1
|
Chiarella E. Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Cell Tissue Res 2024; 398:161-173. [PMID: 39436449 PMCID: PMC11614986 DOI: 10.1007/s00441-024-03926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Hematopoietic stem cells (HSCs) drive cellular turnover in the hematopoietic system by balancing self-renewal and differentiation. In the adult bone marrow (BM), these cells are regulated by a complex cellular microenvironment known as "niche," which involves dynamic interactions between diverse cellular and non-cellular elements. During blood cell maturation, lineage branching is guided by clusters of genes that interact or counteract each other, forming complex networks of lineage-specific transcription factors. Disruptions in these networks can lead to obstacles in differentiation, lineage reprogramming, and ultimately malignant transformation, including acute myeloid leukemia (AML). Zinc Finger Protein 521 (Znf521/Zfp521), a conserved transcription factor enriched in HSCs in both human and murine hematopoiesis, plays a pivotal role in regulating HSC self-renewal and differentiation. Its enforced expression preserves progenitor cell activity, while inhibition promotes differentiation toward the lymphoid and myeloid lineages. Transcriptomic analysis of human AML patient samples has revealed upregulation of ZNF521 in AMLs with the t(9;11) fusion gene MLL-AF9. In vitro studies have shown that ZNF521 collaborates with MLL-AF9 to enhance the growth of transformed leukemic cells, increase colony formation, and activate MLL target genes. Conversely, inhibition of ZNF521 using short-hairpin RNA (shRNA) results in decreased leukemia proliferation, reduced colony formation, and induction of cell cycle arrest in MLL-rearranged AML cell lines. In vivo experiments have demonstrated that mZFP521-deficient mice transduced with MLL-AF9 experience a delay in leukemia development. This review provides an overview of the regulatory network involving ZNF521, which plays a crucial role in controlling both HSC self-renewal and differentiation pathways. Furthermore, we examine the impact of ZNF521 on the leukemic phenotype and consider it a potential marker for MLL-AF9+ AML.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Wunderlich T, Deshpande C, Paasche L, Friedrich T, Diegmüller F, Haddad E, Kreienbaum C, Naseer H, Stebel S, Daus N, Leers J, Lan J, Trinh V, Vázquez O, Butter F, Bartkuhn M, Mackay J, Hake S. ZNF512B binds RBBP4 via a variant NuRD interaction motif and aggregates chromatin in a NuRD complex-independent manner. Nucleic Acids Res 2024; 52:12831-12849. [PMID: 39460621 PMCID: PMC11602157 DOI: 10.1093/nar/gkae926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The evolutionarily conserved histone variant H2A.Z plays a crucial role in various DNA-based processes, but the mechanisms underlying its activity are not completely understood. Recently, we identified the zinc finger (ZF) protein ZNF512B as a protein associated with H2A.Z, HMG20A and PWWP2A. Here, we report that high levels of ZNF512B expression lead to nuclear protein and chromatin aggregation foci that form in a manner that is dependent on the ZF domains of ZNF512B. Notably, we demonstrate ZNF512B binding to the nucleosome remodeling and deacetylase (NuRD) complex. We discover a conserved amino acid sequence within ZNF512B that resembles the NuRD-interaction motif (NIM) previously identified in FOG-1 and other transcriptional regulators. By solving the crystal structure of this motif bound to the NuRD component RBBP4 and by applying several biochemical and biophysical assays, we demonstrate that this internal NIM is both necessary and sufficient for robust and high-affinity NuRD binding. Transcriptome analyses and reporter assays identify ZNF512B as a repressor of gene expression that can act in both NuRD-dependent and -independent ways. Our study might have implications for diseases in which ZNF512B expression is deregulated, such as cancer and neurodegenerative diseases, and hints at the existence of more proteins as potential NuRD interactors.
Collapse
Affiliation(s)
- Tim Marius Wunderlich
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Chandrika Deshpande
- School of Life and Environmental Sciences, Butlin Ave, University of Sydney, Darlington, New South Wales 2006, Australia
| | - Lena W Paasche
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Felix Diegmüller
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Elias Haddad
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Carlotta Kreienbaum
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Haniya Naseer
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Sophie E Stebel
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Nadine Daus
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Jie Lan
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Van Tuan Trinh
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Joel P Mackay
- School of Life and Environmental Sciences, Butlin Ave, University of Sydney, Darlington, New South Wales 2006, Australia
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| |
Collapse
|
3
|
Broman MT, Nadadur RD, Perez-Cervantes C, Burnicka-Turek O, Lazarevic S, Gams A, Laforest B, Steimle JD, Iddir S, Wang Z, Smith L, Mazurek SR, Olivey HE, Zhou P, Gadek M, Shen KM, Khan Z, Theisen JW, Yang XH, Ikegami K, Efimov IR, Pu WT, Weber CR, McNally EM, Svensson EC, Moskowitz IP. A Genomic Link From Heart Failure to Atrial Fibrillation Risk: FOG2 Modulates a TBX5/GATA4-Dependent Atrial Gene Regulatory Network. Circulation 2024; 149:1205-1230. [PMID: 38189150 PMCID: PMC11152454 DOI: 10.1161/circulationaha.123.066804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.
Collapse
Affiliation(s)
- Michael T. Broman
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Rangarajan D. Nadadur
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Carlos Perez-Cervantes
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Ozanna Burnicka-Turek
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Sonja Lazarevic
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Anna Gams
- Department of Biomedical Engineering, George Washington University
| | - Brigitte Laforest
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Jeffrey D. Steimle
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Sabrina Iddir
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Zhezhen Wang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Linsin Smith
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Stefan R. Mazurek
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Harold E. Olivey
- Department of Biology, Indiana University Northwest, Gary, IN 46408
| | | | - Margaret Gadek
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Kaitlyn M. Shen
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Zoheb Khan
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Joshua W.M. Theisen
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Xinan H. Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Igor R. Efimov
- Department of Biomedical Engineering, George Washington University
| | - William T. Pu
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, 02115
| | | | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, 303 E. Superior, SQ5-516, Chicago, IL 60611
| | | | - Ivan P. Moskowitz
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
4
|
Lenz J, Brehm A. Conserved mechanisms of NuRD function in hematopoetic gene expression. Enzymes 2023; 53:7-32. [PMID: 37748838 DOI: 10.1016/bs.enz.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The Nucleosome Remodeling and Deacetylating Complex (NuRD) is ubiquitously expressed in all metazoans. It combines nucleosome remodeling and histone deacetylating activities to generate inaccessible chromatin structures and to repress gene transcription. NuRD is involved in the generation and maintenance of a wide variety of lineage-specific gene expression programs during differentiation and in differentiated cells. A close cooperation with a large number of lineage-specific transcription factors is key to allow NuRD to function in many distinct differentiation contexts. The molecular nature of this interplay between transcription factors and NuRD is complex and not well understood. This review uses hematopoiesis as a paradigm to highlight recent advances in our understanding of how transcription factors and NuRD cooperate at the molecular level during differentiation. A comparison of vertebrate and invertebrate systems serves to identify the conserved and fundamental concepts guiding functional interactions between transcription factors and NuRD. We also discuss how the transcription factor-NuRD axis constitutes a potential therapeutic target for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Jonathan Lenz
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University Marburg, Marburg, Germany
| | - Alexander Brehm
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
5
|
VEGF-A-related genetic variants protect against Alzheimer's disease. Aging (Albany NY) 2022; 14:2524-2536. [PMID: 35347084 PMCID: PMC9004571 DOI: 10.18632/aging.203984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
The Apolipoprotein E (APOE) genotype has been shown to be the strongest genetic risk factor for Alzheimer’s disease (AD). Moreover, both the lipolysis-stimulated lipoprotein receptor (LSR) and the vascular endothelial growth factor A (VEGF-A) are involved in the development of AD. The aim of the study was to develop a prediction model for AD including single nucleotide polymorphisms (SNP) of APOE, LSR and VEGF-A-related variants. The population consisted of 323 individuals (143 AD cases and 180 controls). Genotyping was performed for: the APOE common polymorphism (rs429358 and rs7412), two LSR variants (rs34259399 and rs916147) and 10 VEGF-A-related SNPs (rs6921438, rs7043199, rs6993770, rs2375981, rs34528081, rs4782371, rs2639990, rs10761741, rs114694170, rs1740073), previously identified as genetic determinants of VEGF-A levels in GWAS studies. The prediction model included direct and epistatic interaction effects, age and sex and was developed using the elastic net machine learning methodology. An optimal model including the direct effect of the APOE e4 allele, age and eight epistatic interactions between APOE and LSR, APOE and VEGF-A-related variants was developed with an accuracy of 72%. Two epistatic interactions (rs7043199*rs6993770 and rs2375981*rs34528081) were the strongest protective factors against AD together with the absence of ε4 APOE allele. Based on pathway analysis, the involved variants and related genes are implicated in neurological diseases. In conclusion, this study demonstrated links between APOE, LSR and VEGF-A-related variants and the development of AD and proposed a model of nine genetic variants which appears to strongly influence the risk for AD.
Collapse
|
6
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Toupance S, Kumar S, Labat C, Masson C, Murray H, Lamont J, Fitzgerald P, Benetos A, Visvikis-Siest S. A genetic determinant of VEGF-A levels is associated with telomere attrition. Aging (Albany NY) 2021; 13:23517-23526. [PMID: 34661551 PMCID: PMC8580333 DOI: 10.18632/aging.203636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
Telomere length (TL) is a hallmark of cellular aging and is associated with chronic diseases development. The vascular endothelial growth factor A (VEGF-A), a potent angiogenesis factor, is implicated in the pathophysiology of many chronic diseases. The aim of the present study was to investigate the associations between VEGF-A and TL. TL in leukocytes (LTL) and skeletal muscle (MTL) were measured, 10 VEGF-related polymorphisms genotyped, and VEGF-A plasma concentrations determined in 402 individuals from the TELARTA cohort. LTL/MTL ratio was calculated as an estimate of lifelong TL attrition. Associations between VEGF-A variants and levels, and TL parameters were investigated. We identified one significant association between the minor allele (T) of rs6993770 variant and LTL/MTL ratio (P=0.001143, β=0.0148, SE=0.004516). The rs6993770 is an intronic variant of the ZFPM2 gene, which is involved in haematopoiesis and the identified association with increased telomere attrition could be due to increased haematopoiesis. No significant epistatic interaction was identified, and no association was found between levels of VEGF-A and any of assessed phenotypes. We identified a potential common genetic regulation between VEGF-A and telomere length attrition that could be explained by mechanisms of increased hematopoiesis and production of platelets. VEGF-A and TL could play an important role in personalized medicine of chronic diseases and identification of molecular links between them can promote the understanding of their complex implications.
Collapse
Affiliation(s)
| | | | | | - Simon Toupance
- Université de Lorraine, Inserm, DCAC, Nancy F-54000, France
| | - Satish Kumar
- Université de Lorraine, IGE-PCV, Nancy F-54000, France
| | - Carlos Labat
- Université de Lorraine, Inserm, DCAC, Nancy F-54000, France
| | | | - Helena Murray
- Randox Laboratories Limited, Crumlin, Co. Antrim BT29 4QY, Northern Ireland, United Kingdom
| | - John Lamont
- Randox Laboratories Limited, Crumlin, Co. Antrim BT29 4QY, Northern Ireland, United Kingdom
| | - Peter Fitzgerald
- Randox Laboratories Limited, Crumlin, Co. Antrim BT29 4QY, Northern Ireland, United Kingdom
| | - Athanase Benetos
- Université de Lorraine, Inserm, DCAC, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Pôle "Maladies du Vieillissement, Gérontologie et Soins Palliatifs", Nancy F-54000, France
| | | | | |
Collapse
|
7
|
Zfp521 is essential for the quiescence and maintenance of adult hematopoietic stem cells under stress. iScience 2021; 24:102039. [PMID: 33532716 PMCID: PMC7822949 DOI: 10.1016/j.isci.2021.102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Zinc finger protein 521 (Zfp521), a quiescent hematopoietic stem cell (HSC)-enriched transcription factor, is involved in the self-renewal and differentiation of fetal liver HSC. However, its role in adult hematopoiesis remains elusive. Here, we found that Zfp521 deletion did not inhibit adult hematopoiesis under homeostatic conditions. In contrast, Zfp521-null chimeric mice showed significantly reduced pool size of HSC and hematopoietic progenitor cells associated with increased apoptosis and loss of quiescence. Competitive serial transplantation assays revealed that Zfp521 regulates HSC self-renewal and differentiation under regenerative stress. Mechanistically, Zfp521 transcriptionally repressed Rela expression by increasing H3K9ac and decreasing H3K9me3 levels in its promoter. Knockdown of Rela inhibited the hyper-activated NF-κB pathway and reversed the loss of quiescence in Zfp521-null HSC under stress. Thus, our results reveal a previously unrecognized role for Zfp521 as critical regulator of quiescence and self-renewal of HSC in adult hematopoiesis mediated at least partly by controlling Rela expression.
Collapse
|
8
|
Son W, Choi KW. The Classic Lobe Eye Phenotype of Drosophila Is Caused by Transposon Insertion-Induced Misexpression of a Zinc-Finger Transcription Factor. Genetics 2020; 216:117-134. [PMID: 32641295 PMCID: PMC7463288 DOI: 10.1534/genetics.120.303486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/06/2020] [Indexed: 11/18/2022] Open
Abstract
Drosophila Lobe (L) alleles were first discovered ∼100 years ago as spontaneous dominant mutants with characteristic developmental eye defects. However, the molecular basis for L dominant eye phenotypes has not been clearly understood. A previous work reported identification of CG10109/PRAS40 as the L gene, but subsequent analyses suggested that PRAS40 may not be related to L Here, we revisited the L gene to clarify this discrepancy and understand the basis for the dominance of L mutations. Genetic analysis localized the L gene to Oaz, which encodes a homolog of the vertebrate zinc finger protein 423 (Zfp423) family transcriptional regulators. We demonstrate that RNAi knockdown of Oaz almost completely restores all L dominant alleles tested. Lrev6-3 , a revertant allele of the L2 dominant eye phenotype, has an inframe deletion in the Oaz coding sequence. Molecular analysis of L dominant mutants identified allele-specific insertions of natural transposons (roo[ ]L1 , hopper[ ]L5 , and roo[ ]Lr ) or alterations of a preexisting transposon (L2 -specific mutations in roo[ ]Mohr) in the Oaz region. In addition, we generated additional L2 -reversion alleles by CRISPR targeting at Oaz These new loss-of-function Oaz mutations suppress the dominant L eye phenotype. Oaz protein is not expressed in wild-type eye disc but is expressed ectopically in L2/+ mutant eye disc. We induced male recombination between Oaz-GAL4 insertions and the L2 mutation through homologous recombination. By using the L2 -recombined GAL4 reporters, we show that Oaz-GAL4 is expressed ectopically in L2 eye imaginal disc. Taken together, our data suggest that neomorphic L eye phenotypes are likely due to misregulation of Oaz by spontaneous transposon insertions.
Collapse
Affiliation(s)
- Wonseok Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
9
|
Goos JAC, Vogel WK, Mlcochova H, Millard CJ, Esfandiari E, Selman WH, Calpena E, Koelling N, Carpenter EL, Swagemakers SMA, van der Spek PJ, Filtz TM, Schwabe JWR, Iwaniec UT, Mathijssen IMJ, Leid M, Twigg SRF. A de novo substitution in BCL11B leads to loss of interaction with transcriptional complexes and craniosynostosis. Hum Mol Genet 2019; 28:2501-2513. [PMID: 31067316 PMCID: PMC6644156 DOI: 10.1093/hmg/ddz072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Departments of Plastic and Reconstructive Surgery and Hand Surgery
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Walter K Vogel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Hana Mlcochova
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Christopher J Millard
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Elahe Esfandiari
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Wisam H Selman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nils Koelling
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Sigrid M A Swagemakers
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - John W R Schwabe
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
10
|
Drosophila Mediator Subunit Med1 Is Required for GATA-Dependent Developmental Processes: Divergent Binding Interfaces for Conserved Coactivator Functions. Mol Cell Biol 2019; 39:MCB.00477-18. [PMID: 30670567 DOI: 10.1128/mcb.00477-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/13/2019] [Indexed: 01/26/2023] Open
Abstract
DNA-bound transcription factors (TFs) governing developmental gene regulation have been proposed to recruit polymerase II machinery at gene promoters through specific interactions with dedicated subunits of the evolutionarily conserved Mediator (MED) complex. However, whether such MED subunit-specific functions and partnerships have been conserved during evolution has been poorly investigated. To address this issue, we generated the first Drosophila melanogaster loss-of-function mutants for Med1, known as a specific cofactor for GATA TFs and hormone nuclear receptors in mammals. We show that Med1 is required for cell proliferation and hematopoietic differentiation depending on the GATA TF Serpent (Srp). Med1 physically binds Srp in cultured cells and in vitro through its conserved GATA zinc finger DNA-binding domain and the divergent Med1 C terminus. Interestingly, GATA-Srp interaction occurs through the longest Med1 isoform, suggesting a functional diversity of MED complex populations. Furthermore, we show that Med1 acts as a coactivator for the GATA factor Pannier during thoracic development. In conclusion, the Med1 requirement for GATA-dependent regulatory processes is a common feature in insects and mammals, although binding interfaces have diverged. Further work in Drosophila should bring valuable insights to fully understand GATA-MED functional partnerships, which probably involve other MED subunits depending on the cellular context.
Collapse
|
11
|
Behrouznezhad F, Ejeian F, Emadi-Baygi M, Nikpour P, Nasr-Esfahani MH. Hypothesis: A Challenge of Overexpression Zfp521 in Neural Tendency of Derived Dental Pulp Stem Cells. CELL JOURNAL 2018; 21:99-102. [PMID: 30507095 PMCID: PMC6275419 DOI: 10.22074/cellj.2019.5600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/21/2018] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases have now become a major challenge, especially in aged societies. Most of the traditional
strategies used for treatment of these diseases are untargeted and have little efficiency. Developments in stem cell
investigations have given much attention to cell therapy as an alternative concept in the regeneration of neural tissues.
Dental pulp stem cells (DPSCs) can be readily obtained by noninvasive procedures and have been shown to possess
properties similar to well-known mesenchymal stem cells. Furthermore, based on their neural crest origin, DPSCs
are considered to have a good potential to differentiate into neural cells. Zfp521 is a transcription factor that regulates
expression of many genes, including ones involved in the neural differentiation process. Therefor based on neural crest
origin of the cell and high expression of neural progenitor markers, we speculate that sole overexpression of Zfp521
protein can facilitate differentiation of dental stem cells to neural cells and researchers may find these cells suitable for
therapeutic treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Behrouznezhad
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran. Electronic Address:
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Electronic Address:
| |
Collapse
|
12
|
Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment. Mol Cell Biol 2018; 38:MCB.00603-17. [PMID: 29915154 DOI: 10.1128/mcb.00603-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 06/11/2018] [Indexed: 01/06/2023] Open
Abstract
Zinc finger protein 521 (ZFP521), a DNA-binding protein containing 30 Krüppel-like zinc fingers, has been implicated in the differentiation of multiple cell types, including hematopoietic stem and progenitor cells (HSPC) and B lymphocytes. Here, we report a novel role for ZFP521 in regulating the earliest stages of hematopoiesis and lymphoid cell development via a cell-extrinsic mechanism. Mice with inactivated Zfp521 genes (Zfp521-/-) possess reduced frequencies and numbers of hematopoietic stem and progenitor cells, common lymphoid progenitors, and B and T cell precursors. Notably, ZFP521 deficiency changes bone marrow microenvironment cytokine levels and gene expression within resident HSPC, consistent with a skewing of hematopoiesis away from lymphopoiesis. These results advance our understanding of ZFP521's role in normal hematopoiesis, justifying further research to assess its potential as a target for cancer therapies.
Collapse
|
13
|
Germano G, Morello G, Aveic S, Pinazza M, Minuzzo S, Frasson C, Persano L, Bonvini P, Viola G, Bresolin S, Tregnago C, Paganin M, Pigazzi M, Indraccolo S, Basso G. ZNF521 sustains the differentiation block in MLL-rearranged acute myeloid leukemia. Oncotarget 2018; 8:26129-26141. [PMID: 28412727 PMCID: PMC5432245 DOI: 10.18632/oncotarget.15387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/31/2017] [Indexed: 12/31/2022] Open
Abstract
Zinc finger protein 521 (ZNF521) is a multiple zinc finger transcription factor and a strong candidate as regulator of hematopoietic stem cell homeostasis. Recently, independent gene expression profile studies have evidenced a positive correlation between ZNF521 mRNA overexpression and MLL-rearranged acute myeloid leukemia (AML), leaving open the question on the role of ZNF521 in this subtype of leukemia. In this study, we sought to analyze the effect of ZNF521 depletion on MLL-rearranged AML cell lines and MLL-AF9 xenograft primary cells. Knockdown of ZNF521 with short-hairpin RNA (shRNA) led to decreased leukemia proliferation, reduced colony formation and caused cell cycle arrest in MLL-rearranged AML cell lines. Importantly, we showed that loss of ZNF521 substantially caused differentiation of both MLL-rearranged cell lines and primary cells. Moreover, gene profile analysis in ZNF521-silenced THP-1 cells revealed a loss of MLL-AF9-directed leukemic signature and an increase of the differentiation program. Finally, we determined that both MLL-AF9 and MLL-ENL fusion proteins directly interacted with ZNF521 promoter activating its transcription. In conclusion, our findings identify ZNF521 as a critical effector of MLL fusion proteins in blocking myeloid differentiation and highlight ZNF521 as a potential therapeutic target for this subtype of leukemia.
Collapse
Affiliation(s)
- Giuseppe Germano
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Giulia Morello
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Sanja Aveic
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Marica Pinazza
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Chiara Frasson
- Department of Woman and Child Health, University of Padova, Italy
| | - Luca Persano
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Paolo Bonvini
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Giampietro Viola
- Department of Woman and Child Health, University of Padova, Italy
| | - Silvia Bresolin
- Department of Woman and Child Health, University of Padova, Italy
| | - Claudia Tregnago
- Department of Woman and Child Health, University of Padova, Italy
| | | | - Martina Pigazzi
- Department of Woman and Child Health, University of Padova, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Italy
| |
Collapse
|
14
|
Bond HM, Scicchitano S, Chiarella E, Amodio N, Lucchino V, Aloisio A, Montalcini Y, Mesuraca M, Morrone G. ZNF423: A New Player in Estrogen Receptor-Positive Breast Cancer. Front Endocrinol (Lausanne) 2018; 9:255. [PMID: 29867779 PMCID: PMC5968090 DOI: 10.3389/fendo.2018.00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/03/2018] [Indexed: 01/13/2023] Open
Abstract
Preventive therapy can target hormone-responsive breast cancer (BC) by treatment with selective estrogen receptor modulators (SERMs) and reduce the incidence of BC. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) with relevant predictive values, SNPs in the ZNF423 gene were associated with decreased risk of BC during SERM therapy, and SNPs in the Cathepsin O gene with an increased risk. ZNF423, which was not previously associated with BC is a multifunctional transcription factor known to have a role in development, neurogenesis, and adipogenesis and is implicated in other types of cancer. ZNF423 is transcriptionally controlled by the homolog ZNF521, early B cell factor transcription factor, epigenetic silencing of the promoter by CpG island hyper-methylation, and also by ZNF423 itself in an auto-regulatory loop. In BC cells, ZNF423 expression is found to be induced by estrogen, dependent on the binding of the estrogen receptor and calmodulin-like 3 to SNPs in ZNP423 intronic sites in proximity to consensus estrogen response elements. ZNF423 has also been shown to play a mechanistic role by trans-activating the tumor suppressor BRCA1 and thus modulating the DNA damage response. Even though recent extensive trial studies did not classify these SNPs with the highest predictive values, for inclusion in polygenic SNP analysis, the mechanism unveiled in these studies has introduced ZNF423 as a factor important in the control of the estrogen response. Here, we aim at providing an overview of ZNF423 expression and functional role in human malignancies, with a specific focus on its implication in hormone-responsive BC.
Collapse
Affiliation(s)
- Heather M. Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Laboratory of Medical Oncology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| |
Collapse
|
15
|
Hashemi MS, Esfahani AK, Peymani M, Nejati AS, Ghaedi K, Nasr-Esfahani MH, Baharvand H. Zinc finger protein 521 overexpression increased transcript levels of Fndc5 in mouse embryonic stem cells. J Biosci 2016; 41:69-76. [PMID: 26949089 DOI: 10.1007/s12038-015-9578-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Zinc finger protein 521 is highly expressed in brain, neural stem cells and early progenitors of the human hematopoietic cells. Zfp521 triggers the cascade of neurogenesis in mouse embryonic stem cells through inducing expression of the early neuroectodermal genes Sox1, Sox3 and Pax6. Fndc5, a precursor of Irisin has inducing effects on the expression level of brain derived neurotrophic factor in hippocampus. Therefore, it is most likely that Fndc5 may play an important role in neural differentiation. To exhibit whether the expression of this protein is under regulation with Zfp521, we overexpressed Zfp521 in a stable transformants of mESCs expressing EGFP under control of Fndc5 promoter. Increased expression of Zfp521 enhanced transcription levels of both EGFP and endogenous Fndc5. This result was confirmed by overexpression the aforementioned vectors in HEK cells and indicated that Zfp521 functions upstream of Fndc5 expression. It is most likely that Zfp521 may act through the binding to its response element on Fndc5 core promoter. Therefore it is concluding that an enhanced expression of Fndc5 in neural progenitor cells is stimulated by Zfp521 overexpression in these cells.
Collapse
Affiliation(s)
- Motahere-Sadat Hashemi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | | | | | | | | | | |
Collapse
|
16
|
Dubuissez M, Loison I, Paget S, Vorng H, Ait-Yahia S, Rohr O, Tsicopoulos A, Leprince D. Protein Kinase C-Mediated Phosphorylation of BCL11B at Serine 2 Negatively Regulates Its Interaction with NuRD Complexes during CD4+ T-Cell Activation. Mol Cell Biol 2016; 36:1881-98. [PMID: 27161321 PMCID: PMC4911745 DOI: 10.1128/mcb.00062-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
The transcription factor BCL11B/CTIP2 is a major regulatory protein implicated in various aspects of development, function and survival of T cells. Mitogen-activated protein kinase (MAPK)-mediated phosphorylation and SUMOylation modulate BCL11B transcriptional activity, switching it from a repressor in naive murine thymocytes to a transcriptional activator in activated thymocytes. Here, we show that BCL11B interacts via its conserved N-terminal MSRRKQ motif with endogenous MTA1 and MTA3 proteins to recruit various NuRD complexes. Furthermore, we demonstrate that protein kinase C (PKC)-mediated phosphorylation of BCL11B Ser2 does not significantly impact BCL11B SUMOylation but negatively regulates NuRD recruitment by dampening the interaction with MTA1 or MTA3 (MTA1/3) and RbAp46 proteins. We detected increased phosphorylation of BCL11B Ser2 upon in vivo activation of transformed and primary human CD4(+) T cells. We show that following activation of CD4(+) T cells, BCL11B still binds to IL-2 and Id2 promoters but activates their transcription by recruiting P300 instead of MTA1. Prolonged stimulation results in the direct transcriptional repression of BCL11B by KLF4. Our results unveil Ser2 phosphorylation as a new BCL11B posttranslational modification linking PKC signaling pathway to T-cell receptor (TCR) activation and define a simple model for the functional switch of BCL11B from a transcriptional repressor to an activator during TCR activation of human CD4(+) T cells.
Collapse
Affiliation(s)
- Marion Dubuissez
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Ingrid Loison
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Sonia Paget
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Han Vorng
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Saliha Ait-Yahia
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Olivier Rohr
- University of Strasbourg, IUT Louis Pasteur, EA7292, Dynamic of Host Pathogen Interactions, Institute of Parasitology and Tropical Pathology, Strasbourg, France Institut Universitaire de France, Paris, France
| | - Anne Tsicopoulos
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Dominique Leprince
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| |
Collapse
|
17
|
Galazo MJ, Emsley JG, Macklis JD. Corticothalamic Projection Neuron Development beyond Subtype Specification: Fog2 and Intersectional Controls Regulate Intraclass Neuronal Diversity. Neuron 2016; 91:90-106. [PMID: 27321927 DOI: 10.1016/j.neuron.2016.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/16/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023]
Abstract
Corticothalamic projection neurons (CThPN) are a diverse set of neurons, critical for function of the neocortex. CThPN development and diversity need to be precisely regulated, but little is known about molecular controls over their differentiation and functional specialization, critically limiting understanding of cortical development and complexity. We report the identification of a set of genes that both define CThPN and likely control their differentiation, diversity, and function. We selected the CThPN-specific transcriptional coregulator Fog2 for functional analysis. We identify that Fog2 controls CThPN molecular differentiation, axonal targeting, and diversity, in part by regulating the expression level of Ctip2 by CThPN, via combinatorial interactions with other molecular controls. Loss of Fog2 specifically disrupts differentiation of subsets of CThPN specialized in motor function, indicating that Fog2 coordinates subtype and functional-area differentiation. These results confirm that we identified key controls over CThPN development and identify Fog2 as a critical control over CThPN diversity.
Collapse
Affiliation(s)
- Maria J Galazo
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jason G Emsley
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Bernaudo F, Monteleone F, Mesuraca M, Krishnan S, Chiarella E, Scicchitano S, Cuda G, Morrone G, Bond HM, Gaspari M. Validation of a novel shotgun proteomic workflow for the discovery of protein-protein interactions: focus on ZNF521. J Proteome Res 2015; 14:1888-99. [PMID: 25774781 DOI: 10.1021/pr501288h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The study of protein-protein interactions is increasingly relying on mass spectrometry (MS). The classical approach of separating immunoprecipitated proteins by SDS-PAGE followed by in-gel digestion is long and labor-intensive. Besides, it is difficult to integrate it with most quantitative MS-based workflows, except for stable isotopic labeling of amino acids in cell culture (SILAC). This work describes a fast, flexible and quantitative workflow for the discovery of novel protein-protein interactions. A cleavable cross-linker, dithiobis[succinimidyl propionate] (DSP), is utilized to stabilize protein complexes before immunoprecipitation. Protein complex detachment from the antibody is achieved by limited proteolysis. Finally, protein quantitation is performed via (18)O labeling. The workflow has been optimized concerning (i) DSP concentration and (ii) incubation times for limited proteolysis, using the stem cell-associated transcription cofactor ZNF521 as a model target. The interaction of ZNF521 with the core components of the nuclear remodelling and histone deacetylase (NuRD) complex, already reported in the literature, was confirmed. Additionally, interactions with newly discovered molecular partners of potentially relevant functional role, such as ZNF423, Spt16, Spt5, were discovered and validated by Western blotting.
Collapse
Affiliation(s)
- Francesca Bernaudo
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Francesca Monteleone
- ‡Department of Experimental and Clinical Medicine, Proteomics@UMG, University Magna Graecia, Catanzaro 88100, Italy
| | - Maria Mesuraca
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Shibu Krishnan
- ‡Department of Experimental and Clinical Medicine, Proteomics@UMG, University Magna Graecia, Catanzaro 88100, Italy
| | - Emanuela Chiarella
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Stefania Scicchitano
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Giovanni Cuda
- ‡Department of Experimental and Clinical Medicine, Proteomics@UMG, University Magna Graecia, Catanzaro 88100, Italy
| | - Giovanni Morrone
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Heather M Bond
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Marco Gaspari
- ‡Department of Experimental and Clinical Medicine, Proteomics@UMG, University Magna Graecia, Catanzaro 88100, Italy
| |
Collapse
|
19
|
Harder L, Puller AC, Horstmann MA. ZNF423: Transcriptional modulation in development and cancer. Mol Cell Oncol 2014; 1:e969655. [PMID: 27308357 DOI: 10.4161/23723548.2014.969655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
Krüppel-like zinc finger proteins are versatile players in biology that have been implicated in mammalian development and disease. Among these proteins, ZNF423 and its mouse ortholog Zfp423 were initially implicated in midline patterning of the central nervous system but have emerged as critical transcriptional modulators in cancer. Epigenetically uncurbed ZNF423 interferes with lymphopoiesis by sequestration of the essential early B-cell factor 1 (EBF1) causing B-cell maturation arrest, a hallmark of acute lymphoblastic leukemia. Conversely, its presence in neuroblastoma, a primitive neuroectodermal tumor of childhood, allows retinoic acid-induced differentiation and is associated with a favorable outcome of neuroblastoma patients. Such opposing effects may be explained by the cellular context, but also by the multifunctionality of ZNF423 that is mediated by 30 zinc fingers forming various functional domains. This review summarizes current knowledge of ZNF423, focusing on its role in development and cancer.
Collapse
Affiliation(s)
- Lena Harder
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| | - Ann-Christin Puller
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| | - Martin A Horstmann
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| |
Collapse
|
20
|
Garnatz AS, Gao Z, Broman M, Martens S, Earley JU, Svensson EC. FOG-2 mediated recruitment of the NuRD complex regulates cardiomyocyte proliferation during heart development. Dev Biol 2014; 395:50-61. [PMID: 25196150 DOI: 10.1016/j.ydbio.2014.08.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022]
Abstract
FOG-2 is a multi-zinc finger protein that binds the transcriptional activator GATA4 and modulates GATA4-mediated regulation of target genes during heart development. Our previous work has demonstrated that the Nucleosome Remodeling and Deacetylase (NuRD) complex physically interacts with FOG-2 and is necessary for FOG-2 mediated repression of GATA4 activity in vitro. However, the relevance of this interaction for FOG-2 function in vivo has remained unclear. In this report, we demonstrate the importance of FOG-2/NuRD interaction through the generation and characterization of mice homozygous for a mutation in FOG-2 that disrupts NuRD binding (FOG-2(R3K5A)). These mice exhibit a perinatal lethality and have multiple cardiac malformations, including ventricular and atrial septal defects and a thin ventricular myocardium. To investigate the etiology of the thin myocardium, we measured the rate of cardiomyocyte proliferation in wild-type and FOG-2(R3K5A) developing hearts. We found cardiomyocyte proliferation was reduced by 31±8% in FOG-2(R3K5A) mice. Gene expression analysis indicated that the cell cycle inhibitor Cdkn1a (p21(cip1)) is up-regulated 2.0±0.2-fold in FOG-2(R3K5A) hearts. In addition, we demonstrate that FOG-2 can directly repress the activity of the Cdkn1a gene promoter, suggesting a model by which FOG-2/NuRD promotes ventricular wall thickening by repression of this cell cycle inhibitor. Consistent with this notion, the genetic ablation of Cdkn1a in FOG-2(R3K5A) mice leads to an improvement in left ventricular function and a partial rescue of left ventricular wall thickness. Taken together, our results define a novel mechanism in which FOG-2/NuRD interaction is required for cardiomyocyte proliferation by directly down-regulating the cell cycle inhibitor Cdkn1a during heart development.
Collapse
Affiliation(s)
- Audrey S Garnatz
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Zhiguang Gao
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Broman
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Spencer Martens
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Judy U Earley
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Eric C Svensson
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Clifton MK, Westman BJ, Thong SY, O’Connell MR, Webster MW, Shepherd NE, Quinlan KG, Crossley M, Blobel GA, Mackay JP. The identification and structure of an N-terminal PR domain show that FOG1 is a member of the PRDM family of proteins. PLoS One 2014; 9:e106011. [PMID: 25162672 PMCID: PMC4146578 DOI: 10.1371/journal.pone.0106011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/26/2014] [Indexed: 11/19/2022] Open
Abstract
FOG1 is a transcriptional regulator that acts in concert with the hematopoietic master regulator GATA1 to coordinate the differentiation of platelets and erythrocytes. Despite considerable effort, however, the mechanisms through which FOG1 regulates gene expression are only partially understood. Here we report the discovery of a previously unrecognized domain in FOG1: a PR (PRD-BF1 and RIZ) domain that is distantly related in sequence to the SET domains that are found in many histone methyltransferases. We have used NMR spectroscopy to determine the solution structure of this domain, revealing that the domain shares close structural similarity with SET domains. Titration with S-adenosyl-L-homocysteine, the cofactor product synonymous with SET domain methyltransferase activity, indicated that the FOG PR domain is not, however, likely to function as a methyltransferase in the same fashion. We also sought to define the function of this domain using both pulldown experiments and gel shift assays. However, neither pulldowns from mammalian nuclear extracts nor yeast two-hybrid assays reproducibly revealed binding partners, and we were unable to detect nucleic-acid-binding activity in this domain using our high-diversity Pentaprobe oligonucleotides. Overall, our data demonstrate that FOG1 is a member of the PRDM (PR domain containing proteins, with zinc fingers) family of transcriptional regulators. The function of many PR domains, however, remains somewhat enigmatic for the time being.
Collapse
Affiliation(s)
- Molly K. Clifton
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Belinda J. Westman
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Sock Yue Thong
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | - Michael W. Webster
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | - Kate G. Quinlan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Merlin Crossley
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Gerd A. Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Spina R, Filocamo G, Iaccino E, Scicchitano S, Lupia M, Chiarella E, Mega T, Bernaudo F, Pelaggi D, Mesuraca M, Pazzaglia S, Semenkow S, Bar EE, Kool M, Pfister S, Bond HM, Eberhart CG, Steinkühler C, Morrone G. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget 2014; 4:1280-92. [PMID: 23907569 PMCID: PMC3787157 DOI: 10.18632/oncotarget.1176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1−/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1−/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells.
Collapse
Affiliation(s)
- Raffaella Spina
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Expression profiling and functional implications of a set of zinc finger proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in primary osteoarthritic articular chondrocytes. Mediators Inflamm 2014; 2014:318793. [PMID: 24976683 PMCID: PMC4058293 DOI: 10.1155/2014/318793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/27/2023] Open
Abstract
Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA). To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B) in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.
Collapse
|
24
|
Harder L, Eschenburg G, Zech A, Kriebitzsch N, Otto B, Streichert T, Behlich AS, Dierck K, Klingler B, Hansen A, Stanulla M, Zimmermann M, Kremmer E, Stocking C, Horstmann MA. Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:2289-304. [PMID: 24081948 PMCID: PMC3804944 DOI: 10.1084/jem.20130497] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Differentiation arrest is a hallmark of acute leukemia. Genomic alterations in B cell differentiation factors such as PAX5, IKZF1, and EBF-1 have been identified in more than half of all cases of childhood B precursor acute lymphoblastic leukemia (ALL). Here, we describe a perturbed epigenetic and transcriptional regulation of ZNF423 in ALL as a novel mechanism interfering with B cell differentiation. Hypomethylation of ZNF423 regulatory sequences and BMP2 signaling result in transactivation of ZNF423α and a novel ZNF423β-isoform encoding a nucleosome remodeling and histone deacetylase complex-interacting domain. Aberrant ZNF423 inhibits the transactivation of EBF-1 target genes and leads to B cell maturation arrest in vivo. Importantly, ZNF423 expression is associated with poor outcome of ETV6-RUNX1-negative B precursor ALL patients. Our work demonstrates that ALL is more than a genetic disease and that epigenetics may uncover novel mechanisms of disease with prognostic implications.
Collapse
Affiliation(s)
- Lena Harder
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chlon TM, Crispino JD. Combinatorial regulation of tissue specification by GATA and FOG factors. Development 2012; 139:3905-16. [PMID: 23048181 DOI: 10.1242/dev.080440] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of complex organisms requires the formation of diverse cell types from common stem and progenitor cells. GATA family transcriptional regulators and their dedicated co-factors, termed Friend of GATA (FOG) proteins, control cell fate and differentiation in multiple tissue types from Drosophila to man. FOGs can both facilitate and antagonize GATA factor transcriptional regulation depending on the factor, cell, and even the specific gene target. In this review, we highlight recent studies that have elucidated mechanisms by which FOGs regulate GATA factor function and discuss how these factors use these diverse modes of gene regulation to control cell lineage specification throughout metazoans.
Collapse
Affiliation(s)
- Timothy M Chlon
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
26
|
MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett 2012; 515:147-52. [DOI: 10.1016/j.neulet.2012.03.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/07/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
27
|
Mimoto MS, Christian JL. Friend of GATA (FOG) interacts with the nucleosome remodeling and deacetylase complex (NuRD) to support primitive erythropoiesis in Xenopus laevis. PLoS One 2012; 7:e29882. [PMID: 22235346 PMCID: PMC3250481 DOI: 10.1371/journal.pone.0029882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 12/07/2011] [Indexed: 12/11/2022] Open
Abstract
Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect.
Collapse
Affiliation(s)
- Mizuho S. Mimoto
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jan L. Christian
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
28
|
Abstract
Transcription factors regulate formation and function of the heart, and perturbation of transcription factor expression and regulation disrupts normal heart structure and function. Multiple mechanisms regulate the level and locus-specific activity of transcription factors, including transcription, translation, subcellular localization, posttranslational modifications, and context-dependent interactions with other transcription factors, chromatin remodeling enzymes, and epigenetic regulators. The zinc finger transcription factor GATA4 is among the best-studied cardiac transcriptional factors. This review focuses on molecular mechanisms that regulate GATA4 transcriptional activity in the cardiovascular system, providing a framework to investigate and understand the molecular regulation of cardiac gene transcription by other transcription factors.
Collapse
|
29
|
Shen S, Pu J, Lang B, McCaig CD. A zinc finger protein Zfp521 directs neural differentiation and beyond. Stem Cell Res Ther 2011; 2:20. [PMID: 21539723 PMCID: PMC3226291 DOI: 10.1186/scrt61] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neural induction is largely considered a default process, whereas little is known about intrinsic factors that drive neural differentiation. Kamiya and colleagues now demonstrate that a transcription factor, Zfp521, is capable of directing embryonic stem (ES) cells into neural progenitors. They discovered that Zfp521 transcripts were enriched in early neural lineage of ES cell differentiation. Forced expression of Zfp521 turned ES cells into neural progenitors in culture conditions that would normally inhibit neural differentiation. Zfp521 was expressed in mouse embryos during gastrulation. The protein was shown to associate with a co-activator p300 and directly induce expression of early neural genes. Knockdown of the Zfp521 by shRNA halted cells at the epiblast stage and suppressed neural differentiation. Zfp521 is a nuclear protein with 30 Krüppel-like zinc fingers mediating multiple protein-protein interactions, and regulates transcription in diverse tissues and organs. The protein promotes proliferation, delays differentiation and reduces apoptosis. The findings by Kamiya and colleagues that Zfp521 directs and sustains early neural differentiation now opens up a series of studies to investigate roles of Zfp521 in stem cells and brain development of mice and men.
Collapse
Affiliation(s)
- Sanbing Shen
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | |
Collapse
|
30
|
Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 2011; 470:503-9. [DOI: 10.1038/nature09726] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 11/30/2010] [Indexed: 11/08/2022]
|
31
|
Mwinyi J, Hofmann Y, Pedersen RS, Nekvindová J, Cavaco I, Mkrtchian S, Ingelman-Sundberg M. The transcription factor GATA-4 regulates cytochrome P4502C19 gene expression. Life Sci 2010; 86:699-706. [DOI: 10.1016/j.lfs.2010.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 11/30/2009] [Accepted: 02/24/2010] [Indexed: 01/12/2023]
|
32
|
Xu J, Sankaran VG, Ni M, Menne TF, Puram RV, Kim W, Orkin SH. Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev 2010; 24:783-98. [PMID: 20395365 DOI: 10.1101/gad.1897310] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The developmental switch from human fetal (gamma) to adult (beta) hemoglobin represents a clinically important example of developmental gene regulation. The transcription factor BCL11A is a central mediator of gamma-globin silencing and hemoglobin switching. Here we determine chromatin occupancy of BCL11A at the human beta-globin locus and other genomic regions in vivo by high-resolution chromatin immunoprecipitation (ChIP)-chip analysis. BCL11A binds the upstream locus control region (LCR), epsilon-globin, and the intergenic regions between gamma-globin and delta-globin genes. A chromosome conformation capture (3C) assay shows that BCL11A reconfigures the beta-globin cluster by modulating chromosomal loop formation. We also show that BCL11A and the HMG-box-containing transcription factor SOX6 interact physically and functionally during erythroid maturation. BCL11A and SOX6 co-occupy the human beta-globin cluster along with GATA1, and cooperate in silencing gamma-globin transcription in adult human erythroid progenitors. These findings collectively demonstrate that transcriptional silencing of gamma-globin genes by BCL11A involves long-range interactions and cooperation with SOX6. Our findings provide insight into the mechanism of BCL11A action and new clues for the developmental gene regulatory programs that function at the beta-globin locus.
Collapse
Affiliation(s)
- Jian Xu
- Children's Hospital Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Gao Z, Huang Z, Olivey HE, Gurbuxani S, Crispino JD, Svensson EC. FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis. EMBO J 2009; 29:457-68. [PMID: 20010697 DOI: 10.1038/emboj.2009.368] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 11/16/2009] [Indexed: 11/09/2022] Open
Abstract
The transcriptional co-factor Friend of GATA1 (FOG-1) has been shown to interact with subunits of the nucleosome remodelling and histone deacetylase (NuRD) complex through a specific motif located at its N-terminus. To test the importance of FOG-1/NuRD interaction for haematopoiesis in vivo, we generated mice with a mutation that specifically disrupts FOG-1/NuRD interaction (FOG-1(R3K5A)). Homozygous FOG-1(R3K5A) mice were found to have splenomegaly, extramedullary erythropoiesis, granulocytosis and thrombocytopaenia secondary to a block in megakaryocyte maturation. FOG-1(R3K5A/R3K5A) megakaryocytes and erythroid progenitors expressed increased levels of GATA2, showing that FOG-1/NuRD interaction is required for the earlier described 'GATA Switch'. In addition, ablation of FOG-1/NuRD interaction led to inappropriate expression of mast cell and eosinophil-specific genes in the megakaryocyte and erythroid lineages. Chromatin immunoprecipitation experiments revealed that the NuRD complex was not properly recruited to a mast cell gene promoter in FOG-1(R3K5A/R3K5A) megakaryocytes, suggesting that FOG-1/NuRD interaction is required for the direct suppression of mast cell gene expression. Taken together, these results underscore the importance of the FOG-1/NuRD interaction for the re-enforcement of lineage commitment during erythropoiesis and megakaryopoiesis in vivo.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Alterations in various developmental pathways are common themes in cancer. The early B-cell factors (EBF) are a family of four highly conserved DNA-binding transcription factors with an atypical zinc-finger and helix-loop-helix motif. They are involved in the differentiation and maturation of several cell lineages including B-progenitor lymphoblasts, neuronal precursors, and osteoblast progenitors. During B-cell development, EBF1 is required for the expression of Pax5, an essential factor for the production of antibody-secreting cells. Accumulating evidence indicates that genomic deletion of the EBF1 gene contributes to the pathogenesis, drug resistance, and relapse of B-progenitor acute lymphoblastic leukemia (ALL). Epigenetic silencing and genomic deletion of the EBF3 locus in chromosome 10q are very frequent in glioblastoma (GBM). Strikingly, the frequency of EBF3 loss in GBM is similar to that of the loss of Pten, a key suppressor of gliomagenesis. Cancer-specific somatic mutations were detected in EBF3 in GBM and in both EBF1 and EBF3 in pancreatic ductal adenocarcinoma. These missense mutations occur in the DNA-binding domain or the conserved IPT/TIG domain, suggesting that they might disrupt the functions of these two proteins. Functional studies revealed that EBF3 represses the expression of genes required for cell proliferation [e.g., cyclins and cyclin-dependent kinases (CDK)] and survival (e.g., Mcl-1 and Daxx) but activates those involved in cell cycle arrest (e.g., p21 and p27), leading to growth suppression and apoptosis. Therefore, EBFs represent new tumor suppressors whose inactivation blocks normal development and contributes to tumorigenesis of diverse types of human cancer.
Collapse
Affiliation(s)
- Daiqing Liao
- Department of Anatomy and Cell Biology, UF Shands Cancer Center, University of Florida, Gainesville, FL 32611-3633, USA.
| |
Collapse
|
35
|
Miccio A, Wang Y, Hong W, Gregory GD, Wang H, Yu X, Choi JK, Shelat S, Tong W, Poncz M, Blobel GA. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J 2009; 29:442-56. [PMID: 19927129 DOI: 10.1038/emboj.2009.336] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/22/2009] [Indexed: 02/02/2023] Open
Abstract
GATA transcription factors interact with FOG proteins to regulate tissue development by activating and repressing transcription. FOG-1 (ZFPM1), a co-factor for the haematopoietic factor GATA-1, binds to the NuRD co-repressor complex through a conserved N-terminal motif. Surprisingly, we detected NuRD components at both repressed and active GATA-1/FOG-1 target genes in vivo. In addition, while NuRD is required for transcriptional repression in certain contexts, we show a direct requirement of NuRD also for FOG-1-dependent transcriptional activation. Mice in which the FOG-1/NuRD interaction is disrupted display defects similar to germline mutations in the Gata1 and Fog1 genes, including anaemia and macrothrombocytopaenia. Gene expression analysis in primary mutant erythroid cells and megakaryocytes (MKs) revealed an essential function for NuRD during both the repression and activation of select GATA-1/FOG-1 target genes. These results show that NuRD is a critical co-factor for FOG-1 and underscore the versatile use of NuRD by lineage-specific transcription factors to activate and repress gene transcription in the appropriate cellular and genetic context.
Collapse
Affiliation(s)
- Annarita Miccio
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Upregulation of the Drosophila Friend of GATA gene U-shaped by JAK/STAT signaling maintains lymph gland prohemocyte potency. Mol Cell Biol 2009; 29:6086-96. [PMID: 19737914 DOI: 10.1128/mcb.00244-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies using Drosophila melanogaster have contributed significantly to our understanding of the interaction between stem cells and their protective microenvironments or stem cell niches. During lymph gland hematopoiesis, the Drosophila posterior signaling center functions as a stem cell niche to maintain prohemocyte multipotency through Hedgehog and JAK/STAT signaling. In this study, we provide evidence that the Friend of GATA protein U-shaped is an important regulator of lymph gland prohemocyte potency and differentiation. U-shaped expression was determined to be upregulated in third-instar lymph gland prohemocytes and downregulated in a subpopulation of differentiating blood cells. Genetic analyses indicated that U-shaped maintains the prohemocyte population by blocking differentiation. In addition, activated STAT directly regulated ush expression as evidenced by results from loss- and gain-of-function studies and from analyses of the u-shaped hematopoietic cis-regulatory module. Collectively, these findings identify U-shaped as a downstream effector of the posterior signaling center, establishing a novel link between the stem cell niche and the intrinsic regulation of potency and differentiation. Given the functional conservation of Friend of GATA proteins and the role that GATA factors play during cell fate choice, these factors may regulate essential functions of vertebrate hematopoietic stem cells, including processing signals from the stem cell niche.
Collapse
|
37
|
Abstract
Erythropoietic and megakaryocytic programs are directed by the transcription factor GATA1. Friend of GATA1 (FOG1), a protein interaction partner of GATA1, is critical for GATA1 function in multiple contexts. Previous work has shown that FOG1 recruits two multi-protein complexes, the nucleosome remodeling domain (NuRD) complex and a C-terminal binding protein (CTBP)-containing complex, into association with GATA1 to mediate activation and repression of target genes. To elucidate mechanisms that might differentially regulate the association of FOG1, as well as GATA1, with these two complexes, we characterized a previously unrecognized translational isoform of FOG1. We found that an N-terminally truncated version of FOG1 is produced from an internal ATG and that this isoform, designated FOG1S, lacks the nucleosome remodeling domain-binding domain, altering the complexes with which it interacts. Both isoforms interact with the C-terminal binding protein complex, which we show also contains lysine-specific demethylase 1 (LSD1). FOG1S is preferentially excluded from the nucleus by unknown mechanisms. These data reveal two novel mechanisms for the regulation of GATA1 interaction with FOG1-dependent protein complexes through the production of two translational isoforms with differential interaction profiles and independent nuclear localization controls.
Collapse
Affiliation(s)
- Jonathan W Snow
- Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
38
|
Kim GH, Samant SA, Earley JU, Svensson EC. Translational control of FOG-2 expression in cardiomyocytes by microRNA-130a. PLoS One 2009; 4:e6161. [PMID: 19582148 PMCID: PMC2701631 DOI: 10.1371/journal.pone.0006161] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/07/2009] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3' untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3' untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3' untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development.
Collapse
Affiliation(s)
- Gene H. Kim
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Sadhana A. Samant
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Judy U. Earley
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Eric C. Svensson
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Developmental Biology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
39
|
Rouf R, Greytak S, Wooten EC, Wu J, Boltax J, Picard M, Svensson EC, Dillmann WH, Patten RD, Huggins GS. Increased FOG-2 in failing myocardium disrupts thyroid hormone-dependent SERCA2 gene transcription. Circ Res 2008; 103:493-501. [PMID: 18658259 PMCID: PMC2650841 DOI: 10.1161/circresaha.108.181487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reduced expression of sarcoplasmic reticulum calcium ATPase (SERCA)2 and other genes in the adult cardiac gene program has raised consideration of an impaired responsiveness to thyroid hormone (T3) that develops in the advanced failing heart. Here, we show that human and murine cardiomyopathy hearts have increased expression of friend of GATA (FOG)-2, a cardiac nuclear hormone receptor corepressor protein. Cardiac-specific overexpression of FOG-2 in transgenic mice led to depressed cardiac function, activation of the fetal gene program, congestive heart failure, and early death. SERCA2 transcript and protein levels were reduced in FOG-2 transgenic hearts, and FOG-2 overexpression impaired T3-mediated SERCA2 expression in cultured cardiomyocytes. FOG-2 physically interacts with thyroid hormone receptor-alpha1 and abrogated even high levels of T3-mediated SERCA2 promoter activity. These results demonstrate that SERCA2 is an important target of FOG-2 and that increased FOG-2 expression may contribute to a decline in cardiac function in end-stage heart failure by impaired T3 signaling.
Collapse
Affiliation(s)
- Rosanne Rouf
- MCRI Center for Translational Genomics, Molecular Cardiology Research Institute, Tufts University School of Medicine, 750 Washington St, Box 8486, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Smagulova FO, Manuylov NL, Leach LL, Tevosian SG. GATA4/FOG2 transcriptional complex regulates Lhx9 gene expression in murine heart development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:67. [PMID: 18577233 PMCID: PMC2447832 DOI: 10.1186/1471-213x-8-67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 06/24/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND GATA4 and FOG2 proteins are required for normal cardiac development in mice. It has been proposed that GATA4/FOG2 transcription complex exercises its function through gene activation as well as repression; however, targets of GATA4/FOG2 action in the heart remain elusive. RESULTS Here we report identification of the Lhx9 gene as a direct target of the GATA4/FOG2 complex. We demonstrate that the developing mouse heart normally expresses truncated isoforms of Lhx9 - Lhx9alpha and Lhx9beta, and not the Lhx9-HD isoform that encodes a protein with an intact homeodomain. At E9.5 Lhx9alpha/beta expression is prominent in the epicardial primordium, septum transversum while Lhx9-HD is absent from this tissue; in the E11.5 heart LHX9alpha/beta-positive cells are restricted to the epicardial mesothelium. Thereafter in the control hearts Lhx9alpha/beta epicardial expression is promptly down-regulated; in contrast, mouse mutants with Fog2 gene loss fail to repress Lhx9alpha/beta expression. Chromatin immunoprecipitation from the E11.5 hearts demonstrated that Lhx9 is a direct target for GATA4 and FOG2. In transient transfection studies the expression driven by the cis-regulatory regions of Lhx9 was repressed by FOG2 in the presence of intact GATA4, but not the GATA4ki mutant that is impaired in its ability to bind FOG2. CONCLUSION In summary, the Lhx9 gene represents the first direct target of the GATA4/FOG2 repressor complex in cardiac development.
Collapse
Affiliation(s)
- Fatima O Smagulova
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay L Manuylov
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Lyndsay L Leach
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Sergei G Tevosian
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
41
|
Catusse J, Spinks J, Mattick C, Dyer A, Laing K, Fitzsimons C, Smit MJ, Gompels UA. Immunomodulation by herpesvirus U51A chemokine receptor via CCL5 and FOG-2 down-regulation plus XCR1 and CCR7 mimicry in human leukocytes. Eur J Immunol 2008; 38:763-77. [PMID: 18286574 DOI: 10.1002/eji.200737618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human herpesvirus-6A (HHV-6A) betachemokine-receptor U51A binds inflammatory modulators CCL2, CCL5, CCL11, CCL7, and CCL13. This unique specificity overlaps that of human chemokine receptors CCR1, CCR2, CCR3, and CCR5. In model cell lines, expression leads to CCL5 down-regulation with both constitutive and inducible signaling. Here, immunomodulation pathways are investigated in human leukocytes permissive for infection. Constitutive signaling was shown using inositol phosphate assays and inducible calcium signaling by response to CCL2, CCL5 and CCL11. Constitutive signaling targets were examined using an immune response-related microarray and RT-PCR, showing down-regulation of CCL5 and FOG-2, a hematopoietic transcriptional repressor. By RT-PCR and siRNA reversion, CCL5 and FOG-2 were shown down-regulated, during peak U51A expression post infection. Two further active ligands, XCL1 and CCL19, were identified, making U51A competitor to their human receptors, XCR1 and CCR7, on T lymphocytes, NK and dendritic cells. Finally, U51A-expressing cell lines and infected ex vivo leukocytes, showed migration towards chemokine-gradients, and chemokine internalization. Consequently, U51A may affect virus dissemination or host transmission by chemotaxis of infected cells to sites of chemokine secretion specific for U51A (for example the lymph node or lung, by CCL19 or CCL11, respectively) and evade immune-effector cells by chemokine diversion and down-regulation, affecting virus spread and inflammatory pathology.
Collapse
MESH Headings
- Binding, Competitive
- Calcium Signaling/drug effects
- Cell Line, Tumor
- Chemokine CCL11/pharmacology
- Chemokine CCL19/metabolism
- Chemokine CCL19/pharmacology
- Chemokine CCL2/metabolism
- Chemokine CCL2/pharmacology
- Chemokine CCL5/genetics
- Chemokine CCL5/pharmacology
- Chemokines/metabolism
- Chemokines/pharmacology
- Chemokines, C/metabolism
- Chemokines, C/pharmacology
- Chemotaxis/drug effects
- Chemotaxis/immunology
- DNA-Binding Proteins/genetics
- Down-Regulation/genetics
- Endocytosis/drug effects
- Endocytosis/immunology
- Herpesvirus 6, Human/immunology
- Humans
- Inositol Phosphates/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Molecular Mimicry
- RNA, Small Interfering/genetics
- Receptors, CCR7/genetics
- Receptors, Chemokine/agonists
- Receptors, Chemokine/physiology
- Receptors, G-Protein-Coupled/genetics
- Receptors, Virus/agonists
- Receptors, Virus/physiology
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Julie Catusse
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cantor AB, Iwasaki H, Arinobu Y, Moran TB, Shigematsu H, Sullivan MR, Akashi K, Orkin SH. Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. ACTA ACUST UNITED AC 2008; 205:611-24. [PMID: 18299398 PMCID: PMC2275384 DOI: 10.1084/jem.20070544] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The zinc finger transcription factor GATA-1 requires direct physical interaction with the cofactor friend of GATA-1 (FOG-1) for its essential role in erythroid and megakaryocytic development. We show that in the mast cell lineage, GATA-1 functions completely independent of FOG proteins. Moreover, we demonstrate that FOG-1 antagonizes the fate choice of multipotential progenitor cells for the mast cell lineage, and that its down-regulation is a prerequisite for mast cell development. Remarkably, ectopic expression of FOG-1 in committed mast cell progenitors redirects them into the erythroid, megakaryocytic, and granulocytic lineages. These lineage switches correlate with transcriptional down-regulation of GATA-2, an essential mast cell GATA factor, via switching of GATA-1 for GATA-2 at a key enhancer element upstream of the GATA-2 gene. These findings illustrate combinatorial control of cell fate identity by a transcription factor and its cofactor, and highlight the role of transcriptional networks in lineage determination. They also provide evidence for lineage instability during early stages of hematopoietic lineage commitment.
Collapse
Affiliation(s)
- Alan B Cantor
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Roche AE, Bassett BJ, Samant SA, Hong W, Blobel GA, Svensson EC. The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. J Mol Cell Cardiol 2008; 44:352-60. [PMID: 18067919 PMCID: PMC2277079 DOI: 10.1016/j.yjmcc.2007.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/27/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression. To determine the mechanism by which the FOG Repression Motif functions, we identified 7 polypeptides from rat cardiac nuclear extracts that co-purified with a GST-FOG-2 fusion protein. All proteins identified are members of the NuRD nucleosome remodeling complex. Using in vitro binding and co-immunoprecipitation assays, we demonstrate that Metastasis-Associated proteins (MTA)-1, 2 and 3 and Retinoblastoma binding proteins RbAp46 and RbAp48 interact with FOG-2, but not with a mutant form of FOG-2 that is unable to repress transcription. Furthermore, we define a novel domain located in the C-terminal portion of MTA-1 that mediates the FOG-2/MTA-1 interaction. We also demonstrate that knockdown of MTA protein expression dramatically impairs the ability of FOG-2 to repress GATA4 activity. Finally, we show that the zinc finger domain of MTA-1 is required for FOG-2-mediated transcriptional repression and that this domain interacts with RbAp46 and RbAp48 subunits of the NuRD complex. Together, these results demonstrate the importance of FOG-2/MTA/RbAp interactions for FOG-2-mediated transcriptional repression and further define the molecular interactions between the FOG Repression Motif and the NuRD complex.
Collapse
Affiliation(s)
- Andrea E. Roche
- Committee on Developmental Biology, University of Chicago, Chicago, IL
| | | | | | - Wei Hong
- Division of Hematology, Children’s Hospital of Philadelphia, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, PA
- University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Eric C. Svensson
- Committee on Developmental Biology, University of Chicago, Chicago, IL
- Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
44
|
Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 2007; 26:6777-6794. [PMID: 17934485 DOI: 10.1038/sj.onc.1210761] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional networks orchestrate fundamental biological processes, including hematopoiesis, in which hematopoietic stem cells progressively differentiate into specific progenitors cells, which in turn give rise to the diverse blood cell types. Whereas transcription factors recruit coregulators to chromatin, leading to targeted chromatin modification and recruitment of the transcriptional machinery, many questions remain unanswered regarding the underlying molecular mechanisms. Furthermore, how diverse cell type-specific transcription factors function cooperatively or antagonistically in distinct cellular contexts is poorly understood, especially since genes in higher eukaryotes commonly encompass broad chromosomal regions (100 kb and more) and are littered with dispersed regulatory sequences. In this article, we describe an important set of transcription factors and coregulators that control erythropoiesis and highlight emerging transcriptional mechanisms and principles. It is not our intent to comprehensively survey all factors implicated in the transcriptional control of erythropoiesis, but rather to underscore specific mechanisms, which have potential to be broadly relevant to transcriptional control in diverse systems.
Collapse
Affiliation(s)
- S-I Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI 53706, USA
| | | |
Collapse
|
45
|
Ramakrishna S, Kim IM, Petrovic V, Malin D, Wang IC, Kalin TV, Meliton L, Zhao YY, Ackerson T, Qin Y, Malik AB, Costa RH, Kalinichenko VV. Myocardium defects and ventricular hypoplasia in mice homozygous null for the Forkhead Box M1 transcription factor. Dev Dyn 2007; 236:1000-13. [PMID: 17366632 DOI: 10.1002/dvdy.21113] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Forkhead Box m1 (Foxm1) transcription factor is expressed in cardiomyocytes and cardiac endothelial cells during heart development. In this study, we used a novel Foxm1 -/- mouse line to demonstrate that Foxm1-deletion causes ventricular hypoplasia and diminished DNA replication and mitosis in developing cardiomyocytes. Proliferation defects in Foxm1 -/- hearts were associated with a reduced expression of Cdk1-activator Cdc25B phosphatase and NFATc3 transcription factor, and with abnormal nuclear accumulation of the Cdk-inhibitor p21(Cip1) protein. Depletion of Foxm1 levels by siRNA caused altered expression of these genes in cultured HL-1 cardiomyocytes. Endothelial-specific deletion of the Foxm1 fl/fl allele in Tie2-Cre Foxm1 fl/fl embryos did not influence heart development and cardiomyocyte proliferation. Foxm1 protein binds to the -9,259/-9,288-bp region of the endogenous mouse NFATc3 promoter, indicating that Foxm1 is a transcriptional activator of the NFATc3 gene. Foxm1 regulates expression of genes essential for the proliferation of cardiomyocytes during heart development.
Collapse
|
46
|
Tokusumi T, Russell M, Gajewski K, Fossett N, Schulz RA. U-shaped protein domains required for repression of cardiac gene expression in Drosophila. Differentiation 2007; 75:166-74. [PMID: 17316386 DOI: 10.1111/j.1432-0436.2006.00120.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
U-shaped is a zinc finger protein that functions predominantly as a negative transcriptional regulator of cell fate determination during Drosophila development. In the early stages of dorsal vessel formation, the protein acts to control cardioblast specification, working as a negative attenuator of the cardiogenic GATA factor Pannier. Pannier and the homeodomain protein Tinman normally work together to specify heart cells and activate cardioblast gene expression. One target of this positive regulation is a heart enhancer of the D-mef2 gene and U-shaped has been shown to antagonize enhancer activation by Pannier and Tinman. We have mapped protein domains of U-shaped required for its repression of cardioblast gene expression. Such studies showed GATA factor interacting zinc fingers of U-shaped are required for enhancer repression, as well as three small motifs that are likely needed for co-factor binding and/or protein modification. These analyses have also allowed for the definition of a 253 amino acid interval of U-shaped that is essential for its nuclear localization. Together, these findings provide molecular insights into the function of U-shaped as a negative regulator of heart development in Drosophila.
Collapse
Affiliation(s)
- Tsuyoshi Tokusumi
- Department of Biochemistry and Molecular Biology, Program in Genes & Development, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
47
|
Bond HM, Mesuraca M, Amodio N, Mega T, Agosti V, Fanello D, Pelaggi D, Bullinger L, Grieco M, Moore MAS, Venuta S, Morrone G. Early hematopoietic zinc finger protein-zinc finger protein 521: a candidate regulator of diverse immature cells. Int J Biochem Cell Biol 2007; 40:848-54. [PMID: 17543573 DOI: 10.1016/j.biocel.2007.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 12/12/2022]
Abstract
The early hematopoietic zinc finger protein/zinc finger protein 521 (EHZF/ZNF521) is a recently identified, 1131 amino-acid-long nuclear factor that contains 30 zinc fingers distributed in clusters throughout its sequence. A 13-AA motif, that binds to components of the nuclear remodelling and histone deacetylation (NuRD) complex and is conserved in several trascriptional co-repressors, is located at the amino-terminal end of the molecule. EHZF/ZNF521 expression is high in the most immature cells of the haematopoietic system and declines with differentiation. Its transcript is also abundant in brain, particularly in the cerebellum. Its murine counterpart, Evi3/Zfp521, is enriched in haematopoietic and neural stem cells, in cerebellar granule neuron precursors and in the developing striatum. Enforced expression of EHZF/ZNF521 in haematopoietic progenitors results in their expansion and in inhibition of differentiation. EHZF/ZNF521 is a member of the BMP signalling pathway and an inhibitor of the transcription factor OLF1/EBF1, implicated in the differentiation of neural progenitors and in the specification of the B-cell lineage. EHZF expression is observed in most acute myelogenous leukaemias and is particularly high in those with rearrangements of the MLL gene, where EHZF may contribute to the leukaemic phenotype. EHZF/ZNF521 is also abundant in medulloblastomas and other brain tumours. Taken together, the data available suggest a possible role for this factor in development, stem cell regulation and oncogenesis.
Collapse
Affiliation(s)
- Heather M Bond
- Laboratory of Molecular Haematopoiesis, Department of Experimental and Clinical Medicine, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dale RM, Remo BF, Svensson EC. An alternative transcript of the FOG-2 gene encodes a FOG-2 isoform lacking the FOG repression motif. Biochem Biophys Res Commun 2007; 357:683-7. [PMID: 17445768 PMCID: PMC1971242 DOI: 10.1016/j.bbrc.2007.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/02/2007] [Indexed: 11/29/2022]
Abstract
The FOG family of transcriptional co-factors is composed of two members in mammals: FOG-1 and FOG-2. Both have been shown to bind to GATA factors and function as transcriptional co-repressors in specific cell and promoter contexts. We have previously defined a novel repression domain localized to the N-terminus of each FOG family member, the FOG repression motif, which is necessary for FOG-mediated transcriptional repression. In this report, we describe the identification and characterization of a novel isoform of FOG-2 lacking the FOG repression motif. In contrast to full-length FOG-2, this isoform is expressed predominately in the embryonic and adult heart. It can bind GATA4 avidly, but is unable to repress GATA4-mediated activation of cardiac-restricted gene promoters. Together, these results suggest that FOG-2 repressive activity may be modulated by the generation of isoforms of FOG-2 lacking the FOG repression motif.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6088, Chicago, IL 60637, USA
| | | | | |
Collapse
|
49
|
Flagg AE, Earley JU, Svensson EC. FOG-2 attenuates endothelial-to-mesenchymal transformation in the endocardial cushions of the developing heart. Dev Biol 2006; 304:308-16. [PMID: 17274974 PMCID: PMC1868509 DOI: 10.1016/j.ydbio.2006.12.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 12/04/2006] [Accepted: 12/17/2006] [Indexed: 11/30/2022]
Abstract
Development of the heart valves is a complex process that relies on the successful remodeling of endocardial cushions. This process is dependent on a number of transcriptional regulators, including GATA4 and its interacting partner FOG-2. We have previously shown that the endocardial cushions in FOG-2 deficient mice are hyperplastic and fail to remodel appropriately, suggesting a defect late in endocardial cushion development. To elucidate this defect, we examined the later steps in endocardial cushion development including mesenchymal cell proliferation, differentiation, and apoptosis. We also measured myocardialization and endothelial-to-mesenchymal transformation (EMT) using previously described in vitro assays. We found no difference in the ability of the endocardial cushions to undergo myocardialization or in the rates of mesenchymal cell proliferation, differentiation, or apoptosis in the FOG-2 deficient cushions when compared to wild-type controls. However, using a collagen gel invasion assay, we found a 78% increase in outflow tract cushion EMT and a 35% increase in atrioventricular cushion EMT in the FOG-2 deficient mice when compared with wild-type mice. Taken together with GATA4's known role in promoting EMT, these results suggest that FOG-2 functions in cardiac valve formation as an attenuator of EMT by repressing GATA4 activity within the developing endocardial cushions.
Collapse
Affiliation(s)
- Alleda E Flagg
- Department of Medicine, University of Chicago, Section of Cardiology, 5841 S. Maryland Ave, MC6088, Chicago, IL 60637, USA
| | | | | |
Collapse
|
50
|
Lauberth SM, Rauchman M. A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J Biol Chem 2006; 281:23922-31. [PMID: 16707490 DOI: 10.1074/jbc.m513461200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sall1 is a multi-zinc finger transcription factor that represses gene expression and regulates organogenesis. In this report, we further characterize the domain of Sall1 necessary for repression. We show that endogenous Sall1 binds to the nucleosome remodeling and deacetylase corepressor complex (NuRD) and confirm the functionality of the Sall1-associating macromolecular complex by showing that the complex possesses HDAC activity. NuRD is involved in global transcriptional repression and regulation of specific developmental processes. The mechanism by which sequence-specific DNA-binding proteins associate with NuRD is not well understood. We have identified a highly conserved 12-amino acid motif in the transcription factor Sall1 that is sufficient for the recruitment of NuRD. Single amino acid substitutions defined the critical amino acid peptide motif as RRKQXK-PXXF. This motif probably exhibits a more general role in regulating gene expression, since other proteins containing this domain, including all Sall family members and an unrelated zinc finger protein Ebfaz, mediate transcriptional repression and associate with NuRD. These results also have important implications for the pathogenesis of Townes-Brocks, a syndrome caused by SALL1 mutations.
Collapse
Affiliation(s)
- Shannon M Lauberth
- Department of Biochemistry and Molecular Biology, Veterans Affairs Medical Center, Saint Louis University, St. Louis, Missouri 63106, USA
| | | |
Collapse
|