1
|
Chen N, Wang X, Guo Y, Zhao M, Cao B, Zhan B, Li Y, Zhou T, Zhu F, Guo C, Shi Y, Wang Q, Zhang L, Li Y. IL-37d suppresses Rheb-mTORC1 axis independently of TCS2 to alleviate alcoholic liver disease. Commun Biol 2024; 7:756. [PMID: 38907105 PMCID: PMC11192940 DOI: 10.1038/s42003-024-06427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Tuberous sclerosis complex 2 (TSC2) crucially suppresses Rheb activity to prevent mTORC1 activation. However, mutations in TSC genes lead to mTORC1 overactivation, thereby causing various developmental disorders and cancer. Therefore, the discovery of novel Rheb inhibitors is vital to prevent mTOR overactivation. Here, we reveals that the anti-inflammatory cytokine IL-37d can bind to lysosomal Rheb and suppress its activity independent of TSC2, thereby preventing mTORC1 activation. The binding of IL-37d to Rheb switch-II subregion destabilizes the Rheb-mTOR and mTOR-S6K interactions, further halting mTORC1 signaling. Unlike TSC2, IL-37d is reduced under ethanol stimulation, which results in mitigating the suppression of lysosomal Rheb-mTORC1 activity. Consequently, the recombinant human IL-37d protein (rh-IL-37d) with a TAT peptide greatly improves alcohol-induced liver disorders by hindering Rheb-mTORC1 axis overactivation in a TSC2- independent manner. Together, IL-37d emerges as a novel Rheb suppressor independent of TSC2 to terminate mTORC1 activation and improve abnormal lipid metabolism in the liver.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xiaoyu Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chun Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
3
|
Fu W, Wu G. Design of negative-regulating proteins of Rheb/mTORC1 with much-reduced sizes of the tuberous sclerosis protein complex. Protein Sci 2023; 32:e4731. [PMID: 37462942 PMCID: PMC10382911 DOI: 10.1002/pro.4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.
Collapse
Affiliation(s)
- Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOEShanghai Jiao Tong UniversityShanghaiChina
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOEShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
4
|
Armijo ME, Escalona E, Peña D, Farias A, Morin V, Baumann M, Klebl BM, Pincheira R, Castro AF. Blocking the Farnesyl Pocket of PDEδ Reduces Rheb-Dependent mTORC1 Activation and Survival of Tsc2-Null Cells. Front Pharmacol 2022; 13:912688. [PMID: 35814251 PMCID: PMC9260180 DOI: 10.3389/fphar.2022.912688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Rheb is a small GTPase member of the Ras superfamily and an activator of mTORC1, a protein complex master regulator of cell metabolism, growth, and proliferation. Rheb/mTORC1 pathway is hyperactivated in proliferative diseases, such as Tuberous Sclerosis Complex syndrome and cancer. Therefore, targeting Rheb-dependent signaling is a rational strategy for developing new drug therapies. Rheb activates mTORC1 in the cytosolic surface of lysosomal membranes. Rheb’s farnesylation allows its anchorage on membranes, while its proper localization depends on the prenyl-binding chaperone PDEδ. Recently, the use of PDEδ inhibitors has been proposed as anticancer agents because they interrupted KRas signaling leading to antiproliferative effects in KRas-dependent pancreatic cancer cells. However, the effect of PDEδ inhibition on the Rheb/mTORC1 pathway has been poorly investigated. Here, we evaluated the impact of a new PDEδ inhibitor, called Deltasonamide 1, in Tsc2-null MEFs, a Rheb-dependent overactivated mTORC1 cell line. By using a yeast two-hybrid assay, we first validated that Deltasonamide 1 disrupts Rheb-PDEδ interaction. Accordingly, we found that Deltasonamide 1 reduces mTORC1 targets activation. In addition, our results showed that Deltasonamide 1 has antiproliferative and cytotoxic effects on Tsc2-null MEFs but has less effect on Tsc2-wild type MEFs viability. This work proposes the pharmacological PDEδ inhibition as a new approach to target the abnormal Rheb/mTORC1 activation in Tuberous Sclerosis Complex cells.
Collapse
Affiliation(s)
- Marisol Estrella Armijo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Emilia Escalona
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Daniela Peña
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alejandro Farias
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Violeta Morin
- Laboratorio de Proteasas y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- *Correspondence: Roxana Pincheira, ; Ariel Fernando Castro,
| | - Ariel Fernando Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- *Correspondence: Roxana Pincheira, ; Ariel Fernando Castro,
| |
Collapse
|
5
|
De Falco F, Perillo A, Del Piero F, Del Prete C, Zizzo N, Marcus I, Roperto S. ERAS Is Constitutively Expressed in the Tissues of Adult Horses and May Be a Key Player in Basal Autophagy. Front Vet Sci 2022; 9:818294. [PMID: 35685342 PMCID: PMC9171053 DOI: 10.3389/fvets.2022.818294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/03/2022] [Indexed: 01/18/2023] Open
Abstract
ERas is a new gene of the Ras family found in murine embryonic stem (ES) cells. Its human ortholog is not expressed in human ES cells. So far ERas gene has only been found to be expressed in the tissues of adult cynomolgus monkeys and cattle; however, information about ERAS expression or its potential functions in equine tissues is lacking. This study was performed to investigate whether Eras is an equine functional gene and whether ERAS is expressed in the tissues of adult horses and determine its potential physiological role. Expression of the ERas gene was detected in all examined adult tissues, and the RT-PCR assay revealed ERAS transcripts. Protein expression was also detected by Western blot analysis. Quantitative real time RT-qPCR analysis revealed that different expression levels of ERAS transcripts were most highly expressed in the testis. Immunohistochemically, ERAS was found to be localized prevalently in the plasmatic membrane as well as cytoplasm of the cells. ERAS was a physical partner of activated PDGFβR leading to the AKT signaling. ERAS was found to interact with a network of proteins (BAG3, CHIP, Hsc70/Hsp70, HspB8, Synpo2, and p62) known to play a role in the chaperone-assisted selective autophagy (CASA), which is also known as BAG3-mediated selective macroautophagy, an adaptive mechanism to maintain cellular homeostasis. Furthermore, ERAS was found to interact with parkin. PINK1, BNIP3, laforin. All these proteins are known to play a role in parkin-dependent and -independent mitophagy. This is the first study demonstrating that Eras is a functional gene, and that ERAS is constitutively expressed in the tissues of adult horses. ERAS appears to play a physiological role in cellular proteostasis maintenance, thus mitigating the proteotoxicity of accumulated misfolded proteins and contributing to protection against disease. Finally, it is conceivable that activation of AKT pathway by PDGFRs promotes actin reorganization, directed cell movements, stimulation of cell growth.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Antonella Perillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Fabio Del Piero
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory-LADDL, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Chiara Del Prete
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Nicola Zizzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Ioan Marcus
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- *Correspondence: Sante Roperto ; orcid.org/0000-0001-6210-5519
| |
Collapse
|
6
|
Zhong Y, Zhou X, Guan KL, Zhang J. Rheb regulates nuclear mTORC1 activity independent of farnesylation. Cell Chem Biol 2022; 29:1037-1045.e4. [PMID: 35294906 DOI: 10.1016/j.chembiol.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
The small GTPase Ras homolog enriched in brain (Rheb) plays a critical role in activating the mechanistic target of rapamycin complex 1 (mTORC1), a signaling hub that regulates various cellular functions. We recently observed nuclear mTORC1 activity, raising an intriguing question as to how Rheb, which is known to be farnesylated and localized to intracellular membranes, regulates nuclear mTORC1. In this study, we found that active Rheb is present in the nucleus and required for nuclear mTORC1 activity. We showed that inhibition of farnesyltransferase reduced cytosolic, but not nuclear, mTORC1 activity. Furthermore, a farnesylation-deficient Rheb mutant, with preferential nuclear localization and specific lysosome tethering, enables nuclear and cytosolic mTORC1 activities, respectively. These data suggest that non-farnesylated Rheb is capable of interacting with and activating mTORC1, providing mechanistic insights into the molecular functioning of Rheb as well as regulation of the recently observed, active pool of nuclear mTORC1.
Collapse
Affiliation(s)
- Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Zhang S, Lin X, Hou Q, Hu Z, Wang Y, Wang Z. Regulation of mTORC1 by amino acids in mammalian cells: A general picture of recent advances. ACTA ACUST UNITED AC 2021; 7:1009-1023. [PMID: 34738031 PMCID: PMC8536509 DOI: 10.1016/j.aninu.2021.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates various types of signal inputs, such as energy, growth factors, and amino acids to regulate cell growth and proliferation mainly through the 2 direct downstream targets, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and ribosomal protein S6 kinase 1 (S6K1). Most of the signal arms upstream of mTORC1 including energy status, stress signals, and growth factors converge on the tuberous sclerosis complex (TSC) - Ras homologue enriched in brain (Rheb) axis. Amino acids, however, are distinct from other signals and modulate mTORC1 using a unique pathway. In recent years, the transmission mechanism of amino acid signals upstream of mTORC1 has been gradually elucidated, and some sensors or signal transmission pathways for individual amino acids have also been discovered. With the help of these findings, we propose a general picture of recent advances, which demonstrates that various amino acids from lysosomes, cytoplasm, and Golgi are sensed by their respective sensors. These signals converge on mTORC1 and form a huge and complicated signal network with multiple synergies, antagonisms, and feedback mechanisms.
Collapse
Affiliation(s)
- Shizhe Zhang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Xueyan Lin
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Qiuling Hou
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Zhiyong Hu
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Yun Wang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Zhonghua Wang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| |
Collapse
|
8
|
Rio-Vilariño A, del Puerto-Nevado L, García-Foncillas J, Cebrián A. Ras Family of Small GTPases in CRC: New Perspectives for Overcoming Drug Resistance. Cancers (Basel) 2021; 13:3757. [PMID: 34359657 PMCID: PMC8345156 DOI: 10.3390/cancers13153757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
Collapse
Affiliation(s)
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| | - Arancha Cebrián
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| |
Collapse
|
9
|
Sato T, Mukai S, Ikeda H, Mishiro-Sato E, Akao K, Kobayashi T, Hino O, Shimono W, Shibagaki Y, Hattori S, Sekido Y. Silencing of SmgGDS, a Novel mTORC1 Inducer That Binds to RHEBs, Inhibits Malignant Mesothelioma Cell Proliferation. Mol Cancer Res 2021; 19:921-931. [PMID: 33574130 DOI: 10.1158/1541-7786.mcr-20-0637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/15/2020] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive tumor that typically develops after a long latency following asbestos exposure. Although mechanistic target of rapamycin complex 1 (mTORC1) activation enhances MM cell growth, the mTORC1 inhibitor everolimus has shown limited efficacy in clinical trials of MM patients. We explored the mechanism underlying mTORC1 activation in MM cells and its effects on cell proliferation and progression. Analysis of the expression profiles of 87 MMs from The Cancer Genome Atlas revealed that 40 samples (46%) displayed altered expression of RPTOR (mTORC1 component) and genes immediately upstream that activate mTORC1. Among them, we focused on RHEB and RHEBL1, which encode direct activators of mTORC1. Exogenous RHEBL1 expression enhanced MM cell growth, indicating that RHEB-mTORC1 signaling acts as a pro-oncogenic cascade. We investigated molecules that directly activate RHEBs, identifying SmgGDS as a novel RHEB-binding protein. SmgGDS knockdown reduced mTORC1 activation and inhibited the proliferation of MM cells with mTORC1 activation. Interestingly, SmgGDS displayed high binding affinity with inactive GDP-bound RHEBL1, and its knockdown reduced cytosolic RHEBL1 without affecting its activation. These findings suggest that SmgGDS retains GDP-bound RHEBs in the cytosol, whereas GTP-bound RHEBs are localized on intracellular membranes to promote mTORC1 activation. We revealed a novel role for SmgGDS in the RHEB-mTORC1 pathway and its potential as a therapeutic target in MM with aberrant mTORC1 activation. IMPLICATIONS: Our data showing that SmgGDS regulates RHEB localization to activate mTORC1 indicate that SmgGDS can be used as a new therapeutic target for MM exhibiting mTORC1 activation.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Satomi Mukai
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Haruna Ikeda
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Emi Mishiro-Sato
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Ken Akao
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Wataru Shimono
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshio Shibagaki
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Seisuke Hattori
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan. .,Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
10
|
Yin S, Liu L, Gan W. The Roles of Post-Translational Modifications on mTOR Signaling. Int J Mol Sci 2021; 22:ijms22041784. [PMID: 33670113 PMCID: PMC7916890 DOI: 10.3390/ijms22041784] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth, proliferation, and metabolism by integrating various environmental inputs including growth factors, nutrients, and energy, among others. mTOR signaling has been demonstrated to control almost all fundamental cellular processes, such as nucleotide, protein and lipid synthesis, autophagy, and apoptosis. Over the past fifteen years, mapping the network of the mTOR pathway has dramatically advanced our understanding of its upstream and downstream signaling. Dysregulation of the mTOR pathway is frequently associated with a variety of human diseases, such as cancers, metabolic diseases, and cardiovascular and neurodegenerative disorders. Besides genetic alterations, aberrancies in post-translational modifications (PTMs) of the mTOR components are the major causes of the aberrant mTOR signaling in a number of pathologies. In this review, we summarize current understanding of PTMs-mediated regulation of mTOR signaling, and also update the progress on targeting the mTOR pathway and PTM-related enzymes for treatment of human diseases.
Collapse
|
11
|
Migliori AD, Patel LA, Neale C. The RIT1 C-terminus associates with lipid bilayers via charge complementarity. Comput Biol Chem 2021; 91:107437. [PMID: 33517146 DOI: 10.1016/j.compbiolchem.2021.107437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
RIT1 is a member of the Ras superfamily of small GTPases involved in regulation of cellular signaling. Mutations to RIT1 are involved in cancer and developmental disorders. Like many Ras subfamily members, RIT1 is localized to the plasma membrane. However, RIT1 lacks the C-terminal prenylation that helps many other subfamily members adhere to cellular membranes. We used molecular dynamics simulations to examine the mechanisms by which the C-terminal peptide (CTP) of RIT1 associates with lipid bilayers. We show that the CTP is unstructured and that its membrane interactions depend on lipid composition. While a 12-residue region of the CTP binds strongly to anionic bilayers containing phosphatidylserine lipids, the CTP termini fray from the membrane allowing for accommodation of the RIT1 globular domain at the membrane-water interface.
Collapse
Affiliation(s)
- Amy D Migliori
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | - Lara A Patel
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | - Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States.
| |
Collapse
|
12
|
Borini Etichetti CM, Arel Zalazar E, Cocordano N, Girardini J. Beyond the Mevalonate Pathway: Control of Post-Prenylation Processing by Mutant p53. Front Oncol 2020; 10:595034. [PMID: 33224889 PMCID: PMC7674641 DOI: 10.3389/fonc.2020.595034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Missense mutations in the TP53 gene are among the most frequent alterations in human cancer. Consequently, many tumors show high expression of p53 point mutants, which may acquire novel activities that contribute to develop aggressive tumors. An unexpected aspect of mutant p53 function was uncovered by showing that some mutants can increase the malignant phenotype of tumor cells through alteration of the mevalonate pathway. Among metabolites generated through this pathway, isoprenoids are of particular interest, since they participate in a complex process of posttranslational modification known as prenylation. Recent evidence proposes that mutant p53 also enhances this process through transcriptional activation of ICMT, the gene encoding the methyl transferase responsible for the last step of protein prenylation. In this way, mutant p53 may act at different levels to promote prenylation of key proteins in tumorigenesis, including several members of the RAS and RHO families. Instead, wild type p53 acts in the opposite way, downregulating mevalonate pathway genes and ICMT. This oncogenic circuit also allows to establish potential connections with other metabolic pathways. The demand of acetyl-CoA for the mevalonate pathway may pose limitations in cell metabolism. Likewise, the dependence on S-adenosyl methionine for carboxymethylation, may expose cells to methionine stress. The involvement of protein prenylation in tumor progression offers a novel perspective to understand the antitumoral effects of mevalonate pathway inhibitors, such as statins, and to explore novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Evelyn Arel Zalazar
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| | - Nabila Cocordano
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| | - Javier Girardini
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| |
Collapse
|
13
|
Prohibitin 2 is Involved in Parkin-Mediated Mitophagy in Urothelial Cells of Cattle Infected with Bovine Papillomavirus. Pathogens 2020; 9:pathogens9080621. [PMID: 32751272 PMCID: PMC7460215 DOI: 10.3390/pathogens9080621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
Prohibitin 2 (PHB2), an inner mitochondrial membrane (IMM) protein, has recently been identified as a novel receptor involved in parkin-mediated mitophagy. In the field of veterinary medicine, the role of PHB2 in parkin-mediated mitophagy was described, for the first time, in urothelial cells of cattle, naturally infected with bovine papillomavirus (BPV). The BPV2 and BPV13 E5 oncoprotein, responsible for abortive infections in urothelial cells, was detected by RT-PCR. Severe ultrastructural abnormalities of the inner mitochondrial membrane were detected using transmission electron microscopy. PHB2 formed a functional complex with PHB1. PHB2 was significantly overexpressed in mitochondrial fractions from urothelial mucosa samples taken from cattle harbouring BPV infection. PHB2 overexpression could be attributed to mitochondrial dysfunction, as its expression levels in the cytosolic, microsomal, and nuclear fractions were seen to be unmodified. Immunoprecipitation studies revealed the interaction between PHB2 and phosphorylated forms of both PINK1 and parkin. Furthermore, PHB2 interacted with LC3-II, a marker of autophagosomal membranes and autophagy receptors, such as p62 and optineurin. PHB2 was shown to interact with transcription factor EB (TFEB), which is activated following parkin-mediated mitophagy, and embryonic stem cell-expressed Ras (ERAS), a constitutive protein coded by ERas. Western blot analysis revealed a significant overexpression of unphosphorylated TFEB in mitochondrial and nuclear fractions from urothelial mucosa samples from cattle suffering from BPV infection. Finally, PHB2 interacted with ERAS, believed to be involved in mitophagosome maturation. Taken together, the molecular and ultrastructural findings of this study suggested that BPV infection is responsible for parkin-dependent mitophagy, in the pathway of which PHB2 plays a crucial role.
Collapse
|
14
|
Prakash P. A regulatory role of membrane by direct modulation of the catalytic kinase domain. Small GTPases 2020; 12:246-256. [PMID: 32663062 DOI: 10.1080/21541248.2020.1788886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell membrane modulates the function and activity of specific proteins and acts more than just a non-specific scaffolding machinery. In this review, I focus on studies that highlight a direct membrane-mediated modulation of the catalytic kinase domain of a variety of kinases thereby regulating the kinase activity. It emerges that membrane provides a second level of regulation once kinase domain is relieved of its inactive auto-inhibitory state. For the first time a generalized regulatory role of membrane is proposed that governs the kinase activity by modulating the catalytic kinase domain. Striking similarities among a variety of multi-domain kinases as well as single-domain lipidated enzymes such as RAS proteins are presented.
Collapse
Affiliation(s)
- Priyanka Prakash
- Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
15
|
Abstract
A complex molecular machinery converges on the surface of lysosomes to ensure that the growth-promoting signaling mediated by mechanistic target of rapamycin complex 1 (mTORC1) is tightly controlled by the availability of nutrients and growth factors. The final step in this activation process is dependent on Rheb, a small GTPase that binds to mTOR and allosterically activates its kinase activity. Here we review the mechanisms that determine the subcellular localization of Rheb (and the closely related RhebL1 protein) as well as the significance of these mechanisms for controlling mTORC1 activation. In particular, we explore how the relatively weak membrane interactions conferred by C-terminal farnesylation are critical for the ability of Rheb to activate mTORC1. In addition to supporting transient membrane interactions, Rheb C-terminal farnesylation also supports an interaction between Rheb and the δ subunit of phosphodiesterase 6 (PDEδ). This interaction provides a potential mechanism for targeting Rheb to membranes that contain Arl2, a small GTPase that triggers the release of prenylated proteins from PDEδ. The minimal membrane targeting conferred by C-terminal farnesylation of Rheb and RhebL1 distinguishes them from other members of the Ras superfamily that possess additional membrane interaction motifs that work with farnesylation for enrichment on the specific subcellular membranes where they engage key effectors. Finally, we highlight diversity in Rheb membrane targeting mechanisms as well as the potential for alternative mTORC1 activation mechanisms across species.
Collapse
Affiliation(s)
- Brittany Angarola
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
16
|
De Falco F, Urraro C, Cutarelli A, Roperto S. Bovine papillomavirus E5 oncoprotein upregulates parkin-dependent mitophagy in urothelial cells of cattle with spontaneous papillomavirus infection: A mechanistic study. Comp Immunol Microbiol Infect Dis 2020; 70:101463. [PMID: 32146261 DOI: 10.1016/j.cimid.2020.101463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed to provide mechanistic insights into mitophagy pathway associated with papillomavirus infection in urothelial cells of cattle. The elimination of mitochondria via autophagy, termed mitophagy, is an evolutionarily conserved mechanism for mitochondrial quality control and homeostasis. PINK1/parkin-mediated mitophagy, a ubiquitin-dependent selective autophagy of dysfunctional mitochondria, has been described here, for the first time, in urothelial cells from 25 bladder cancers in cattle infected by bovine papillomavirus (BPV). The expression of BPV-2 and BPV-13 E5 oncoprotein was detected by RT-PCR. Abnormal mitochondria delimited by expanding phagophores, were peculiar ultrastructural features of neoplastic urothelial cells. High levels of mitochondrial phosphorylated PINK1/parkin were observed in neoplastic urothelial cells infected by BPVs. Phosphoparkin interacted with mitofusin 2 (Mfn2) and ubiquitin (Ub), which confirmed that Mfn2 is a parkin receptor at the mitochondrial level, where parkin interacted also with Ub. Furthermore, parkin established a complex that was comprised of optineurin, p62, LC3, laforin, and embryonic stem cell-expressed Ras (ERAS), that interacted with BPV E5 oncoprotein, and Bag3, which, in turn, regulated the formation of a complex composed of Hpc70/Hsp70, CHIP, an HSC70-interacting E3 ubiquitin ligase. It is conceivable that ERAS is involved in mitophagosome maturation via phosphatidylinositol 3-kinase (PI3K) pathway. Bag3, in association with Hsc70/Hsp70, may contribute to the transport and degradation of CHIP-ubiquitinated cargo as this complex recognises ubiquitinated cargos and transports them to aggresomes to be degraded. Furthermore, Bag3 may be involved in mitophagosome formation as it interacted with synaptopodin 2, which is known to play a role in mitophagosome biogenesis.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Chiara Urraro
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, NA, Italy
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
17
|
Angarola B, Ferguson SM. Weak membrane interactions allow Rheb to activate mTORC1 signaling without major lysosome enrichment. Mol Biol Cell 2019; 30:2750-2760. [PMID: 31532697 PMCID: PMC6789162 DOI: 10.1091/mbc.e19-03-0146] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Stable localization of the Rheb GTPase to lysosomes is thought to be required for activation of mTOR complex 1 (mTORC1) signaling. However, the lysosome targeting mechanisms for Rheb remain unclear. We therefore investigated the relationship between Rheb subcellular localization and mTORC1 activation. Surprisingly, we found that Rheb was undetectable at lysosomes. Nonetheless, functional assays in knockout human cells revealed that farnesylation of the C-terminal CaaX motif on Rheb was essential for Rheb-dependent mTORC1 activation. Although farnesylated Rheb exhibited partial endoplasmic reticulum (ER) localization, constitutively targeting Rheb to ER membranes did not support mTORC1 activation. Further systematic analysis of Rheb lipidation revealed that weak, nonselective, membrane interactions support Rheb-dependent mTORC1 activation without the need for a specific lysosome targeting motif. Collectively, these results argue against stable interactions of Rheb with lysosomes and instead that transient membrane interactions optimally allow Rheb to activate mTORC1 signaling.
Collapse
Affiliation(s)
- Brittany Angarola
- Departments of Cell Biology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Shawn M Ferguson
- Departments of Cell Biology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
18
|
Chen YW, Yeh YC, Chen HF, Chen RC, Lin GY, Chen YT, Lan CY. The small GTPase Rhb1 is involved in the cell response to fluconazole in Candida albicans. FEMS Yeast Res 2019; 19:5288341. [PMID: 30649293 DOI: 10.1093/femsyr/foz005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
Candida albicans is an important fungal pathogen in humans. Rhb1 is a small GTPase of the Ras superfamily and is conserved from yeasts to humans. In C. albicans, Rhb1 regulates the expression of secreted protease 2, low nitrogen-mediated morphogenesis, and biofilm formation. Moreover, our previous studies have indicated that Rhb1 is associated with the target of rapamycin (TOR) signaling pathway. In this study, we further explored the relationship between Rhb1 and drug susceptibility. The RHB1 deletion mutant exhibited reduced fluconazole susceptibility, and this phenotype occurred mainly through the increased gene expression and activity of efflux pumps. In addition, Mrr1 and Tac1 are transcription factors that can activate efflux pump gene expression. However, the RHB1 deletion, RHB1/MRR1 and RHB1/TAC1 double deletion mutants had no significant differences in efflux pump gene expression and fluconazole susceptibility, suggesting that Rhb1-regulated efflux pump genes do not act through Mrr1 and Tac1. We also showed that membrane localization is crucial for Rhb1 activity in response to fluconazole. Finally, Rhb1 was linked not only to the TOR but also to the Mkc1 mitogen-activated protein kinase signaling pathway in response to fluconazole. In sum, this study unveiled a new role of Rhb1 in the regulation of C. albicans drug susceptibility.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Chieh Yeh
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsueh-Fen Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Ching Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Guan-Yu Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
19
|
Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Vet Microbiol 2019; 236:108396. [PMID: 31500722 DOI: 10.1016/j.vetmic.2019.108396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a powerful tool that host cells use to defend against viral infection. Mitophagy, the selective autophagic removal of dysfunctional mitochondria was upregulated in urothelial cancer cells harbouring bovine papillomavirus (BPV) infection, as detected by the expression of BPV E5 protein, the major oncoprotein of bovine Deltapapillomavirus genus. HIF-1α-induced mitophagy receptors, BNIP3 and BNIP3L/Nix, were found to be overexpressed in these cells. The BNIP3 and BNIP3L/Nix receptors were amplified, and amplicon sequencing showed homology between bovine BNPI3 and BNIP3L/Nix sequences deposited in GenBank (accession number: NM_001076366.1 and NM_001034614.2, respectively). The transcripts and protein levels of BNIP3 and BNIP3L/Nix were significantly overexpressed in hypoxic neoplastic cells relative to healthy, non-neoplastic cells. BNIP3 and BNIP3L/Nix interacted with the LC3 protein, a marker of autophagosome (mitophagosome) membrane, ERAS, a small GTPase, and p62, known to be a specific autophagy receptor protein, that plays a role in mitochondrial priming for mitophagy and subsequent elimination. ERAS also interacted with the BPV E5 oncoprotein at mitochondrial level. Furthermore, in anti-Bag3 mitochondrial immunoprecipitates, a complex composed of the Hsc70/Hsp70 chaperone, CHIP co-chaperone, Synpo2, ERAS, LC3, p62, BNPI3, and BNIP3L/Nix was also detected. Bag3 may play a role in mitophagosome formation together with the Synpo2 protein and may be involved in the degradation of Hsc70/Hsp70-bound CHIP-ubiquitinated cargo, in association with its chaperone. ERAS may be involved in mitophagosome maturation via the PI3K signalling pathway. Ultrastructural findings revealed the presence of mitochondria exhibiting severe fragmentation and loss of cristae, as well as numerous mitochondria-containing autophagosomes.
Collapse
|
20
|
Sekiguchi T, Furuno N, Ishii T, Hirose E, Sekiguchi F, Wang Y, Kobayashi H. RagA, an mTORC1 activator, interacts with a hedgehog signaling protein, WDR35/IFT121. Genes Cells 2019; 24:151-161. [DOI: 10.1111/gtc.12663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Nobuaki Furuno
- Laboratory for Amphibian Biology, Graduate School of Science Hiroshima University Higashihiroshima Japan
| | - Takashi Ishii
- Department of BiochemistryFukuoka Dental College Fukuoka Japan
| | - Eiji Hirose
- Faculty of Health Promotional Sciences Tokoha University Kitaku, Shizuoka Japan
| | - Fumiko Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Yonggang Wang
- Department of Molecular Biology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Hideki Kobayashi
- Department of Human Nutrition, Faculty of Contemporary Life ScienceChugoku‐Gakuen University Okayama Japan
| |
Collapse
|
21
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
22
|
The Ras-related gene ERAS is involved in human and murine breast cancer. Sci Rep 2018; 8:13038. [PMID: 30158566 PMCID: PMC6115423 DOI: 10.1038/s41598-018-31326-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Although Ras genes are frequently mutated in human tumors, these mutations are uncommon in breast cancer. However, many breast tumors show evidences of Ras pathway activation. In this manuscript, we have analyzed and characterized mouse mammary tumors generated by random Sleeping Beauty transposon mutagenesis and identify ERAS -a member of the RAS family silenced in adult tissues- as a new gene involved in progression and malignancy of breast cancer. Forced expression of ERAS in human non-transformed mammary gland cells induces a process of epithelial-to-mesenchymal transition and an increase in stem cells markers; these changes are mediated by miR-200c downregulation. ERAS expression in human tumorigenic mammary cells leads to the generation of larger and less differentiated tumors in xenotransplant experiments. Immunohistochemical, RT-qPCR and bioinformatics analysis of human samples show that ERAS is aberrantly expressed in 8–10% of breast tumors and this expression is associated with distant metastasis and reduced metastasis-free survival. In summary, our results reveal that inappropriate activation of ERAS may be important in the development of a subset of breast tumors. These findings open the possibility of new specific treatments for this subset of ERAS-expressing tumors.
Collapse
|
23
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
24
|
Emmanuel N, Ragunathan S, Shan Q, Wang F, Giannakou A, Huser N, Jin G, Myers J, Abraham RT, Unsal-Kacmaz K. Purine Nucleotide Availability Regulates mTORC1 Activity through the Rheb GTPase. Cell Rep 2018; 19:2665-2680. [PMID: 28658616 DOI: 10.1016/j.celrep.2017.05.043] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/24/2017] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Pharmacologic agents that interfere with nucleotide metabolism constitute an important class of anticancer agents. Recent studies have demonstrated that mTOR complex 1 (mTORC1) inhibitors suppress de novo biosynthesis of pyrimidine and purine nucleotides. Here, we demonstrate that mTORC1 itself is suppressed by drugs that reduce intracellular purine nucleotide pools. Cellular treatment with AG2037, an inhibitor of the purine biosynthetic enzyme GARFT, profoundly inhibits mTORC1 activity via a reduction in the level of GTP-bound Rheb, an obligate upstream activator of mTORC1, because of a reduction in intracellular guanine nucleotides. AG2037 treatment provokes both mTORC1 inhibition and robust tumor growth suppression in mice bearing non-small-cell lung cancer (NSCLC) xenografts. These results indicate that alterations in purine nucleotide availability affect mTORC1 activity and suggest that inhibition of mTORC1 contributes to the therapeutic effects of purine biosynthesis inhibitors.
Collapse
Affiliation(s)
- Natasha Emmanuel
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Shoba Ragunathan
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Qin Shan
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Fang Wang
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Andreas Giannakou
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Nanni Huser
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646 Science Center Drive/CB4, San Diego, CA 92121, USA
| | - Guixian Jin
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Jeremy Myers
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Robert T Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646 Science Center Drive/CB4, San Diego, CA 92121, USA.
| | - Keziban Unsal-Kacmaz
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| |
Collapse
|
25
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
26
|
Kim HJ, Byun HJ, Park MK, Kim EJ, Kang GJ, Lee CH. Novel involvement of RhebL1 in sphingosylphosphorylcholine-induced keratin phosphorylation and reorganization: Binding to and activation of AKT1. Oncotarget 2017; 8:20851-20864. [PMID: 28209923 PMCID: PMC5400551 DOI: 10.18632/oncotarget.15364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Sphingosylphosphorylcholine induces keratin phosphorylation and reorganization, and increases viscoelasticity of metastatic cancer cells such as PANC-1 cells. However, the mechanism involved in sphingosylphosphorylcholine-induced keratin phosphorylation and reorganization is largely unknown. Sphingosylphosphorylcholine dose- and time-dependently induces the expression of RhebL1. The involvement of RhebL1 in sphingosylphosphorylcholine-induced events including keratin 8 (K8) phosphorylation, reorganization, migration and invasion was examined. Gene silencing of RhebL1 suppressed the sphingosylphosphorylcholine-induced events and overexpression of RhebL1 enhanced those events even without sphingosylphosphorylcholine treatment. We examined whether the G protein function of RhebL1 induces K8 phosphorylation using constitutively active RhebL1Q64L and dominant negative RhebL1D60K. G protein activity of RhebL1 is involved in sphingosylphosphorylcholine-induced K8 phosphorylation. We found that RhebL1 binds and activates AKT1. G protein activity of RhebL1 is involved in the binding and activation of AKT1. MK2206 (AKT inhibitor) and gene silencing of AKT1 inhibited the sphingosylphosphorylcholine-induced events, whereas overexpression of activated-AKT1 induced K8 phosphorylation, reorganization, migration and invasion even without sphingosylphosphorylcholine treatment. The collective results indicate that RhebL1 is involved in sphingosylphosphorylcholine-induced events in A549 lung cancer cells via binding to AKT1 leading to activation of it. These results suggest that suppression of RhebL1 or inhibition of RhebL1′s binding to AKT1 might be a novel way that prevents changes in the physical properties of metastatic cancer cells.
Collapse
Affiliation(s)
- Hyun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Jung Byun
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Mi Kyung Park
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Eun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Gyeoung Jin Kang
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| |
Collapse
|
27
|
Roperto S, Russo V, Urraro C, Restucci B, Corrado F, De Falco F, Roperto F. ERas is constitutively expressed in full term placenta of pregnant cows. Theriogenology 2017; 103:162-168. [PMID: 28787666 DOI: 10.1016/j.theriogenology.2017.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 02/01/2023]
Abstract
ERas is a new gene recently found in mouse embryonic stem (ES) cells and localized on the X chromosome. It plays a role in mouse ES cell survival and is constitutively active without any mutations. It was also found to be responsible for the maintenance of quiescence of the hepatic stellate cells (HSCs), liver-resident mesenchymal stem cells, the activation of which results in liver fibrosis. This gene was not present in human ES cells. ERas was found to be activated in a significant population of human gastric cancer, where ERAS may play a crucial role in gastric cancer cell survival and metastases to liver via down-regulation of E-cadherin. ERas gene has been found to be expressed both in ES cells and adult tissues of cynomolgus monkey. Cynomolgus ERAS did not promote cell proliferation or induce tumor formation. ERAS was also detected in normal and neoplastic urothelium of the urinary bladder in cattle, where bovine ERAS formed a constitutive complex with platelet derived growth factor β receptor (PDGFβR) resulting in the activation of AKT signaling. Here, molecular and morphological findings of ERAS in the full term placenta of pregnant cows have been investigated for the first time. ERAS was studied by reverse transcriptase PCR (RT-PCR). Alignment of the sequence detects a 100% identity with all transcript variant bovine ERas mRNAs, present in the GenBank database (http://www.ncbi.nlm.nih.gov). Furthermore, ERAS was detected by Western blot and investigated by real time PCR that revealed an amount of ERAS more than ERAS found in normal bovine urothelium but less than ERAS present in the liver. Immunohistochemical examination revealed the presence of ERAS protein both at the level of plasma membrane and in cytoplasm of epithelial cells lining caruncular crypts and in trophoblasts of villi. An evident ERAS immunoreactivity was also seen throughout the chorionic and uterine gland epithelium. Although this is not a functional study and further investigations will be warranted, it is conceivable that ERAS may have pleiotropic effects in the placenta, some of which, like normal urothelial cells, might lead to activation of AKT pathway. We speculate that ERAS may play a key role in cellular processes such as cell differentiation and movement. Accordingly, we believe it may be an important factor involved in trophoblast invasiveness via AKT signaling pathway. Therefore, ERas gene is a functional gene which contributes to homeostasis of bovine placenta.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy.
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Chiara Urraro
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Brunella Restucci
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Federica Corrado
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici (NA), Italy
| | - Francesca De Falco
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|
28
|
Yao Y, Jones E, Inoki K. Lysosomal Regulation of mTORC1 by Amino Acids in Mammalian Cells. Biomolecules 2017; 7:biom7030051. [PMID: 28686218 PMCID: PMC5618232 DOI: 10.3390/biom7030051] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth in eukaryotic cells. The active mTORC1 promotes cellular anabolic processes including protein, pyrimidine, and lipid biosynthesis, and inhibits catabolic processes such as autophagy. Consistent with its growth-promoting functions, hyper-activation of mTORC1 signaling is one of the important pathomechanisms underlying major human health problems including diabetes, neurodegenerative disorders, and cancer. The mTORC1 receives multiple upstream signals such as an abundance of amino acids and growth factors, thus it regulates a wide range of downstream events relevant to cell growth and proliferation control. The regulation of mTORC1 by amino acids is a fast-evolving field with its detailed mechanisms currently being revealed as the precise picture emerges. In this review, we summarize recent progress with respect to biochemical and biological findings in the regulation of mTORC1 signaling on the lysosomal membrane by amino acids.
Collapse
Affiliation(s)
- Yao Yao
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| | - Edith Jones
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 East Catherine Street, Ann Arbor, MI 48109, USA.
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 East Catherine Street, Ann Arbor, MI 48109, USA.
- Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical enter Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Hildebrandt ER, Cheng M, Zhao P, Kim JH, Wells L, Schmidt WK. A shunt pathway limits the CaaX processing of Hsp40 Ydj1p and regulates Ydj1p-dependent phenotypes. eLife 2016; 5. [PMID: 27525482 PMCID: PMC5014548 DOI: 10.7554/elife.15899] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/14/2016] [Indexed: 11/21/2022] Open
Abstract
The modifications occurring to CaaX proteins have largely been established using few reporter molecules (e.g. Ras, yeast a-factor mating pheromone). These proteins undergo three coordinated COOH-terminal events: isoprenylation of the cysteine, proteolytic removal of aaX, and COOH-terminal methylation. Here, we investigated the coupling of these modifications in the context of the yeast Ydj1p chaperone. We provide genetic, biochemical, and biophysical evidence that the Ydj1p CaaX motif is isoprenylated but not cleaved and carboxylmethylated. Moreover, we demonstrate that Ydj1p-dependent thermotolerance and Ydj1p localization are perturbed when alternative CaaX motifs are transplanted onto Ydj1p. The abnormal phenotypes revert to normal when post-isoprenylation events are genetically interrupted. Our findings indicate that proper Ydj1p function requires an isoprenylatable CaaX motif that is resistant to post-isoprenylation events. These results expand on the complexity of protein isoprenylation and highlight the impact of post-isoprenylation events in regulating the function of Ydj1p and perhaps other CaaX proteins. DOI:http://dx.doi.org/10.7554/eLife.15899.001
Collapse
Affiliation(s)
- Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Michael Cheng
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Peng Zhao
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - June H Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| |
Collapse
|
30
|
Affiliation(s)
- Tom Mejuch
- Department
of Chemical Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
31
|
Tsokanos FF, Albert MA, Demetriades C, Spirohn K, Boutros M, Teleman AA. eIF4A inactivates TORC1 in response to amino acid starvation. EMBO J 2016; 35:1058-76. [PMID: 26988032 PMCID: PMC4868951 DOI: 10.15252/embj.201593118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022] Open
Abstract
Amino acids regulate TOR complex 1 (TORC1) via two counteracting mechanisms, one activating and one inactivating. The presence of amino acids causes TORC1 recruitment to lysosomes where TORC1 is activated by binding Rheb. How the absence of amino acids inactivates TORC1 is less well understood. Amino acid starvation recruits the TSC1/TSC2 complex to the vicinity of TORC1 to inhibit Rheb; however, the upstream mechanisms regulating TSC2 are not known. We identify here the eIF4A-containing eIF4F translation initiation complex as an upstream regulator of TSC2 in response to amino acid withdrawal in Drosophila We find that TORC1 and translation preinitiation complexes bind each other. Cells lacking eIF4F components retain elevated TORC1 activity upon amino acid removal. This effect is specific for eIF4F and not a general consequence of blocked translation. This study identifies specific components of the translation machinery as important mediators of TORC1 inactivation upon amino acid removal.
Collapse
Affiliation(s)
- Foivos-Filippos Tsokanos
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marie-Astrid Albert
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Constantinos Demetriades
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Spirohn
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Demetriades C, Plescher M, Teleman AA. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun 2016; 7:10662. [PMID: 26868506 PMCID: PMC4754342 DOI: 10.1038/ncomms10662] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/08/2016] [Indexed: 02/06/2023] Open
Abstract
mTORC1 promotes cell growth and is therefore inactivated upon unfavourable growth conditions. Signalling pathways downstream of most cellular stresses converge on TSC1/2, which serves as an integration point that inhibits mTORC1. The TSC1/2 complex was shown to translocate to lysosomes to inactivate mTORC1 in response to two stresses: amino-acid starvation and growth factor removal. Whether other stresses also regulate TSC2 localization is not known. How TSC2 localization responds to combinations of stresses and other stimuli is also unknown. We show that both amino acids and growth factors are required simultaneously to maintain TSC2 cytoplasmic; when one of the two is missing, TSC2 relocalizes to lysosomes. Furthermore, multiple different stresses that inhibit mTORC1 also drive TSC2 lysosomal accumulation. Our findings indicate that lysosomal recruitment of TSC2 is a universal response to stimuli that inactivate mTORC1, and that the presence of any single stress is sufficient to cause TSC2 lysosomal localization.
Collapse
Affiliation(s)
- Constantinos Demetriades
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Monika Plescher
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Aurelio A. Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
33
|
E-Ras improves the efficiency of reprogramming by facilitating cell cycle progression through JNK-Sp1 pathway. Stem Cell Res 2015; 15:481-494. [PMID: 26413787 DOI: 10.1016/j.scr.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that pluripotent stem cells can be induced from adult somatic cells which were exposed to protein extracts isolated from mouse embryonic stem cells (mESC). Interestingly, generation of induced pluripotent stem (iPS) cells depended on the background of ES cell lines; possible by extracts from C57, but not from E14. Proteomic analysis of two different mES cell lines (C57 and E14) shows that embryonic Ras (E-Ras) is expressed differently in two mES cell lines; high level of E-Ras only in C57 mESC whose extracts allows iPS cells production from somatic cells. Here, we show that E-Ras augments the efficiency in reprogramming of fibroblast by promoting cell proliferation. We found that over-expression of E-Ras in fibroblast increased cell proliferation which was caused by specific up-regulation of cyclins D and E, not A or B, leading to the accelerated G1 to S phase transition. To figure out the common transcription factor of cyclins D and E, we used TRANSFAC database and selected SP1 as a candidate which was confirmed as enhancer of cyclins D and E by luciferase promoter assay using mutants. As downstream signaling pathways, E-Ras activated only c-Jun N-terminal kinases (JNK) but not ERK or p38. Inhibition of JNK prevented E-Ras-mediated induction of pSP1, cyclins D, E, and cell proliferation. Finally, E-Ras transduction to fibroblast enhanced the efficiency of iPS cell generation by 4 factors (Oct4/Klf4/Sox2/C-myc), which was prevented by JNK inhibitor. In conclusion, E-Ras stimulates JNK, enhances binding of Sp1 on the promoter of cyclins D and E, leading to cell proliferation. E-Ras/JNK axis is a critical mechanism to generate iPS cells by transduction of 4 factors or by treatment of mESC protein extracts.
Collapse
|
34
|
Plescher M, Teleman AA, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep 2015; 5:13828. [PMID: 26345496 PMCID: PMC4642562 DOI: 10.1038/srep13828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
mTOR complex 1 (mTORC1) regulates cell growth and metabolism. mTORC1 activity is regulated via integration of positive growth-promoting stimuli and negative stress stimuli. One stress cells confront in physiological and pathophysiological contexts is hyperosmotic stress. The mechanism by which hyperosmotic stress regulates mTORC1 activity is not well understood. We show here that mild hyperosmotic stress induces a rapid and reversible inactivation of mTORC1 via a mechanism involving multiple upstream signaling pathways. We find that hyperosmotic stress causes dynamic changes in TSC2 phosphorylation by upstream kinases, such as Akt, thereby recruiting TSC2 from the cytoplasm to lysosomes where it acts on Rheb, the direct activator of mTORC1. This work puts together a signaling pathway whereby hyperosmotic stress inactivates mTORC1.
Collapse
Affiliation(s)
- Monika Plescher
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Constantinos Demetriades
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| |
Collapse
|
35
|
Armijo ME, Campos T, Fuentes-Villalobos F, Palma ME, Pincheira R, Castro AF. Rheb signaling and tumorigenesis: mTORC1 and new horizons. Int J Cancer 2015; 138:1815-23. [PMID: 26234902 DOI: 10.1002/ijc.29707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 01/05/2023]
Abstract
Rheb is a conserved small GTPase that belongs to the Ras superfamily, and is mainly involved in activation of cell growth through stimulation of mTORC1 activity. Because deregulation of the Rheb/mTORC1 signaling is associated with proliferative disorders and cancer, inhibition of mTORC1 has been therapeutically approached. Although this therapy has proven antitumor activity, its efficacy is not as expected. Here, we will review the main work on the identification of the role of Rheb in cell growth, and on the relevance of Rheb in proliferative disorders, including cancer. We will also review the Rheb functions that could explain tumor resistance to therapies with mTORC1 inhibitors, and will mainly focus our discussion on mTORC1-independent Rheb functions that could also be implicated in cancer cell survival and tumorigenesis. The current progress on the understanding of the noncanonical Rheb functions prompts future studies to establish their relevance in cancer and in the context of current cancer therapies.
Collapse
Affiliation(s)
- Marisol E Armijo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Tania Campos
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Francisco Fuentes-Villalobos
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Mario E Palma
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Ariel F Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| |
Collapse
|
36
|
Chen YX, Koch S, Uhlenbrock K, Weise K, Das D, Gremer L, Brunsveld L, Wittinghofer A, Winter R, Triola G, Waldmann H. Synthesis of the Rheb and K-Ras4B GTPases. Angew Chem Int Ed Engl 2015; 49:6090-5. [PMID: 20652921 DOI: 10.1002/anie.201001884] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong-Xiang Chen
- Abteilung Chemische Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakhaei-Rad S, Nakhaeizadeh H, Kordes C, Cirstea IC, Schmick M, Dvorsky R, Bastiaens PIH, Häussinger D, Ahmadian MR. The Function of Embryonic Stem Cell-expressed RAS (E-RAS), a Unique RAS Family Member, Correlates with Its Additional Motifs and Its Structural Properties. J Biol Chem 2015; 290:15892-15903. [PMID: 25940089 DOI: 10.1074/jbc.m115.640607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the molecular mechanism of E-RAS regulation and function with respect to its sequence and structural features. We found that N-terminal extension of E-RAS is important for E-RAS signaling activity. E-RAS protein most remarkably revealed a different mode of effector interaction as compared with H-RAS, which correlates with deviations in the effector-binding site of E-RAS. Of all these residues, tryptophan 79 (arginine 41 in H-RAS), in the interswitch region, modulates the effector selectivity of RAS proteins from H-RAS to E-RAS features.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Hepatology, and Infectious Diseases, Medical Faculty of the Heinrich-Heine University, 40255 Düsseldorf
| | - Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Hepatology, and Infectious Diseases, Medical Faculty of the Heinrich-Heine University, 40255 Düsseldorf
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty of the Heinrich-Heine University, 40255 Düsseldorf
| | - Ion C Cirstea
- Institute of Biochemistry and Molecular Biology II, Hepatology, and Infectious Diseases, Medical Faculty of the Heinrich-Heine University, 40255 Düsseldorf; Leibniz Institute for Age Research-Fritz Lipmann Institute, 07745 Jena
| | - Malte Schmick
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Hepatology, and Infectious Diseases, Medical Faculty of the Heinrich-Heine University, 40255 Düsseldorf
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty of the Heinrich-Heine University, 40255 Düsseldorf
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Hepatology, and Infectious Diseases, Medical Faculty of the Heinrich-Heine University, 40255 Düsseldorf.
| |
Collapse
|
38
|
Moschetta M, Reale A, Marasco C, Vacca A, Carratù MR. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Br J Pharmacol 2015; 171:3801-13. [PMID: 24780124 DOI: 10.1111/bph.12749] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/29/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) plays an important role in the regulation of protein translation, cell growth and metabolism. The mTOR protein forms two distinct multi-subunit complexes: mTORC1 and mTORC2. The mTORC1 complex is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals; and essential signalling pathways, such as PI3K and MAPK, in order to control cell growth, proliferation and survival. mTORC1 also activates S6K1 and 4EBP1, which are involved in mRNA translation. The mTORC2 complex is resistant to rapamycin inhibitory activity and is generally insensitive to nutrient- and energy-dependent signals. It activates PKC-α and Akt and regulates the actin cytoskeleton. Deregulation of the mTOR-signalling pathway (PI3K amplification/mutation, PTEN loss of function, Akt overexpression, and S6K1, 4EBP1 and eIF4E overexpression) is common in cancer, and alterations in components of the mTOR pathway have a major role in tumour progression. Therefore, mTOR is an appealing therapeutic target in many tumours. Here we summarize the upstream regulators and downstream effectors of the mTORC1 and mTORC2 pathways, the role of mTOR in cancer, and the potential therapeutic values and issues related to the novel agents targeting the mTOR-signalling pathway.
Collapse
Affiliation(s)
- M Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Section of Internal Medicine, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School 'Aldo Moro', Bari, Italy
| | | | | | | | | |
Collapse
|
39
|
Fawal MA, Brandt M, Djouder N. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell 2015; 33:67-81. [PMID: 25816988 DOI: 10.1016/j.devcel.2015.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
Abstract
Ras homolog enriched in brain (Rheb) is critical for mechanistic target of rapamycin complex 1 (mTORC1) activation in response to growth factors and amino acids (AAs). Whereas growth factors inhibit the tuberous sclerosis complex (TSC1-TSC2), a negative Rheb regulator, the role of AAs in Rheb activation remains unknown. Here, we identify microspherule protein 1 (MCRS1) as the essential link between Rheb and mTORC1 activation. MCRS1, in an AA-dependent manner, maintains Rheb at lysosome surfaces, connecting Rheb to mTORC1. MCRS1 suppression in human cancer cells using small interference RNA or mouse embryonic fibroblasts using an inducible-Cre/Lox system reduces mTORC1 activity. MCRS1 depletion promotes Rheb/TSC2 interaction, rendering Rheb inactive and delocalizing it from lysosomes to recycling endocytic vesicles, leading to mTORC1 inactivation. These findings have important implications for signaling mechanisms in various pathologies, including diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Marta Brandt
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain.
| |
Collapse
|
40
|
Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW, Zhang J. Dynamic Visualization of mTORC1 Activity in Living Cells. Cell Rep 2015; 10:1767-1777. [PMID: 25772363 DOI: 10.1016/j.celrep.2015.02.031] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) senses diverse signals to regulate cell growth and metabolism. It has become increasingly clear that mTORC1 activity is regulated in time and space inside the cell, but direct interrogation of such spatiotemporal regulation is challenging. Here, we describe a genetically encoded mTORC1 activity reporter (TORCAR) that exhibits a change in FRET in response to phosphorylation by mTORC1. Co-imaging mTORC1 activity and calcium dynamics revealed that a growth-factor-induced calcium transient contributes to mTORC1 activity. Dynamic activity maps generated with the use of subcellularly targeted TORCAR uncovered mTORC1 activity not only in cytosol and at the lysosome but also in the nucleus and at the plasma membrane. Furthermore, a wide distribution of activities was observed upon growth factor stimulation, whereas leucine ester, an amino acid surrogate, induces more compartmentalized activities at the lysosome and in the nucleus. Thus, mTORC1 activities are spatiotemporally regulated in a signal-specific manner.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Terri L Clister
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pamela R Lowry
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marcus M Seldin
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Sato T, Akasu H, Shimono W, Matsu C, Fujiwara Y, Shibagaki Y, Heard JJ, Tamanoi F, Hattori S. Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity. J Biol Chem 2014; 290:1096-105. [PMID: 25422319 DOI: 10.1074/jbc.m114.592402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- From the Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan and
| | - Hitomi Akasu
- From the Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan and
| | - Wataru Shimono
- From the Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan and
| | - Chisa Matsu
- From the Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan and
| | - Yuki Fujiwara
- From the Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan and
| | - Yoshio Shibagaki
- From the Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan and
| | - Jeffrey J Heard
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| | - Seisuke Hattori
- From the Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan and
| |
Collapse
|
42
|
Huff LP, DeCristo MJ, Cox AD. Effector recruitment method to study spatially regulated activation of Ras and Rho GTPases. Methods Mol Biol 2014; 1120:263-83. [PMID: 24470032 DOI: 10.1007/978-1-62703-791-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Ras and Rho family GTPases control a wide variety of cellular processes, and the signaling downstream of these GTPases is influenced by their subcellular localization when activated. Since only a minority of total cellular GTPases is active, observation of the total subcellular distribution of GTPases does not reveal where active GTPases are localized. In this chapter, we describe the use of effector recruitment assays to monitor the subcellular localization of active Ras and Rho family GTPases. The recruitment assay relies on preferential binding of downstream effectors to active GTPases versus inactive GTPases. Tagging the GTPase-binding-domain (GBD) of a downstream effector with a fluorescent protein produces a probe that is recruited to compartments where GTPases are active. We describe an example of a recruitment assay using the GBD of PAK1 to monitor Rac1 activity and explain how the assay can be expanded to determine the subcellular localization of activation of other GTPases.
Collapse
Affiliation(s)
- Lauren P Huff
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
43
|
Yu Y, Liang D, Tian Q, Chen X, Jiang B, Chou BK, Hu P, Cheng L, Gao P, Li J, Wang G. Stimulation of somatic cell reprogramming by ERas-Akt-FoxO1 signaling axis. Stem Cells 2014; 32:349-63. [PMID: 23765875 DOI: 10.1002/stem.1447] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/28/2013] [Accepted: 05/15/2013] [Indexed: 12/19/2022]
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) shares much similarity to the cancer initiation process, and the molecular mechanisms underlying both processes remain to be elucidated. Here, we report that a tumor- or embryonic stem cell-specific Ras gene ERas, which encodes a constitutively active form of GTPase, and its downstream Phosphoinositide-3 kinase/Akt signaling pathway are important facilitators for the somatic reprogramming process. We found that overexpression of ERas retrovirally enhanced mouse iPSC induction while ERas knockdown repressed it. Modulation of Akt signaling by genetic or chemical means greatly impacted the reprogramming efficiency. Forced expression of a constitutively active Akt1 gene could rescue the reduced efficiency resulting from ERas knockdown, and point-mutation analyses further revealed that ERas is tightly coupled with Akt signaling to enhance reprogramming. Mechanistically, the forkhead transcription factor FoxO1 can function as a barrier to the iPSC induction, and the inactivation of FoxO1 by Akt-dependent phosphorylation largely accounts for the enhancing effect of ERas-Akt signaling on reprogramming. Collectively, these results unravel the significance of the ERas-Akt-FoxO1 signaling axis in iPSC generation, suggesting a possibly shared molecular basis for both somatic reprogramming and cancer initiation.
Collapse
Affiliation(s)
- Yong Yu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Voskas D, Ling LS, Woodgett JR. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3' kinase pathway. J Cell Physiol 2014; 229:1312-22. [PMID: 24604594 PMCID: PMC4258093 DOI: 10.1002/jcp.24603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/23/2022]
Abstract
The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem cells and cancer cells bypass this replicative barrier and undergo symmetric division indefinitely when cultured under defined conditions. Several signal transduction pathways play important roles in regulating stem cell development, and aberrant expression of components of these pathways is linked to cancer. Among signaling systems, the critical role of leukemia inhibitory factor (LIF) coupled to the Jak/STAT3 (signal transduction and activation of transcription-3) pathway in maintaining stem cell self-renewal has been extensively reviewed. This pathway additionally plays multiple roles in tumorigenesis. Likewise, the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway has been determined to play an important role in both stem cell maintenance and tumor development. This pathway is often induced in cancer with frequent mutational activation of the catalytic subunit of PI3K or loss of a primary PI3K antagonist, phosphatase and tensin homolog deleted on chromosome ten (PTEN). This review focusses on roles of the PI3K signal transduction pathway components, with emphasis on functions in stem cell maintenance and cancer. Since the PI3K pathway impinges on and collaborates with other signaling pathways in regulating stem cell development and/or cancer, aspects of the canonical Wnt, Ras/mitogen-activated protein kinase (MAPK), and TGF-β signaling pathways are also discussed.
Collapse
Affiliation(s)
- Daniel Voskas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
45
|
Recent progress in the study of the Rheb family GTPases. Cell Signal 2014; 26:1950-7. [PMID: 24863881 DOI: 10.1016/j.cellsig.2014.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
Abstract
In this review we highlight recent progress in the study of Rheb family GTPases. Structural studies using X-ray crystallography and NMR have given us insight into unique features of this GTPase. Combined with mutagenesis studies, these works have expanded our understanding of residues that affect Rheb GTP/GDP bound ratios, effector protein interactions, and stimulation of mTORC1 signaling. Analysis of cancer genome databases has revealed that several human carcinomas contain activating mutations of the protein. Rheb's role in activating mTORC1 signaling at the lysosome in response to stimuli has been further elucidated. Rheb has also been suggested to play roles in other cellular pathways including mitophagy and peroxisomal ROS response. A number of studies in mice have demonstrated the importance of Rheb in development, as well as in a variety of functions including cardiac protection and myelination. We conclude with a discussion of future prospects in the study of Rheb family GTPases.
Collapse
|
46
|
Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156:771-85. [PMID: 24529379 DOI: 10.1016/j.cell.2013.11.049] [Citation(s) in RCA: 614] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/14/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022]
Abstract
mTORC1 promotes cell growth in response to nutrients and growth factors. Insulin activates mTORC1 through the PI3K-Akt pathway, which inhibits the TSC1-TSC2-TBC1D7 complex (the TSC complex) to turn on Rheb, an essential activator of mTORC1. However, the mechanistic basis of how this pathway integrates with nutrient-sensing pathways is unknown. We demonstrate that insulin stimulates acute dissociation of the TSC complex from the lysosomal surface, where subpopulations of Rheb and mTORC1 reside. The TSC complex associates with the lysosome in a Rheb-dependent manner, and its dissociation in response to insulin requires Akt-mediated TSC2 phosphorylation. Loss of the PTEN tumor suppressor results in constitutive activation of mTORC1 through the Akt-dependent dissociation of the TSC complex from the lysosome. These findings provide a unifying mechanism by which independent pathways affecting the spatial recruitment of mTORC1 and the TSC complex to Rheb at the lysosomal surface serve to integrate diverse growth signals.
Collapse
Affiliation(s)
- Suchithra Menon
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Christian C Dibble
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - George Talbott
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Gerta Hoxhaj
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Alexander J Valvezan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Hidenori Takahashi
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lewis C Cantley
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Shahani N, Pryor W, Swarnkar S, Kholodilov N, Thinakaran G, Burke RE, Subramaniam S. Rheb GTPase regulates β-secretase levels and amyloid β generation. J Biol Chem 2013; 289:5799-808. [PMID: 24368770 DOI: 10.1074/jbc.m113.532713] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β-site amyloid precursor protein (APP)-cleaving enzyme 1 (β-secretase, BACE1) initiates amyloidogenic processing of APP to generate amyloid β (Aβ), which is a hallmark of Alzheimer disease (AD) pathology. Cerebral levels of BACE1 are elevated in individuals with AD, but the molecular mechanisms are not completely understood. We demonstrate that Rheb GTPase (Ras homolog enriched in brain), which induces mammalian target of rapamycin (mTOR) activity, is a physiological regulator of BACE1 stability and activity. Rheb overexpression depletes BACE1 protein levels and reduces Aβ generation, whereas the RNAi knockdown of endogenous Rheb promotes BACE1 accumulation, and this effect by Rheb is independent of its mTOR signaling. Moreover, GTP-bound Rheb interacts with BACE1 and degrades it through proteasomal and lysosomal pathways. Finally, we demonstrate that Rheb levels are down-regulated in the AD brain, which is consistent with an increased BACE1 expression. Altogether, our study defines Rheb as a novel physiological regulator of BACE1 levels and Aβ generation, and the Rheb-BACE1 circuitry may have a role in brain biology and disease.
Collapse
Affiliation(s)
- Neelam Shahani
- From the Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Growth factors and nutrients regulate the mTORC1 [mammalian (or mechanistic) target of rapamycin complex 1] by different mechanisms. The players that link growth factors and mTORC1 activation have been known for several years and mouse models have validated its relevance for human physiology and disease. In contrast with the picture for growth factor signalling, the means by which nutrient availability leads to mTORC1 activation have remained elusive until recently, with the discovery of the Rag GTPases upstream of mTORC1. The Rag GTPases recruit mTORC1 to the outer lysosomal surface, where growth factor signalling and nutrient signalling converge on mTORC1 activation. A mouse model of constitutive RagA activity has revealed qualitative differences between growth-factor- and nutrient-dependent regulation of mTORC1. Regulation of mTORC1 activity by the Rag GTPases in vivo is key for enduring early neonatal starvation, showing its importance for mammalian physiology.
Collapse
|
49
|
O Farrell F, Rusten TE, Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J 2013; 280:6322-37. [PMID: 23953235 DOI: 10.1111/febs.12486] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
Degradation of cytoplasmic material by autophagy plays a key role in protein homeostasis and metabolic control, as well as in the removal of intracellular protein aggregates, pathogens and damaged organelles. The concept of up- or down-regulating this pathway pharmacologically in neurodegenerative diseases, infections, inflammation and cancer is therefore attractive. Among the key pharmacological targets in regulation of autophagy are the phosphoinositide 3-kinases (PI3Ks), which mediate the phosphorylation of phosphatidylinositol (PtdIns) or PtdIns 4,5-bisphosphate in the 3-position of the (phospho)inositol headgroup. The catalytic products, PtdIns 3-phosphate (PtdIns3P) and PtdIns 3,4,5-trisphosphate [PtdIns(3,4,5)P3 ], respectively, have opposing roles in autophagy. PtdIns3P, the product of class II and III PI3Ks, mediates the recruitment of specific autophagic effectors to the sites of origin of autophagic membranes and thereby plays an essential role in canonical autophagy. By contrast, PtdIns(3,4,5)P3 , the product of class I PI3Ks, triggers the target of rapamycin signalling pathway, which inhibits autophagy. In this review, we discuss the functions of class I, II and III PI3Ks in autophagy and describe the protein effectors of PtdIns3P and PtdIns(3,4,5)P3 that promote or inhibit autophagy, respectively. We also provide examples of how PI3K-mediated control of autophagy is relevant to an understanding of tumour suppression and progression.
Collapse
Affiliation(s)
- Fergal O Farrell
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Norway; Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | | | | |
Collapse
|
50
|
Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 2013; 15:555-64. [PMID: 23728461 DOI: 10.1038/ncb2763] [Citation(s) in RCA: 569] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flux through metabolic pathways is inherently sensitive to the levels of specific substrates and products, but cellular metabolism is also managed by integrated control mechanisms that sense the nutrient and energy status of a cell or organism. The mechanistic target of rapamycin complex 1 (mTORC1), a protein kinase complex ubiquitous to eukaryotic cells, has emerged as a critical signalling node that links nutrient sensing to the coordinated regulation of cellular metabolism. Here, we discuss the role of mTORC1 as a conduit between cellular growth conditions and the anabolic processes that promote cell growth. The emerging network of signalling pathways through which mTORC1 integrates systemic signals (secreted growth factors) with local signals (cellular nutrients - amino acids, glucose and oxygen - and energy, ATP) is detailed. Our expanding understanding of the regulatory network upstream of mTORC1 provides molecular insights into the integrated sensing mechanisms by which diverse cellular signals converge to control cell physiology.
Collapse
Affiliation(s)
- Christian C Dibble
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Systems Biology Department, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|