- Abigail Miano-Burkhardt
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Pilar Alvarez Jerez
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Sara Bandres Ciga
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Kimberley J. Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| |
Collapse
|
23
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Mohabbat M, Arazi H. Effect of resistance training plus enriched probiotic supplement on sestrin2, oxidative stress, and mitophagy markers in elderly male Wistar rats. Sci Rep 2024; 14:7744. [PMID: 38565633 PMCID: PMC10987664 DOI: 10.1038/s41598-024-58462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to determine the effects of resistance training combined with a probiotic supplement enriched with vitamin D and leucine on sestrin2, oxidative stress, antioxidant defense, and mitophagy markers in aged Wistar rats. Thirty-five male rats were randomly assigned to two age groups (old with 18-24 months of age and young with 8-12 weeks of age) and then divided into five groups, including (1) old control (OC: n = 5 + 2 for reserve in all groups), (2) young control (YC: n = 5), (3) old resistance training (OR: n = 5), (4) old resistance training plus supplement (ORS: n = 5), and old supplement group (OS: n = 5). Training groups performed ladder climbing resistance training 3 times per week for 8 weeks. Training intensity was inserted progressively, with values equal to 65, 75, and 85, determining rats' maximal carrying load capacity. Each animal made 5 to 8 climbs in each training session, and the time of each climb was between 12 and 15 s, although the time was not the subject of the evaluation, and the climbing pattern was different in the animals. Old resistance plus supplement and old supplement groups received 1 ml of supplement 5 times per week by oral gavage in addition to standard feeding, 1 to 2 h post training sessions. Forty-eight hours after the end of the training program, 3 ml of blood samples were taken, and all rats were then sacrificed to achieve muscle samples. After 8 weeks of training, total antioxidant capacity and superoxide dismutase activity levels increased in both interventions. A synergistic effect of supplement with resistance training was observed for total antioxidant capacity, superoxide dismutase, and PTEN-induced kinase 1. Sestrin 2 decreased in intervention groups. These results suggest that resistance training plus supplement can boost antioxidant defense and mitophagy while potentially decreasing muscle strength loss.
Collapse
Affiliation(s)
- Majid Mohabbat
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, Iran.
| |
Collapse
|
25
|
Gu Y, Zhang J, Zhao X, Nie W, Xu X, Liu M, Zhang X. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease. Neural Regen Res 2024; 19:583-590. [PMID: 37721288 PMCID: PMC10581567 DOI: 10.4103/1673-5374.380875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 09/19/2023] Open
Abstract
Changes in olfactory function are considered to be early biomarkers of Parkinson's disease. Olfactory dysfunction is one of the earliest non-motor features of Parkinson's disease, appearing in about 90% of patients with early-stage Parkinson's disease, and can often predate the diagnosis by years. Therefore, olfactory dysfunction should be considered a reliable marker of the disease. However, the mechanisms responsible for olfactory dysfunction are currently unknown. In this article, we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson's disease. On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels, we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson's disease. The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson's disease. Therefore, therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson's disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms, highlighting the potential of identifying effective targets for treating Parkinson's disease by inhibiting the deterioration of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingying Gu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaying Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xinru Zhao
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenyuan Nie
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaole Xu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Mingxuan Liu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoling Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
26
|
Ward A, Jessop F, Faris R, Hollister J, Shoup D, Race B, Bosio CM, Priola SA. The PINK1/Parkin pathway of mitophagy exerts a protective effect during prion disease. PLoS One 2024; 19:e0298095. [PMID: 38394123 PMCID: PMC10889866 DOI: 10.1371/journal.pone.0298095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
The PINK1/Parkin pathway of mitophagy has been implicated in the pathogenesis of Parkinson's disease. In prion diseases, a transmissible neurodegenerative disease caused by the misfolded and infectious prion protein (PrPSc), expression of both PINK1 and Parkin are elevated, suggesting that PINK1/Parkin mediated mitophagy may also play a role in prion pathogenesis. Using mice in which expression of either PINK1 (PINK1KO) or Parkin (ParkinKO) has been ablated, we analyzed the potential role of PINK1 and Parkin in prion pathogenesis. Prion infected PINK1KO and ParkinKO mice succumbed to disease more rapidly (153 and 150 days, respectively) than wild-type control C57Bl/6 mice (161 days). Faster incubation times in PINK1KO and ParkinKO mice did not correlate with altered prion pathology in the brain, altered expression of proteins associated with mitochondrial dynamics, or prion-related changes in mitochondrial respiration. However, the expression level of mitochondrial respiration Complex I, a major site for the formation of reactive oxygen species (ROS), was higher in prion infected PINK1KO and ParkinKO mice when compared to prion infected control mice. Our results demonstrate a protective role for PINK1/Parkin mitophagy during prion disease, likely by helping to minimize ROS formation via Complex I, leading to slower prion disease progression.
Collapse
Affiliation(s)
- Anne Ward
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - Forrest Jessop
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - Robert Faris
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jason Hollister
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - Daniel Shoup
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - Catharine M. Bosio
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - Suzette A. Priola
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| |
Collapse
|
27
|
Coleman CR, Pallos J, Arreola-Bustos A, Wang L, Raftery D, Promislow DEL, Martin I. Natural Variation in Age-Related Dopamine Neuron Degeneration is Glutathione-Dependent and Linked to Life Span. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580013. [PMID: 38405950 PMCID: PMC10888861 DOI: 10.1101/2024.02.12.580013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Naturally short-lived strains exhibit a loss of dopamine neurons but not generalized neurodegeneration, while long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress and vulnerability to silencing the familial PD gene parkin . Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (GCL) overexpression is sufficient to normalize ROS levels, extend life span and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is frequently reported in idiopathic PD patient brain. Building on this evidence, we detect reduced levels of GCL catalytic and modulatory subunits in brain from PD patients harboring the LRRK2 G2019S mutation, implicating possible glutathione deficits in familial LRRK2-linked PD. Our study across Drosophila and human PD systems suggests that glutathione plays an important role in the influence of aging on PD neurodegeneration.
Collapse
|
28
|
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson's Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. Int J Mol Sci 2024; 25:2009. [PMID: 38396687 PMCID: PMC10888576 DOI: 10.3390/ijms25042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
29
|
Zanon A, Guida M, Lavdas AA, Corti C, Castelo Rueda MP, Negro A, Pramstaller PP, Domingues FS, Hicks AA, Pichler I. Intracellular delivery of Parkin-RING0-based fragments corrects Parkin-induced mitochondrial dysfunction through interaction with SLP-2. J Transl Med 2024; 22:59. [PMID: 38229174 PMCID: PMC10790385 DOI: 10.1186/s12967-024-04850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Loss-of-function mutations in the PRKN gene, encoding Parkin, are the most common cause of autosomal recessive Parkinson's disease (PD). We have previously identified mitoch ondrial Stomatin-like protein 2 (SLP-2), which functions in the assembly of respiratory chain proteins, as a Parkin-binding protein. Selective knockdown of either Parkin or SLP-2 led to reduced mitochondrial and neuronal function in neuronal cells and Drosophila, where a double knockdown led to a further worsening of Parkin-deficiency phenotypes. Here, we investigated the minimal Parkin region involved in the Parkin-SLP-2 interaction and explored the ability of Parkin-fragments and peptides from this minimal region to restore mitochondrial function. METHODS In fibroblasts, human induced pluripotent stem cell (hiPSC)-derived neurons, and neuroblastoma cells the interaction between Parkin and SLP-2 was investigated, and the Parkin domain responsible for the binding to SLP-2 was mapped. High resolution respirometry, immunofluorescence analysis and live imaging were used to analyze mitochondrial function. RESULTS Using a proximity ligation assay, we quantitatively assessed the Parkin-SLP-2 interaction in skin fibroblasts and hiPSC-derived neurons. When PD-associated PRKN mutations were present, we detected a significantly reduced interaction between the two proteins. We found a preferential binding of SLP-2 to the N-terminal part of Parkin, with a highest affinity for the RING0 domain. Computational modeling based on the crystal structure of Parkin protein predicted several potential binding sites for SLP-2 within the Parkin RING0 domain. Amongst these, three binding sites were observed to overlap with natural PD-causing missense mutations, which we demonstrated interfere substantially with the binding of Parkin to SLP-2. Finally, delivery of the isolated Parkin RING0 domain and a Parkin mini-peptide, conjugated to cell-permeant and mitochondrial transporters, rescued compromised mitochondrial function in Parkin-deficient neuroblastoma cells and hiPSC-derived neurons with endogenous, disease causing PRKN mutations. CONCLUSIONS These findings place further emphasis on the importance of the protein-protein interaction between Parkin and SLP-2 for the maintenance of optimal mitochondrial function. The possibility of restoring an abolished binding to SLP-2 by delivering the Parkin RING0 domain or the Parkin mini-peptide involved in this specific protein-protein interaction into cells might represent a novel organelle-specific therapeutic approach for correcting mitochondrial dysfunction in Parkin-linked PD.
Collapse
Affiliation(s)
- Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Marianna Guida
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alexandros A Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Francisco S Domingues
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
30
|
Luo S, Wang D, Zhang Z. Post-translational modification and mitochondrial function in Parkinson's disease. Front Mol Neurosci 2024; 16:1329554. [PMID: 38273938 PMCID: PMC10808367 DOI: 10.3389/fnmol.2023.1329554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with currently no cure. Most PD cases are sporadic, and about 5-10% of PD cases present a monogenic inheritance pattern. Mutations in more than 20 genes are associated with genetic forms of PD. Mitochondrial dysfunction is considered a prominent player in PD pathogenesis. Post-translational modifications (PTMs) allow rapid switching of protein functions and therefore impact various cellular functions including those related to mitochondria. Among the PD-associated genes, Parkin, PINK1, and LRRK2 encode enzymes that directly involved in catalyzing PTM modifications of target proteins, while others like α-synuclein, FBXO7, HTRA2, VPS35, CHCHD2, and DJ-1, undergo substantial PTM modification, subsequently altering mitochondrial functions. Here, we summarize recent findings on major PTMs associated with PD-related proteins, as enzymes or substrates, that are shown to regulate important mitochondrial functions and discuss their involvement in PD pathogenesis. We will further highlight the significance of PTM-regulated mitochondrial functions in understanding PD etiology. Furthermore, we emphasize the potential for developing important biomarkers for PD through extensive research into PTMs.
Collapse
Affiliation(s)
- Shishi Luo
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Danling Wang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Yamashita SI, Kanki T. Mitophagy Responds to the Environmental Temperature and Regulates Mitochondrial Mass in Adipose Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:229-243. [PMID: 39289285 DOI: 10.1007/978-981-97-4584-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are at least two types of adipose tissues in the body, defined as brown adipose tissues (BATs) and white adipose tissues (WATs). These tissues comprise brown and white adipocytes, respectively. The adipocytes are commonly endowed with mitochondria, but they have diverse characteristics and roles. Brown adipocytes have abundant mitochondria that contribute to the β-oxidation of fatty acids to produce chemical energy and the production of heat via uncoupling of the mitochondrial membrane potential from ATP synthesis. Alternatively, white adipocytes have fewer mitochondria that contribute to the generation of free fatty acids via lipogenesis by providing key intermediates. Besides the described types of adipocytes, brown-like adipocytes, termed beige adipocytes, are developed in WAT depots during cold exposure. Beige adipocytes also contribute to thermogenesis. Notably, beige adipocytes may transform into white-like adipocytes after the withdrawal of cold exposure. This process is marked by the elimination of mitochondria through the activation of mitochondria autophagy (mitophagy). This review aims to describe the mitophagy that occurs during the beige-to-white transition and discuss recent insights into the molecular mechanisms of this transformation. Additionally, we describe the mitophagy monitoring strategy in adipose tissues using three independent reporter systems and discuss the availabilities and limitations of the method.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
Choong CJ, Mochizuki H. Involvement of Mitochondria in Parkinson's Disease. Int J Mol Sci 2023; 24:17027. [PMID: 38069350 PMCID: PMC10707101 DOI: 10.3390/ijms242317027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial dysregulation, such as mitochondrial complex I deficiency, increased oxidative stress, perturbation of mitochondrial dynamics and mitophagy, has long been implicated in the pathogenesis of PD. Initiating from the observation that mitochondrial toxins cause PD-like symptoms and mitochondrial DNA mutations are associated with increased risk of PD, many mutated genes linked to familial forms of PD, including PRKN, PINK1, DJ-1 and SNCA, have also been found to affect the mitochondrial features. Recent research has uncovered a much more complex involvement of mitochondria in PD. Disruption of mitochondrial quality control coupled with abnormal secretion of mitochondrial contents to dispose damaged organelles may play a role in the pathogenesis of PD. Furthermore, due to its bacterial ancestry, circulating mitochondrial DNAs can function as damage-associated molecular patterns eliciting inflammatory response. In this review, we summarize and discuss the connection between mitochondrial dysfunction and PD, highlighting the molecular triggers of the disease process, the intra- and extracellular roles of mitochondria in PD as well as the therapeutic potential of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan;
| |
Collapse
|
33
|
Kitada T, Ardah MT, Haque ME. History of Parkinson's Disease-Associated Gene, Parkin: Research over a Quarter Century in Quest of Finding the Physiological Substrate. Int J Mol Sci 2023; 24:16734. [PMID: 38069057 PMCID: PMC10706564 DOI: 10.3390/ijms242316734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Parkin, the gene responsible for hereditary Parkinson's disease (PD) called "Autosomal Recessive Juvenile Parkinsonism (AR-JP)" was discovered a quarter of a century ago. Owing to its huge gene structure and unique protein functions, parkin has become a subject of interest to those involved in PD research and researchers and clinicians in various fields and is being vigorously studied worldwide in relation to its nature and disease. The gene structure was registered under the gene name "parkin" in the GenBank in 1997. In 1998, deletion and point mutations in the parkin gene were reported, thereby demonstrating parkin is the causative gene for hereditary PD. Although 25 years have passed since the gene's discovery and many researchers have worked tirelessly to elucidate the function of the Parkin protein and the mechanism of its role against neuronal cell death and pathogenesis remain unknown, which raises a major question concerning the current leading hypothesis. In this review, we present the results of related research on the parkin gene in chronological order and discuss unresolved problems concerning its function and pathology as well as new trends in the research conducted to solve them. The relationship between parkin and tumorigenesis has also been addressed from the perspective of Parkin's redox molecule.
Collapse
Affiliation(s)
- Tohru Kitada
- Otawa-Kagaku, Parkinson Clinic and Research, Kamakura 247-0061, Japan;
| | - Mustafa T. Ardah
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - M. Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
34
|
Henrich MT, Oertel WH, Surmeier DJ, Geibl FF. Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential. Mol Neurodegener 2023; 18:83. [PMID: 37951933 PMCID: PMC10640762 DOI: 10.1186/s13024-023-00676-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson's disease (PD). However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs, and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determinants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxidative stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition, we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review past and current treatment strategies in an attempt to better understand why translational efforts thus far have been unsuccessful.
Collapse
Affiliation(s)
- Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany.
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
35
|
Heo JY, Park AH, Lee MJ, Ryu MJ, Kim YK, Jang YS, Kim SJ, Shin SY, Son HJ, Stein TD, Huh YH, Chung SK, Choi SY, Kim JM, Hwang O, Shong M, Hyeon SJ, Lee J, Ryu H, Kim D, Kweon GR. Crif1 deficiency in dopamine neurons triggers early-onset parkinsonism. Mol Psychiatry 2023; 28:4474-4484. [PMID: 37648779 DOI: 10.1038/s41380-023-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ah Hyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yun Seon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - So Yeon Shin
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Yang Hoon Huh
- Electron Microscopy Research center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Sookja K Chung
- Faculty of Medicine & Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Song Yi Choi
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minho Shong
- Graduate School of Medical Science and Education, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
36
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
37
|
Stauch KL, Totusek S, Trease AJ, Estrella LD, Emanuel K, Fangmeier A, Fox HS. Longitudinal in vivo metabolic labeling reveals tissue-specific mitochondrial proteome turnover rates and proteins selectively altered by parkin deficiency. Sci Rep 2023; 13:11414. [PMID: 37452120 PMCID: PMC10349111 DOI: 10.1038/s41598-023-38484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Our study utilizes a longitudinal isotopic metabolic labeling approach in vivo in combination with organelle fraction proteomics to address the role of parkin in mitochondrial protein turnover in mice. The use of metabolic labeling provides a method to quantitatively determine the global changes in protein half-lives whilst simultaneously assessing protein expression. Studying two diverse mitochondrial populations, we demonstrated the median half-life of brain striatal synaptic mitochondrial proteins is significantly greater than that of hepatic mitochondrial proteins (25.7 vs. 3.5 days). Furthermore, loss of parkin resulted in an overall, albeit modest, increase in both mitochondrial protein abundance and half-life. Pathway and functional analysis of our proteomics data identified both known and novel pathways affected by loss of parkin that are consistent with its role in both mitochondrial quality control and neurodegeneration. Our study therefore adds to a growing body of evidence suggesting dependence on parkin is low for basal mitophagy in vivo and provides a foundation for the investigation of novel parkin targets.
Collapse
Affiliation(s)
- K L Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - L D Estrella
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Fangmeier
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - H S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
38
|
Wang H, Chen R, Xiao L, Kumar M, Acevedo-Cintrón J, Siuda J, Koziorowski D, Wszolek ZK, Dawson VL, Dawson TM. Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PINK1-deficient Human Dopamine Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546087. [PMID: 37425943 PMCID: PMC10327008 DOI: 10.1101/2023.06.23.546087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutations and loss of activity in the protein kinase PINK1 play a role in the pathogenesis of Parkinson's disease (PD). PINK1 regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy), fission, fusion, transport, and biogenesis. Defects in mitophagy are though to play a predominant role in the loss of dopamine (DA) neurons in PD. Here we show that, although there are defects in mitophagy in human DA neurons lacking PINK1, mitochondrial deficits induced by the absence of PINK1 are primarily due to defects in mitochondrial biogenesis. Upregulation of PARIS and the subsequent down regulation of PGC-1a accounts for the mitochondrial biogenesis defects. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without impacting the deficits in mitophagy due to the absence of PINK1. These results highlight the importance mitochondrial biogenesis in the pathogenesis of PD due to inactivation or loss of PINK1 in human DA neurons.
Collapse
Affiliation(s)
- Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
| | - Liming Xiao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
| | - Jesús Acevedo-Cintrón
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | | | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Stevens MU, Croteau N, Eldeeb MA, Antico O, Zeng ZW, Toth R, Durcan TM, Springer W, Fon EA, Muqit MM, Trempe JF. Structure-based design and characterization of Parkin-activating mutations. Life Sci Alliance 2023; 6:e202201419. [PMID: 36941054 PMCID: PMC10027901 DOI: 10.26508/lsa.202201419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Autosomal recessive mutations in the Parkin gene cause Parkinson's disease. Parkin encodes an ubiquitin E3 ligase that functions together with the kinase PINK1 in a mitochondrial quality control pathway. Parkin exists in an inactive conformation mediated by autoinhibitory domain interfaces. Thus, Parkin has become a target for the development of therapeutics that activate its ligase activity. Yet, the extent to which different regions of Parkin can be targeted for activation remained unknown. Here, we have used a rational structure-based approach to design new activating mutations in both human and rat Parkin across interdomain interfaces. Out of 31 mutations tested, we identified 11 activating mutations that all cluster near the RING0:RING2 or REP:RING1 interfaces. The activity of these mutants correlates with reduced thermal stability. Furthermore, three mutations V393D, A401D, and W403A rescue a Parkin S65A mutant, defective in mitophagy, in cell-based studies. Overall our data extend previous analysis of Parkin activation mutants and suggests that small molecules that would mimic RING0:RING2 or REP:RING1 destabilisation offer therapeutic potential for Parkinson's disease patients harbouring select Parkin mutations.
Collapse
Affiliation(s)
- Michael U Stevens
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale, Montpellier, France
| | - Mohamed A Eldeeb
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zhi Wei Zeng
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas M Durcan
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Edward A Fon
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Miratul Mk Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale, Montpellier, France
| |
Collapse
|
40
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
41
|
Undamatla R, Fagunloye OG, Chen J, Edmunds LR, Murali A, Mills A, Xie B, Pangburn MM, Sipula I, Gibson G, St Croix C, Jurczak MJ. Reduced mitophagy is an early feature of NAFLD and liver-specific PARKIN knockout hastens the onset of steatosis, inflammation and fibrosis. Sci Rep 2023; 13:7575. [PMID: 37165006 PMCID: PMC10172344 DOI: 10.1038/s41598-023-34710-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies that includes steatosis, steatohepatitis (NASH) and fibrosis and is strongly associated with insulin resistance and type 2 diabetes. Changes in mitochondrial function are implicated in the pathogenesis of NAFLD, particularly in the transition from steatosis to NASH. Mitophagy is a mitochondrial quality control mechanism that allows for the selective removal of damaged mitochondria from the cell via the autophagy pathway. While past work demonstrated a negative association between liver fat content and rates of mitophagy, when changes in mitophagy occur during the pathogenesis of NAFLD and whether such changes contribute to the primary endpoints associated with the disease are currently poorly defined. We therefore undertook the studies described here to establish when alterations in mitophagy occur during the pathogenesis of NAFLD, as well as to determine the effects of genetic inhibition of mitophagy via conditional deletion of a key mitophagy regulator, PARKIN, on the development of steatosis, insulin resistance, inflammation and fibrosis. We find that loss of mitophagy occurs early in the pathogenesis of NAFLD and that loss of PARKIN accelerates the onset of key NAFLD disease features. These observations suggest that loss of mitochondrial quality control in response to nutritional stress may contribute to mitochondrial dysfunction and the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- R Undamatla
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - O G Fagunloye
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - J Chen
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - L R Edmunds
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - A Murali
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - A Mills
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - B Xie
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - M M Pangburn
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - I Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - G Gibson
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - C St Croix
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - M J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA.
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Cronin SJF, Yu W, Hale A, Licht-Mayer S, Crabtree MJ, Korecka JA, Tretiakov EO, Sealey-Cardona M, Somlyay M, Onji M, An M, Fox JD, Turnes BL, Gomez-Diaz C, da Luz Scheffer D, Cikes D, Nagy V, Weidinger A, Wolf A, Reither H, Chabloz A, Kavirayani A, Rao S, Andrews N, Latremoliere A, Costigan M, Douglas G, Freitas FC, Pifl C, Walz R, Konrat R, Mahad DJ, Koslov AV, Latini A, Isacson O, Harkany T, Hallett PJ, Bagby S, Woolf CJ, Channon KM, Je HS, Penninger JM. Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539795. [PMID: 37214873 PMCID: PMC10197517 DOI: 10.1101/2023.05.08.539795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ashley Hale
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Simon Licht-Mayer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Joanna A Korecka
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Mate Somlyay
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Jesse D Fox
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Bruna Lenfers Turnes
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carlos Gomez-Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD); Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Wolf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald Reither
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Antoine Chabloz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anoop Kavirayani
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nick Andrews
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Neurosurgery Department, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Michael Costigan
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roger Walz
- Center for Applied Neurocience, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Neurology Division, Internal Medicine Department, University Hospital of UFSC, Florianópolis, Brazil
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Andrey V Koslov
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Ole Isacson
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum 7D, Karolinska Institute, Solna, Sweden
| | - Penelope J Hallett
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Stefan Bagby
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
43
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
44
|
Chithra Y, Dey G, Ghose V, Chandramohan V, Gowthami N, Vasudev V, Srinivas Bharath MM. Mitochondrial Complex I Inhibition in Dopaminergic Neurons Causes Altered Protein Profile and Protein Oxidation: Implications for Parkinson's disease. Neurochem Res 2023:10.1007/s11064-023-03907-x. [PMID: 36964824 DOI: 10.1007/s11064-023-03907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson's disease (PD). Mitochondrial dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra. The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium (MPP+). Mass spectrometry (MS) revealed the involvement of biological processes including cell death pathways, structural changes and metabolic processes among others, most of which were common across all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP+. Altered metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further, 62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801 (N5), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage, mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Yogeshachar Chithra
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - Gourav Dey
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Vivek Ghose
- Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India
| | - Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India
| | - V Vasudev
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India.
| |
Collapse
|
45
|
Kim EY, Kim JE, Kim YE, Choi B, Sohn DH, Park SO, Chung YH, Kim Y, Robinson WH, Kim YG, Chang EJ. Dysfunction in parkin aggravates inflammatory bone erosion by reinforcing osteoclast activity. Cell Biosci 2023; 13:48. [PMID: 36882866 PMCID: PMC9993703 DOI: 10.1186/s13578-023-00973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Parkin dysfunction associated with the progression of parkinsonism contributes to a progressive systemic skeletal disease characterized by low bone mineral density. However, the role of parkin in bone remodeling has not yet been elucidated in detail. RESULT We observed that decreased parkin in monocytes is linked to osteoclastic bone-resorbing activity. siRNA-mediated knockdown of parkin significantly enhanced the bone-resorbing activity of osteoclasts (OCs) on dentin without any changes in osteoblast differentiation. Moreover, Parkin-deficient mice exhibited an osteoporotic phenotype with a lower bone volume accompanied by increased OC-mediated bone-resorbing capacity displaying increased acetylation of α-tubulin compared to wild-type (WT) mice. Notably, compared to WT mice, the Parkin-deficient mice displayed increased susceptibility to inflammatory arthritis, reflected by a higher arthritis score and a marked bone loss after arthritis induction using K/BxN serum transfer, but not ovariectomy-induced bone loss. Intriguingly, parkin colocalized with microtubules and parkin-depleted-osteoclast precursor cells (Parkin-/- OCPs) displayed augmented ERK-dependent acetylation of α-tubulin due to failure of interaction with histone deacetylase 6 (HDAC6), which was promoted by IL-1β signaling. The ectopic expression of parkin in Parkin-/- OCPs limited the increase in dentin resorption induced by IL-1β, accompanied by the reduced acetylation of α-tubulin and diminished cathepsin K activity. CONCLUSION These results indicate that a deficiency in the function of parkin caused by a decrease in parkin expression in OCPs under the inflammatory condition may enhance inflammatory bone erosion by altering microtubule dynamics to maintain OC activity.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Young-Eun Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Bongkun Choi
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, 50612, Korea
| | - Si-On Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Yeon-Ho Chung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Yongsub Kim
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yong-Gil Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea. .,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
46
|
Rybarski M, Mrohs D, Osenberg K, Hemmersbach M, Pfeffel K, Steinkamp J, Schmidt D, Violou K, Schäning R, Schmidtke K, Bader V, Andriske M, Bohne P, Mark MD, Winklhofer KF, Lübbert H, Zhu XR. Loss of parkin causes endoplasmic reticulum calcium dyshomeostasis by upregulation of reticulocalbin 1. Eur J Neurosci 2023; 57:739-761. [PMID: 36656174 DOI: 10.1111/ejn.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Increasing evidence suggests that astrocytes play an important role in the progression of Parkinson's disease (PD). Previous studies on our parkin knockout mouse demonstrated a higher accumulation of damaged mitochondria in astrocytes than in surrounding dopaminergic (DA) neurons, suggesting that Parkin plays a crucial role regarding their interaction during PD pathogenesis. In the current study, we examined primary mesencephalic astrocytes and neurons in a direct co-culture system and discovered that the parkin deletion causes an impaired differentiation of mesencephalic neurons. This effect required the parkin mutation in astrocytes as well as in neurons. In Valinomycin-treated parkin-deficient astrocytes, ubiquitination of Mitofusin 2 was abolished, whereas there was no significant degradation of the outer mitochondrial membrane protein Tom70. This result may explain the accumulation of damaged mitochondria in parkin-deficient astrocytes. We examined differential gene expression in the substantia nigra region of our parkin-KO mouse by RNA sequencing and identified an upregulation of the endoplasmic reticulum (ER) Ca2+ -binding protein reticulocalbin 1 (RCN1) expression, which was validated using qPCR. Immunostaining of the SN brain region revealed RCN1 expression mainly in astrocytes. Our subcellular fractionation of brain extract has shown that RCN1 is located in the ER and in mitochondria-associated membranes (MAM). Moreover, a loss of Parkin function reduced ATP-stimulated calcium-release in ER mesencephalic astrocytes that could be attenuated by siRNA-mediated RCN1 knockdown. Our results indicate that RCN1 plays an important role in ER-associated calcium dyshomeostasis caused by the loss of Parkin function in mesencephalic astrocytes, thereby highlighting the relevance of astrocyte function in PD pathomechanisms.
Collapse
Affiliation(s)
- Max Rybarski
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - David Mrohs
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Osenberg
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Biofrontera Pharmaceuticals AG, Leverkusen, Germany
| | - Maren Hemmersbach
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Pfeffel
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Joy Steinkamp
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - David Schmidt
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Karina Violou
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Ruth Schäning
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katja Schmidtke
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Andriske
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Pauline Bohne
- Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Melanie D Mark
- Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Biofrontera Pharmaceuticals AG, Leverkusen, Germany
| | - Xin-Ran Zhu
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Zaqout S, Mannaa A, Klein O, Krajewski A, Klose J, Luise-Becker L, Elsabagh A, Ferih K, Kraemer N, Ravindran E, Makridis K, Kaindl AM. Proteome changes in autosomal recessive primary microcephaly. Ann Hum Genet 2023; 87:50-62. [PMID: 36448252 DOI: 10.1111/ahg.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/AIM Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Atef Mannaa
- Higher Institute of Engineering and Technology, New Borg AlArab City, Alexandria, Egypt.,Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Angelika Krajewski
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Joachim Klose
- Charité-Universitätsmedizin, Institute of Human Genetics, Berlin, Germany
| | - Lena Luise-Becker
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ahmed Elsabagh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khaled Ferih
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nadine Kraemer
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ethiraj Ravindran
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Konstantin Makridis
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
48
|
Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P. Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:73. [PMID: 36810524 PMCID: PMC9944326 DOI: 10.1038/s41392-023-01353-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and its treatment remains a big challenge. The pathogenesis of PD may be related to environmental and genetic factors, and exposure to toxins and gene mutations may be the beginning of brain lesions. The identified mechanisms of PD include α-synuclein aggregation, oxidative stress, ferroptosis, mitochondrial dysfunction, neuroinflammation, and gut dysbiosis. The interactions among these molecular mechanisms complicate the pathogenesis of PD and pose great challenges to drug development. At the same time, the diagnosis and detection of PD are also one of obstacles to the treatment of PD due to its long latency and complex mechanism. Most conventional therapeutic interventions for PD possess limited effects and have serious side effects, heightening the need to develop novel treatments for this disease. In this review, we systematically summarized the pathogenesis, especially the molecular mechanisms of PD, the classical research models, clinical diagnostic criteria, and the reported drug therapy strategies, as well as the newly reported drug candidates in clinical trials. We also shed light on the components derived from medicinal plants that are newly identified for their effects in PD treatment, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for PD therapy.
Collapse
Affiliation(s)
- Xu Dong-Chen
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Chen Yong
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Xu Yang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - ShenTu Chen-Yu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Peng Li-Hua
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China.
| |
Collapse
|
49
|
Spagnoli C, Fusco C, Pisani F. Pediatric-Onset Epilepsy and Developmental Epileptic Encephalopathies Followed by Early-Onset Parkinsonism. Int J Mol Sci 2023; 24:ijms24043796. [PMID: 36835207 PMCID: PMC9965035 DOI: 10.3390/ijms24043796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic early-onset Parkinsonism is unique due to frequent co-occurrence of hyperkinetic movement disorder(s) (MD), or additional neurological of systemic findings, including epilepsy in up to 10-15% of cases. Based on both the classification of Parkinsonism in children proposed by Leuzzi and coworkers and the 2017 ILAE epilepsies classification, we performed a literature review in PubMed. A few discrete presentations can be identified: Parkinsonism as a late manifestation of complex neurodevelopmental disorders, characterized by developmental and epileptic encephalopathies (DE-EE), with multiple, refractory seizure types and severely abnormal EEG characteristics, with or without preceding hyperkinetic MD; Parkinsonism in the context of syndromic conditions with unspecific reduced seizure threshold in infancy and childhood; neurodegenerative conditions with brain iron accumulation, in which childhood DE-EE is followed by neurodegeneration; and finally, monogenic juvenile Parkinsonism, in which a subset of patients with intellectual disability or developmental delay (ID/DD) develop hypokinetic MD between 10 and 30 years of age, following unspecific, usually well-controlled, childhood epilepsy. This emerging group of genetic conditions leading to epilepsy or DE-EE in childhood followed by juvenile Parkinsonism highlights the need for careful long-term follow-up, especially in the context of ID/DD, in order to readily identify individuals at increased risk of later Parkinsonism.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-0522-296033
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
50
|
El Kodsi DN, Tokarew JM, Sengupta R, Lengacher NA, Chatterji A, Nguyen AP, Boston H, Jiang Q, Palmberg C, Pileggi C, Holterman CE, Shutinoski B, Li J, Fehr TK, LaVoie MJ, Ratan RR, Shaw GS, Takanashi M, Hattori N, Kennedy CR, Harper ME, Holmgren A, Tomlinson JJ, Schlossmacher MG. Parkin coregulates glutathione metabolism in adult mammalian brain. Acta Neuropathol Commun 2023; 11:19. [PMID: 36691076 PMCID: PMC9869535 DOI: 10.1186/s40478-022-01488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/24/2023] Open
Abstract
We recently discovered that the expression of PRKN, a young-onset Parkinson disease-linked gene, confers redox homeostasis. To further examine the protective effects of parkin in an oxidative stress model, we first combined the loss of prkn with Sod2 haploinsufficiency in mice. Although adult prkn-/-//Sod2± animals did not develop dopamine cell loss in the S. nigra, they had more reactive oxidative species and a higher concentration of carbonylated proteins in the brain; bi-genic mice also showed a trend for more nitrotyrosinated proteins. Because these redox changes were seen in the cytosol rather than mitochondria, we next explored the thiol network in the context of PRKN expression. We detected a parkin deficiency-associated increase in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in murine brain, PRKN-linked human cortex and several cell models. This shift resulted from enhanced recycling of GSSG back to GSH via upregulated glutathione reductase activity; it also correlated with altered activities of redox-sensitive enzymes in mitochondria isolated from mouse brain (e.g., aconitase-2; creatine kinase). Intriguingly, human parkin itself showed glutathione-recycling activity in vitro and in cells: For each GSSG dipeptide encountered, parkin regenerated one GSH molecule and was S-glutathionylated by the other (GSSG + P-SH [Formula: see text] GSH + P-S-SG), including at cysteines 59, 95 and 377. Moreover, parkin's S-glutathionylation was reversible by glutaredoxin activity. In summary, we found that PRKN gene expression contributes to the network of available thiols in the cell, including by parkin's participation in glutathione recycling, which involves a reversible, posttranslational modification at select cysteines. Further, parkin's impact on redox homeostasis in the cytosol can affect enzyme activities elsewhere, such as in mitochondria. We posit that antioxidant functions of parkin may explain many of its previously described, protective effects in vertebrates and invertebrates that are unrelated to E3 ligase activity.
Collapse
Affiliation(s)
- Daniel N El Kodsi
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jacqueline M Tokarew
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rajib Sengupta
- Department of Biochemistry, Karolinska Institute, Stockholm, Sweden
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Nathalie A Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ajanta Chatterji
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Angela P Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Snyder Institute, University of Calgary, Calgary, AB, Canada
| | - Heather Boston
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Qiubo Jiang
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Carina Palmberg
- Department of Biochemistry, Karolinska Institute, Stockholm, Sweden
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine, and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chet E Holterman
- Kidney Research Center, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Juan Li
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Travis K Fehr
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew J LaVoie
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rajiv R Ratan
- Burke Neurological Institute, Weill Cornell Medical School, White Plains, NY, USA
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine, and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Arne Holmgren
- Department of Biochemistry, Karolinska Institute, Stockholm, Sweden
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| |
Collapse
|