1
|
Li M, Ding Y, Wei J, Dong Y, Wang J, Dai X, Yan J, Chu F, Zhang K, Meng F, Ma J, Zhong W, Wang B, Gao Y, Yang R, Liu X, Su X, Cao H. Gut microbiota metabolite indole-3-acetic acid maintains intestinal epithelial homeostasis through mucin sulfation. Gut Microbes 2024; 16:2377576. [PMID: 39068517 PMCID: PMC11285290 DOI: 10.1080/19490976.2024.2377576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed. A HFD induces a significant decrease in indole-3-acetic acid (IAA) and leads to intestinal barrier damage. Furthermore, IAA supplementation enhances intestinal mucin sulfation and effectively alleviates colitis. Mechanistically, IAA upregulates key molecules involved in mucin sulfation, including 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) and solute carrier family 35 member B3 (Slc35b3), the synthesis enzyme and the transferase of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), via the aryl hydrocarbon receptor (AHR). More importantly, AHR can directly bind to the transcription start site of Papss2. Oral administration of Lactobacillus reuteri, which can produce IAA, contributes to protecting against colitis and promoting mucin sulfation, while the modified L. reuteri strain lacking the iaaM gene (LactobacillusΔiaaM) and the ability to produce IAA fail to exhibit such effects. Overall, IAA enhances intestinal mucin sulfation through the AHR-Papss2-Slc35b3 pathway, contributing to the protection of intestinal homfeostasis.
Collapse
Affiliation(s)
- Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yue Dong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jing Yan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Feifei Chu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanyi Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
2
|
Xu P, Cai X, Guan X, Xie W. Sulfoconjugation of protein peptides and glycoproteins in physiology and diseases. Pharmacol Ther 2023; 251:108540. [PMID: 37777160 PMCID: PMC10842354 DOI: 10.1016/j.pharmthera.2023.108540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Protein sulfoconjugation, or sulfation, represents a critical post-translational modification (PTM) process that involves the attachment of sulfate groups to various positions of substrates within the protein peptides or glycoproteins. This process plays a dynamic and complex role in many physiological and pathological processes. Here, we summarize the importance of sulfation in the fields of oncology, virology, drug-induced liver injury (DILI), inflammatory bowel disease (IBD), and atherosclerosis. In oncology, sulfation is involved in tumor initiation, progression, and migration. In virology, sulfation influences viral entry, replication, and host immune response. In DILI, sulfation is associated with the incidence of DILI, where altered sulfation affects drug metabolism and toxicity. In IBD, dysregulation of sulfation compromises mucosal barrier and immune response. In atherosclerosis, sulfation influences the development of atherosclerosis by modulating the accumulation of lipoprotein, and the inflammation, proliferation, and migration of smooth muscle cells. The current review underscores the importance of further research to unravel the underlying mechanisms and therapeutic potential of targeting sulfoconjugation in various diseases. A better understanding of sulfation could facilitate the emergence of innovative diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Zhong X, D’Antona AM. A potential antibody repertoire diversification mechanism through tyrosine sulfation for biotherapeutics engineering and production. Front Immunol 2022; 13:1072702. [PMID: 36569848 PMCID: PMC9774471 DOI: 10.3389/fimmu.2022.1072702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
The diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody's binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction. This breakthrough finding demonstrated that antibody repertoire could be further diversified through post-translational modifications, in addition to the conventional genetic recombination. This review article summarizes the current advances in the understanding of the Tyr-sulfation modification mechanism and its application in potentiating protein-protein interaction for antibody engineering and production. Challenges and opportunities are also discussed.
Collapse
|
5
|
Suppression of heparan sulfation re-sensitizes YAP1-driven melanoma to MAPK pathway inhibitors. Oncogene 2022; 41:3953-3968. [PMID: 35798875 PMCID: PMC9355870 DOI: 10.1038/s41388-022-02400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Accumulating evidence identifies non-genetic mechanisms substantially contributing to drug resistance in cancer patients. Preclinical and clinical data implicate the transcriptional co-activators YAP1 and its paralog TAZ in resistance to multiple targeted therapies, highlighting the strong need for therapeutic strategies overcoming YAP1/TAZ-mediated resistance across tumor entities. Here, we show particularly high YAP1/TAZ activity in MITFlow/AXLhigh melanomas characterized by resistance to MAPK pathway inhibition and broad receptor tyrosine kinase activity. To uncover genetic dependencies of melanoma cells with high YAP1/TAZ activity, we used a genome-wide CRISPR/Cas9 functional screen and identified SLC35B2, the 3′-phosphoadenosine-5′-phosphosulfate transporter of the Golgi apparatus, as an essential gene for YAP1/TAZ-driven drug resistance. SLC35B2 expression correlates with tumor progression, and its loss decreases heparan sulfate expression, reduces receptor tyrosine kinase activity, and sensitizes resistant melanoma cells to BRAF inhibition in vitro and in vivo. Thus, targeting heparan sulfation via SLC35B2 represents a novel approach for breaking receptor tyrosine kinase-mediated resistance to MAPK pathway inhibitors.
Collapse
|
6
|
Ahat E, Song Y, Xia K, Reid W, Li J, Bui S, Zhang F, Linhardt RJ, Wang Y. GRASP depletion-mediated Golgi fragmentation impairs glycosaminoglycan synthesis, sulfation, and secretion. Cell Mol Life Sci 2022; 79:199. [PMID: 35312866 PMCID: PMC9164142 DOI: 10.1007/s00018-022-04223-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Whitney Reid
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Haouari W, Dubail J, Poüs C, Cormier-Daire V, Bruneel A. Inherited Proteoglycan Biosynthesis Defects-Current Laboratory Tools and Bikunin as a Promising Blood Biomarker. Genes (Basel) 2021; 12:genes12111654. [PMID: 34828260 PMCID: PMC8625474 DOI: 10.3390/genes12111654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans consist of proteins linked to sulfated glycosaminoglycan chains. They constitute a family of macromolecules mainly involved in the architecture of organs and tissues as major components of extracellular matrices. Some proteoglycans also act as signaling molecules involved in inflammatory response as well as cell proliferation, adhesion, and differentiation. Inborn errors of proteoglycan metabolism are a group of orphan diseases with severe and irreversible skeletal abnormalities associated with multiorgan impairments. Identifying the gene variants that cause these pathologies proves to be difficult because of unspecific clinical symptoms, hardly accessible functional laboratory tests, and a lack of convenient blood biomarkers. In this review, we summarize the molecular pathways of proteoglycan biosynthesis, the associated inherited syndromes, and the related biochemical screening techniques, and we focus especially on a circulating proteoglycan called bikunin and on its potential as a new biomarker of these diseases.
Collapse
Affiliation(s)
- Walid Haouari
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Johanne Dubail
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Christian Poüs
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Valérie Cormier-Daire
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Arnaud Bruneel
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France
- Correspondence:
| |
Collapse
|
8
|
Ogura C, Nishihara S. Dermatan-4- O-Sulfotransferase-1 Contributes to the Undifferentiated State of Mouse Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:733964. [PMID: 34631712 PMCID: PMC8495257 DOI: 10.3389/fcell.2021.733964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) have the properties of self-renewal and pluripotency. Various signals and growth factors maintain their undifferentiated state and also regulate their differentiation. Glycosaminoglycans are present on the cell surface and in the cell matrix as proteoglycans. Previously, we and other groups reported that the glycosaminoglycan heparan sulfate contributes to both maintenance of undifferentiated state and regulation of mESC differentiation. It has been shown that chondroitin sulfate is needed for pluripotency and differentiation of mESCs, while keratan sulfate is a known marker of human ESCs or induced pluripotent stem cells. We also found that DS promotes neuronal differentiation from mESCs and human neural stem cells; however, the function of DS in the maintenance of mESCs has not yet been revealed. Here, we investigated the role of DS in mESCs by knockdown (KD) or overexpression (O/E) of the dermatan-4-O-sulfotransferase-1 (D4ST1) gene. We found that the activity of the ESC self-renewal marker alkaline phosphatase was reduced in D4ST1 KD mESCs, but, in contrast, increased in D4ST1 O/E mESCs. D4ST1 KD promoted endodermal differentiation, as indicated by an increase in Cdx2 expression. Conversely, Cdx2 expression was decreased by D4ST1 O/E. Wnt signaling, which is also involved in endodermal differentiation, was activated by D4ST1 KD and suppressed by D4ST1 O/E. Collectively, these results demonstrate that D4ST1 contributes to the undifferentiated state of mESCs. Our findings provide new insights into the function of DS in mESCs.
Collapse
Affiliation(s)
- Chika Ogura
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Japan.,Glycan and Life System Integration Center (GaLSIC), Soka University, Hachioji, Japan
| |
Collapse
|
9
|
Huang YF, Mizumoto S, Fujita M. Novel Insight Into Glycosaminoglycan Biosynthesis Based on Gene Expression Profiles. Front Cell Dev Biol 2021; 9:709018. [PMID: 34552927 PMCID: PMC8450405 DOI: 10.3389/fcell.2021.709018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate, except for hyaluronan that is a free polysaccharide, are covalently attached to core proteins to form proteoglycans. More than 50 gene products are involved in the biosynthesis of GAGs. We recently developed a comprehensive glycosylation mapping tool, GlycoMaple, for visualization and estimation of glycan structures based on gene expression profiles. Using this tool, the expression levels of GAG biosynthetic genes were analyzed in various human tissues as well as tumor tissues. In brain and pancreatic tumors, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be upregulated. In breast cancerous tissues, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be up- and down-regulated, respectively, which are consistent with biochemical findings published in the literature. In addition, the expression levels of the chondroitin sulfate-proteoglycan versican and the dermatan sulfate-proteoglycan decorin were up- and down-regulated, respectively. These findings may provide new insight into GAG profiles in various human diseases including cancerous tumors as well as neurodegenerative disease using GlycoMaple analysis.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Dubail J, Cormier-Daire V. Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis. Front Genet 2021; 12:642097. [PMID: 34220933 PMCID: PMC8242584 DOI: 10.3389/fgene.2021.642097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.
Collapse
Affiliation(s)
- Johanne Dubail
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Valérie Cormier-Daire
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France.,Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
11
|
Liu R, Zhang Y, Kumar A, Huhn S, Hullinger L, Du Z. Modulating tyrosine sulfation of recombinant antibodies in CHO cell culture by host selection and sodium chlorate supplementation. Biotechnol J 2021; 16:e2100142. [PMID: 34081410 DOI: 10.1002/biot.202100142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tyrosine sulfation is a post-translational modification found on many surface receptors and plays an important role in cell-cell and cell-matrix interactions. However, tyrosine sulfation of therapeutic antibodies has only been reported very recently. Because of potential potency and immunogenicity concerns, tyrosine sulfation needs to be controlled during the manufacturing process. METHODS AND RESULTS In this study, we explored methods to modulate antibody tyrosine sulfation during cell line development and upstream production process. We found that tyrosine sulfation levels were significantly different in various Chinese hamster ovary (CHO) cell lines due to differential expression of genes in the sulfation pathway including tyrosylprotein sulfotransferase 2 (TPST2) and the sulfation substrate transporter SLC35B2. We also screened chemical inhibitors to reduce tyrosine sulfation in CHO culture and found that sodium chlorate could significantly inhibit tyrosine sulfation while having minimal impact on cell growth and antibody production. We further confirmed this finding in a standard fed-batch production assay. Sodium chlorate at 16 mM markedly inhibited tyrosine sulfation by more than 50% and had no significant impact on antibody titer or quality. CONCLUSION These data suggest that we can control tyrosine sulfation by selecting CHO cell lines based on the expression level of TPST2 and SLC35B2 or adding sodium chlorate in upstream production process.
Collapse
Affiliation(s)
- Ren Liu
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Yixiao Zhang
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Amit Kumar
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Steven Huhn
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Laurie Hullinger
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zhimei Du
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
12
|
Fang R, Jiang Q, Guan Y, Gao P, Zhang R, Zhao Z, Jiang Z. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity 2021; 54:962-975.e8. [PMID: 33857420 DOI: 10.1016/j.immuni.2021.03.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 03/16/2021] [Indexed: 12/26/2022]
Abstract
Activation of the cyclic guanosine monophosphate (GMP)-AMP (cGAMP) sensor STING requires its translocation from the endoplasmic reticulum to the Golgi apparatus and subsequent polymerization. Using a genome-wide CRISPR-Cas9 screen to define factors critical for STING activation in cells, we identified proteins critical for biosynthesis of sulfated glycosaminoglycans (sGAGs) in the Golgi apparatus. Binding of sGAGs promoted STING polymerization through luminal, positively charged, polar residues. These residues are evolutionarily conserved, and selective mutation of specific residues inhibited STING activation. Purified or chemically synthesized sGAGs induced STING polymerization and activation of the kinase TBK1. The chain length and O-linked sulfation of sGAGs directly affected the level of STING polymerization and, therefore, its activation. Reducing the expression of Slc35b2 to inhibit GAG sulfation in mice impaired responses to vaccinia virus infection. Thus, sGAGs in the Golgi apparatus are necessary and sufficient to drive STING polymerization, providing a mechanistic understanding of the requirement for endoplasmic reticulum (ER)-to-Golgi apparatus translocation for STING activation.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yukun Guan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Gao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Heo Y, Heo J, Han SS, Kim WJ, Cheong HS, Hong Y. Difference of copy number variation in blood of patients with lung cancer. Int J Biol Markers 2020; 36:3-9. [PMID: 33307925 DOI: 10.1177/1724600820980739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Copy number variation (CNV) in several genetic regions correlate with cancer susceptibility. Hence, this study evaluated the association between CNV and non-small cell lung cancer (NSCLC) in the peripheral blood. METHODS Blood samples of 150 patients with NSCLC and 150 normal controls were obtained from a bioresource center (Seoul, Korea). Through an epigenome-wide analysis using the MethylationEPIC BeadChip method, we extracted CNVs by using an SVS8 software-supplied multivariate method. We compared CNV frequencies between the NSCLC and controls, and then performed stratification analyses according to smoking status. RESULTS We acquired 979 CNVs, with 582 and 967 copy-number gains and losses, respectively. We identified five nominally significant associations (ACOT1, NAA60, GSDMD, HLA-DPA1, and SLC35B3 genes). Among the current smokers, the NSCLC group had more CNV losses and gains at the GSDMD gene in chromosome 8 (P=0.02) and at the ACOT1 gene in chromosome 14 (P=0.03) than the control group. It also had more CNV losses at the NAA60 gene in chromosome 16 (P=0.03) among non-smokers. In the NSCLC group, current smokers had more CNV gains and losses at the ACOT1 gene in chromosome 14 (P=0.003) and at HLA-DPA1 gene in chromosome 6 (P=0.02), respectively, than non-smokers. CONCLUSION Five nominally significant associations were found between the NSCLC and CNVs. CNVs are associated with the mechanism of lung cancer development. However, the role of CNVs in lung cancer development needs further investigation.
Collapse
Affiliation(s)
- Yeonjeong Heo
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Jeongwon Heo
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Seon-Sook Han
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Mapo-gu, Seoul, Republic of Korea
| | - Yoonki Hong
- Department of Internal Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| |
Collapse
|
15
|
Asian Zika Virus Isolate Significantly Changes the Transcriptional Profile and Alternative RNA Splicing Events in a Neuroblastoma Cell Line. Viruses 2020; 12:v12050510. [PMID: 32380717 PMCID: PMC7290316 DOI: 10.3390/v12050510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
The alternative splicing of pre-mRNAs expands a single genetic blueprint to encode multiple, functionally diverse protein isoforms. Viruses have previously been shown to interact with, depend on, and alter host splicing machinery. The consequences, however, incited by viral infection on the global alternative slicing (AS) landscape are under-appreciated. Here, we investigated the transcriptional and alternative splicing profile of neuronal cells infected with a contemporary Puerto Rican Zika virus (ZIKVPR) isolate, an isolate of the prototypical Ugandan ZIKV (ZIKVMR), and dengue virus 2 (DENV2). Our analyses revealed that ZIKVPR induced significantly more differential changes in expressed genes compared to ZIKVMR or DENV2, despite all three viruses showing equivalent infectivity and viral RNA levels. Consistent with the transcriptional profile, ZIKVPR induced a higher number of alternative splicing events compared to ZIKVMR or DENV2, and gene ontology analyses highlighted alternative splicing changes in genes associated with mRNA splicing. In summary, we show that ZIKV affects cellular RNA homeostasis not only at the transcriptional levels but also through the alternative splicing of cellular transcripts. These findings could provide new molecular insights into the neuropathologies associated with this virus.
Collapse
|
16
|
Paganini C, Gramegna Tota C, Superti-Furga A, Rossi A. Skeletal Dysplasias Caused by Sulfation Defects. Int J Mol Sci 2020; 21:ijms21082710. [PMID: 32295296 PMCID: PMC7216085 DOI: 10.3390/ijms21082710] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022] Open
Abstract
Proteoglycans (PGs) are macromolecules present on the cell surface and in the extracellular matrix that confer specific mechanical, biochemical, and physical properties to tissues. Sulfate groups present on glycosaminoglycans, linear polysaccharide chains attached to PG core proteins, are fundamental for correct PG functions. Indeed, through the negative charge of sulfate groups, PGs interact with extracellular matrix molecules and bind growth factors regulating tissue structure and cell behavior. The maintenance of correct sulfate metabolism is important in tissue development and function, particularly in cartilage where PGs are fundamental and abundant components of the extracellular matrix. In chondrocytes, the main sulfate source is the extracellular space, then sulfate is taken up and activated in the cytosol to the universal sulfate donor to be used in sulfotransferase reactions. Alteration in each step of sulfate metabolism can affect macromolecular sulfation, leading to the onset of diseases that affect mainly cartilage and bone. This review presents a panoramic view of skeletal dysplasias caused by mutations in genes encoding for transporters or enzymes involved in macromolecular sulfation. Future research in this field will contribute to the understanding of the disease pathogenesis, allowing the development of targeted therapies aimed at alleviating, preventing, or modifying the disease progression.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
| | - Chiara Gramegna Tota
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
- Correspondence:
| |
Collapse
|
17
|
Paganini C, Costantini R, Superti-Furga A, Rossi A. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. FEBS J 2019; 286:3008-3032. [PMID: 31286677 DOI: 10.1111/febs.14984] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides that constitute the carbohydrate moiety covalently attached to the protein core of proteoglycans, macromolecules present on the cell surface and in the extracellular matrix. Several genetic disorders of bone and connective tissue are caused by mutations in genes encoding for glycosyltransferases, sulfotransferases and transporters that are responsible for the synthesis of sulfated GAGs. Phenotypically, these disorders all reflect alterations in crucial biological functions of GAGs in the development, growth and homoeostasis of cartilage and bone. To date, up to 27 different skeletal phenotypes have been linked to mutations in 23 genes encoding for proteins involved in GAG biosynthesis. This review focuses on recent genetic, molecular and biochemical studies of bone and connective tissue disorders caused by GAG synthesis defects. These insights and future research in the field will provide a deeper understanding of the molecular pathogenesis of these disorders and will pave the way for developing common therapeutic strategies that might be targeted to a range of individual phenotypes.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| |
Collapse
|
18
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
19
|
Sosicka P, Bazan B, Maszczak-Seneczko D, Shauchuk Y, Olczak T, Olczak M. SLC35A5 Protein-A Golgi Complex Member with Putative Nucleotide Sugar Transport Activity. Int J Mol Sci 2019; 20:ijms20020276. [PMID: 30641943 PMCID: PMC6359379 DOI: 10.3390/ijms20020276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Solute carrier family 35 member A5 (SLC35A5) is a member of the SLC35A protein subfamily comprising nucleotide sugar transporters. However, the function of SLC35A5 is yet to be experimentally determined. In this study, we inactivated the SLC35A5 gene in the HepG2 cell line to study a potential role of this protein in glycosylation. Introduced modification affected neither N- nor O-glycans. There was also no influence of the gene knock-out on glycolipid synthesis. However, inactivation of the SLC35A5 gene caused a slight increase in the level of chondroitin sulfate proteoglycans. Moreover, inactivation of the SLC35A5 gene resulted in the decrease of the uridine diphosphate (UDP)-glucuronic acid, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine Golgi uptake, with no influence on the UDP-galactose transport activity. Further studies demonstrated that SLC35A5 localized exclusively to the Golgi apparatus. Careful insight into the protein sequence revealed that the C-terminus of this protein is extremely acidic and contains distinctive motifs, namely DXEE, DXD, and DXXD. Our studies show that the C-terminus is directed toward the cytosol. We also demonstrated that SLC35A5 formed homomers, as well as heteromers with other members of the SLC35A protein subfamily. In conclusion, the SLC35A5 protein might be a Golgi-resident multiprotein complex member engaged in nucleotide sugar transport.
Collapse
Affiliation(s)
- Paulina Sosicka
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Bożena Bazan
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| | - Dorota Maszczak-Seneczko
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| | - Yauhen Shauchuk
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| | - Teresa Olczak
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| |
Collapse
|
20
|
Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018; 34:1038-1055. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria originated from the endosymbiotic event commencing from the engulfment of an ancestral α-proteobacterium by the first eukaryotic ancestor. Establishment of niches has led to various adaptations among eukaryotes. In anaerobic parasitic protists, the mitochondria have undergone modifications by combining features shared from the aerobic mitochondria with lineage-specific components and mechanisms; a diversified class of organelles emerged and are generally called mitochondrion-related organelles (MROs). In this review we summarize and discuss the recent advances in the knowledge of MROs from parasitic protists, particularly the themes such as metabolic functions, contribution to parasitism, dynamics, protein targeting, and novel lineage- specific proteins, with emphasis on the diversity among these organelles.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
Chim-ong A, Thawornkuno C, Chavalitshewinkoon-Petmitr P, Punyarit P, Petmitr S. SLC35B2 expression is associated with a poor prognosis of invasive ductal breast carcinoma. Asian Pac J Cancer Prev 2017; 15:6065-70. [PMID: 25124574 DOI: 10.7314/apjcp.2014.15.15.6065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide, including Thailand, and is a major cause of mortality and morbidity, despite advances in diagnosis and treatment. Novel gene expression in breast cancer is a focus in searches for prognostic biomarkers and new therapeutic targets. MATERIALS AND METHODS The mRNA expression of novel B4GALT4, SLC35B2, and WDHD1 genes in breast cancer were examined in invasive ductal breast carcinoma (IDC) patients using quantitative real-time reverse transcription polymerase chain reaction (QRT-PCR). RESULTS Among these genes, increased expression of SLC35B2 mRNA was significantly associated with TNM stage III+IV of IDC (p<0.001). Hence, up-regulation of SLC35B2 may serve as a prognostic biomarker for poor prognosis, and is also a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Anongruk Chim-ong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand E-mail :
| | | | | | | | | |
Collapse
|
22
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
23
|
Dowood RK, Adusumalli R, Tykesson E, Johnsen E, Lundanes E, Prydz K, Wilson SR. Determination of 3'-phosphoadenosine-5'-phosphosulfate in cells and Golgi fractions using hydrophilic interaction liquid chromatography-mass spectrometry. J Chromatogr A 2016; 1470:70-75. [PMID: 27720175 DOI: 10.1016/j.chroma.2016.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 11/28/2022]
Abstract
3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is a key player in the sulfation of biomolecules, but methods for selective measurements are lacking. A liquid chromatography-mass spectrometry (LC-MS) approach for measuring PAPS was developed. A central feature of the method was employing hydrophilic interaction liquid chromatography (HILIC), which is highly suited for separating very polar/charged compounds, and is compatible with electrospray MS. Using simple instrumentation, the analysis time per sample was below 10min and the method was characterized by easy sample preparation. The method was used to monitor decreasing levels of PAPS as function of sodium chlorate treatment (an inhibitor of PAPS synthesis) in whole-cell lysates as well as Golgi-fractions. The method allowed PAPS to be chromatographically separated from ADP and ATP, which can interfere with measurements if a less resolving LC-MS method is used.
Collapse
Affiliation(s)
- Rua Kareem Dowood
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Ravi Adusumalli
- Department of Biosciences, University of Oslo, Post Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Emil Tykesson
- Department of Experimental Medical Science, Lund University, Box 117, 221 00, Lund, Sweden
| | - Elin Johnsen
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Post Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway.
| |
Collapse
|
24
|
Orellana A, Moraga C, Araya M, Moreno A. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J Mol Biol 2016; 428:3150-3165. [PMID: 27261257 DOI: 10.1016/j.jmb.2016.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants. In recent years, many NSTs have been identified and functionally characterized, but several remain unanalyzed. This study examined existing information on functionally characterized NSTs and conducted a phylogenetic analysis of 257 NSTs predicted from nine animal and plant model species, as well as from protists and fungi. From this analysis, relationships between substrate specificity and the primary NST structure can be inferred, thereby advancing understandings of nucleotide sugar gene family functions across multiple species.
Collapse
Affiliation(s)
- Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| | - Carol Moraga
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Macarena Araya
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Adrian Moreno
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| |
Collapse
|
25
|
Koprivova A, Kopriva S. Sulfation pathways in plants. Chem Biol Interact 2016; 259:23-30. [PMID: 27206694 DOI: 10.1016/j.cbi.2016.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 11/27/2022]
Abstract
Plants take up sulfur in the form of sulfate. Sulfate is activated to adenosine 5'-phosphosulfate (APS) and reduced to sulfite and then to sulfide when it is assimilated into amino acid cysteine. Alternatively, APS is phosphorylated to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), and sulfate from PAPS is transferred onto diverse metabolites in its oxidized form. Traditionally, these pathways are referred to as primary and secondary sulfate metabolism, respectively. However, the synthesis of PAPS is essential for plants and even its reduced provision leads to dwarfism. Here the current knowledge of enzymes involved in sulfation pathways of plants will be summarized, the similarities and differences between different kingdoms will be highlighted, and major open questions in the research of plant sulfation will be formulated.
Collapse
Affiliation(s)
- Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
26
|
Potelle S, Klein A, Foulquier F. Golgi post-translational modifications and associated diseases. J Inherit Metab Dis 2015; 38:741-51. [PMID: 25967285 DOI: 10.1007/s10545-015-9851-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
For non specialists, Golgi is a very well known subcellular compartment involved in secretion and correct targeting of soluble and transmembrane proteins. Nevertheless, Golgi is also specifically involved in many different and diverse post-translational modifications. Through its diverse functions, Golgi is not only able to modify secreted and transmembrane proteins but also cytoplasmic proteins. The Golgi apparatus research field is so broad that an exhaustive review of this organelle is not doable here. The goal of this review is to cover the main post-translational modifications occurring at the Golgi level and present the identified associated diseases.
Collapse
Affiliation(s)
- Sven Potelle
- CNRS-UMR 8576, Structural and Functional Glycobiology unit, FRABIO, University of Lille, 59655, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
27
|
Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015; 30:3-20. [DOI: 10.1016/j.dmpk.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
28
|
Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Maccarana M, Prydz K. PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells. Glycobiology 2014; 25:30-41. [PMID: 25138304 DOI: 10.1093/glycob/cwu084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteoglycan (PG) sulfation depends on activated nucleotide sulfate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Transporters in the Golgi membrane translocate PAPS from the cytoplasm into the organelle lumen where PG sulfation occurs. Silencing of PAPS transporter (PAPST) 1 in epithelial MDCK cells reduced PAPS uptake into Golgi vesicles. Surprisingly, at the same time sulfation of heparan sulfate (HS) was stimulated. The effect was pathway specific in polarized epithelial cells. Basolaterally secreted proteoglycans (PGs) displayed an altered HS sulfation pattern and increased growth factor binding capacity. In contrast, the sulfation pattern of apically secreted PGs was unchanged while the secretion was reduced. Regulation of PAPST1 allows epithelial cells to prioritize between PG sulfation in the apical and basolateral secretory routes at the level of the Golgi apparatus. This provides sulfation patterns that ensure PG functions at the extracellular level, such as growth factor binding.
Collapse
Affiliation(s)
- Gunnar Dick
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | | | - Frøy Grøndahl
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| |
Collapse
|
29
|
Hadley B, Maggioni A, Ashikov A, Day CJ, Haselhorst T, Tiralongo J. Structure and function of nucleotide sugar transporters: Current progress. Comput Struct Biotechnol J 2014; 10:23-32. [PMID: 25210595 PMCID: PMC4151994 DOI: 10.1016/j.csbj.2014.05.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure–function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity.
Collapse
Affiliation(s)
- Barbara Hadley
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Andrea Maggioni
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Angel Ashikov
- Institut für Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, 30625 Hannover, Germany ; Laboratory of Genetic, Endocrine and Metabolic Diseases, Department of Neurology, Radboud University Medical Center, Geert Grooteplein Zuid 10 (route 830), Nijmegen, The Netherlands
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
30
|
Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:442. [PMID: 25250037 PMCID: PMC4158793 DOI: 10.3389/fpls.2014.00442] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/02/2023]
Abstract
Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the transport of a range of S-containing metabolites within and between the cells as well as of their long distance transport. An improved understanding of mechanisms and regulation of transport will facilitate successful engineering of the respective pathways, to improve the plant yield, biotic interaction and nutritional properties of crops.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
- *Correspondence: Tamara Gigolashvili, Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Street 47 B, 50674 Cologne, Germany e-mail:
| | - Stanislav Kopriva
- Plant Biochemistry Department, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
| |
Collapse
|
31
|
Todisco S, Di Noia MA, Castegna A, Lasorsa FM, Paradies E, Palmieri F. The Saccharomyces cerevisiae gene YPR011c encodes a mitochondrial transporter of adenosine 5'-phosphosulfate and 3'-phospho-adenosine 5'-phosphosulfate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:326-34. [PMID: 24296033 DOI: 10.1016/j.bbabio.2013.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/15/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022]
Abstract
The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5'-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria. The purified protein was reconstituted into phospholipid vesicles and its transport properties and kinetic parameters were characterized. It transported APS, 3'-phospho-adenosine 5'-phosphosulfate, sulfate and phosphate almost exclusively by a counter-exchange mechanism. Transport was saturable and inhibited by bongkrekic acid and other inhibitors. To investigate the physiological significance of this carrier in S. cerevisiae, mutants were subjected to thermal shock at 45°C in the presence of sulfate and in the absence of methionine. At 45°C cells lacking YPR011c, engineered cells (in which APS is produced only in mitochondria) and more so the latter cells, in which the exit of mitochondrial APS is prevented by the absence of YPR011cp, were less thermotolerant. Moreover, at the same temperature all these cells contained less methionine and total glutathione than wild-type cells. Our results show that S. cerevisiae mitochondria are equipped with a transporter for APS and that YPR011cp-mediated mitochondrial transport of APS occurs in S. cerevisiae under thermal stress conditions.
Collapse
Affiliation(s)
- Simona Todisco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari, Italy
| | | | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari, Italy
| | - Francesco Massimo Lasorsa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy
| | - Eleonora Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari, Italy.
| |
Collapse
|
32
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: transporters. Br J Pharmacol 2013; 170:1706-96. [PMID: 24528242 PMCID: PMC3892292 DOI: 10.1111/bph.12450] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Transporters are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
33
|
Song Z. Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Aspects Med 2013; 34:590-600. [PMID: 23506892 DOI: 10.1016/j.mam.2012.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/10/2012] [Indexed: 12/29/2022]
Abstract
Nucleotide sugars and adenosine 3'-phospho 5'-phosphosulfate (PAPS) are transported from the cytosol to the endoplasmic reticulum (ER) and the Golgi apparatus where they serve as substrates for the glycosylation and sulfation of proteins, lipids and proteoglycans. The translocation is accomplished by the nucleotide sugar transporters (NSTs), a family of highly conserved hydrophobic proteins with multiple transmembrane domains that are part of the solute carrier family 35 (SLC35). NSTs are antiporters responsible not only for transporting nucleotide sugars and PAPS into the Golgi, but also for the transport of the reaction products back to the cytosol. The initial reaction products - the nucleoside diphosphates - must be first converted to nucleoside monophosphates by a group of enzymes called ectonucleoside triphosphate diphosphohydrolases (ENTPDs) before they can exit the Golgi. The transport role of NSTs is essential to glycosylation and development. Mutations in two NST genes, SLC35A1 and SLC35C1, have been related to congenital disorder of glycosylation II (CDG II).
Collapse
Affiliation(s)
- Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A∗STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
34
|
Influence on the behavior of lung cancer H1299 cells by silencing SLC35F2 expression. Cancer Cell Int 2013; 13:73. [PMID: 23879892 PMCID: PMC3724707 DOI: 10.1186/1475-2867-13-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/15/2013] [Indexed: 11/17/2022] Open
Abstract
Background To investigate the effects of RNA interference-mediated downregulation of Human Solute Carrier Family 35 member F2 (SLC35F2) expression on the biological behavior of lung cancer H1299 cells. Methods The lentiviral vector of small interfering RNA targeting SLC35F2 was introduced into H1299 cells by liposome-mediated transfection. Expression of the SLC35F2 protein was measured by western blot. The proliferation of H1299 cells was determined by Cell Counting Kit-8 assay. The migration of H1299 cells was measured by Transwell migration assay. Cell cycle analysis used fluorescence-activated cell sorting. Results SLC35F2 expression was markedly downregulated in H1299 cell clone (transfected with the lentiviral vector harboring small interfering RNA targeting SLC35F2). Proliferation decreased significantly compared with that of non-transfected H1299 cells. Transwell migration assay showed that fewer cells moved through the artificial basement membrane compared with untransfected H1299 cells (38.3 ± 5.7 vs. 113.5 ± 8.5, P < 0.05). The cell cycle of H1299 cells was changed, the percentage of H1299 cells in S and G2/M phases being significantly decreased compared with untransfected H1299 cells (S phase: 15.3% ± 3.0% vs. 27.0% ± 5.4%, P > 0.05; G2/M phase; 3.0% ± 1.1% vs. 10.5% ± 1.7%, P < 0.05), whereas the percentage of H1299 cells in G0/G1 phase increased markedly (81.7% ± 4.0% vs. 62.5% ± 1.9%, P < 0.05). Conclusion RNA interference-mediated downregulation of SLC35F2 expression by lentiviral vector can attenuate the proliferation, migration and invasion of H1299 cells.
Collapse
|
35
|
Mazari PM, Roth MJ. Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 2013; 8:107-21. [PMID: 23252496 DOI: 10.2217/fmb.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene- and cell-based therapies hold great potential for the advancement of the personalized medicine movement. Gene therapy vectors have made dramatic leaps forward since their inception. Retroviral-based vectors were the first to gain clinical attention and still offer the best hope for the long-term correction of many disorders. The fear of nonspecific transduction makes targeting a necessary feature for most clinical applications. However, this remains a difficult feature to optimize, with specificity often coming at the expense of efficiency. The aim of this article is to discuss the various methods employed to retarget retroviral entry. Our focus will lie on the modification of gammaretroviral envelope proteins with an in-depth discussion of the creation and screening of envelope libraries.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine & Dentistry of NJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
36
|
Nakayama F, Umeda S, Ichimiya T, Kamiyama S, Hazawa M, Yasuda T, Nishihara S, Imai T. Sulfation of keratan sulfate proteoglycan reduces radiation-induced apoptosis in human Burkitt's lymphoma cell lines. FEBS Lett 2012; 587:231-7. [DOI: 10.1016/j.febslet.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/18/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
37
|
Kreuger J, Kjellén L. Heparan sulfate biosynthesis: regulation and variability. J Histochem Cytochem 2012; 60:898-907. [PMID: 23042481 DOI: 10.1369/0022155412464972] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.
Collapse
Affiliation(s)
- Johan Kreuger
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
38
|
Hirano K, Sasaki N, Ichimiya T, Miura T, Van Kuppevelt TH, Nishihara S. 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling. PLoS One 2012; 7:e43440. [PMID: 22916262 PMCID: PMC3420900 DOI: 10.1371/journal.pone.0043440] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 07/23/2012] [Indexed: 12/28/2022] Open
Abstract
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.
Collapse
Affiliation(s)
- Kazumi Hirano
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Toin H. Van Kuppevelt
- Nijmegen Centre for Molecular Life Sciences, Department of Biochemistry, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|
39
|
Abstract
Heparin and heparan sulfate share the same polysaccharide backbone structure but differ in sulfation degree and expression pattern. Whereas heparan sulfate is found in virtually all cells of the human body, heparin expression is restricted to mast cells, where it has a function in storage of granular components such as histamine and mast cell specific proteases. Although differing in charge and sulfation pattern, current knowledge indicates that the same pathway is used for synthesis of heparin and heparan sulfate, with a large number of different enzymes taking part in the process. At present, little is known about how the individual enzymes are coordinated and how biosynthesis is regulated. These questions are addressed in this chapter together with a review of the basic enzymatic steps involved in initiation, elongation, and modification of the polysaccharides.
Collapse
Affiliation(s)
- Pernilla Carlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
40
|
Castro I, Aguilera S, Brockhausen I, Alliende C, Quest AFG, Molina C, Urzúa U, Mandel U, Bahamondes V, Barrera MJ, Sánchez M, González S, Hermoso M, Leyton C, González MJ. Decreased salivary sulphotransferase activity correlated with inflammation and autoimmunity parameters in Sjogren's syndrome patients. Rheumatology (Oxford) 2011; 51:482-90. [PMID: 22101162 DOI: 10.1093/rheumatology/ker351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To determine the expression and enzymatic activities of sulphotransferases involved in mucin hyposulphation in labial salivary glands (LSGs) from SS patients and to correlate sulphotransferase activity with clinical parameters such as secretion, inflammation and serology. METHODS LSG from 31 SS patients and 31 control subjects were studied. Relative mRNA and protein levels of Gal3-O-sulphotransferases (Gal3STs) and β1,3-galactosyltransferase-5 (β3GalT5) were determined by quantitative RT-PCR and western blotting, respectively. Enzymatic activities were quantified using radioactively labelled donor substrates and specific acceptor substrates. Products were purified by chromatography. Spearman's correlation analysis was used to compare data. RESULTS The levels of Gal3ST activity were significantly decreased in SS patients, without changes in mRNA and protein levels, while the enzymatic activities of glycosyltransferases involved in mucin glycosylation were similar in both groups. An inverse correlation was observed between Gal3ST activity and glandular function measured by scintigraphy, but not with unstimulated salivary flow. Gal3ST activity was inversely correlated with focus score, TNF-α levels and presence of the autoantibodies Ro/SS-A and La/SS-B. CONCLUSION The decrease in sulphotransferase activity provides an explanation for mucin hyposulphation observed in the LSGs from SS patients. The decrease in Gal3STs activity was not a consequence of reduced gene expression, but probably due to alterations in the enzyme activity regulation. Interestingly, the levels of sulphotransferase activity detected correlated well with secretory function, inflammation and serology. Finally, we postulate that pro-inflammatory cytokines induced by autoantibodies, such as Ro/SS-A and La/SS-B in SS patients, may modulate Gal3ST activity, thereby altering mucin quality and leading to mouth dryness.
Collapse
Affiliation(s)
- Isabel Castro
- Institute of Biomedical Sciences, University of Chile, Casilla, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A nucleotide metabolite controls stress-responsive gene expression and plant development. PLoS One 2011; 6:e26661. [PMID: 22028934 PMCID: PMC3197580 DOI: 10.1371/journal.pone.0026661] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/30/2011] [Indexed: 01/03/2023] Open
Abstract
Abiotic stress, such as drought and high salinity, activates a network of signaling cascades that lead to the expression of many stress-responsive genes in plants. The Arabidopsis FIERY1 (FRY1) protein is a negative regulator of stress and abscisic acid (ABA) signaling and exhibits both an inositol polyphosphatase and a 3′,5′-bisphosphate nucleotidase activity in vitro. The FRY1 nucleotidase degrades the sulfation byproduct 3′-phosphoadenosine-5′-phosphate (PAP), yet its in vivo functions and particularly its roles in stress gene regulation remain unclear. Here we developed a LC-MS/MS method to quantitatively measure PAP levels in plants and investigated the roles of this nucleotidase activity in stress response and plant development. It was found that PAP level was tightly controlled in plants and did not accumulate to any significant level either under normal conditions or under NaCl, LiCl, cold, or ABA treatments. In contrast, high levels of PAP were detected in multiple mutant alleles of FRY1 but not in mutants of other FRY1 family members, indicating that FRY1 is the major enzyme that hydrolyzes PAP in vivo. By genetically reducing PAP levels in fry1 mutants either through overexpression of a yeast PAP nucleotidase or by generating a triple mutant of fry1 apk1 apk2 that is defective in the biosynthesis of the PAP precursor 3′-phosphoadenosine-5′-phosphosulfate (PAPS), we demonstrated that the developmental defects and superinduction of stress-responsive genes in fry1 mutants correlate with PAP accumulation in planta. We also found that the hypersensitive stress gene regulation in fry1 requires ABH1 but not ABI1, two other negative regulators in ABA signaling pathways. Unlike in yeast, however, FRY1 overexpression in Arabidopsis could not enhance salt tolerance. Taken together, our results demonstrate that PAP is critical for stress gene regulation and plant development, yet the FRY1 nucleotidase that catabolizes PAP may not be an in vivo salt toxicity target in Arabidopsis.
Collapse
|
42
|
Kamiyama S, Ichimiya T, Ikehara Y, Takase T, Fujimoto I, Suda T, Nakamori S, Nakamura M, Nakayama F, Irimura T, Nakanishi H, Watanabe M, Narimatsu H, Nishihara S. Expression and the role of 3'-phosphoadenosine 5'-phosphosulfate transporters in human colorectal carcinoma. Glycobiology 2011; 21:235-46. [PMID: 20978009 DOI: 10.1093/glycob/cwq154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sulfation represents an essential modification for various molecules and regulates many biological processes. The sulfation of glycans requires a specific transporter for 3'-phosphoadenosine 5'-phosphosulfate (PAPS) on the Golgi apparatus. This study investigated the expression of PAPS transporter genes in colorectal carcinomas and the significance of Golgi-specific sulfation in the proliferation of colorectal carcinoma cells. The relative amount of PAPST1 transcripts was found to be higher than those of PAPST2 in colorectal cancerous tissues. Immunohistochemically, the enhanced expression of PAPST1 was observed in fibroblasts in the vicinity of invasive cancer cells, whereas the expression of PAPST2 was decreased in the epithelial cells. RNA interference of either of the two PAPS transporter genes reduced the extent of sulfation of cellular proteins and cellular proliferation of DLD-1 human colorectal carcinoma cells. Silencing the PAPS transporter genes reduced fibroblast growth factor signaling in DLD-1 cells. These findings indicate that PAPS transporters play a role in the proliferation of colorectal carcinoma cells themselves and take part in a desmoplastic reaction to support cancer growth by controlling their sulfation status.
Collapse
Affiliation(s)
- Shin Kamiyama
- Department of Bioinformatics, Soka University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sasaki N, Hirano T, Kobayashi K, Toyoda M, Miyakawa Y, Okita H, Kiyokawa N, Akutsu H, Umezawa A, Nishihara S. Chemical inhibition of sulfation accelerates neural differentiation of mouse embryonic stem cells and human induced pluripotent stem cells. Biochem Biophys Res Commun 2010; 401:480-6. [PMID: 20875394 DOI: 10.1016/j.bbrc.2010.09.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 09/21/2010] [Indexed: 12/21/2022]
Abstract
Pluripotency of embryonic stem cells (ESCs) is maintained by the balancing of several signaling pathways, such as Wnt, BMP, and FGF, and differentiation of ESCs into a specific lineage is induced by the disruption of this balance. Sulfated glycans are considered to play important roles in lineage choice of ESC differentiation by regulating several signalings. We examined whether reduction of sulfation by treatment with the chemical inhibitor chlorate can affect differentiation of ESCs. Chlorate treatment inhibited mesodermal differentiation of mouse ESCs, and then induced ectodermal differentiation and accelerated further neural differentiation. This could be explained by the finding that several signaling pathways involved in the induction of mesodermal differentiation (Wnt, BMP, and FGF) or inhibition of neural differentiation (Wnt and BMP) were inhibited in chlorate-treated embryoid bodies, presumably due to reduced sulfation on heparan sulfate and chondroitin sulfate. Furthermore, neural differentiation of human induced pluripotent stem cells (hiPSCs) was also accelerated by chlorate treatment. We propose that chlorate could be used to induce efficient neural differentiation of hiPSCs instead of specific signaling inhibitors, such as Noggin.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dejima K, Murata D, Mizuguchi S, Nomura KH, Izumikawa T, Kitagawa H, Gengyo-Ando K, Yoshina S, Ichimiya T, Nishihara S, Mitani S, Nomura K. Two Golgi-resident 3'-Phosphoadenosine 5'-phosphosulfate transporters play distinct roles in heparan sulfate modifications and embryonic and larval development in Caenorhabditis elegans. J Biol Chem 2010; 285:24717-28. [PMID: 20529843 PMCID: PMC2915708 DOI: 10.1074/jbc.m109.088229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/23/2010] [Indexed: 11/06/2022] Open
Abstract
Synthesis of extracellular sulfated molecules requires active 3'-phosphoadenosine 5'-phosphosulfate (PAPS). For sulfation to occur, PAPS must pass through the Golgi membrane, which is facilitated by Golgi-resident PAPS transporters. Caenorhabditis elegans PAPS transporters are encoded by two genes, pst-1 and pst-2. Using the yeast heterologous expression system, we characterized PST-1 and PST-2 as PAPS transporters. We created deletion mutants to study the importance of PAPS transporter activity. The pst-1 deletion mutant exhibited defects in cuticle formation, post-embryonic seam cell development, vulval morphogenesis, cell migration, and embryogenesis. The pst-2 mutant exhibited a wild-type phenotype. The defects observed in the pst-1 mutant could be rescued by transgenic expression of pst-1 and hPAPST1 but not pst-2 or hPAPST2. Moreover, the phenotype of a pst-1;pst-2 double mutant were similar to those of the pst-1 single mutant, except that larval cuticle formation was more severely defected. Disaccharide analysis revealed that heparan sulfate from these mutants was undersulfated. Gene expression reporter analysis revealed that these PAPS transporters exhibited different tissue distributions and subcellular localizations. These data suggest that pst-1 and pst-2 play different physiological roles in heparan sulfate modification and development.
Collapse
Affiliation(s)
- Katsufumi Dejima
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Daisuke Murata
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Souhei Mizuguchi
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuko H. Nomura
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomomi Izumikawa
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Keiko Gengyo-Ando
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Sawako Yoshina
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Tomomi Ichimiya
- the Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shoko Nishihara
- the Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shohei Mitani
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Kazuya Nomura
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
45
|
Yusa A, Miyazaki K, Kimura N, Izawa M, Kannagi R. Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. Cancer Res 2010; 70:4064-73. [PMID: 20460514 DOI: 10.1158/0008-5472.can-09-2383] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colon cancer cells express the carbohydrate determinant sialyl Lewis(x), while they exhibit markedly decreased the expression of its sulfated derivative, sialyl 6-sulfo Lewis(x). In contrast, normal colonic epithelial cells strongly express sialyl 6-sulfo Lewis(x), but they virtually do not express sialyl Lewis(x). Impaired sulfation was therefore suggested to occur during the course of malignant transformation of colonic epithelial cells and was assumed to be responsible for the increased sialyl Lewis(x) expression in cancers. To elucidate the molecular biological background of the impaired sulfation in cancers, we studied the expression levels of mRNA for 6-O-sulfotransferase isoenzymes, PAPS synthases and transporters, and a cell membrane sulfate transporter, DTDST, in cancer tissues. The most striking decrease in cancer cells compared with nonmalignant epithelial cells was noted in the transcription of the DTDST gene (P = 0.0000014; n = 20). Most cultured colon cancer cells had a diminished DTDST transcription, which was restored when cultured with histone deacetylase inhibitors. Suppression of DTDST transcription under the control of a tet-off inducible promoter resulted in increased sialyl Lewis(x) expression and reduced sialyl 6-sulfo Lewis(x) expression. Unexpectedly, the growth rate of the cancer cells was markedly enhanced when transcription of DTDST was suppressed. These results show that the decrease in the transcription of the sulfate transporter gene is the major cause of decreased expression of sialyl 6-sulfo Lewis(x) and increased expression of sialyl Lewis(x) in colon cancers. The results also suggest that the diminished DTDST expression is closely related to enhanced proliferation of cancer cells.
Collapse
Affiliation(s)
- Akiko Yusa
- Department of Molecular Pathology, Aichi Cancer Center, Nagoya, Japan
| | | | | | | | | |
Collapse
|
46
|
Bhattacharya R, Townley RA, Berry KL, Bülow HE. The PAPS transporter PST-1 is required for heparan sulfation and is essential for viability and neural development in C. elegans. J Cell Sci 2009; 122:4492-504. [PMID: 19920077 PMCID: PMC2787461 DOI: 10.1242/jcs.050732] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2009] [Indexed: 02/03/2023] Open
Abstract
Sulfations of sugars, such as heparan sulfates (HS), or tyrosines require the universal sulfate donor 3'-phospho-adenosine-5'-phosphosulfate (PAPS) to be transported from the cytosol into the Golgi. Metazoan genomes encode two putative PAPS transporters (PAPST1 and PAPST2), which have been shown in vitro to preferentially transport PAPS across membranes. We have identified the C. elegans orthologs of PAPST1 and PAPST2 and named them pst-1 and pst-2, respectively. We show that pst-1 is essential for viability in C. elegans, functions non-redundantly with pst-2, and can act non-autonomously to mediate essential functions. Additionally, pst-1 is required for specific aspects of nervous system development rather than for formation of the major neuronal ganglia or fascicles. Neuronal defects correlate with reduced complexity of HS modification patterns, as measured by direct biochemical analysis. Our results suggest that pst-1 functions in metazoans to establish the complex HS modification patterns that are required for the development of neuronal connectivity.
Collapse
Affiliation(s)
- Raja Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461,
USA
| | - Robert A. Townley
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461,
USA
| | - Katherine L. Berry
- Department of Biochemistry and Molecular Biophysics, Columbia University
Medical Center, New York, NY 10032, USA
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461,
USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of
Medicine, Bronx, NY 10461, USA
| |
Collapse
|
47
|
Sasaki N, Hirano T, Ichimiya T, Wakao M, Hirano K, Kinoshita-Toyoda A, Toyoda H, Suda Y, Nishihara S. The 3'-phosphoadenosine 5'-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS One 2009; 4:e8262. [PMID: 20011239 PMCID: PMC2788424 DOI: 10.1371/journal.pone.0008262] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 11/10/2009] [Indexed: 12/20/2022] Open
Abstract
Recently, we have identified two 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent K(m) value of 1.54 microM or 1.49 microM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Takuya Hirano
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Masahiro Wakao
- Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, Kohrimoto, Kagoshima, Japan
| | - Kazumi Hirano
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Akiko Kinoshita-Toyoda
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hidenao Toyoda
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Yasuo Suda
- Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, Kohrimoto, Kagoshima, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
48
|
Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 2009; 106:21731-6. [PMID: 19995967 DOI: 10.1073/pnas.0907106106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hydrogenosomes and mitosomes are mitochondrion-related organelles in anaerobic/microaerophilic eukaryotes with highly reduced and divergent functions. The full diversity of their content and function, however, has not been fully determined. To understand the central role of mitosomes in Entamoeba histolytica, a parasitic protozoon that causes amoebic dysentery and liver abscesses, we examined the proteomic profile of purified mitosomes. Using 2 discontinuous Percoll gradient centrifugation and MS analysis, we identified 95 putative mitosomal proteins. Immunofluorescence assay showed that 3 proteins involved in sulfate activation, ATP sulfurylase, APS kinase, and inorganic pyrophosphatase, as well as sodium/sulfate symporter, involved in sulfate uptake, were compartmentalized to mitosomes. We have also provided biochemical evidence that activated sulfate derivatives, adenosine-5'-phosphosulfate and 3'-phosphoadenosine-5'-phosphosulfate, were produced in mitosomes. Phylogenetic analysis showed that the aforementioned proteins and chaperones have distinct origins, suggesting the mosaic character of mitosomes in E. histolytica consisting of proteins derived from alpha-proteobacterial, delta-proteobacterial, and ancestral eukaryotic origins. These results suggest that sulfate activation is the major function of mitosomes in E. histolytica and that E. histolytica mitosomes represent a unique mitochondrion-related organelle with remarkable diversity.
Collapse
|
49
|
Dejima K, Murata D, Mizuguchi S, Nomura KH, Gengyo-Ando K, Mitani S, Kamiyama S, Nishihara S, Nomura K. The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans. FASEB J 2009; 23:2215-25. [PMID: 19270184 DOI: 10.1096/fj.08-123737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the solute carrier 35B1 (SLC35B1) is evolutionarily conserved, its functions in metazoans remain unknown. To elucidate its function, we examined developmental roles of an SLC35B1 family gene (HUT-1: homolog of UDP-Gal transporter) in Caenorhabditis elegans. We isolated a deletion mutant of the gene and characterized phenotypes of the mutant and hut-1 RNAi-treated worms. GFP-HUT-1 reporter analysis was performed to examine gene expression patterns. We also tested whether several nucleotide sugar transporters can compensate for hut-1 deficiency. The hut-1 deletion mutant and RNAi worms showed larval growth defect and lethality with disrupted intestinal morphology. Inactivation of hut-1 induced chronic endoplasmic reticulum (ER) stress, and hut-1 showed genetic interactions with the atf-6, pek-1, and ire-1 genes involved in unfolded protein response signaling. ER ultrastructure and ER marker distribution in hut-1-deficient animals showed that HUT-1 is required for maintenance of ER structure. Reporter analysis revealed that HUT-1 is an ER protein ubiquitously expressed in tissues, including the intestine. Lethality and the ER stress phenotype of the mutant were rescued with the human hut-1 ortholog UGTrel1. These results indicate important roles for hut-1 in development and maintenance of ER homeostasis in C. elegans.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Neutralization of endomembrane compartments in epithelial MDCK cells affects proteoglycan synthesis in the apical secretory pathway. Biochem J 2009; 418:517-28. [DOI: 10.1042/bj20081179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PGs (proteoglycans) are proteins acquiring long, linear and sulfated GAG (glycosaminoglycan) chains during Golgi passage. In MDCK cells (Madin–Darby canine kidney cells), most of the CS (chondroitin sulfate) PGs are secreted apically, whereas most of the HS (heparan sulfate) PGs are secreted basolaterally. The apical and basolateral secretory routes differ in their GAG synthesis, since a protein core that traverses both routes acquires shorter chains, but more sulfate, in the basolateral pathway than in the apical counterpart [Tveit, Dick, Skibeli and Prydz (2005) J. Biol. Chem. 280, 29596–29603]. Golgi cisternae and the trans-Golgi network have slightly acidic lumens. We therefore investigated how neutralization of endomembrane compartments with the vacuolar H+-ATPase inhibitor Baf A1 (bafilomycin A1) affected GAG synthesis and PG sorting in MDCK cells. Baf A1 induced a slight reduction in basolateral secretion of macromolecules, which was compensated by an apical increase. More dramatic changes occurred to PG synthesis in the apical pathway on neutralization. The difference in apical and basolateral PG sulfation levels observed for control cells was abolished, due to enhanced sulfation of apical CS-GAGs. In addition, a large fraction of apical HS-GAGs was elongated to longer chain lengths. The differential sensitivity of the apical and basolateral secretory pathways to Baf A1 indicates that the apical pathway is more acidic than the basolateral counterpart in untreated MDCK cells. Neutralization gave an apical GAG output that was more similar to that of the basolateral pathway, suggesting that neutralization made the luminal environments of the two pathways more similar.
Collapse
|