1
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
2
|
Nibley PC, Shenoy SK. β-adrenergic receptor signaling mediated by β-arrestins and its potential role in heart failure. CURRENT OPINION IN PHYSIOLOGY 2024; 37:100723. [PMID: 38094036 PMCID: PMC10715791 DOI: 10.1016/j.cophys.2023.100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The lethality of heart failure (HF), particularly in the context of post-acute sequelae SARS-CoV-2 infection (PASC)-related myocarditis, necessitates the discovery of the cellular pathways implicated in cardiovascular disease (CVD). We summarize the signaling mechanisms of the catecholamine-binding β-adrenergic receptors (β-ARs), with an emphasis on the role of β-arrestins. β-ARs, a subset of G protein-coupled receptors (GPCRs), canonically propagate signals through heterotrimeric G proteins. However, since their discovery in the late 1980s, β-arrestins have been shown to, both (i) quench G protein signaling and (ii) initiate their own independent signaling cascades, which is influenced by post-translational modifications. β-arrestin-biased agonism by the beta-blocker carvedilol and its allosteric modulation can serve a cardioprotective role. The increasingly labyrinthine nature of GPCR signaling suggests that ligand-dependent β-AR signaling, either stimulated by an agonist or blocked by an antagonist, is selectively enhanced or suppressed by allosteric modulations, which are orchestrated by novel drugs or endogenous post-translational modifications.
Collapse
Affiliation(s)
- Preston C. Nibley
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudha K. Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Hoare SRJ, Tewson PH, Quinn AM, Hughes TE, Bridge LJ. Analyzing kinetic signaling data for G-protein-coupled receptors. Sci Rep 2020; 10:12263. [PMID: 32704081 PMCID: PMC7378232 DOI: 10.1038/s41598-020-67844-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
In classical pharmacology, bioassay data are fit to general equations (e.g. the dose response equation) to determine empirical drug parameters (e.g. EC50 and Emax), which are then used to calculate chemical parameters such as affinity and efficacy. Here we used a similar approach for kinetic, time course signaling data, to allow empirical and chemical definition of signaling by G-protein-coupled receptors in kinetic terms. Experimental data are analyzed using general time course equations (model-free approach) and mechanistic model equations (mechanistic approach) in the commonly-used curve-fitting program, GraphPad Prism. A literature survey indicated signaling time course data usually conform to one of four curve shapes: the straight line, association exponential curve, rise-and-fall to zero curve, and rise-and-fall to steady-state curve. In the model-free approach, the initial rate of signaling is quantified and this is done by curve-fitting to the whole time course, avoiding the need to select the linear part of the curve. It is shown that the four shapes are consistent with a mechanistic model of signaling, based on enzyme kinetics, with the shape defined by the regulation of signaling mechanisms (e.g. receptor desensitization, signal degradation). Signaling efficacy is the initial rate of signaling by agonist-occupied receptor (kτ), simply the rate of signal generation before it becomes affected by regulation mechanisms, measurable using the model-free analysis. Regulation of signaling parameters such as the receptor desensitization rate constant can be estimated if the mechanism is known. This study extends the empirical and mechanistic approach used in classical pharmacology to kinetic signaling data, facilitating optimization of new therapeutics in kinetic terms.
Collapse
Affiliation(s)
- Sam R J Hoare
- Pharmechanics, LLC, 14 Sunnyside Drive South, Owego, NY, 13827, USA.
| | - Paul H Tewson
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Anne Marie Quinn
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Thomas E Hughes
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Lloyd J Bridge
- Department of Engineering Design and Mathematics, University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| |
Collapse
|
4
|
Liu S, Luttrell LM, Premont RT, Rockey DC. β-Arrestin2 is a critical component of the GPCR-eNOS signalosome. Proc Natl Acad Sci U S A 2020; 117:11483-11492. [PMID: 32404425 PMCID: PMC7261012 DOI: 10.1073/pnas.1922608117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial cell nitric oxide (NO) synthase (eNOS), the enzyme responsible for synthesis of NO in endothelial cells, is regulated by complex posttranslational mechanisms. Sinusoidal portal hypertension, a disorder characterized by liver sinusoidal endothelial cell (SEC) injury with resultant reduced eNOS activity and NO production within the liver, has been associated with defects in eNOS protein-protein interactions and posttranslational modifications. We and others have previously identified novel eNOS interactors, including G protein-coupled receptor (GPCR) kinase interactor 1 (GIT1), which we found to play an unexpected stimulatory role in GPCR-mediated eNOS signaling. Here we report that β-arrestin 2 (β-Arr2), a canonical GPCR signaling partner, localizes in SECs with eNOS in a GIT1/eNOS/NO signaling module. Most importantly, we show that β-Arr2 stimulates eNOS activity, and that β-Arr2 expression is reduced and formation of the GIT1/eNOS/NO signaling module is interrupted during liver injury. In β-Arr2-deficient mice, bile duct ligation injury (BDL) led to significantly reduced eNOS activity and to a dramatic increase in portal hypertension compared to BDL in wild-type mice. Overexpression of β-Arr2 in injured or β-Arr2-deficient SECs rescued eNOS function by increasing eNOS complex formation and NO production. We also found that β-Arr2-mediated GIT1/eNOS complex formation is dependent on Erk1/2 and Src, two kinases known to interact with and be activated by β-Arr2 in response to GCPR activation. Our data emphasize that β-Arr2 is an integral component of the GIT1/eNOS/NO signaling pathway and have implications for the pathogenesis of sinusoidal portal hypertension.
Collapse
Affiliation(s)
- Songling Liu
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425
| | - Louis M Luttrell
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425
| | - Richard T Premont
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Don C Rockey
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425;
| |
Collapse
|
5
|
Zhou Y, Little PJ, Ta HT, Xu S, Kamato D. Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. Pharmacol Ther 2019; 204:107404. [DOI: 10.1016/j.pharmthera.2019.107404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
|
6
|
van Gastel J, Hendrickx JO, Leysen H, Santos-Otte P, Luttrell LM, Martin B, Maudsley S. β-Arrestin Based Receptor Signaling Paradigms: Potential Therapeutic Targets for Complex Age-Related Disorders. Front Pharmacol 2018; 9:1369. [PMID: 30546309 PMCID: PMC6280185 DOI: 10.3389/fphar.2018.01369] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
G protein coupled receptors (GPCRs) were first characterized as signal transducers that elicit downstream effects through modulation of guanine (G) nucleotide-binding proteins. The pharmacotherapeutic exploitation of this signaling paradigm has created a drug-based field covering nearly 50% of the current pharmacopeia. Since the groundbreaking discoveries of the late 1990s to the present day, it is now clear however that GPCRs can also generate productive signaling cascades through the modulation of β-arrestin functionality. β-Arrestins were first thought to only regulate receptor desensitization and internalization - exemplified by the action of visual arrestin with respect to rhodopsin desensitization. Nearly 20 years ago, it was found that rather than controlling GPCR signal termination, productive β-arrestin dependent GPCR signaling paradigms were highly dependent on multi-protein complex formation and generated long-lasting cellular effects, in contrast to G protein signaling which is transient and functions through soluble second messenger systems. β-Arrestin signaling was then first shown to activate mitogen activated protein kinase signaling in a G protein-independent manner and eventually initiate protein transcription - thus controlling expression patterns of downstream proteins. While the possibility of developing β-arrestin biased or functionally selective ligands is now being investigated, no additional research has been performed on its possible contextual specificity in treating age-related disorders. The ability of β-arrestin-dependent signaling to control complex and multidimensional protein expression patterns makes this therapeutic strategy feasible, as treating complex age-related disorders will likely require therapeutics that can exert network-level efficacy profiles. It is our understanding that therapeutically targeting G protein-independent effectors such as β-arrestin will aid in the development of precision medicines with tailored efficacy profiles for disease/age-specific contextualities.
Collapse
Affiliation(s)
- Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, Charleston, SC, United States
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
7
|
Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles PY, Gauthier C, Lee MH, Pani B, Kim J, Ahn S, Rajagopal S, Reiter E, Bouvier M, Shenoy SK, Laporte SA, Rockman HA, Lefkowitz RJ. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 2018; 11:11/549/eaat7650. [PMID: 30254056 DOI: 10.1126/scisignal.aat7650] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) use diverse mechanisms to regulate the mitogen-activated protein kinases ERK1/2. β-Arrestins (βArr1/2) are ubiquitous inhibitors of G protein signaling, promoting GPCR desensitization and internalization and serving as scaffolds for ERK1/2 activation. Studies using CRISPR/Cas9 to delete βArr1/2 and G proteins have cast doubt on the role of β-arrestins in activating specific pools of ERK1/2. We compared the effects of siRNA-mediated knockdown of βArr1/2 and reconstitution with βArr1/2 in three different parental and CRISPR-derived βArr1/2 knockout HEK293 cell pairs to assess the effect of βArr1/2 deletion on ERK1/2 activation by four Gs-coupled GPCRs. In all parental lines with all receptors, ERK1/2 stimulation was reduced by siRNAs specific for βArr2 or βArr1/2. In contrast, variable effects were observed with CRISPR-derived cell lines both between different lines and with activation of different receptors. For β2 adrenergic receptors (β2ARs) and β1ARs, βArr1/2 deletion increased, decreased, or had no effect on isoproterenol-stimulated ERK1/2 activation in different CRISPR clones. ERK1/2 activation by the vasopressin V2 and follicle-stimulating hormone receptors was reduced in these cells but was enhanced by reconstitution with βArr1/2. Loss of desensitization and receptor internalization in CRISPR βArr1/2 knockout cells caused β2AR-mediated stimulation of ERK1/2 to become more dependent on G proteins, which was reversed by reintroducing βArr1/2. These data suggest that βArr1/2 function as a regulatory hub, determining the balance between mechanistically different pathways that result in activation of ERK1/2, and caution against extrapolating results obtained from βArr1/2- or G protein-deleted cells to GPCR behavior in native systems.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bianca Plouffe
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lama Yamani
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Suneet Kaur
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Christophe Gauthier
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Smith JS, Alagesan P, Desai NK, Pack TF, Wu JH, Inoue A, Freedman NJ, Rajagopal S. C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways. Mol Pharmacol 2017; 92:136-150. [PMID: 28559424 PMCID: PMC5508197 DOI: 10.1124/mol.117.108522] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/22/2017] [Indexed: 12/24/2022] Open
Abstract
Biased agonism, the ability of different ligands for the same receptor to selectively activate some signaling pathways while blocking others, is now an established paradigm for G protein-coupled receptor signaling. One group of receptors in which endogenous bias is critical is the chemokine system, consisting of over 50 ligands and 20 receptors that bind one another with significant promiscuity. We have previously demonstrated that ligands for the same receptor can cause biased signaling responses. The goal of this study was to identify mechanisms that could underlie biased signaling between different receptor splice variants. The C-X-C motif chemokine receptor 3 (CXCR3) has two splice variants, CXCR3A and CXCR3B, which differ by 51 amino acids at its N-terminus. Consistent with an earlier study, we found that C-X-C motif chemokine ligands 4, 9, 10, and 11 all activated G αi at CXCR3A, while at CXCR3B these ligands demonstrated no measurable G αi or G αs activity. β-arrestin (βarr) was recruited at a reduced level to CXCR3B relative to CXCR3A, which was also associated with differences in βarr2 conformation. βarr2 recruitment to CXCR3A was attenuated by both G protein receptor kinase (GRK) 2/3 and GRK5/6 knockdown, while only GRK2/3 knockdown blunted recruitment to CXCR3B. Extracellular regulated kinase 1/2 phosphorylation downstream from CXCR3A and CXCR3B was increased and decreased, respectively, by βarr1/2 knockout. The splice variants also differentially activated transcriptional reporters. These findings demonstrate that differential splicing of CXCR3 results in biased responses associated with distinct patterns of βarr conformation and recruitment. Differential splicing may serve as a common mechanism for generating biased signaling and provides insights into how chemokine receptor signaling can be modulated post-transcriptionally.
Collapse
Affiliation(s)
- Jeffrey S Smith
- Department of Biochemistry (J.S.S., P.A., N.K.D., S.R.), Department of Pharmacology and Cancer Biology (T.F.P.), and Department of Medicine (J.-H.W., N.J.F., S.R.), Duke University Medical Center, Durham, NC 27710; Department of Pharmaceutical Sciences, Tohoku University, Japan (A.I.); and Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Japan (A.I.)
| | - Priya Alagesan
- Department of Biochemistry (J.S.S., P.A., N.K.D., S.R.), Department of Pharmacology and Cancer Biology (T.F.P.), and Department of Medicine (J.-H.W., N.J.F., S.R.), Duke University Medical Center, Durham, NC 27710; Department of Pharmaceutical Sciences, Tohoku University, Japan (A.I.); and Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Japan (A.I.)
| | - Nimit K Desai
- Department of Biochemistry (J.S.S., P.A., N.K.D., S.R.), Department of Pharmacology and Cancer Biology (T.F.P.), and Department of Medicine (J.-H.W., N.J.F., S.R.), Duke University Medical Center, Durham, NC 27710; Department of Pharmaceutical Sciences, Tohoku University, Japan (A.I.); and Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Japan (A.I.)
| | - Thomas F Pack
- Department of Biochemistry (J.S.S., P.A., N.K.D., S.R.), Department of Pharmacology and Cancer Biology (T.F.P.), and Department of Medicine (J.-H.W., N.J.F., S.R.), Duke University Medical Center, Durham, NC 27710; Department of Pharmaceutical Sciences, Tohoku University, Japan (A.I.); and Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Japan (A.I.)
| | - Jiao-Hui Wu
- Department of Biochemistry (J.S.S., P.A., N.K.D., S.R.), Department of Pharmacology and Cancer Biology (T.F.P.), and Department of Medicine (J.-H.W., N.J.F., S.R.), Duke University Medical Center, Durham, NC 27710; Department of Pharmaceutical Sciences, Tohoku University, Japan (A.I.); and Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Japan (A.I.)
| | - Asuka Inoue
- Department of Biochemistry (J.S.S., P.A., N.K.D., S.R.), Department of Pharmacology and Cancer Biology (T.F.P.), and Department of Medicine (J.-H.W., N.J.F., S.R.), Duke University Medical Center, Durham, NC 27710; Department of Pharmaceutical Sciences, Tohoku University, Japan (A.I.); and Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Japan (A.I.)
| | - Neil J Freedman
- Department of Biochemistry (J.S.S., P.A., N.K.D., S.R.), Department of Pharmacology and Cancer Biology (T.F.P.), and Department of Medicine (J.-H.W., N.J.F., S.R.), Duke University Medical Center, Durham, NC 27710; Department of Pharmaceutical Sciences, Tohoku University, Japan (A.I.); and Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Japan (A.I.)
| | - Sudarshan Rajagopal
- Department of Biochemistry (J.S.S., P.A., N.K.D., S.R.), Department of Pharmacology and Cancer Biology (T.F.P.), and Department of Medicine (J.-H.W., N.J.F., S.R.), Duke University Medical Center, Durham, NC 27710; Department of Pharmaceutical Sciences, Tohoku University, Japan (A.I.); and Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Japan (A.I.)
| |
Collapse
|
9
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017; 69:256-297. [PMID: 28626043 PMCID: PMC5482185 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
10
|
Morinelli TA, Luttrell LM, Strungs EG, Ullian ME. Angiotensin II receptors and peritoneal dialysis-induced peritoneal fibrosis. Int J Biochem Cell Biol 2016; 77:240-50. [PMID: 27167177 PMCID: PMC5038354 DOI: 10.1016/j.biocel.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022]
Abstract
The vasoactive hormone angiotensin II initiates its major hemodynamic effects through interaction with AT1 receptors, a member of the class of G protein-coupled receptors. Acting through its AT1R, angiotensin II regulates blood pressure and renal salt and water balance. Recent evidence points to additional pathological influences of activation of AT1R, in particular inflammation, fibrosis and atherosclerosis. The transcription factor nuclear factor κB, a key mediator in inflammation and atherosclerosis, can be activated by angiotensin II through a mechanism that may involve arrestin-dependent AT1 receptor internalization. Peritoneal dialysis is a therapeutic modality for treating patients with end-stage kidney disease. The effectiveness of peritoneal dialysis at removing waste from the circulation is compromised over time as a consequence of peritoneal dialysis-induced peritoneal fibrosis. The non-physiological dialysis solution used in peritoneal dialysis, i.e. highly concentrated, hyperosmotic glucose, acidic pH as well as large volumes infused into the peritoneal cavity, contributes to the development of fibrosis. Numerous trials have been conducted altering certain components of the peritoneal dialysis fluid in hopes of preventing or delaying the fibrotic response with limited success. We hypothesize that structural activation of AT1R by hyperosmotic peritoneal dialysis fluid activates the internalization process and subsequent signaling through the transcription factor nuclear factor κB, resulting in the generation of pro-fibrotic/pro-inflammatory mediators producing peritoneal fibrosis.
Collapse
Affiliation(s)
- Thomas A Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Louis M Luttrell
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, United States
| | - Erik G Strungs
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Michael E Ullian
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, United States
| |
Collapse
|
11
|
Cianfrocca R, Tocci P, Semprucci E, Spinella F, Di Castro V, Bagnato A, Rosanò L. β-Arrestin 1 is required for endothelin-1-induced NF-κB activation in ovarian cancer cells. Life Sci 2014; 118:179-84. [DOI: 10.1016/j.lfs.2014.01.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 12/26/2022]
|
12
|
Kim NH, Kim S, Hong JS, Jeon SH, Huh SO. Application of in utero electroporation of G-protein coupled receptor (GPCR) genes, for subcellular localization of hardly identifiable GPCR in mouse cerebral cortex. Mol Cells 2014; 37:554-61. [PMID: 25078448 PMCID: PMC4132308 DOI: 10.14348/molcells.2014.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors (LPA1-LPA6). LPA1, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of LPA1 in neuronal migration has not yet been fully elucidated. Here, we delivered LPA1 to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of LPA1. Moreover, these results can be applied to the identification of the localization of LPA1. The subcellular localization of LPA1 was endogenously present in the perinuclear area, and overexpressed LPA1 was located in the plasma membrane. Furthermore, LPA1 in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of LPA1 did not affect neuronal migration, and the protein expression of LPA1 was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of LPA1 in brain development and on the technical advantages of in utero electroporation.
Collapse
Affiliation(s)
- Nam-Ho Kim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Chuncheon 200-702, Korea
- Present address: Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Seunghyuk Kim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Chuncheon 200-702, Korea
| | - Jae Seung Hong
- Department of Physical Education, Hallym University, Chuncheon 200-702, Korea
| | - Sung Ho Jeon
- Department of Life Science and Center for Aging and Health Care, Hallym University, Chuncheon 200-702, Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Chuncheon 200-702, Korea
| |
Collapse
|
13
|
Abstract
The four members of the mammalian arrestin family, two visual and two nonvisual, share the property of stimulus-dependent docking to G protein-coupled receptors. This conformational selectivity permits them to function in receptor desensitization, as arrestin binding sterically inhibits G protein coupling. The two nonvisual arrestins further act as adapter proteins, linking receptors to the clathrin-dependent endocytic machinery and regulating receptor sequestration, intracellular trafficking, recycling, and degradation. Arrestins also function as ligand-regulated scaffolds, recruiting catalytically active proteins into receptor-based multiprotein "signalsome" complexes. Arrestin binding thus marks the transition from a transient G protein-coupled state on the plasma membrane to a persistent arrestin-coupled state that continues to signal as the receptor internalizes. Two of the earliest discovered and most studied arrestin-dependent signaling pathways involve regulation of Src family nonreceptor tyrosine kinases and the ERK1/2 mitogen-activated kinase cascade. In each case, arrestin scaffolding imposes constraints on kinase activity that dictate signal duration and substrate specificity. Evidence suggests that arrestin-bound ERK1/2 and Src not only play regulatory roles in receptor desensitization and trafficking but also mediate longer term effects on cell growth, migration, proliferation, and survival.
Collapse
Affiliation(s)
- Erik G Strungs
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | |
Collapse
|
14
|
Magkrioti C, Aidinis V. Autotaxin and lysophosphatidic acid signalling in lung pathophysiology. World J Respirol 2013; 3:77-103. [DOI: 10.5320/wjr.v3.i3.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX or ENPP2) is a secreted glycoprotein widely present in biological fluids. ATX primarily functions as a plasma lysophospholipase D and is largely responsible for the bulk of lysophosphatidic acid (LPA) production in the plasma and at inflamed and/or malignant sites. LPA is a phospholipid mediator produced in various conditions both in cells and in biological fluids, and it evokes growth-factor-like responses, including cell growth, survival, differentiation and motility, in almost all cell types. The large variety of LPA effector functions is attributed to at least six G-protein coupled LPA receptors (LPARs) with overlapping specificities and widespread distribution. Increased ATX/LPA/LPAR levels have been detected in a large variety of cancers and transformed cell lines, as well as in non-malignant inflamed tissues, suggesting a possible involvement of ATX in chronic inflammatory disorders and cancer. In this review, we focus exclusively on the role of the ATX/LPA axis in pulmonary pathophysiology, analysing the effects of ATX/LPA on pulmonary cells and leukocytes in vitro and in the context of pulmonary pathophysiological situations in vivo and in human diseases.
Collapse
|
15
|
Gesty-Palmer D, Yuan L, Martin B, Wood WH, Lee MH, Janech MG, Tsoi LC, Zheng WJ, Luttrell LM, Maudsley S. β-arrestin-selective G protein-coupled receptor agonists engender unique biological efficacy in vivo. Mol Endocrinol 2013; 27:296-314. [PMID: 23315939 DOI: 10.1210/me.2012-1091] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Biased G protein-coupled receptor agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, D-Trp(12),Tyr(34)-bPTH(7-34) [bPTH(7-34)], a biased agonist for the type 1 PTH receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both bPTH(7-34) and the conventional agonist hPTH(1-34) stimulate anabolic bone formation. To understand how two PTH receptor ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 wk with vehicle, bPTH(7-34) or hPTH(1-34). Treatment of wild-type mice with bPTH(7-34) primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival, and migration. These responses were absent in β-arrestin2-null mice, identifying them as downstream targets of β-arrestin2-mediated signaling. In contrast, hPTH(1-34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. hPTH(1-34) actions were less dependent on β-arrestin2, as might be expected of a ligand capable of G protein activation. In vitro, bPTH(7-34) slowed the rate of preosteoblast proliferation, enhanced osteoblast survival when exposed to an apoptotic stimulus, and stimulated cell migration in wild-type, but not β-arrestin2-null, calvarial osteoblasts. These results suggest that bPTH(7-34) and hPTH(1-34) affect bone mass in vivo through predominantly separate genomic mechanisms created by largely distinct receptor-signaling networks and demonstrate that functional selectivity can be exploited to change the quality of G protein-coupled receptor efficacy.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
β-Arrestins regulate G protein-coupled receptors through receptor desensitization while also acting as signaling scaffolds to facilitate numerous effector pathways. Recent studies have provided evidence that β-arrestins play a key role in inflammatory responses. Here, we summarize these advances on the roles of β-arrestins in immune regulation and inflammatory responses under physiological and pathological conditions, with an emphasis on translational implications of β-arrestins on human diseases.
Collapse
|
17
|
Arrestins as regulators of kinases and phosphatases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:115-47. [PMID: 23764052 DOI: 10.1016/b978-0-12-394440-5.00005-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery that, in addition to mediating G protein-coupled receptor (GPCR) desensitization and endocytosis, arrestins bind to diverse catalytically active nonreceptor proteins and act as ligand-regulated signaling scaffolds led to a paradigm shift in the study of GPCR signal transduction. Research over the past decade has solidified the concept that arrestins confer novel GPCR-signaling capacity by recruiting protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein "signalsome" complexes. Signalsomes regulate downstream pathways controlled by Src family nonreceptor tyrosine kinases, mitogen-activated protein kinases, protein kinase B (AKT), glycogen synthase kinase 3, protein phosphatase 2A, nuclear factor-κB, and several others, imposing spatial and temporal control on their function. While many arrestin-bound kinases and phosphatases are involved in the control of cytoskeletal rearrangement, vesicle endocytosis, exocytosis, and cell migration, other signals reach into the nucleus, affecting cell proliferation, apoptosis, and survival. Indeed, the kinase/phosphatase network regulated by arrestins may be fully as diverse as that regulated by heterotrimeric G proteins.
Collapse
|
18
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Eukaryotic translation initiation factor 3, subunit a, regulates the extracellular signal-regulated kinase pathway. Mol Cell Biol 2011; 32:88-95. [PMID: 22025682 DOI: 10.1128/mcb.05770-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway participates in the control of numerous cellular processes, including cell proliferation. Since its activation kinetics are critical for to its biological effects, they are tightly regulated. We report that the protein translation factor, eukaryotic translation initiation factor 3, subunit a (eIF3a), binds to SHC and Raf-1, two components of the ERK pathway. The interaction of eIF3a with Raf-1 is increased by β-arrestin2 expression and transiently decreased by epidermal growth factor (EGF) stimulation in a concentration-dependent manner. The EGF-induced decrease in Raf-1-eIF3a association kinetically correlates with the time course of ERK activation. eIF3a interferes with Raf-1 activation and eIF3a downregulation by small interfering RNA enhances ERK activation, early gene expression, DNA synthesis, expression of neuronal differentiation markers in PC12 cells, and Ras-induced focus formation in NIH 3T3 cells. Thus, eIF3a is a negative modulator of ERK pathway activation and its biological effects.
Collapse
|
20
|
Abstract
Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and estrogen-induced endometrial cancer. An additional endometrial cancer mouse model is generated by the ablation of phosphatase and tensin homolog deleted from chromosome 10 (Pten) (either as heterozygotes or by conditional uterine ablation). To determine the interplay between Mig-6 and the PTEN/phosphoinositide 3-kinase signaling pathway during endometrial tumorigenesis, we generated mice with Mig-6 and Pten conditionally ablated in progesterone receptor-positive cells (PR(cre/+)Mig-6(f/f)Pten(f/f); Mig-6(d/d)Pten(d/d)). The ablation of both Mig-6 and Pten dramatically accelerated the development of endometrial cancer compared with the single ablation of either gene. The epithelium of Mig-6(d/d)Pten(d/d) mice showed a significant decrease in the number of apoptotic cells compared with Pten(d/d) mice. The expression of the estrogen-induced apoptotic inhibitors Birc1 was significantly increased in Mig-6(d/d)Pten(d/d) mice. We identified extracellular signal-regulated kinase 2 (ERK2) as an MIG-6 interacting protein by coimmunoprecipitation and demonstrated that the level of ERK2 phosphorylation was increased upon Mig-6 ablation either singly or in combination with Pten ablation. These results suggest that Mig-6 exerts a tumor-suppressor function in endometrial cancer by promoting epithelial cell apoptosis through the downregulation of the estrogen-induced apoptosis inhibitors Birc1 and the inhibition of ERK2 phosphorylation.
Collapse
|
21
|
Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 2010; 62:305-30. [PMID: 20427692 PMCID: PMC2879915 DOI: 10.1124/pr.109.002436] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heptahelical G protein-coupled receptors are the most diverse and therapeutically important family of receptors in the human genome. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by arrestin binding, which uncouples the receptor and G protein and targets the receptor for internalization. It is clear, however, that heptahelical receptor signaling does not end with desensitization. Arrestins bind a host of catalytically active proteins and serve as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into the receptor-arrestin complex. Although many of these arrestin-bound effectors serve to modulate G protein signaling, degrading second messengers and regulating endocytosis and trafficking, other signals seem to extend beyond the receptor-arrestin complex to regulate such processes as protein translation and gene transcription. Although these findings have led to a re-envisioning of heptahelical receptor signaling, little is known about the physiological roles of arrestin-dependent signaling. In vivo, the duality of arrestin function makes it difficult to dissociate the consequences of arrestin-dependent desensitization from those that might be ascribed to arrestin-mediated signaling. Nonetheless, recent evidence generated using arrestin knockouts, G protein-uncoupled receptor mutants, and arrestin pathway-selective "biased agonists" is beginning to reveal that arrestin signaling plays important roles in the retina, central nervous system, cardiovascular system, bone remodeling, immune system, and cancer. Understanding the signaling roles of arrestins may foster the development of pathway-selective drugs that exploit these pathways for therapeutic benefit.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, USA
| | | |
Collapse
|
22
|
Holmström TE, Mattsson CL, Wang Y, Iakovleva I, Petrovic N, Nedergaard J. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes. Exp Cell Res 2010; 316:2664-75. [PMID: 20576526 DOI: 10.1016/j.yexcr.2010.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/17/2022]
Abstract
In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one G(i)-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.
Collapse
Affiliation(s)
- Therese E Holmström
- Department of Physiology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Sun W, Yang J. Molecular basis of lysophosphatidic acid-induced NF-κB activation. Cell Signal 2010; 22:1799-803. [PMID: 20471472 DOI: 10.1016/j.cellsig.2010.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 05/06/2010] [Indexed: 12/15/2022]
Abstract
PKC, β-arrestin 2, CARMA3, BCL10, MALT1, TRAF6 and MEKK3 are signaling proteins that have a key role in G protein-coupled receptor (GPCR)-mediated activation of nuclear factor-κB (NF-κB) pathway in nonhematopoietic cells in response to lysophosphatidic acid (LPA) stimulation. The PKC, β-arrestin 2, CARMA3-BCL10-MALT1-TRAF6 signalosome, and MEKK3 functions as a link between GPCR signaling and IKK-NF-κB activation. Here we briefly summarize recent progress in the understanding of the molecular and biological functions of these proteins in GPCR-mediated NF-κB activation in nonhematopoietic cells.
Collapse
Affiliation(s)
- Wenjing Sun
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza-BCM320, 6621 Fannin St., MC 3-3320, Houston, TX 77030, United States
| | | |
Collapse
|
24
|
Musnier A, Blanchot B, Reiter E, Crépieux P. GPCR signalling to the translation machinery. Cell Signal 2009; 22:707-16. [PMID: 19887105 DOI: 10.1016/j.cellsig.2009.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/23/2009] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in most physiological processes, many of them being engaged in fully differentiated cells. These receptors couple to transducers of their own, primarily G proteins and beta-arrestins, which launch intracellular signalling cascades. Some of these signalling events regulate the translational machinery to fine-tune general cell metabolism or to alter protein expression pattern. Though extensively documented for tyrosine kinase receptors, translational regulation by GPCRs is still poorly appreciated. The objective of this review paper is to address the following questions: i) is there a "GPCR signature" impacting on the translational machinery, and ultimately on the type of mRNA translated? ii) are the regulatory networks involved similar as those utilized by tyrosine kinase receptors? In particular, we will discuss the specific features of translational control mediated by GPCRs and highlight the intrinsic properties of GPCRs these mechanisms could rely on.
Collapse
Affiliation(s)
- Astrid Musnier
- BIOS group, INRA, UMR, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | |
Collapse
|
25
|
Kendall RT, Luttrell LM. Diversity in arrestin function. Cell Mol Life Sci 2009; 66:2953-73. [PMID: 19597700 PMCID: PMC11115578 DOI: 10.1007/s00018-009-0088-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/09/2009] [Accepted: 05/12/2009] [Indexed: 01/08/2023]
Abstract
The termination of heptahelical receptor signaling is a multilevel process coordinated, in large part, by members of the arrestin family of proteins. Arrestin binding to agonist-occupied receptors promotes desensitization by interrupting receptor-G protein coupling, while simultaneously recruiting machinery for receptor endocytosis, vesicular trafficking, and receptor fate determination. By simultaneously binding other proteins, arrestins also act as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein 'signalsome' complexes. Arrestin-binding thus 'switches' receptors from a transient G protein-coupled state to a persistent arrestin-coupled state that continues to signal as the receptor transits intracellular compartments. While it is clear that signalsome assembly has profound effects on the duration and spatial characteristics of heptahelical receptor signals, the physiologic functions of this novel signaling mechanism are poorly understood. Growing evidence suggests that signalsomes regulate such diverse processes as endocytosis and exocytosis, cell migration, survival, and contractility.
Collapse
Affiliation(s)
- Ryan T. Kendall
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Louis M. Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425 USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401 USA
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816 CSB, MSC 624, Charleston, SC 29425 USA
| |
Collapse
|
26
|
Li J, Ghio AJ, Cho SH, Brinckerhoff CE, Simon SA, Liedtke W. Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a beta-arrestin-dependent manner via activation of RAS. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:400-9. [PMID: 19337515 PMCID: PMC2661910 DOI: 10.1289/ehp.0800311] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 10/29/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. OBJECTIVE We elucidated the molecular mechanisms of DEPs' up-regulation of MMP-1. METHODS/RESULTS Using permanent and primary human bronchial epithelial (HBE) cells at air-liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by beta-arrestins. Short interfering RNA mediated beta-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the -1607GG polymorphism, present in 60-80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. CONCLUSION Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human -1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of beta-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2.
Collapse
Affiliation(s)
- Jinju Li
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Andrew J. Ghio
- U.S. Environmental Protection Agency, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Seung-Hyun Cho
- U.S. Environmental Protection Agency, Research Triangle Park, Research Triangle Park, North Carolina, USA
| | - Constance E. Brinckerhoff
- Departments of Medicine and Biochemistry, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Sidney A. Simon
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Center for Neuroengineering and
| | - Wolfgang Liedtke
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Division of Neurology, Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
27
|
Beta-arrestin 2 is required for lysophosphatidic acid-induced NF-kappaB activation. Proc Natl Acad Sci U S A 2008; 105:17085-90. [PMID: 18952848 DOI: 10.1073/pnas.0802701105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid and binds to its receptors, a family of G protein-coupled receptors (GPCR), which initiates multiple signaling cascades and leads to activation of several transcription factors, including NF-kappaB. Although LPA-induced signaling pathways have been intensively investigated, the molecular mechanism by which LPA activates NF-kappaB is not fully defined. In this work, we found that beta-arrestin 2, but not beta-arrestin 1, is required for LPA-induced NF-kappaB activation and interlukin-6 expression. Mechanistically, we found that beta-arrestin 2 associated with CARMA3, a scaffold protein that plays an essential role in GPCR-induced NF-kappaB activation, suggesting that beta-arrestin 2 may recruit CARMA3 to LPA receptors. Although beta-arrestin 2 deficiency did not affect LPA-induced IKKalpha/beta phosphorylation, it impaired LPA-induced IKK kinase activity, which is consistent with our previous findings that CARMA3 is required for IKKalpha/beta activation but not for the inducible phosphorylation of IKKalpha/beta. Together, our results provide the genetic evidence that beta-arrestin 2 serves as a positive regulator in NF-kappaB signaling pathway by connecting CARMA3 to GPCRs.
Collapse
|
28
|
Fan H, Zingarelli B, Harris V, Tempel GE, Halushka PV, Cook JA. Lysophosphatidic acid inhibits bacterial endotoxin-induced pro-inflammatory response: potential anti-inflammatory signaling pathways. Mol Med 2008; 14:422-8. [PMID: 18431464 DOI: 10.2119/2007-00106.fan] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 04/14/2008] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that heterotrimeric guanine nucleotide-binding regulatory (Gi) protein-deficient mice exhibit augmented inflammatory responses to lipopolysaccharide (LPS). These findings suggest that Gi protein agonists will suppress LPS-induced inflammatory gene expression. Lysophosphatidic acid (LPA) activates G protein-coupled receptors leading to Gi protein activation. We hypothesized that LPA will inhibit LPS-induced inflammatory responses through activation of Gi-coupled anti-inflammatory signaling pathways. We examined the anti-inflammatory effect of LPA on LPS responses both in vivo and in vitro in CD-1 mice. The mice were injected intravenously with LPA (10 mg/kg) followed by intraperitoneal injection of LPS (75 mg/kg for survival and 25 mg/kg for other studies). LPA significantly increased the mice survival to endotoxemia (P < 0.05). LPA injection reduced LPS-induced plasma TNF-alpha production (69 +/- 6%, P < 0.05) and myeloperoxidase (MPO) activity in lung (33 +/- 9%, P < 0.05) as compared to vehicle injection. LPS-induced plasma IL-6 was unchanged by LPA. In vitro studies with peritoneal macrophages paralleled results from in vivo studies. LPA (1 and 10 microM) significantly inhibited LPS-induced TNFalpha production (61 +/- 9% and 72 +/- 9%, respectively, P < 0.05) but not IL-6. We further demonstrated that the anti-inflammatory effect of LPA was reversed by ERK 1/2 and phosphatase inhibitors, suggesting that ERK 1/2 pathway and serine/threonine phosphatases are involved. Inhibition of phosphatidylinositol 3 (PI3) kinase signaling pathways also partially reversed the LPA anti-inflammatory response. However, LPA did not alter NFkappaB and peroxisome proliferator-activated receptor gamma (PPARgamma) activation. Inhibitors of PPARgamma did not alter LPA-induced inhibition of LPS signaling. These studies demonstrate that LPA has significant anti-inflammatory activities involving activation of ERK 1/2, serine/threonine phosphatases, and PI3 kinase signaling pathways.
Collapse
Affiliation(s)
- Hongkuan Fan
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
29
|
Stortelers C, Kerkhoven R, Moolenaar WH. Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling. BMC Genomics 2008; 9:387. [PMID: 18702810 PMCID: PMC2536681 DOI: 10.1186/1471-2164-9-387] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/14/2008] [Indexed: 02/03/2023] Open
Abstract
Background Lysophosphatidic acid (LPA) is a lipid mediator that acts through specific G protein-coupled receptors to stimulate the proliferation, migration and survival of many cell types. LPA signaling has been implicated in development, wound healing and cancer. While LPA signaling pathways have been studied extensively, it remains unknown how LPA affects global gene expression in its target cells. Results We have examined the temporal program of global gene expression in quiescent mouse embryonic fibroblasts stimulated with LPA using 32 k oligonucleotide microarrays. In addition to genes involved in growth stimulation and cytoskeletal reorganization, LPA induced many genes that encode secreted factors, including chemokines, growth factors, cytokines, pro-angiogenic and pro-fibrotic factors, components of the plasminogen activator system and metalloproteases. Strikingly, epidermal growth factor induced a broadly overlapping expression pattern, but some 7% of the genes (105 out of 1508 transcripts) showed differential regulation by LPA. The subset of LPA-specific genes was enriched for those associated with cytoskeletal remodeling, in keeping with LPA's ability to regulate cell shape and motility. Conclusion This study highlights the importance of LPA in programming fibroblasts not only to proliferate and migrate but also to produce many paracrine mediators of tissue remodeling, angiogenesis, inflammation and tumor progression. Furthermore, our results show that G protein-coupled receptors and receptor tyrosine kinases can signal independently to regulate broadly overlapping sets of genes in the same cell type.
Collapse
Affiliation(s)
- Catelijne Stortelers
- Division of Cellular Biochemistry and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
30
|
Gesty-Palmer D, Luttrell LM. Heptahelical terpsichory. Who calls the tune? J Recept Signal Transduct Res 2008; 28:39-58. [PMID: 18437629 DOI: 10.1080/10799890801941921] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The discovery that arrestins can function as ligand-regulated signaling scaffolds has revealed a previously unappreciated level of complexity in G protein-coupled receptor (GPCR) signal transduction. Because arrestin-bound GPCRs are uncoupled from G proteins, arrestin binding can be viewed as switching receptors between two temporally and spatially distinct signaling modes. Recent work has established two factors that underscore this duality of GPCR signaling and suggest it may ultimately have therapeutic significance. The first is that signaling by receptor-arrestin "signalsomes" does not require heterotrimeric G protein activation. The second is that arrestin-dependent signals can be initiated by pathway-specific "biased agonists," creating the potential for drugs that selectively modulate different aspects of GPCR function. Currently, however, little is known about the physiological relevance of G protein-independent signals at the cellular or whole animal levels, and additional work is needed to determine whether arrestin pathway-selective drugs will find clinical application.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
31
|
Kim J, Zhang L, Peppel K, Wu JH, Zidar DA, Brian L, DeWire SM, Exum ST, Lefkowitz RJ, Freedman NJ. Beta-arrestins regulate atherosclerosis and neointimal hyperplasia by controlling smooth muscle cell proliferation and migration. Circ Res 2008; 103:70-9. [PMID: 18519945 DOI: 10.1161/circresaha.108.172338] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Atherosclerosis and arterial injury-induced neointimal hyperplasia involve medial smooth muscle cell (SMC) proliferation and migration into the arterial intima. Because many 7-transmembrane and growth factor receptors promote atherosclerosis, we hypothesized that the multifunctional adaptor proteins beta-arrestin1 and -2 might regulate this pathological process. Deficiency of beta-arrestin2 in ldlr(-/-) mice reduced aortic atherosclerosis by 40% and decreased the prevalence of atheroma SMCs by 35%, suggesting that beta-arrestin2 promotes atherosclerosis through effects on SMCs. To test this potential atherogenic mechanism more specifically, we performed carotid endothelial denudation in congenic wild-type, beta-arrestin1(-/-), and beta-arrestin2(-/-) mice. Neointimal hyperplasia was enhanced in beta-arrestin1(-/-) mice, and diminished in beta-arrestin2(-/-) mice. Neointimal cells expressed SMC markers and did not derive from bone marrow progenitors, as demonstrated by bone marrow transplantation with green fluorescent protein-transgenic cells. Moreover, the reduction in neointimal hyperplasia seen in beta-arrestin2(-/-) mice was not altered by transplantation with either wild-type or beta-arrestin2(-/-) bone marrow cells. After carotid injury, medial SMC extracellular signal-regulated kinase activation and proliferation were increased in beta-arrestin1(-/-) and decreased in beta-arrestin2(-/-) mice. Concordantly, thymidine incorporation and extracellular signal-regulated kinase activation and migration evoked by 7-transmembrane receptors were greater than wild type in beta-arrestin1(-/-) SMCs and less in beta-arrestin2(-/-) SMCs. Proliferation was less than wild type in beta-arrestin2(-/-) SMCs but not in beta-arrestin2(-/-) endothelial cells. We conclude that beta-arrestin2 aggravates atherosclerosis through mechanisms involving SMC proliferation and migration and that these SMC activities are regulated reciprocally by beta-arrestin2 and beta-arrestin1. These findings identify inhibition of beta-arrestin2 as a novel therapeutic strategy for combating atherosclerosis and arterial restenosis after angioplasty.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 2008; 112:34-44. [PMID: 18436740 DOI: 10.1182/blood-2007-07-102103] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is an immune deficiency linked in many cases to heterozygous mutations causing truncations in the cytoplasmic tail of CXC chemokine receptor 4 (CXCR4). Leukocytes expressing truncated CXCR4 display enhanced responses to the receptor ligand CXCL12, including chemotaxis, which likely impair their trafficking and contribute to the immunohematologic clinical manifestations of the syndrome. CXCR4 desensitization and endocytosis are dependent on beta-arrestin (betaarr) recruitment to the cytoplasmic tail, so that the truncated CXCR4 are refractory to these processes and so have enhanced G protein-dependent signaling. Here, we show that the augmented responsiveness of WHIM leukocytes is also accounted for by enhanced betaarr2-dependent signaling downstream of the truncated CXCR4 receptor. Indeed, the WHIM-associated receptor CXCR4(1013) maintains association with betaarr2 and triggers augmented and prolonged betaarr2-dependent signaling, as revealed by ERK1/2 phosphorylation kinetics. Evidence is also provided that CXCR4(1013)-mediated chemotaxis critically requires betaarr2, and disrupting the SHSK motif in the third intracellular loop of CXCR4(1013) abrogates betaarr2-mediated signaling, but not coupling to G proteins, and normalizes chemotaxis. We also demonstrate that CXCR4(1013) spontaneously forms heterodimers with wild-type CXCR4. Accordingly, we propose a model where enhanced functional interactions between betaarr2 and receptor dimers account for the altered responsiveness of WHIM leukocytes to CXCL12.
Collapse
|
33
|
DeWire SM, Kim J, Whalen EJ, Ahn S, Chen M, Lefkowitz RJ. Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem 2008; 283:10611-20. [PMID: 18276584 DOI: 10.1074/jbc.m710515200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that beta-arrestins, originally thought only to desensitize G protein signaling, also serve as independent receptor signal transducers. Recently, we found that activation of ERK1/2 by the angiotensin receptor occurs via both of these distinct pathways. In this work, we explore the physiological consequences of beta-arrestin ERK1/2 signaling and delineate a pathway that regulates mRNA translation and protein synthesis via Mnk1, a protein that both physically interacts with and is activated by beta-arrestins. We show that beta-arrestin-dependent activation of ERK1/2, Mnk1, and eIF4E are responsible for increasing translation rates in both human embryonic kidney 293 and rat vascular smooth muscle cells. This novel demonstration that beta-arrestins regulate protein synthesis reveals that the spectrum of beta-arrestin-mediated signaling events is broader than previously imagined.
Collapse
Affiliation(s)
- Scott M DeWire
- Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
34
|
Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Mol Biotechnol 2008; 39:239-64. [DOI: 10.1007/s12033-008-9031-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 01/14/2023]
|
35
|
Zhou J, Xu X, Liu JJ, Lin YX, Gao GD. Angiotensin II receptors subtypes mediate diverse gene expression profile in adult hypertrophic cardiomyocytes. Clin Exp Pharmacol Physiol 2007; 34:1191-8. [PMID: 17880376 DOI: 10.1111/j.1440-1681.2007.04694.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Although the systemic and cardiac renin-angiotensin systems are known to be activated in the setting of pressure overload, the actions and signaling mechanisms of angiotensin (Ang) II via AT(1) and AT(2) receptors in hypertrophic cardiomyocytes (CM) remain largely unclear. 2. Hypertrophic CM were prepared from rats with aortic banding for 8 weeks, cultured and then treated as follows: (i) 1 micromol/L AngII for 24 h; (ii) 10 micromol/L losartan (an AT(1) receptor antagonist) for 1 h followed by 1 micromol/L AngII for 24 h; and (iii) 10 micromol/L PD123319 (an AT(2) receptor antagonist) for 1 h followed by 1 micromol/L AngII for 24 h. Changes in the expression of genes following stimulation of AT(1) and AT(2) receptors specific to G-protein-coupled receptor (GPCR) signaling pathways were tested using GEArray (Superarray, Bethesda, MD, USA). The effects of AngII, acting via AT(1) and AT(2) receptors, on the expression of tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 were confirmed by reverse transcription-polymerase chain reaction and radioimmunoassay. 3. The genes regulated via stimulation of AT(1) receptors were mainly restricted to the signaling pathways including cAMP/protein kinase (PK) A, Ca(2+), PKC, protein tyrosine kinase, mitogen-activated protein kinases, phosphatidylinositol 3-kinase and nuclear factor-kappaB. In addition to these pathways related to activation of AT(1) receptors, four additional signaling pathways were found to be associated with stimulation of AT(2) receptors, including phospholipase C, nitric oxide/cGMP, Rho and Janus kinase/signal transducer and activator of transcription. Blockade of AT(2) receptors decreased the mRNA and protein expression of TNF-alpha and IL-1beta, whereas blockade of AT(1) receptors had no such effect. 4. In conclusion, in hypertrophic CM, AngII leads to distinct signaling responses mediated by AT(1) and AT(2) receptors. Stimulation of AT(2) receptors appears to have a greater influence on GPCR-signaling than stimulation of AT(1) receptors. Angiotensin II enhances the synthesis and secretion of TNF-alpha and IL-1beta in hypertrophic CM, which is mediated by AT(2), but not AT(1), receptors.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Aorta, Abdominal/surgery
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Imidazoles/pharmacology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Ligation
- Losartan/pharmacology
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oligonucleotide Array Sequence Analysis
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Angiotensin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Time Factors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Juan Zhou
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
36
|
Lee MH, El-Shewy HM, Luttrell DK, Luttrell LM. Role of beta-arrestin-mediated desensitization and signaling in the control of angiotensin AT1a receptor-stimulated transcription. J Biol Chem 2007; 283:2088-97. [PMID: 18006496 DOI: 10.1074/jbc.m706892200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heptahelical G protein-coupled receptors employ several mechanisms to activate the ERK1/2 cascade and control gene transcription. Previous work with the angiotensin AT1a receptor has shown that G(q/11) activation leads to a rapid and transient rise in ERK1/2 activity, whereas beta-arrestin binding supports sustained ERK1/2 activation by scaffolding a Raf.MEK.ERK complex associated with the internalized receptor. In this study, we compared the role of the two beta-arrestin isoforms in AT1a receptor desensitization, ERK1/2 activation and transcription using selective RNA interference. In HEK293 cells, both the native AT1a receptor and a G protein-coupling deficient DRY/AAY mutant recruited beta-arrestin1 and beta-arrestin2 upon angiotensin binding and internalized with the receptor. In contrast, only beta-arrestin2 supported protein kinase C-independent ERK1/2 activation by both the AT1a and DRY/AAY receptors. Using focused gene expression filter arrays to screen for endogenous transcriptional responses, we found that silencing beta-arrestin1 or beta-arrestin2 individually did not alter the response pattern but that silencing both caused a marked increase in the number of transcripts that were significantly up-regulated in response to AT1a receptor activation. The DRY/AAY receptor failed to elicit any detectable transcriptional response despite its ability to stimulate beta-arrestin2-dependent ERK1/2 activation. These results indicate that the transcriptional response to AT1a receptor activation primarily reflects heterotrimeric G protein activation. Although beta-arrestin1 and beta-arrestin2 are functionally specialized with respect to supporting G protein-independent ERK1/2 activation, their common effect is to dampen the transcriptional response by promoting receptor desensitization.
Collapse
Affiliation(s)
- Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Upon their discovery, beta-arrestins 1 and 2 were named for their capacity to sterically hinder the G protein coupling of agonist-activated seven-transmembrane receptors, ultimately resulting in receptor desensitization. Surprisingly, recent evidence shows that beta-arrestins can also function to activate signaling cascades independently of G protein activation. By serving as multiprotein scaffolds, the beta-arrestins bring elements of specific signaling pathways into close proximity. beta-Arrestin regulation has been demonstrated for an ever-increasing number of signaling molecules, including the mitogen-activated protein kinases ERK, JNK, and p38 as well as Akt, PI3 kinase, and RhoA. In addition, investigators are discovering new roles for beta-arrestins in nuclear functions. Here, we review the signaling capacities of these versatile adapter molecules and discuss the possible implications for cellular processes such as chemotaxis and apoptosis.
Collapse
Affiliation(s)
- Scott M DeWire
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
38
|
Caunt CJ, Finch AR, Sedgley KR, McArdle CA. Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab 2006; 17:276-83. [PMID: 16890451 DOI: 10.1016/j.tem.2006.07.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/30/2006] [Accepted: 07/17/2006] [Indexed: 12/01/2022]
Abstract
Vast numbers of extracellular signalling molecules exert effects on their target cells by activation of a relatively limited number of mitogen-activated protein kinase (MAPK) cascades, raising the question of how specificity is achieved. To a large extent, this appears to be attributable to differences in kinetics and compartmentalization of MAPK protein activation that are dictated by MAPK-associated proteins serving as scaffolds, anchors, activators or effectors. Here, we review spatiotemporal aspects of signalling via the Ras-Raf-extracellular signal-regulated kinase pathway, emphasizing recent work on roles of arrestins as scaffolds and transducers for seven transmembrane receptor signalling.
Collapse
Affiliation(s)
- Christopher J Caunt
- University of Bristol, Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Whitson Street, Bristol, BS1 3NY, UK
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Nicola J Smith
- Molecular Endocrinology Laboratory, Baker Heart Research Institute, Melbourne, Victoria, Australia
| | | |
Collapse
|
40
|
Neuhaus EM, Mashukova A, Barbour J, Wolters D, Hatt H. Novel function of β-arrestin2 in the nucleus of mature spermatozoa. J Cell Sci 2006; 119:3047-56. [PMID: 16820410 DOI: 10.1242/jcs.03046] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A growing number of proteins originally found in endocytic structures of the plasma membrane appear to be able to traffic into the nucleus, but the cellular function of this translocation remains unclear. We have found that β-arrestin2, which typically shows a cytoplasmic localization owing to constitutive nuclear export, appears in the nucleus after stimulation of the G-protein-coupled odorant receptor hOR17-4. In the nucleus, β-arrestin2 was involved in transcriptional regulation as shown by a Gal4-based transactivation assay. Moreover, we discovered that β-arrestin2 and hOR17-4, a receptor known to have a role in sperm-egg communication, colocalize in the midpiece of mature human spermatozoa. Stimulation of hOR17-4 in spermatozoa induced PKA-dependent translocation of β-arrestin2 to the nucleus and nuclear accumulation of phosphorylated MAPKs. Analysis of the interaction partners of β-arrestin2 indicates that odorant receptor signaling in spermatozoa may be important for the regulation of gene expression during the early processes of fertilization.
Collapse
Affiliation(s)
- Eva M Neuhaus
- Department of Cell Physiology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
41
|
Jafri F, El-Shewy HM, Lee MH, Kelly M, Luttrell DK, Luttrell LM. Constitutive ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein. Probing the composition and function of the G protein-coupled receptor "signalsome". J Biol Chem 2006; 281:19346-57. [PMID: 16670094 DOI: 10.1074/jbc.m512643200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-arrestins, a small family of G protein-coupled receptor (GPCR)-binding proteins involved in receptor desensitization, have been shown to bind extracellular signal-regulated kinases 1 and 2 (ERK1/2) and function as scaffolds for GPCR-stimulated ERK1/2 activation. To better understand the mechanism of beta-arrestin-mediated ERK1/2 activation, we compared ERK1/2 activation by the wild-type neurokinin 1 (NK1) receptor with a chimeric NK1 receptor having beta-arrestin1 fused to the receptor C terminus (NK1-betaArr1). The NK1 receptor couples to both G(s) and G(q/11), resides on the plasma membrane, and mediates rapid ERK1/2 activation and nuclear translocation in response to neurokinin A. In contrast, NK1-betaArr1 is a G protein-uncoupled "constitutively desensitized" receptor that resides almost entirely in an intracellular endosomal compartment. Despite its inability to respond to neurokinin A, we found that NK1-betaArr1 expression caused robust constitutive activation of cytosolic ERK1/2 and that endogenous Raf, MEK1/2, and ERK1/2 coprecipitated in a complex with NK1-betaArr1. While agonist-dependent ERK1/2 activation by the NK1 receptor was independent of protein kinase A (PKA) or PKC activity, NK1-betaArr1-mediated ERK1/2 activation was completely inhibited when basal PKA and PKC activity were blocked. In addition, the rate of ERK1/2 dephosphorylation was slowed in NK1-betaArr1-expressing cells, suggesting that beta-arrestin-bound ERK1/2 is protected from mitogen-activated protein kinase phosphatase activity. These data suggest that beta-arrestin binding to GPCRs nucleates the formation of a stable "signalsome" that functions as a passive scaffold for the ERK1/2 cascade while confining ERK1/2 activity to an extranuclear compartment.
Collapse
Affiliation(s)
- Farahdiba Jafri
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
42
|
Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, Reiter E, Premont RT, Lichtarge O, Lefkowitz RJ. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 2005; 281:1261-73. [PMID: 16280323 DOI: 10.1074/jbc.m506576200] [Citation(s) in RCA: 593] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Physiological effects of beta adrenergic receptor (beta2AR) stimulation have been classically shown to result from G(s)-dependent adenylyl cyclase activation. Here we demonstrate a novel signaling mechanism wherein beta-arrestins mediate beta2AR signaling to extracellular-signal regulated kinases 1/2 (ERK 1/2) independent of G protein activation. Activation of ERK1/2 by the beta2AR expressed in HEK-293 cells was resolved into two components dependent, respectively, on G(s)-G(i)/protein kinase A (PKA) or beta-arrestins. G protein-dependent activity was rapid, peaking within 2-5 min, was quite transient, was blocked by pertussis toxin (G(i) inhibitor) and H-89 (PKA inhibitor), and was insensitive to depletion of endogenous beta-arrestins by siRNA. beta-Arrestin-dependent activation was slower in onset (peak 5-10 min), less robust, but more sustained and showed little decrement over 30 min. It was insensitive to pertussis toxin and H-89 and sensitive to depletion of either beta-arrestin1 or -2 by small interfering RNA. In G(s) knock-out mouse embryonic fibroblasts, wild-type beta2AR recruited beta-arrestin2-green fluorescent protein and activated pertussis toxin-insensitive ERK1/2. Furthermore, a novel beta2AR mutant (beta2AR(T68F,Y132G,Y219A) or beta2AR(TYY)), rationally designed based on Evolutionary Trace analysis, was incapable of G protein activation but could recruit beta-arrestins, undergo beta-arrestin-dependent internalization, and activate beta-arrestin-dependent ERK. Interestingly, overexpression of GRK5 or -6 increased mutant receptor phosphorylation and beta-arrestin recruitment, led to the formation of stable receptor-beta-arrestin complexes on endosomes, and increased agonist-stimulated phospho-ERK1/2. In contrast, GRK2, membrane translocation of which requires Gbetagamma release upon G protein activation, was ineffective unless it was constitutively targeted to the plasma membrane by a prenylation signal (CAAX). These findings demonstrate that the beta2AR can signal to ERK via a GRK5/6-beta-arrestin-dependent pathway, which is independent of G protein coupling.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Howard Hughes Medical Institute at Duke University Medical Center, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|