1
|
Fasteen TD, Hernandez MR, Policastro RA, Sterrett MC, Zenter GE, Tennessen JM. The Drosophila Estrogen-Related Receptor promotes triglyceride storage within the larval fat body. J Lipid Res 2025:100815. [PMID: 40288680 DOI: 10.1016/j.jlr.2025.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse Esrra and Drosophila melanogaster dERR inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as nearly all transcriptomic and metabolomic studies have relied on whole animal analyses. Here we address this shortcoming by using tissue-specific approaches to examine the role of dERR in regulating lipid metabolism within the Drosophila larval fat body. We find that dERR autonomously promotes TAG accumulation within fat body cells and regulates expression of genes involved in glycolysis, β-oxidation, and isoprenoid metabolism. As an extension of these results, we not only discovered that dERR mutant fat bodies exhibit decreased expression of known dHNF4 target genes but also found that dHNF4 activity is decreased in dERR mutants. Overall, our findings indicate that dERR plays a multifaceted role in the larval fat body to coordinate lipid storage with carbohydrate metabolism and developmental growth.
Collapse
Affiliation(s)
- Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zenter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Encarnacion J, Smith DM, Choi J, Scafidi J, Wolfgang MJ. Activating transcription factor 3 regulates hepatic apolipoprotein A4 upon metabolic stress. J Biol Chem 2025; 301:108468. [PMID: 40158856 PMCID: PMC12059330 DOI: 10.1016/j.jbc.2025.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The liver plays essential roles in maintaining systemic glucolipid homeostasis under ever changing metabolic stressors. Metabolic dysregulation can lead to both adaptive and maladaptive changes that impact systemic physiology. Here, we examined disparate genetic and environmental metabolic stressors and identified apolipoprotein A4 (ApoA4) as a circulating protein upregulated in liver-specific KOs for carnitine palmitoyltransferase 2 and pyruvate carboxylase. We found this upregulation to be exacerbated by fasting and high-fat or ketogenic diets. Unique among these models was a concomitant increase in activating transcription factor 3 (Atf3). Liver-specific overexpression of Atf3 resulted in increased ApoA4 expression in a sex-dependent manner. To understand the requirement of Atf3 to metabolic stress, we generated liver-specific Atf3, Cpt2 double KO mice. These experiments demonstrated the requirement for Atf3 in the induction of ApoA4 mRNA, ApoA4 protein, and serum triglycerides that were also sex-dependent. These experiments reveal the roles of hepatic Atf3 and ApoA4 in response to metabolic stress in vivo.
Collapse
Affiliation(s)
- Jasmine Encarnacion
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Danielle M Smith
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Choi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Scafidi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Michael V. Johnston Center for Developmental Neuroscience, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Xu J, Wakai M, Xiong K, Yang Y, Prabakaran A, Wu S, Ahrens D, Molina-Portela MDP, Ni M, Bai Y, Shavlakadze T, Glass DJ. The pro-inflammatory cytokine IL6 suppresses mitochondrial function via the gp130-JAK1/STAT1/3-HIF1α/ERRα axis. Cell Rep 2025; 44:115403. [PMID: 40056415 DOI: 10.1016/j.celrep.2025.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
Chronic inflammation and a decline in mitochondrial function are hallmarks of aging. Here, we show that the two mechanisms may be linked. We found that interleukin-6 (IL6) suppresses mitochondrial function in settings where PGC1 (both PGC1α and PGC1β) expression is low. This suppression is mediated by the JAK1/STAT1/3 axis, which activates HIF1α through non-canonical mechanisms involving upregulation of HIF1A and ERRα transcription, and subsequent stabilization of the HIF1A protein by ERRα. HIF1α, in turn, inhibits ERRα, which is a master regulator of mitochondrial biogenesis, thus contributing to the inhibition of mitochondrial function. When expressed at higher levels, PGC1 rescues ERRα to boost baseline mitochondrial respiration, including under IL6-treated conditions. Our study suggests that inhibition of the IL6 signaling axis could be a potential treatment for those inflammatory settings where mitochondrial function is compromised.
Collapse
Affiliation(s)
- Jianing Xu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - Matthew Wakai
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Kun Xiong
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yanfeng Yang
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Adithya Prabakaran
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Sophia Wu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Diana Ahrens
- Research Flow Cytometry Core, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | | | - Min Ni
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yu Bai
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Tea Shavlakadze
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - David J Glass
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| |
Collapse
|
4
|
Vemuri K, Iqbal J, Kumar S, Logerfo A, Ibrahim M, White E, Verzi MP. Diet-induced obesity mediated through estrogen-related receptor α is independent of intestinal function. J Biol Chem 2025; 301:108197. [PMID: 39826697 PMCID: PMC11849689 DOI: 10.1016/j.jbc.2025.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Obesity has escalated to epidemic proportions, driving significant advances in therapeutic strategies aimed at combating this condition. The estrogen-related receptor α (ESRRA), a transcription factor, plays pivotal roles in energy metabolism across multiple tissues. Research has consistently shown that the absence of Esrra results in notable fat malabsorption and increased resistance to diet-induced obesity. However, existing studies primarily focusing on germline Esrra mutants fail to account for tissue-specific roles of ESRRA in obesity. Notably, Esrra exhibits high expression in the gastrointestinal tract relative to other tissues. Given the gastrointestinal tract's central role in dietary lipid absorption and metabolism, it is critical to investigate how ESRRA specifically affects this tissue. This study aims to fill this gap by employing advanced mouse genetics and genomics techniques to dissect the impact of ESRRA within the intestine. We also aim to elucidate ESRRA's specific contributions to diet-induced obesity and refine our understanding of how this transcription factor influences metabolic outcomes in the context of dietary intake.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Jahangir Iqbal
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, New Jersey, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, New Jersey, USA.
| |
Collapse
|
5
|
Fasteen TD, Hernandez MR, Policastro RA, Sterrett MC, Zenter GE, Tennessen JM. The Drosophila Estrogen-Related Receptor promotes triglyceride storage within the larval fat body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612925. [PMID: 39314431 PMCID: PMC11419140 DOI: 10.1101/2024.09.13.612925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse Esrra and Drosophila melanogaster dERR inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as previous transcriptomic and metabolomic studies relied on whole animal analyses. Here we address this shortcoming by using tissue-specific approaches to examine the role of dERR in regulating lipid metabolism within the Drosophila larval fat body. We find that dERR autonomously promotes TAG accumulation within fat body cells and regulates expression of genes involved in glycolysis, β-oxidation, and mevalonate metabolism. As an extension of these results, we not only discovered that dERR mutant fat bodies exhibit decreased expression of known dHNF4 target genes but also found that dHNF4 activity is decreased in dERR mutants. Overall, our findings indicate that dERR plays a multifaceted role in the larval fat body to coordinate lipid storage with developmental growth and hint at a conserved mechanism by which ERR and HNF4 homologs coordinately regulate metabolic gene expression.
Collapse
Affiliation(s)
- Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zenter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Vemuri K, Iqbal J, Kumar S, Logerfo A, Verzi MP. Diet-induced obesity mediated through Estrogen-Related Receptor α is independent of intestinal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602978. [PMID: 39071436 PMCID: PMC11275757 DOI: 10.1101/2024.07.10.602978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Obesity has become an epidemic, prompting advances in therapies targeting this condition. Estrogen-related receptor α (ESRRA), a transcription factor, plays pivotal roles in energy metabolism across diverse tissues. Studies have demonstrated that loss of Esrra leads to fat malabsorption and resistance to diet-induced obesity. However, the reliance of these studies on germline Esrra mutants overlooks the tissue-specific implications of ESRRA in diet-induced obesity. Notably, Esrra exhibits high expression in the gastrointestinal (GI) tract relative to other tissues. Given the critical role of the GI tract in dietary lipid metabolism, this study employs mouse genetics and genomics approaches to dissect the specific impact of intestinal ESRRA along with investigating its role in diet-induced obesity.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jahangir Iqbal
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA
- NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Zimodro JM, Mucha M, Berthold HK, Gouni-Berthold I. Lipoprotein Metabolism, Dyslipidemia, and Lipid-Lowering Therapy in Women: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:913. [PMID: 39065763 PMCID: PMC11279947 DOI: 10.3390/ph17070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid-lowering therapy (LLT) is a cornerstone of atherosclerotic cardiovascular disease prevention. Although LLT might lead to different reductions in low-density lipoprotein cholesterol (LDL-C) levels in women and men, LLT diminishes cardiovascular risk equally effectively in both sexes. Despite similar LLT efficacy, the use of high-intensity statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors is lower in women compared to men. Women achieve the guideline-recommended LDL-C levels less often than men. Greater cholesterol burden is particularly prominent in women with familial hypercholesterolemia. In clinical practice, women and men with dyslipidemia present with different cardiovascular risk profiles and disease manifestations. The concentrations of LDL-C, lipoprotein(a), and other blood lipids differ between women and men over a lifetime. Dissimilar levels of LLT target molecules partially result from sex-specific hormonal and genetic determinants of lipoprotein metabolism. Hence, to evaluate a potential need for sex-specific LLT, this comprehensive review (i) describes the impact of sex on lipoprotein metabolism and lipid profile, (ii) highlights sex differences in cardiovascular risk among patients with dyslipidemia, (iii) presents recent, up-to-date clinical trial and real-world data on LLT efficacy and safety in women, and (iv) discusses the diverse medical needs of women and men with dyslipidemia and increased cardiovascular risk.
Collapse
Affiliation(s)
- Jakub Michal Zimodro
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magda Mucha
- Faculty of Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Heiner K. Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), 33611 Bielefeld, Germany
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
8
|
Sacco SA, McAtee Pereira AG, Trenary I, Smith KD, Betenbaugh MJ, Young JD. Overexpression of peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺) in Chinese hamster ovary cells increases oxidative metabolism and IgG productivity. Metab Eng 2023; 79:108-117. [PMID: 37473833 DOI: 10.1016/j.ymben.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Chinese hamster ovary (CHO) cells are used extensively to produce protein therapeutics, such as monoclonal antibodies (mAbs), in the biopharmaceutical industry. MAbs are large proteins that are energetically demanding to synthesize and secrete; therefore, high-producing CHO cell lines that are engineered for maximum metabolic efficiency are needed to meet increasing demands for mAb production. Previous studies have identified that high-producing cell lines possess a distinct metabolic phenotype when compared to low-producing cell lines. In particular, it was found that high mAb production is correlated to lactate consumption and elevated TCA cycle flux. We hypothesized that enhancing flux through the mitochondrial TCA cycle and oxidative phosphorylation would lead to increased mAb productivities and final titers. To test this hypothesis, we overexpressed peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺), a gene that promotes mitochondrial metabolism, in an IgG-producing parental CHO cell line. Stable cell pools overexpressing PGC-1⍺ exhibited increased oxygen consumption, indicating increased mitochondrial metabolism, as well as increased mAb specific productivity compared to the parental line. We also performed 13C metabolic flux analysis (MFA) to quantify how PGC-1⍺ overexpression alters intracellular metabolic fluxes, revealing not only increased TCA cycle flux, but global upregulation of cellular metabolic activity. This study demonstrates the potential of rationally engineering the metabolism of industrial cell lines to improve overall mAb productivity and to increase the abundance of high-producing clones in stable cell pools.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kevin D Smith
- Pharmaceutical Development and Manufacturing Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Yamamoto H, Tanaka Y, Sawada M, Kihara S. ERRα Attenuates Vascular Inflammation via Enhanced NFκB Degradation Pathway. Endocrinology 2023; 164:6936569. [PMID: 36534970 DOI: 10.1210/endocr/bqac212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
We have previously reported that β-aminoisobutyric acid (BAIBA), a muscle-derived exercise mimetic, had anti-inflammatory and reactive oxygen species (ROS) scavenging effects in vascular endothelial cells through the enhanced expression of peroxisome proliferator-activated receptor gamma coactivator-1β (PGC-1β). Although BAIBA also increased the expression of estrogen-related receptor α (ERRα), the roles of ERRα in vascular endothelial cells have yet to be fully elucidated. Here, we found that human aortic endothelial cells (HAECs) infected with ERRα-expressing adenovirus had significantly decreased mRNA levels of tumor necrosis factor α-stimulated proinflammatory molecules. However, ERRα overexpression had little effect on the mRNA levels of PGC-1β, peroxisome proliferator-activated receptors, and almost all ROS scavenging molecules, except for superoxide dismutase 2. ERRα expression significantly decreased NFκB reporter activities in a dose-dependent manner with unaltered IκBα phosphorylation levels but with a significant increase in the mRNA levels of PDZ and LIM domain protein 2 (PDLIM2) and copper metabolism gene MURR1 domain-containing protein (COMMD1), which enhance the ubiquitination and degradation of NFκB. Also, PDLIM2 and COMMD1 mRNA levels were upregulated in BAIBA-treated HAECs. Finally, we identified the ERRα-response element in the COMMD1 promoter region (-283 to -29 bp). These results indicated that ERRα exerted anti-inflammatory effects in vascular endothelial cells through COMMD1-mediated attenuation of NFκB activity, which could be an atheroprotective mechanism of physical exercise.
Collapse
Affiliation(s)
- Hiroyasu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | - Yuya Tanaka
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | - Miho Sawada
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Mao L, Peng L, Ren X, Chu Y, Nie T, Lin W, Libby A, Xu Y, Chang Y, Lei C, Loomes K, Wang N, Liu J, Levi M, Wu D, Hui X, Ding K. Discovery of JND003 as a New Selective Estrogen-Related Receptor α Agonist Alleviating Nonalcoholic Fatty Liver Disease and Insulin Resistance. ACS BIO & MED CHEM AU 2022; 2:282-296. [PMID: 35874496 PMCID: PMC9302452 DOI: 10.1021/acsbiomedchemau.1c00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver diseases and is causally linked to hepatic insulin resistance and reduced fatty acid oxidation. Therapeutic treatments targeting both hepatic insulin resistance and lipid oxidative metabolism are considered as feasible strategies to alleviate this disease. Emerging evidence suggests Estrogen-Related Receptor alpha (ERRα), the first orphan nuclear receptor identified, as a master regulator in energy homeostasis by controlling glucose and lipid metabolism. Small molecules improving the functions of ERRα may provide a new option for management of NAFLD. In the present study, by using liver-specific Errα knockout mouse (Errα-LKO), we showed that liver-specific deletion of ERRα exacerbated diet-evoked fatty liver, hepatic and systemic insulin resistance in mice. A potent and selective ERRα agonist JND003 (7) was also discovered. In vitro and in vivo investigation demonstrated that the compound enhanced the transactivation of ERRα downstream target genes, which was accompanied by improved insulin sensitivity and fatty liver symptoms. Furthermore, the therapeutic effects were completely abolished in Errα-LKO mice, indicative of its on-target efficacy. Our study thus suggests that hepatic ERRα is a viable target for NAFLD and that ERRα agonist may serve as an intriguing pharmacological option for management of metabolic diseases.
Collapse
Affiliation(s)
- Liufeng Mao
- Scientific
Research Center, The First Affiliated Hospital
of Guangdong Pharmaceutical University, Nonglinxi Road 19, Guangzhou, Guangdong 510080, P. R. China
| | - Lijie Peng
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaomei Ren
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yi Chu
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- China-New
Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Tao Nie
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- China-New
Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Wanhua Lin
- School
of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Andrew Libby
- Department
of Biochemistry and Molecular & Cellular Biology, Basic Science
353, Georgetown University, 3900 Reservoir Road, Washington, District of Columbia 20057, United States
| | - Yong Xu
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- China-New
Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Yu Chang
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Chong Lei
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Kerry Loomes
- School
of Biological Sciences and Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - Na Wang
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Life Sciences, University of Science
and Technology of China, Hefei 230026, China
| | - Jinsong Liu
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Life Sciences, University of Science
and Technology of China, Hefei 230026, China
| | - Moshe Levi
- Department
of Biochemistry and Molecular & Cellular Biology, Basic Science
353, Georgetown University, 3900 Reservoir Road, Washington, District of Columbia 20057, United States
| | - Donghai Wu
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- China-New
Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Xiaoyan Hui
- School of
Biomedical Sciences, The Chinese University
of Hong Kong, Kowloon, Hong Kong SAR 99077, China
| | - Ke Ding
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
- The First
Affiliated Hospital of Jinan University, Guangzhou 510630, China
- State Key Laboratory of Bioorganic Chemistry
and Natural Products,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| |
Collapse
|
11
|
Zhu Z, Ju J, Zhang M, Yang H, Wei W, Zhang Y. Bisphenol A disturbs hepatic apolipoprotein A1 expression and cholesterol metabolism in rare minnow Gobiocypris rarus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109239. [PMID: 34748970 DOI: 10.1016/j.cbpc.2021.109239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 11/03/2022]
Abstract
Bisphenol A (BPA) is a well-known plasticizer, which is widely distributed in the aquatic environment. Lots of studies showed that BPA could lead to lipid metabolism disorder in fish, but few studies studied the mechanism from the perspective of lipid transport. Apolipoprotein A1 (ApoA1) is the main component of high-density lipoprotein (HDL), and plays important roles in reverse cholesterol transport (RCT). In this study, we investigated the effect and molecular mechanism of BPA on ApoA1 and its effect on cholesterol in adult male rare minnow. Results showed that BPA could disturb hepatic ApoA1 expression through regulating Esrrg recruitment and DNA methylation in its promoter region, and ultimately up-regulated ApoA1 protein levels. The increased hepatic ApoA1 improved HDL-C levels, enhanced RCT, and disrupted cholesterol levels. The present study reveals the effect and mechanism of BPA on fish cholesterol metabolism from the perspective of cholesterol transport.
Collapse
Affiliation(s)
- Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Meng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Wu J, Shen G, Liu D, Xu H, Jiao M, Zhang Y, Lin Y, Zhao P. The Response of the Estrogen-Related Receptor to 20-Hydroxyecdysone in Bombyx mori: Insight Into the Function of Estrogen-Related Receptor in Insect 20-Hydroxyecdysone Signaling Pathway. Front Physiol 2022; 12:785637. [PMID: 35115955 PMCID: PMC8804299 DOI: 10.3389/fphys.2021.785637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Estrogen-related receptor (ERR) is an orphan nuclear receptor that was first discovered in animals, and play an important role in metabolism, development, and reproduction. Despite extensive research on the function of ERR, its transcriptional regulation mechanism remains unclear. In this study, we obtained the upstream region of Bombyx mori ERR (BmERR) and confirmed the promoter activity of this region. Interestingly, we found that 10 and 50 nM 20-hydroxyecdysone (20E) up-regulated the transcriptional activity of BmERR promoter. In addition, eight putative ecdysone response elements (EcREs) were predicted in the upstream sequence of BmERR. Based on their positions, the upstream sequence of BmERR was truncated into different fragments. Finally, an EcRE-like sequence (5′-AGTGCAGTAAACTGT-3′) was identified. Electrophoretic mobility shift assay (EMSA) and cell transfection experiments confirmed that this motif specifically binds to the complex formed between ecdysone receptor (BmEcR) and the ultraspiracle (BmUSP), a key complex in the 20E signaling pathway. Interference of BmERR or BmEcR mRNA in the embryonic cells of Bombyx mori significantly affected the expression of BmEcR and BmUSP. Overall, these results suggested that an EcRE element was identified from BmERR, and this will help understanding the detailed regulatory mechanism of ERR in insects.
Collapse
Affiliation(s)
- Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Die Liu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Haoran Xu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Mengyao Jiao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yungui Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- *Correspondence: Ying Lin,
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Ping Zhao,
| |
Collapse
|
13
|
Zhang Y, Zhu Z, Liu Q, Zhang M, Yang H, Wei W. Bisphenol A disrupts apolipoprotein E expression through estrogen-related receptor gamma and DNA methlylation in the liver of male rare minnow Gobiocypris rarus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113041. [PMID: 34863079 DOI: 10.1016/j.ecoenv.2021.113041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
An increasing number of studies show that bisphenol A (BPA) can cause lipid metabolism disorder. However, few studies focused on the effect of BPA on lipid transport. Apolipoprotein E (ApoE) plays important roles in triglyceride (TG) transportation. Our previous study found that ApoE was a sensitive gene in response to BPA exposure in male rare minnow. To investigate the effect and mechanism of BPA on hepatic ApoE, adult male rare minnow Gobiocypris rarus were exposed to environmentally relevant concentrations of BPA (15 μg/L) for 1, 3 and 5 weeks. Results showed that BPA inhibited ApoE expression at week 1 and 5, while induced its expression at week 3. A positive estrogen-related receptor gamma (Esrrg) response element was identified in the promoter region of ApoE. The change of the Esrrg recruitment was consistent with ApoE mRNA expression. Moreover, the methylation status of the CpG sites near and on the Esrrg binding sites changed opposite to the ApoE mRNA level, which may be the main cause for the change in Esrrg recruitment. The expression of ApoE protein was significantly enhanced following long-term BPA exposure. Consistently, the TG accumulation was significantly increased in the plasma. The present study demonstrates that BPA could affect rare minnow ApoE expression, which is probably one of the ways for BPA disturbing fish lipid metabolism.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiao Liu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710000, China
| | - Meng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Zhang Y, Zhang M, Zhu Z, Yang H, Wei W, Li B. Bisphenol A regulates apolipoprotein A1 expression through estrogen receptors and DNA methlylation and leads to cholesterol disorder in rare minnow testis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:105999. [PMID: 34678657 DOI: 10.1016/j.aquatox.2021.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a well-known plasticizer that widely distributed in the aquatic environment. BPA has many adverse effects on reproduction. However, few studies have investigated the mechanism of BPA affecting reproduction from the perspective of lipid metabolism. Apolipoprotein A1 (ApoA1) is the major component of high-density lipoprotein (HDL), and plays critical roles in reverse cholesterol transport (RCT). In this study, in order to investigate the effect and molecular mechanism of BPA on testicular ApoA1 and the role of ApoA1 in BPA induced abnormal spermatogenesis, adult male rare minnow Gobiocypris rarus were exposed to 15 μg/L of BPA for 1, 3 and 5 weeks. Results showed that BPA could significantly affect testicular ApoA1 mRNA and protein levels, testicular cholesterol levels, plasmatic sex hormone levels and the integrity of sperm head membrane. The main mechanism of BPA regulating ApoA1 expression is to alter Esr recruitment and CpG sites DNA methylation in ApoA1 promoter. The induced ApoA1 up-regulated high density lipoprotein cholesterol levels and enhanced RCT, and finally decreased the testicular free cholesterol levels. This is likely a key mechanism by which BPA induces sex hormone disorder and sperm head membrane damage. The present study reveals the mechanism by which BPA interferes with spermatogenesis from the perspective of cholesterol transport.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Meng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Tran A, Scholtes C, Songane M, Champagne C, Galarneau L, Levasseur MP, Fodil N, Dufour CR, Giguère V, Saleh M. Estrogen-related receptor alpha (ERRα) is a key regulator of intestinal homeostasis and protects against colitis. Sci Rep 2021; 11:15073. [PMID: 34302001 PMCID: PMC8302669 DOI: 10.1038/s41598-021-94499-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERRα in the intestine. We found that mice deficient in ERRα were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERRα lead to a reduction in microbiome α-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERRα mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERRα in the gut and extends our current knowledge of nuclear receptors implicated in IBD.
Collapse
Affiliation(s)
- Allan Tran
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Charlotte Scholtes
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Mario Songane
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Claudia Champagne
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Luc Galarneau
- Cedars Cancer Centre, Medical Physics, McGill University Health Centre, Montreal, H4A 3J1, Canada
| | - Marie-Pier Levasseur
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Maya Saleh
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada.
- Department of Life Sciences and Health, CNRS, ImmunoConcEpT, UMR 5164, The University of Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
16
|
Levy E, Beaulieu JF, Spahis S. From Congenital Disorders of Fat Malabsorption to Understanding Intra-Enterocyte Mechanisms Behind Chylomicron Assembly and Secretion. Front Physiol 2021; 12:629222. [PMID: 33584351 PMCID: PMC7873531 DOI: 10.3389/fphys.2021.629222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
During the last two decades, a large body of information on the events responsible for intestinal fat digestion and absorption has been accumulated. In particular, many groups have extensively focused on the absorptive phase in order to highlight the critical "players" and the main mechanisms orchestrating the assembly and secretion of chylomicrons (CM) as essential vehicles of alimentary lipids. The major aim of this article is to review understanding derived from basic science and clinical conditions associated with impaired packaging and export of CM. We have particularly insisted on inborn metabolic pathways in humans as well as on genetically modified animal models (recapitulating pathological features). The ultimate goal of this approach is that "experiments of nature" and in vivo model strategy collectively allow gaining novel mechanistic insight and filling the gap between the underlying genetic defect and the apparent clinical phenotype. Thus, uncovering the cause of disease contributes not only to understanding normal physiologic pathway, but also to capturing disorder onset, progression, treatment and prognosis.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Jean François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Schohraya Spahis
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Repression of the transcriptional activity of ERRα with sequence-specific DNA-binding polyamides. Med Chem Res 2020; 29:607-616. [PMID: 34552311 DOI: 10.1007/s00044-019-02493-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The orphan nuclear receptors estrogen-related receptors (ERRs) bind to the estrogen-related receptor response element (ERRE) to regulate transcriptional programs in cellular metabolism and cancer cell growth. In this study, we evaluated the potential for a pyrrole-imidazole polyamide to block ERRα binding to ERREs to inhibit gene expression. We demonstrated that the ERRE-targeted polyamide 1 blocked the binding of ERRα to the consensus ERRE and reduced the transcriptional activity of ERRα in cell culture. We further showed that inhibiting ERRα transcriptional activity with polyamide 1 led to reduced mitochondrial oxygen consumption, a primary biological effect regulated by ERRα. Finally, our data demonstrated that polyamide 1 is an inhibitor for cancer cell growth.
Collapse
|
18
|
Tripathi M, Yen PM, Singh BK. Estrogen-Related Receptor Alpha: An Under-Appreciated Potential Target for the Treatment of Metabolic Diseases. Int J Mol Sci 2020; 21:E1645. [PMID: 32121253 PMCID: PMC7084735 DOI: 10.3390/ijms21051645] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor (NR) that significantly influences cellular metabolism. ESRRA is predominantly expressed in metabolically-active tissues and regulates the transcription of metabolic genes, including those involved in mitochondrial turnover and autophagy. Although ESRRA activity is well-characterized in several types of cancer, recent reports suggest that it also has an important role in metabolic diseases. This minireview focuses on the regulation of cellular metabolism and function by ESRRA and its potential as a target for the treatment of metabolic disorders.
Collapse
Affiliation(s)
| | | | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore; (M.T.); (P.M.Y.)
| |
Collapse
|
19
|
Ghanbari F, Hebert-Losier A, Barry J, Poirier D, Giguere V, Mader S, Philip A. Isolation and functional characterization of a novel endogenous inverse agonist of estrogen related receptors (ERRs) from human pregnancy urine. J Steroid Biochem Mol Biol 2019; 191:105352. [PMID: 30954508 DOI: 10.1016/j.jsbmb.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/04/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022]
Abstract
Estrogen-receptor related receptors (ERRs) which consists of ERRα, ERRβ and ERRγ belong to the orphan nuclear receptor subfamily 3, group B (NR3B) subfamily, and are constitutively active. ERRs have been shown to actively modulate estrogenic responses, and to play an essential role in pregnancy, and are implicated in breast cancer progression. Despite intensive efforts, no endogenous ligand other than the ubiquitous sterol, cholesterol which binds ERRα, has been identified for ERRs so far. The discovery of ligands that bind these orphan receptors will allow the manipulation of this pathway and may lead to novel strategies for the treatment of cancer and other diseases. We previously reported the identification of a novel endogenous estradienolone-like steroid (ED) that is strongly bound to sex hormone binding globulin, in pregnant women. Our recent results show that ED acts as an inverse agonist of ERRα and ERRγ by directly interacting with these receptors, and inhibiting their transcriptional activity. We also demonstrate that ED inhibits the growth of both estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cells in a dose dependent manner, while of displaying a little effect on normal epithelial breast cells. Furthermore, the anti-mitogenic effect of ED in breast cancer cells is ERRα-dependent. These data suggest that ED-ERR interaction may represent a novel physiologically relevant hormone response pathway in the human. The finding that ED inhibits both ER negative and ER positive breast cancer cell growth may have important implications in pathophysiology breast cancer.
Collapse
Affiliation(s)
- Faegheh Ghanbari
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Andrea Hebert-Losier
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Janelle Barry
- Department of Medicine, McGill University, Montreal, Canada
| | - Donald Poirier
- Department of Molecular Medicine, and Centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
| | | | - Sylvie Mader
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
20
|
Xia H, Dufour CR, Giguère V. ERRα as a Bridge Between Transcription and Function: Role in Liver Metabolism and Disease. Front Endocrinol (Lausanne) 2019; 10:206. [PMID: 31024446 PMCID: PMC6459935 DOI: 10.3389/fendo.2019.00206] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
As transcriptional factors, nuclear receptors (NRs) function as major regulators of gene expression. In particular, dysregulation of NR activity has been shown to significantly alter metabolic homeostasis in various contexts leading to metabolic disorders and cancers. The orphan estrogen-related receptor (ERR) subfamily of NRs, comprised of ERRα, ERRβ, and ERRγ, for which a natural ligand has yet to be identified, are known as central regulators of energy metabolism. If AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) can be viewed as sensors of the metabolic needs of a cell and responding acutely via post-translational control of proteins, then the ERRs can be regarded as downstream effectors of metabolism via transcriptional regulation of genes for a long-term and sustained adaptive response. In this review, we will focus on recent findings centered on the transcriptional roles played by ERRα in hepatocytes. Modulation of ERRα activity in both in vitro and in vivo models via genetic or pharmacological manipulation coupled with chromatin-immunoprecipitation (ChIP)-on-chip and ChIP-sequencing (ChIP-seq) studies have been fundamental in delineating the direct roles of ERRα in the control of hepatic gene expression. These studies have identified crucial roles for ERRα in lipid and carbohydrate metabolism as well as in mitochondrial function under both physiological and pathological conditions. The regulation of ERRα expression and activity via ligand-independent modes of action including coregulator binding, post-translational modifications (PTMs) and control of protein stability will be discussed in the context that may serve as valuable tools to modulate ERRα function as new therapeutic avenues for the treatment of hepatic metabolic dysfunction and related diseases.
Collapse
Affiliation(s)
- Hui Xia
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Medicine and Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
21
|
Zhou S, Xia H, Xu H, Tang Q, Nie Y, Gong QY, Bi F. ERRα suppression enhances the cytotoxicity of the MEK inhibitor trametinib against colon cancer cells. J Exp Clin Cancer Res 2018; 37:218. [PMID: 30185207 PMCID: PMC6125878 DOI: 10.1186/s13046-018-0862-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND ERRα, a constitutive transcription factor that regulates energy metabolism, plays an important role in the progression of various tumours. However, its role in cell survival and proliferation and its implication in targeted therapy in colon cancer remains elusive. METHODS The expression of ERRα in colon cancer tissues and cell lines was detected by using western blotting and immunohistochemistry. A wound healing assay and a transwell assay were performed to examine the migration and invasion of the colon cancer cells. A cell viability assay, clonogenic assay, western blot assay and the dual-luciferase reporter assay were employed to study the interaction between trametinib (inhibitor of MEK) and EGF treatment. Flow cytometry, western blotting, quantitative reverse-transcription polymerase chain reaction and xenograft studies were used to identify whether the combination of trametinib and simvastatin had a synergistic effect. RESULTS ERRα positively regulated the cell proliferation, migration and invasion of colon cancer cells, and the suppression of ERRα completely reduced the EGF treatment-induced proliferation of colon cancer cells. Further investigation showed that trametinib partially restrained the up-regulation of ERRα induced by the EGF treatment, and ERRα inhibition increased the sensitivity of colon cancer cells to trametinib. At last, we combined trametinib with simvastatin, a common clinically used drug with a new reported function of transcriptional activity inhibition of ERRα, and found that this combination produced a synergistic effect in inhibiting the proliferation and survival of colon cancer cells in vitro as well as in vivo. CONCLUSIONS The present data indicated that ERRα acted as an oncogene in colon cancer cells, and the combined targeting of ERRα and MEK might be a promising therapeutic strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Hongwei Xia
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Qiulin Tang
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digest Diseases, Fourth Military Medical University, Xi’an, Shanxi Province China
| | - Qi yong Gong
- Department of Radiology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology/Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| |
Collapse
|
22
|
B'chir W, Dufour CR, Ouellet C, Yan M, Tam IS, Andrzejewski S, Xia H, Nabata K, St-Pierre J, Giguère V. Divergent Role of Estrogen-Related Receptor α in Lipid- and Fasting-Induced Hepatic Steatosis in Mice. Endocrinology 2018; 159:2153-2164. [PMID: 29635284 DOI: 10.1210/en.2018-00115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/28/2018] [Indexed: 01/23/2023]
Abstract
Given the increasing prevalence of obesity and the metabolic syndrome, identification of intrinsic molecular programs responsible for ensuring fuel homeostasis and preventing metabolic disease is needed. We investigated whether the orphan nuclear receptor estrogen-related receptor α (ERRα), a major regulator of energy metabolism, plays a role in lipid homeostasis and the development of nonalcoholic fatty liver disease (NAFLD) in response to chronic high-fat diet (HFD) consumption and long-term fasting. Systemic ablation of ERRα in mice demonstrated clear beneficial effects for loss of ERRα function in protection from HFD-provoked body weight gain manifested not only from a reduction in white adipose tissue stores but also from an impediment in intrahepatic lipid accumulation. The prevention of HFD-induced NAFLD in ERRα-null mice was underscored by transcriptional repression of de novo lipogenesis, which was upregulated in wild-type mice, a known contributing factor to lipid-stimulated hepatic steatosis. Surprisingly, given these findings, ERRα deficiency had no significant impact on the degree of fasting-induced NAFLD, involving the mobilization of adipocyte triglyceride (TG) stores into the liver. However, the presence of ERRα was essential for acute refeeding-mediated reversal of fasting-induced hepatic TG accretion, underpinned by impaired downregulation of adipose TG lipolysis and reduced hepatic mitochondrial oxidative activity. Taken together, the regulation of lipid handling by ERRα depended on the nutritional state, suggesting that negative modulation of ERRα activity could be envisaged to prevent lipid-induced NAFLD, whereas inducing its activity would be useful to treat and reverse the instilled disease.
Collapse
Affiliation(s)
- Wafa B'chir
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| | - Catherine R Dufour
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| | - Carlo Ouellet
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| | - Ming Yan
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| | - Ingrid S Tam
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| | - Sylvia Andrzejewski
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Hui Xia
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Kylie Nabata
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Julie St-Pierre
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Department of Medicine, McGill University, Montréal, Quebec, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
23
|
Patch RJ, Huang H, Patel S, Cheung W, Xu G, Zhao BP, Beauchamp DA, Rentzeperis D, Geisler JG, Askari HB, Liu J, Kasturi J, Towers M, Gaul MD, Player MR. Indazole-based ligands for estrogen-related receptor α as potential anti-diabetic agents. Eur J Med Chem 2017; 138:830-853. [PMID: 28735214 DOI: 10.1016/j.ejmech.2017.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 06/23/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that has been functionally implicated in the regulation of energy homeostasis. Herein is described the development of indazole-based N-alkylthiazolidenediones, which function in biochemical assays as selective inverse agonists against this receptor. Series optimization provided several potent analogues that inhibited the recruitment of a co-activator peptide fragment in vitro (IC50s < 50 nM) and reduced fasted circulating insulin and triglyceride levels in a sub-chronic pre-diabetic rat model when administered orally (10 mg/kg). A multi-parametric optimization strategy led to the identification of 50 as an advanced lead, which was more extensively evaluated in additional diabetic models. Chronic oral administration of 50 in two murine models of obesity and insulin resistance improved glucose control and reduced circulating triglycerides with efficacies similar to that of rosiglitazone. Importantly, these effects were attained without the concomitant weight gain that is typically observed with the latter agent. Thus, these studies provide additional support for the development of such molecules for the potential treatment of metabolic diseases.
Collapse
Affiliation(s)
- Raymond J Patch
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Hui Huang
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Sharmila Patel
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Wing Cheung
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Guozhang Xu
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Bao-Ping Zhao
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Derek A Beauchamp
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Dionisios Rentzeperis
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - John G Geisler
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Hossein B Askari
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Jianying Liu
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Jyotsna Kasturi
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Meghan Towers
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Micheal D Gaul
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Mark R Player
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA.
| |
Collapse
|
24
|
Berman AY, Manna S, Schwartz NS, Katz YE, Sun Y, Behrmann CA, Yu JJ, Plas DR, Alayev A, Holz MK. ERRα regulates the growth of triple-negative breast cancer cells via S6K1-dependent mechanism. Signal Transduct Target Ther 2017; 2. [PMID: 28890840 PMCID: PMC5589335 DOI: 10.1038/sigtrans.2017.35] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Estrogen-related receptor alpha (ERRα) is an orphan nuclear factor that is a master regulator of cellular energy metabolism. ERRα is overexpressed in a variety of tumors, including ovarian, prostate, colorectal, cervical and breast, and is associated with a more aggressive tumor and a worse outcome. In breast cancer, specifically, high ERRα expression is associated with an increased rate of recurrence and a poor prognosis. Because of the common functions of ERRα and the mTORC1/S6K1 signaling pathway in regulation of cellular metabolism and breast cancer pathogenesis, we focused on investigating the biochemical relationship between ERRα and S6K1. We found that ERRα negatively regulates S6K1 expression by directly binding to its promoter. Downregulation of ERRα expression sensitized ERα-negative breast cancer cells to mTORC1/S6K1 inhibitors. Therefore, our results show that combinatorial inhibition of ERRα and mTORC1/S6K1 may have clinical utility in treatment of triple-negative breast cancer, and warrants further investigation.
Collapse
Affiliation(s)
- Adi Y Berman
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Subrata Manna
- Department of Biology, Yeshiva University, New York, NY, USA
| | | | - Yardena E Katz
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Yang Sun
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Jane J Yu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David R Plas
- Department of Cancer Biology; University of Cincinnati, Cincinnati, OH, USA
| | - Anya Alayev
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Marina K Holz
- Department of Biology, Yeshiva University, New York, NY, USA.,Department of Molecular Pharmacology and the Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
25
|
Jin HS, Kim TS, Jo EK. Emerging roles of orphan nuclear receptors in regulation of innate immunity. Arch Pharm Res 2016; 39:1491-1502. [PMID: 27699647 DOI: 10.1007/s12272-016-0841-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023]
Abstract
Innate immunity constitutes the first line of defense against pathogenic and dangerous insults. However, it is a double-edged sword, as it functions in both clearance of infection and inflammatory damage. It is therefore important that innate immune responses are tightly controlled to prevent harmful excessive inflammation. Nuclear receptors (NRs) are a family of transcription factors that play critical roles in various physiological responses. Orphan NRs are a subset of NRs for which the ligands and functions are unclear. Accumulating evidence has revealed that orphan NRs play essential roles in innate immune responses to prevent pathogenic inflammatory responses and to enhance antimicrobial host defenses. In this review, we describe current knowledge on the roles and mechanisms of orphan NRs in the regulation of innate immune responses. Discovery of new functions of orphan NRs would facilitate development of novel preventive and therapeutic strategies against human inflammatory diseases.
Collapse
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea
| | - Tae Sung Kim
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea.
| |
Collapse
|
26
|
Yan M, Audet-Walsh É, Manteghi S, Dufour CR, Walker B, Baba M, St-Pierre J, Giguère V, Pause A. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα. Genes Dev 2016; 30:1034-46. [PMID: 27151976 PMCID: PMC4863735 DOI: 10.1101/gad.281410.116] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/13/2016] [Indexed: 12/25/2022]
Abstract
The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat.
Collapse
Affiliation(s)
- Ming Yan
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Étienne Audet-Walsh
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Sanaz Manteghi
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | | | - Benjamin Walker
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Masaya Baba
- International Research Centre for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Julie St-Pierre
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada; International Research Centre for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan; Department of Oncology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Arnim Pause
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada
| |
Collapse
|
27
|
Qin W, Li X, Xie L, Li S, Liu J, Jia L, Dong X, Ren X, Xiao J, Yang C, Zhou Y, Chen Z. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Res 2016; 44:6423-33. [PMID: 27131369 PMCID: PMC5291254 DOI: 10.1093/nar/gkw341] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be critical biomarkers or therapeutic targets for human diseases. However, only a small number of lncRNAs were screened and characterized. Here, we identified 15 lncRNAs, which are associated with fatty liver disease. Among them, APOA4-AS is shown to be a concordant regulator of Apolipoprotein A-IV (APOA4) expression. APOA4-AS has a similar expression pattern with APOA4 gene. The expressions of APOA4-AS and APOA4 are both abnormally elevated in the liver of ob/ob mice and patients with fatty liver disease. Knockdown of APOA4-AS reduces APOA4 expression both in vitro and in vivo and leads to decreased levels of plasma triglyceride and total cholesterol in ob/ob mice. Mechanistically, APOA4-AS directly interacts with mRNA stabilizing protein HuR and stabilizes APOA4 mRNA. Deletion of HuR dramatically reduces both APOA4-AS and APOA4 transcripts. This study uncovers an anti-sense lncRNA (APOA4-AS), which is co-expressed with APOA4, and concordantly and specifically regulates APOA4 expression both in vitro and in vivo with the involvement of HuR.
Collapse
Affiliation(s)
- Wangshu Qin
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinzhi Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Liwei Xie
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai 200065, China
| | - Sha Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jianan Liu
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Linna Jia
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Dong
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaomeng Ren
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Junjie Xiao
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Changqing Yang
- China and Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zheng Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
28
|
Gui Y, Chu N, Qiu X, Tang W, Gober HJ, Li D, Wang L. 17-β-estradiol up-regulates apolipoprotein genes expression during osteoblast differentiation in vitro. Biosci Trends 2016; 10:140-51. [PMID: 27074899 DOI: 10.5582/bst.2016.01007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Apolipoproteins are of great physiological importance and are associated with different diseases. Many independent studies of patterns of gene expression during osteoblast differentiation have been described, and some apolipoproteins have been induced during this process. 17-β-estradiol (E2) may enhance osteoblast physiological function. However, no studies have indicated whether E2 can modulate the expression of apolipoproteins during osteoblast differentiation in vitro. The aim of the current study was to observe the regulation of apolipoprotein mRNA expression by E2 during this process. Primary osteoblasts were collected from the calvaria of newborn mice and were subjected to osteoblast differentiation in vitro with serial concentrations of E2. RNA was isolated on days 0, 5, and 25 of differentiation. Real-time PCR was performed to analyze the levels of apolipoprotein mRNA. Results showed that during osteoblast differentiation all of the apolipoprotein genes were up-regulated by E2 in a dose-dependent manner. Moreover, only ApoE was strongly induced during the mineralization of cultured osteoblasts. This result suggests that ApoE might be involved in osteoblast differentiation. The hypothesis is that E2 promotes osteoblast differentiation by up-regulating ApoE gene expression, though further study is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Yuyan Gui
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang D, Wang Y, Liu FQ, Yuan ZY, Mu JJ. High Salt Diet Affects Renal Sodium Excretion and ERRα Expression. Int J Mol Sci 2016; 17:480. [PMID: 27043552 PMCID: PMC4848936 DOI: 10.3390/ijms17040480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Kidneys regulate the balance of water and sodium and therefore are related to blood pressure. It is unclear whether estrogen-related receptor α (ERRα), an orphan nuclear receptor and transcription factor highly expressed in kidneys, affects the reabsorption of water and sodium. The aim of this study was to determine whether changes in the expressions of ERRα, Na⁺/K⁺-ATPase and epithelial sodium channel (ENaC) proteins affected the reabsorption of water and sodium in kidneys of Dahl salt-sensitive (DS) rats. SS.13BN rats, 98% homologous to the DS rats, were used as a normotensive control group. The 24 h urinary sodium excretion of the DS and SS.13BN rats increased after the 6-week high salt diet intervention, while sodium excretion was increased in DS rats with daidzein (agonist of ERRα) treatment. ERRα expression was decreased, while β- and γ-ENaC mRNA expressions were increased upon high sodium diet treatment in the DS rats. In the chromatin immunoprecipitation (CHIP) assay, positive PCR signals were obtained in samples treated with anti-ERRα antibody. The transcriptional activity of ERRα was decreased upon high salt diet intervention. ERRα reduced the expressions of β- and γ-ENaC by binding to the ENaC promoter, thereby increased Na+ reabsorption. Therefore, ERRα might be one of the factors causing salt-sensitive hypertension.
Collapse
Affiliation(s)
- Dan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Fu-Qiang Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
30
|
Tam IS, Giguère V. There and back again: The journey of the estrogen-related receptors in the cancer realm. J Steroid Biochem Mol Biol 2016; 157:13-9. [PMID: 26151739 DOI: 10.1016/j.jsbmb.2015.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
The identification of two genes encoding polypeptides with structural features common with the estrogen receptor more than a quarter century ago, referred to as the estrogen-related receptors (ERRs), subsequently led to the discovery of several previously unrecognized hormone responsive systems through the application of reverse endocrinology. Paradoxically, the natural ligand(s) associated with members of the ERR subfamily remains to be identified. While initial studies on the mode of action and physiological functions of the ERRs focused on interaction with estrogen signalling in breast cancer, subsequent work showed that the ERRs are ubiquitous master regulators of cellular energy metabolism. This review aims to demonstrate that the ERRs occupy a central node at the interface of cancer and metabolism, and that modulation of their activity may represent a worthwhile strategy to induce metabolic vulnerability in tumors of various origins and thus achieve a more comprehensive response to current therapies.
Collapse
Affiliation(s)
- Ingrid S Tam
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, QC H3A 1A3, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, QC H3A 1A3, Canada; Departments of Biochemistry, Medicine and Oncology, McGill University, Montréal, PQ H3G 1Y6, Canada.
| |
Collapse
|
31
|
Li H, Liu Z, Gou Y, Yu H, Siminelakis S, Wang S, Kong D, Zhou Y, Liu Z, Ding Y, Yao D. Estradiol mediates vasculoprotection via ERRα-dependent regulation of lipid and ROS metabolism in the endothelium. J Mol Cell Cardiol 2015; 87:92-101. [PMID: 26271712 DOI: 10.1016/j.yjmcc.2015.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/01/2015] [Accepted: 08/07/2015] [Indexed: 12/24/2022]
Abstract
The estrogen-mediated vasculoprotective effect has been widely reported in many animal studies, although the clinical trials are controversial and the detailed mechanisms remain unclear. In this study, we focused on the molecular mechanism and consequence of 17β-estradiol (E2)-induced ERRα (estrogen-related receptor alpha) expression in endothelium and its potential beneficial effects on vascular function. The human aorta endothelial cells were used to identify the detailed molecular mechanism and consequences for E2-induced ERRα expression through estrogen receptors (ER), where ERα responses E2-induced ERRα activation, and ERβ responses basal ERRα expression. E2-induced ERRα expression increases fatty acid uptake/oxidation with increased mitochondrial replication, ATP generation and attenuated reactive oxygen species (ROS) formation. We have obtained further in vivo proof from high-fat diet mice that the lentivirus-carried endothelium-specific delivery of ERRα expression on the vascular wall normalizes E2 deficiency-induced increased plasma lipids with ameliorated vascular damage. ERRα knockdown worsens the problem, and the E2 could only partly restore this effect. This is the first time we report the detailed mechanism with direct evidence that E2-induced ERRα expression modulates the fatty acid metabolism and reduces the circulating lipids through endothelium. We conclude that E2-induced ERRα expression in endothelium plays an important role for the E2-induced vasculoprotective effect.
Collapse
Affiliation(s)
- Huawen Li
- School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Zhaoyu Liu
- Internal Medicine of Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulan Gou
- Department of Neurology, Wuhan No.1 Hospital, 215 Zhongshan Rd. Wuhan 430022, China
| | - Haibing Yu
- School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Stavros Siminelakis
- Department of Cardiac Surgery, School of Health Science, University of Ioannina, Greece
| | - Shixuan Wang
- Department of Obstetrics and Gynecology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danli Kong
- School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Yikai Zhou
- Institute of Environmental Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengxiang Liu
- Internal Medicine of Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanling Ding
- School of Public Health, Guangdong Medical College, Dongguan 523808, China.
| | - Dachun Yao
- School of Public Health, Guangdong Medical College, Dongguan 523808, China.
| |
Collapse
|
32
|
Constitutive activities of estrogen-related receptors: Transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1912-27. [PMID: 26115970 DOI: 10.1016/j.bbadis.2015.06.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors. The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metabolism. Although less is known about ERRβ, recent studies have revealed the importance of this isoform in the maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential to many biological processes. The development of several ERR knockout and overexpression models and the application of advanced functional genomics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways. Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles of ERR isoforms related to their metabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have revealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstream metabolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic relevance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, insulin resistance and heart failure in humans.
Collapse
|
33
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
34
|
Audet-walsh É, Giguére V. The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol Sin 2015; 36:51-61. [PMID: 25500872 PMCID: PMC4571319 DOI: 10.1038/aps.2014.121] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/10/2014] [Indexed: 01/13/2023]
Abstract
The identification of the estrogen-related receptors (ERRs) as the first orphan nuclear receptors ignited a new era in molecular endocrinology, which led to the discovery of new ligand-dependent response systems. Although ERR subfamily members have yet to be associated with a natural ligand, the characterization of these orphan receptors has demonstrated that they occupy a strategic node in the transcriptional control of cellular energy metabolism. In particular, ERRs are required for the response to various environmental challenges that require high energy levels by the organism. As central regulators of energy homeostasis, ERRs may also be implicated in the etiology of metabolic disorders, such as type 2 diabetes and metabolic syndrome. Here, we review the recent evidence that further highlights the role of ERRs in metabolic control, particularly in liver and skeletal muscle, and their likely involvement in metabolic diseases. Consequently, we also explore the promises and pitfalls of ERRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Étienne Audet-walsh
- Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Vincent Giguére
- Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada
- Departments of Biochemistry, Medicine and Oncology, McGill University, Montréal, Québec, H3G 1Y6, Canada
| |
Collapse
|
35
|
Connor EE, Baldwin RL, Walker MP, Ellis SE, Li C, Kahl S, Chung H, Li RW. Transcriptional regulators transforming growth factor-β1 and estrogen-related receptor-α identified as putative mediators of calf rumen epithelial tissue development and function during weaning. J Dairy Sci 2014; 97:4193-207. [PMID: 24767884 DOI: 10.3168/jds.2013-7471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2023]
Abstract
Molecular mechanisms regulating rumen epithelial development remain largely unknown. To identify gene networks and regulatory factors controlling rumen development, Holstein bull calves (n=18) were fed milk replacer only (MRO) until 42 d of age. Three calves each were euthanized at 14 and 42 d of age for tissue collection to represent preweaning, and the remaining calves were provided diets of either milk replacer + orchard grass hay (MH; n=6) to initiate weaning without development of rumen papillae, or milk replacer + calf starter (MG; n=6) to initiate weaning and development of rumen papillae. At 56 and 70 d of age, 3 calves from the MH and MG groups were euthanized for collection of rumen epithelium. Total RNA and protein were extracted for microarray analysis and to validate detected changes in selected protein expression, respectively. As expected, calves fed MRO had no rumen papillae and development of papillae was greater in MG versus MH calves. Differentially expressed genes between the MRO diet at d 42 (preweaning) versus the MG or MH diets at d 56 (during weaning) were identified using permutation analysis of differential expression. Expression of 345 and 519 transcripts was uniquely responsive to MG and MH feeding, respectively. Ingenuity Pathway Analysis (Qiagen, Redwood City, CA) indicated that the top-ranked biological function affected by the MG diet was the cell cycle, and TFGB1, FBOX01, and PPARA were identified as key transcriptional regulators of genes responsive to the MG diet and associated with development of rumen papillae. Increased expressions of TGFB1 mRNA and protein in response to the MG diet were confirmed by subsequent analyses. The top-ranking biological function affected by the MH diet was energy production. Receptors for IGF-1 and insulin, ESRRA, and PPARD were identified by ingenuity pathway analysis as transcriptional regulators of genes responsive to the MH diet. Further analysis of TGFB1 and ESRRA mRNA expression in rumen epithelium obtained from a separate ontogenic study of Holstein calves (n=26) euthanized every 7d from birth to 42 d of age showed increases in transcript expression with advancing age, supporting their roles in mediating rumen epithelial development and function during weaning. Additional evaluation of gene expression in the rumen epithelium of adult cows ruminally infused with butyrate also suggested that observed changes in ESRRA mRNA expression in developing calf rumen may be mediated by increased butyrate concentration. Our results identify TGFB1 and ESRRA as likely transcriptional regulators of rumen epithelial development and energy metabolism, respectively, and provide targets for modulation of rumen development and function in the growing calf.
Collapse
Affiliation(s)
- E E Connor
- USDA, Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD 20705.
| | - R L Baldwin
- USDA, Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD 20705
| | - M P Walker
- USDA, Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD 20705
| | - S E Ellis
- Animal and Veterinary Science Department, Clemson University, Clemson, SC 29634
| | - C Li
- USDA, Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD 20705
| | - S Kahl
- USDA, Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD 20705
| | - H Chung
- Animal Genomics and Bioinformatics Division, National Livestock Institute, Suwon 441-701, Korea
| | - R W Li
- USDA, Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD 20705
| |
Collapse
|
36
|
Xu X, Park JG, So JS, Hur KY, Lee AH. Transcriptional regulation of apolipoprotein A-IV by the transcription factor CREBH. J Lipid Res 2014; 55:850-9. [PMID: 24598141 DOI: 10.1194/jlr.m045104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
cAMP responsive element-binding protein H (CREBH) is an endoplasmic reticulum (ER) anchored transcription factor that is highly expressed in the liver and small intestine and implicated in nutrient metabolism and proinflammatory response. ApoA-IV is a glycoprotein secreted primarily by the intestine and to a lesser degree by the liver. ApoA-IV expression is suppressed in CREBH-deficient mice and strongly induced by enforced expression of the constitutively active form of CREBH, indicating that CREBH is the major transcription factor regulating Apoa4 gene expression. Here, we show that CREBH directly controls Apoa4 expression through two tandem CREBH binding sites (5'-CCACGTTG-3') located on the promoter, which are conserved between human and mouse. Chromatin immunoprecipitation and electrophoretic mobility-shift assays demonstrated specific association of CREBH with the CREBH binding sites. We also demonstrated that a substantial amount of CREBH protein was basally processed to the active nuclear form in normal mouse liver, which was further increased in steatosis induced by high-fat diet or fasting, increasing apoA-IV expression. However, we failed to find significant activation of CREBH in response to ER stress, arguing against the critical role of CREBH in ER stress response.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | | | | | | | | |
Collapse
|
37
|
Majidzadeh-A K, Gharechahi J. Plasma proteomics analysis of tamoxifen resistance in breast cancer. Med Oncol 2013; 30:753. [DOI: 10.1007/s12032-013-0753-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023]
|
38
|
Bernatchez G, Giroux V, Lassalle T, Carpentier AC, Rivard N, Carrier JC. ERRα metabolic nuclear receptor controls growth of colon cancer cells. Carcinogenesis 2013; 34:2253-61. [PMID: 23720198 DOI: 10.1093/carcin/bgt180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The estrogen-related receptor alpha (ERRα) is a nuclear receptor that acts primarily as a regulator of metabolic processes, particularly in tissues subjected to high-energy demand. In addition to its control of energy metabolism and mitochondrial biogenesis, ERRα has recently been associated with cancer progression. Notably, increased expression of ERRα has been shown in several cancerous tissues, including breast, ovary and colon. However, additional studies are required to gain insight into the action of ERRα in cancer biology, particularly in non-endocrine-related cancers. Therefore, using a short hairpin RNA-mediated approach, we investigated whether ERRα is required for the rapid growth of colon cancer cells and to maintain their neoplastic metabolic state. Results show that silencing ERRα significantly impaired colon cancer cell proliferation and colony formation in vitro as well as their in vivo tumorigenic capacity. A pronounced delay in G1-to-S cell cycle phase transition was observed in ERRα-depleted cells in association with reduced cyclin-dependent kinase 2 activity and hyperphosphorylated state of the retinoblastoma protein along with disturbed expression of several cell cycle regulators, including p15 and p27. Interestingly, ERRα-depleted HCT116 cells also displayed significant reduction in expression of a large set of key genes to glycolysis, tricarboxylic acid cycle and lipid synthesis. Furthermore, using (14)C isotope tracer analysis, ERRα depletion in colon cancer cells resulted in reduced glucose incorporation and glucose-mediated lipogenesis in these cells. These findings suggest that ERRα coordinates colon cancer cell proliferation and tumorigenic capacity with energy metabolism. Thus, ERRα could represent a promising therapeutic target in colon cancer.
Collapse
|
39
|
Boudjadi S, Bernatchez G, Beaulieu JF, Carrier JC. Control of the human osteopontin promoter by ERRα in colorectal cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:266-76. [PMID: 23680656 DOI: 10.1016/j.ajpath.2013.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/24/2013] [Accepted: 03/07/2013] [Indexed: 12/19/2022]
Abstract
Colorectal cancer is the second leading cause of death from cancer. Osteopontin (OPN) is a component of tumor extracellular matrix identified as a key marker of cancer progression. The estrogen-related receptor α (ERRα) has been implicated in endocrine-related cancer development and progression, possibly through modulation of cellular energy metabolism. Previous reports that ERRα regulates OPN expression in bone prompted us to investigate whether ERRα controls OPN expression in human colorectal cancer. Using a tissue microarray containing 83 tumor-normal tissue pairs of colorectal cancer samples, we found that tumor epithelial cells displayed higher staining for ERRα than normal mucosa, in correlation with elevated OPN expression. In addition, knocking down endogenous ERRα led to reduced OPN expression in HT29 colon cancer cells. Promoter analysis, inhibition of ERRα activity, and expression and mutation of potential ERRα response elements in the proximal promoter of human OPN showed that ERRα and its obligate co-activator, peroxisome proliferator-activated receptor γ co-activator-1 α, positively control human OPN promoter activity. Furthermore, chromatin immunoprecipitation experiments confirmed in vivo occupancy of the OPN promoter by ERRα in HT29 cells, suggesting that OPN is a direct target of ERRα in colorectal cancer. These findings suggest an additional mechanism by which ERRα participates in the development and progression of colorectal cancer, further supporting the relevance of targeting ERRα with antagonists as anticancer agents.
Collapse
Affiliation(s)
- Salah Boudjadi
- Department of Medicine, Faculty of Medicine and Sciences of Health, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
40
|
Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, Chung S, Ko SH, Shin SJ, Choi BS, Kim HW, Kim YS, Lee JH, Chang YS, Park CW. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia 2013; 56:204-17. [PMID: 23090186 DOI: 10.1007/s00125-012-2747-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/03/2012] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Many of the effects of resveratrol are consistent with the activation of AMP-activated protein kinase (AMPK), silent information regulator T1 (SIRT1) and peroxisome proliferator-activated receptor (PPAR)γ co-activator 1α (PGC-1α), which play key roles in the regulation of lipid and glucose homeostasis, and in the control of oxidative stress. We investigated whether resveratrol has protective effects on the kidney in type 2 diabetes. METHODS Four groups of male C57BLKS/J db/m and db/db mice were used in this study. Resveratrol was administered via gavage to diabetic and non-diabetic mice, starting at 8 weeks of age, for 12 weeks. RESULTS The db/db mice treated with resveratrol had decreased albuminuria. Resveratrol ameliorated glomerular matrix expansion and inflammation. Resveratrol also lowered the NEFA and triacylglycerol content of the kidney, and this action was related to increases in the phosphorylation of AMPK and the activation of SIRT1-PGC-1α signalling and of the key downstream effectors, the PPARα-oestrogen-related receptor (ERR)-1α-sterol regulatory element-binding protein 1 (SREBP1). Furthermore, resveratrol decreased the activity of phosphatidylinositol-3 kinase (PI3K)-Akt phosphorylation and class O forkhead box (FOXO)3a phosphorylation, which resulted in a decrease in B cell leukaemia/lymphoma 2 (BCL-2)-associated X protein (BAX) and increases in BCL-2, superoxide dismutase (SOD)1 and SOD2 production. Consequently, resveratrol reversed the increase in renal apoptotic cells and oxidative stress, as reflected by renal 8-hydroxy-deoxyguanosine (8-OH-dG), urinary 8-OH-dG and isoprostane concentrations. Resveratrol prevented high-glucose-induced oxidative stress and apoptosis in cultured mesangial cells through the phosphorylation of AMPK and activation of SIRT1-PGC-1α signalling and the downstream effectors, PPARα-ERR-1α-SREBP1. CONCLUSIONS/INTERPRETATION The results suggest that resveratrol prevents diabetic nephropathy in db/db mice by the phosphorylation of AMPK and activation of SIRT1-PGC-1α signalling, which appear to prevent lipotoxicity-related apoptosis and oxidative stress in the kidney.
Collapse
Affiliation(s)
- M Y Kim
- Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Ku, Seoul 137-040, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Deblois G, Giguère V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer 2013; 13:27-36. [PMID: 23192231 DOI: 10.1038/nrc3396] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oestrogen-related receptors (ERRs) are orphan nuclear receptors that were initially investigated in breast cancer because of their structural relationship to oestrogen receptors. Recent data have shown that the ERRs control vast gene networks that are involved in glycolysis, glutaminolysis, oxidative phosphorylation, nutrient sensing and biosynthesis pathways. In the context of breast cancer, the ERRs affect cellular metabolism in a manner that promotes a Warburg-like phenotype. The ERRs also modulate breast cancer cell metabolism, growth and proliferation through the regulation of key oncoproteins. We discuss the value but also the implications of the complexity of targeting the ERRs for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Geneviève Deblois
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | |
Collapse
|
42
|
Lim JH, Kim EN, Kim MY, Chung S, Shin SJ, Kim HW, Yang CW, Kim YS, Chang YS, Park CW, Choi BS. Age-associated molecular changes in the kidney in aged mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:171383. [PMID: 23326623 PMCID: PMC3544311 DOI: 10.1155/2012/171383] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aging is a multifactorial process characterized by a progressive decline in physiological function. Decreased kidney function is associated with cardiovascular disease and mortality. Therefore, increasing our insight into kidney aging by understanding the anatomic, physiologic, and pathologic changes of aging in the kidney is important to prevent disastrous outcomes in elderly people. METHODS Male two-, 12-, and 24-month-old C57/BL6 mice were used in this study. We measured histological change, oxidative stress, and aging-related protein expression in the kidneys. RESULTS Twenty-four-month-old mice displayed increased albuminuria. Creatinine clearance decreased with aging, although this was not statistically significant. There were increases in mesangial volume and tubulointerstitial fibrosis in 24-month-old mice. There were also increases in F4/80 expression and in apoptosis detected by TUNEL assay. Urine isoprostane excretion increased with aging and SOD1 and SOD2 were decreased in 24-month-old mice. Oxidative stress may be mediated by a decrease in Sirt1, PGC-1α, ERR-1α, and PPARα expression. Klotho expression also decreased. CONCLUSIONS Our results demonstrate that Sirt1 was decreased with aging and may relate to changed target molecules including PGC-1α/ERR-1α signaling and PPARα. Klotho can also induce oxidative stress. Pharmacologically targeting these signaling molecules may reduce the pathologic changes of aging in the kidney.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul 137-040, Republic of Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul 137-040, Republic of Korea
| |
Collapse
|
43
|
Chen Z, Gropler MC, Mitra MS, Finck BN. Complex interplay between the lipin 1 and the hepatocyte nuclear factor 4 α (HNF4α) pathways to regulate liver lipid metabolism. PLoS One 2012; 7:e51320. [PMID: 23236470 PMCID: PMC3517414 DOI: 10.1371/journal.pone.0051320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023] Open
Abstract
Lipin 1 is a bifunctional protein that serves as a metabolic enzyme in the triglyceride synthesis pathway and regulates gene expression through direct protein-protein interactions with DNA-bound transcription factors in liver. Herein, we demonstrate that lipin 1 is a target gene of the hepatocyte nuclear factor 4α (HNF4α), which induces lipin 1 gene expression in cooperation with peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) through a nuclear receptor response element in the first intron of the lipin 1 gene. The results of a series of gain-of-function and loss-of-function studies demonstrate that lipin 1 coactivates HNF4α to activate the expression of a variety of genes encoding enzymes involved in fatty acid catabolism. In contrast, lipin 1 reduces the ability of HNF4α to induce the expression of genes encoding apoproteins A4 and C3. Although the ability of lipin to diminish HNF4α activity on these promoters required a direct physical interaction between the two proteins, lipin 1 did not occupy the promoters of the repressed genes and enhances the intrinsic activity of HNF4α in a promoter-independent context. Thus, the induction of lipin 1 by HNF4α may serve as a mechanism to affect promoter selection to direct HNF4α to promoters of genes encoding fatty acid oxidation enzymes.
Collapse
Affiliation(s)
- Zhouji Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew C. Gropler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mayurranjan S. Mitra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bianco S, Sailland J, Vanacker JM. ERRs and cancers: effects on metabolism and on proliferation and migration capacities. J Steroid Biochem Mol Biol 2012; 130:180-5. [PMID: 21414406 DOI: 10.1016/j.jsbmb.2011.03.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/20/2011] [Accepted: 03/07/2011] [Indexed: 01/06/2023]
Abstract
ERRs are orphan members of the nuclear receptor superfamily which, at least for ERRα and ERRγ display important roles in the control of various metabolic processes. On other hand, correlations have been found between the expression of ERRα and γ and diverse parameters of tumor progression in human cancers. Whereas it is tempting to speculate that ERR receptors act in tumors through the regulation of metabolism, recent data have suggested that they also may directly regulate tumor proliferation and progression independently of their effects on metabolism. The two aspects of tumoral functions of ERR receptors are the purpose of the present review.
Collapse
Affiliation(s)
- Stéphanie Bianco
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | | | | |
Collapse
|
45
|
Auld KL, Berasi SP, Liu Y, Cain M, Zhang Y, Huard C, Fukayama S, Zhang J, Choe S, Zhong W, Bhat BM, Bhat RA, Brown EL, Martinez RV. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling. J Mol Endocrinol 2012; 48:177-91. [PMID: 22333182 DOI: 10.1530/jme-11-0140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.
Collapse
Affiliation(s)
- Kathryn L Auld
- Pfizer Global Biotherapeutics Technologies, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van Boxel OS, ter Linde JJM, Oors J, Otto B, Feinle-Bisset C, Smout AJPM, Siersema PD. Duodenal lipid-induced symptom generation in gastroesophageal reflux disease: role of apolipoprotein A-IV and cholecystokinin. Neurogastroenterol Motil 2012; 24:350-e168. [PMID: 22300015 DOI: 10.1111/j.1365-2982.2012.01880.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Duodenal lipid intensifies the perception of esophageal acid perfusion. Recently, we showed that genes implicated in lipid absorption were upregulated in the duodenum of fasting gastro-esophageal reflux disease (GERD) patients. This suggests that chylomicron production and secretion may be enhanced and, consequently, the release of apolipoprotein A-IV (apoA-IV), a chylomicron-derived signaling protein. ApoA-IV may stimulate release of cholecystokinin (CCK), an activator of vagal afferents. This study evaluated putative involvement of abnormal apoA-IV and CCK responses to lipid in GERD. METHODS Ten GERD patients and 10 healthy volunteers (HV) underwent duodenal perfusion with Intralipid 20%, 2 kcal min(-1) , for 60 min. Symptoms were scored, blood samples collected every 15 min during lipid perfusion and 15 min after discontinuation when duodenal biopsies were taken. Plasma and mucosal concentrations of apoA-IV and CCK and transcript levels of 21 genes implicated in lipid absorption, differentially expressed under fasting conditions, were quantified. KEY RESULTS Heartburn (P = 0.003), abdominal discomfort (P = 0.037) and nausea (P = 0.008) only increased significantly during lipid infusion in GERD patients. Following lipid infusion mean mucosal apoA-IV concentration was lower in GERD patients compared with HV (P = 0.023), whereas plasma concentration tended to be elevated (P = 0.068). Mean mucosal CCK concentration was also lower in GERD patients (P = 0.009). Two genes, HIBADH and JTB, were upregulated in GERD patients (P = 0.008 and P = 0.038, respectively). CONCLUSIONS & INFERENCES Our results suggest excessive duodenal lipid-induced release of apoA-IV and CCK in GERD. We postulate that the resulting heightened activation of duodenal vagal afferents may underlie central sensitization, thereby increasing the perception of reflux events.
Collapse
Affiliation(s)
- O S van Boxel
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ranhotra HS. The estrogen-related receptors: orphans orchestrating myriad functions. J Recept Signal Transduct Res 2012; 32:47-56. [PMID: 22268851 DOI: 10.3109/10799893.2011.647350] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Coordinated and tight regulation of gene expression in metazoans is essential for cellular homeostasis and functions. Tissue- and cell-specific regulatory factors are indispensable and a wide variety of them exist to regulate genes. A family of transcriptional factors was identified in the past two decades through gene cloning studies and was informally referred as "orphan receptors", as appropriate endogenous ligands for such receptors were unknown. One of the subclasses of such receptors is known as the estrogen-related receptors (ERRs), which include three isoforms, namely ERRα, ERRβ and ERRγ. Over the past one decade, unprecedented knowledge about the ERRs biology has been generated, indicating their vital roles in various metabolic and physiological activities in animals. The ERRs cellular action is largely attributed to its interaction with a wide variety of other nuclear receptors, including some orphan nuclear receptors, and thereby can modulate diverse array of genes involved in metabolism and animal physiology. Studies using genome-wide location analyses, microarray and functional genomics, including ERR-specific null mice have revealed a number of pathways controlled by the ERRs. In this context, new and recent information on the biological functions of ERRs are being reviewed.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, Orphan Nuclear Receptors Laboratory, St. Edmund's College, Shillong, India.
| |
Collapse
|
48
|
Weinberg RB, Gallagher JW, Fabritius MA, Shelness GS. ApoA-IV modulates the secretory trafficking of apoB and the size of triglyceride-rich lipoproteins. J Lipid Res 2012; 53:736-43. [PMID: 22257482 DOI: 10.1194/jlr.m019992] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ∼40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ∼55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.
Collapse
Affiliation(s)
- Richard B Weinberg
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
49
|
Peng L, Gao X, Duan L, Ren X, Wu D, Ding K. Identification of Pyrido[1,2-α]pyrimidine-4-ones as New Molecules Improving the Transcriptional Functions of Estrogen-Related Receptor α. J Med Chem 2011; 54:7729-33. [DOI: 10.1021/jm200976s] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lijie Peng
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Graduate School of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xuefei Gao
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Lei Duan
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaomei Ren
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Zhongshan Medical School, Sun Yat-Sen University, No. 74 2nd Zhongshan Road, Guangzhou 510080 China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Ke Ding
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| |
Collapse
|
50
|
Murray J, Huss JM. Estrogen-related receptor α regulates skeletal myocyte differentiation via modulation of the ERK MAP kinase pathway. Am J Physiol Cell Physiol 2011; 301:C630-45. [PMID: 21562305 PMCID: PMC3174569 DOI: 10.1152/ajpcell.00033.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/06/2011] [Indexed: 02/06/2023]
Abstract
Myocyte differentiation involves complex interactions between signal transduction pathways and transcription factors. The estrogen-related receptors (ERRs) regulate energy substrate uptake, mitochondrial respiration, and biogenesis and may target structural gene programs in striated muscle. However, ERRα's role in regulating myocyte differentiation is not known. ERRα and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) are coordinately upregulated with metabolic and skeletal muscle-specific genes early in myogenesis. We analyzed effects of ERRα overexpression and loss of function in myogenic models. In C2C12 myocytes ERRα overexpression accelerated differentiation, whereas XCT790 treatment delayed myogenesis and resulted in myotubes with fewer mitochondria and disorganized sarcomeres. ERRα-/- primary myocytes showed delayed myogenesis, resulting in structurally immature myotubes with reduced sarcomeric assembly and mitochondrial function. However, sarcomeric and metabolic gene expression was unaffected or upregulated in ERRα-/- cells. Instead, ERRα-/- myocytes exhibited aberrant ERK activation early in myogenesis, consistent with delayed myotube formation. XCT790 treatment also increased ERK phosphorylation in C2C12, whereas ERRα overexpression decreased early ERK activation, consistent with the opposing effects of these treatments on differentiation. The transient induction of MAP kinase phosphatase-1 (MKP-1), which mediates ERK dephosphorylation at the onset of myogenesis, was lost in ERRα-/- myocytes and in XCT790-treated C2C12. The ERRα-PGC-1α complex activates the Dusp1 gene, which encodes MKP-1, and ERRα occupies the proximal 5' regulatory region during early differentiation in C2C12 myocytes. Finally, treatment of ERRα-/- myocytes with MEK inhibitors rescued normal ERK signaling and myogenesis. Collectively, these data demonstrate that ERRα is required for normal skeletal myocyte differentiation via modulation of MAP kinase signaling.
Collapse
MESH Headings
- Animals
- Butadienes/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Creatine Kinase, Mitochondrial Form/genetics
- Dual Specificity Phosphatase 1/genetics
- Dual Specificity Phosphatase 1/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Flavonoids/pharmacology
- Gene Expression/drug effects
- Gene Expression/genetics
- Kinetics
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Muscle Development/drug effects
- Muscle Development/physiology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/enzymology
- Myoblasts, Skeletal/metabolism
- Myogenin/genetics
- Myosin Heavy Chains/genetics
- Nitriles/pharmacology
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphorylation/drug effects
- Protein Binding/genetics
- Protein Serine-Threonine Kinases/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/deficiency
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Sarcomeres/pathology
- Thiazoles/pharmacology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Transduction, Genetic
- Troponin I/genetics
- Troponin I/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Jennifer Murray
- Division of Gene Regulation and Drug Discovery, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California, USA
| | | |
Collapse
|