1
|
Dhang S, Mondal A, Das C, Roy S. Metformin inhibits the histone methyltransferase CARM1 and attenuates H3 histone methylation during gluconeogenesis. J Biol Chem 2025; 301:108271. [PMID: 39922487 PMCID: PMC11910104 DOI: 10.1016/j.jbc.2025.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
Hyperglycemia is a hallmark of metabolic disorders, yet the precise mechanisms linking epigenetic regulation to glucose metabolism remain underexplored. Coactivator-associated arginine methyltransferase 1 (CARM1), a type I histone methyltransferase, promotes transcriptional activation through the methylation of histone H3 at arginine residues H3R17 and H3R26. Here, we identify a novel mechanism by which metformin, a widely prescribed antidiabetic drug, inhibits CARM1 activity. Using biochemical and biophysical assays, we show that metformin binds to the substrate-binding site of CARM1, reducing histone H3 methylation levels in CARM1-overexpressing hepatic cells and liver tissues from metformin-fed mice. This epigenetic modulation suppresses the expression of gluconeogenic enzymes (G6Pase, FBPase, and PCK1), thereby reversing CARM1-induced glycolytic suppression and regulating gluconeogenesis. Importantly, metformin does not alter CARM1 protein levels and its recruitment to gluconeogenic gene promoters but diminishes H3R17me2a marks at these loci. Our findings reveal a previously unrecognized epigenetic mechanism of metformin action, offering new therapeutic insights for hyperglycemia management.
Collapse
Affiliation(s)
- Sinjini Dhang
- Structural Biology and Bio-Informatics Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Siddhartha Roy
- Structural Biology and Bio-Informatics Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Li Z, Li J, Wu M, Li Z, Zhou J, Lu Y, Xu Y, Qin L, Fan Z. Redox-sensitive epigenetic activation of SUV39H1 contributes to liver ischemia-reperfusion injury. Redox Biol 2024; 78:103414. [PMID: 39603205 PMCID: PMC11635714 DOI: 10.1016/j.redox.2024.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Liver ischemia-reperfusion (I/R) injury is a clinically relevant pathophysiological process that determines the effectiveness of life-saving liver transplantation, to which aberrant ROS accumulation plays a key role. In the present study we investigated the role of SUV39H1, a lysine methyltransferases, in this process focusing on regulatory mechanism and translational potential. We report that SUV39H1 expression was up-regulated in the liver tissues of mice subjected to ischemia-reperfusion and in hepatocytes exposed to hypoxia-reoxygenation (H/R) in a redox-sensitive manner. Mechanistically, coactivator associated arginine methyltransferases 1 (CARM1) mediated redox-sensitive Suv39h1 trans-activation by promoting histone H3R17 methylation. Consistently, pharmaceutical CARM1 inhibition attenuated liver I/R injury. In addition, global or hepatocyte conditional Suv39h1 KO mice were protected from liver I/R injury. RNA-seq revealed that aldehyde dehydrogenase 1 family 1a (Aldh1a1) as a novel target for SUV39H1. SUV39H1 directly bound to the Aldh1a1 promoter and repressed Aldh1a1 transcription in H/R-challenged hepatocytes. ALDH1A1 silencing abrogated the protective effects of SUV39H1 deficiency on H/R-inflicted injuries whereas ALDH1A1 over-expression mitigated liver I/R injury in mice. Importantly, administration of a small-molecule SUV39H1 inhibitor achieved similar hepatoprotective effects as SUV39H1 deletion. Finally, increased Suv39h1 expression and decreased Aldh1a1 expression were observed in liver I/R specimens in humans. In conclusion, our data uncover a regulatory role for SUV39H1 in liver I/R injury and serve as proof-of-concept that targeting the SUV39H1-ALDH1A1 axis might be considered as a reasonable approach for the intervention of liver I/R injury.
Collapse
Affiliation(s)
- Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University, Jinan, China.
| | - Jichen Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Meng Wu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Zexin Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jiawen Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China.
| | - Lei Qin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
3
|
Zhang Y, Wei S, Jin EJ, Jo Y, Oh CM, Bae GU, Kang JS, Ryu D. Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease. Diabetes Metab J 2024; 48:487-502. [PMID: 39043443 PMCID: PMC11307121 DOI: 10.4093/dmj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders stand as formidable challenges that significantly impact the clinical outcomes and living quality for afflicted individuals. An intricate comprehension of the underlying mechanisms is paramount for the development of efficacious therapeutic strategies. Protein arginine methyltransferases (PRMTs), a class of enzymes responsible for the precise regulation of protein methylation, have ascended to pivotal roles and emerged as crucial regulators within the intrinsic pathophysiology of these diseases. Herein, we review recent advancements in research elucidating on the multifaceted involvements of PRMTs in cardiovascular system and metabolic diseases, contributing significantly to deepen our understanding of the pathogenesis and progression of these maladies. In addition, this review provides a comprehensive analysis to unveil the distinctive roles of PRMTs across diverse cell types implicated in cardiovascular and metabolic disorders, which holds great potential to reveal novel therapeutic interventions targeting PRMTs, thus presenting promising perspectives to effectively address the substantial global burden imposed by CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Gyu-Un Bae
- Muscle Physiome Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
4
|
PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing the susceptibility for early atherosclerotic lesions in male apolipoprotein E knockout mice. Atherosclerosis 2021; 338:23-29. [PMID: 34785428 DOI: 10.1016/j.atherosclerosis.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Atherosclerotic cardiovascular disease is a metabolic and inflammatory disorder. In vitro studies have suggested that protein arginine methyltransferase 4 (PRMT4) may act as a transcriptional coactivator to modulate inflammatory and metabolic processes. Here we investigated the potential anti-atherogenic effect of PRMT4 inhibitor TP-064 in vivo. METHODS Male apolipoprotein E knockout mice fed a high cholesterol/high fat Western-type diet were intraperitoneally injected three times a week with 2.5 mg/kg (low dose) or 10 mg/kg (high dose) TP-064 or with DMSO control. RESULTS TP-064 induced a dose-dependent decrease in lipopolysaccharide-induced ex vivo blood monocyte Tnfα secretion (p < 0.05 for trend) in the context of unchanged blood monocyte concentrations and neutrophilia induction (p < 0.01 for trend). A dose-dependent decrease in gonadal white adipose tissue expression levels of PPARγ target genes was detected, which translated into a reduced body weight gain after high dose TP-064 treatment (p < 0.05). TP-064 treatment also dose-dependently downregulated gene expression of the glycogen metabolism related protein G6pc in the liver (p < 0.001 for trend). In addition, a trend towards lower plasma insulin and higher blood glucose levels was observed, which was paralleled by a reduction in hepatic mRNA expression levels of the insulin-responsive genes Fasn (-55%; p < 0.001) and Gck (-47%; p < 0.001) in high dose-treated mice. Plasma triglyceride levels were reduced by high dose TP-064 treatment (-30%; p < 0.05). However, no change was observed in the size or composition of aortic root atherosclerotic lesions. CONCLUSIONS The PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing atherosclerosis susceptibility of male apolipoprotein E knockout mice.
Collapse
|
5
|
Zhang Y, de Boer M, van der Wel EJ, Van Eck M, Hoekstra M. PRMT4 inhibitor TP-064 inhibits the pro-inflammatory macrophage lipopolysaccharide response in vitro and ex vivo and induces peritonitis-associated neutrophilia in vivo. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166212. [PMID: 34311083 DOI: 10.1016/j.bbadis.2021.166212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023]
Abstract
Previous in vitro studies have shown that protein arginine N-methyltransferase 4 (PRMT4) is a co-activator for an array of cellular activities, including NF-κB-regulated pro-inflammatory responses. Here we investigated the effect of PRMT4 inhibitor TP-064 treatment on macrophage inflammation in vitro and in vivo. Exposure of RAW 264.7 monocyte/macrophages to TP-064 was associated with a significant decrease in the production of pro-inflammatory cytokines upon a lipopolysaccharide challenge. Similarly, thioglycollate-elicited peritoneal cells isolated from wildtype mice treated with TP-064 showed lowered mRNA expression levels and cytokine production of pro-inflammatory mediators interleukin (IL)-1β, IL-6, IL-12p40, and tumor necrosis factor-α in response to lipopolysaccharide exposure. However, TP-064-treated mice exhibited an ongoing pro-inflammatory peritonitis after 5 days of thioglycollate exposure, as evident from a shift in the peritoneal macrophage polarization state from an anti-inflammatory LY6ClowCD206hi to a pro-inflammatory LY6ChiCD206low phenotype. In addition, TP-064-treated mice accumulated (activated) neutrophils within the peritoneum as well as in the blood (7-fold higher; P < 0.001) and major organs such as kidney and liver, without apparent tissue toxicity. TP-064 treatment downregulated hepatic mRNA expression levels of the PRMT4 target genes glucose-6-phosphatase catalytic subunit (-50%, P < 0.05) and the cyclin-dependent kinases 2 (-50%, P < 0.05) and 4 (-30%, P < 0.05), suggesting a direct transcriptional effect of PRMT4 also in hepatocytes. In conclusion, we have shown that the PRMT4 inhibitor TP-064 induces peritonitis-associated neutrophilia in vivo and inhibits the pro-inflammatory macrophage lipopolysaccharide response in vitro and ex vivo. Our findings suggest that TP-064 can possibly be applied as therapy in NF-κB-based inflammatory diseases.
Collapse
Affiliation(s)
- Yiheng Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | - Miriam de Boer
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Ezra J van der Wel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| |
Collapse
|
6
|
Li Y, Peng M, Zeng T, Zheng J, Liao Y, Zhang H, Yang S, Chen L. Protein Arginine Methyltransferase 4 Regulates Adipose Tissue Lipolysis in Type 1 Diabetic Mice. Diabetes Metab Syndr Obes 2020; 13:535-544. [PMID: 32161480 PMCID: PMC7049750 DOI: 10.2147/dmso.s235869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Hypertriglyceridemia is considered to be driven by increased lipolysis in type 1 diabetes mellitus (T1DM). However, information regarding the transcriptional circuitry that governs lipolysis remains incomplete in T1DM. Protein arginine methyltransferase 4 (PRMT4), a transcriptional coactivation factor, promotes autophagy and may play an important role in lipolysis. We wonder whether activated lipolysis in T1DM is regulated by PRMT4. MATERIALS AND METHODS Recombinant adeno-associated virus was adopted to overexpress PRMT4 in adipose tissue of mice. Streptozotocin (150 mg/kg) was injected intraperitoneally into mice to induce T1DM. Plasma insulin, triglycerides, free fatty acids (FFAs) levels were determined using commercial assay kits. Differentiated adipocytes were applied to verify the regulation of PRMT4 on lipolysis. RESULTS Elevated serum triglycerides and FFAs were observed in PRMT4-overexpressed T1DM mice. We also observed that PRMT4 over-expression induced the decrease of fat pads weights and adipocyte sizes. Moreover, expression levels of lipolysis-related molecules, including ATGL, HSL, and MAGL, and HSL phosphorylation levels were increased in PRMT4-overexpressed mice when compared to those of control mice. In vitro, PRMT4 promoted FFAs release and activated HSL phosphorylation, whereas PRMT4 knockdown inhibited these processes. CONCLUSION PRMT4 promotes lipolysis and increases serum triglyceride in T1DM.
Collapse
Affiliation(s)
- Yuanxiang Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Miaomiao Peng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Hao Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Songtao Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
- Correspondence: Lulu Chen Email
| |
Collapse
|
7
|
Porta M, Amione C, Barutta F, Fornengo P, Merlo S, Gruden G, Albano L, Ciccarelli M, Ungaro P, Durazzo M, Beguinot F, Berchialla P, Cavallo F, Trento M. The co-activator-associated arginine methyltransferase 1 (CARM1) gene is overexpressed in type 2 diabetes. Endocrine 2019; 63:284-292. [PMID: 30173329 DOI: 10.1007/s12020-018-1740-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE We examined the expression of a panel of epigenetic enzymes catalyzing histone tails post-transcriptional modifications, together with effectors of metabolic and inflammatory alterations, in type 2 diabetes. METHODS Cross-sectional, case-control study of 21 people with type 2 diabetes and 21 matched controls. Total RNA was extracted from white cells and reverse transcribed. PCR primer assays for 84 key genes encoding enzymes known to modify genomic DNA and histones were performed. Western blot was performed on lysates using primary antibodies for abnormally expressed enzymes. Hormones and cytokines were measured by multiplex kits. A Bayesian network was built to investigate the relationships between epigenetic, cytokine, and endocrine variables. RESULTS Co-activator-associated aRginine Methyltransferase 1 (CARM1) expression showed a five-fold higher median value, matched by higher protein levels, among patients who also had increased GIP, IL-4, IL-7, IL-13, IL-17, FGF basic, G-CSF, IFN-γ, and TNFα and decreased IP-10. In a Bayesian network approach, CARM1 expression showed a conditional dependence on diabetes, but was independent of all other variables nor appeared to influence any. CONCLUSIONS Increased CARM1 expression in type 2 diabetes suggests that epigenetic mechanisms are altered in human diabetes. The impact of lifestyle and pharmacological treatment on regulation of this enzyme should be further investigated.
Collapse
Affiliation(s)
- Massimo Porta
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy.
| | - Cristina Amione
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Federica Barutta
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Paolo Fornengo
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Stefano Merlo
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Gabriella Gruden
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Luigi Albano
- National Research Council, URT of the Institute of Experimental Endocrinology Oncology "G. Salvatore", Naples, Italy
| | - Marco Ciccarelli
- National Research Council, URT of the Institute of Experimental Endocrinology Oncology "G. Salvatore", Naples, Italy
| | - Paola Ungaro
- National Research Council, URT of the Institute of Experimental Endocrinology Oncology "G. Salvatore", Naples, Italy
| | - Marilena Durazzo
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Francesco Beguinot
- National Research Council, URT of the Institute of Experimental Endocrinology Oncology "G. Salvatore", Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Franco Cavallo
- Department of Public Health and Paediatric Sciences, University of Turin, Turin, Italy
| | - Marina Trento
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Zhang X, Yang S, Chen J, Su Z. Unraveling the Regulation of Hepatic Gluconeogenesis. Front Endocrinol (Lausanne) 2019; 9:802. [PMID: 30733709 PMCID: PMC6353800 DOI: 10.3389/fendo.2018.00802] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatic gluconeogenesis, de novo glucose synthesis from available precursors, plays a crucial role in maintaining glucose homeostasis to meet energy demands during prolonged starvation in animals. The abnormally increased rate of hepatic gluconeogenesis contributes to hyperglycemia in diabetes. Gluconeogenesis is regulated on multiple levels, such as hormonal secretion, gene transcription, and posttranslational modification. We review here the molecular mechanisms underlying the transcriptional regulation of gluconeogenesis in response to nutritional and hormonal changes. The nutrient state determines the hormone release, which instigates the signaling cascades in the liver to modulate the activities of various transcriptional factors through various post-translational modifications like phosphorylation, methylation, and acetylation. AMP-activated protein kinase (AMPK) can mediate the activities of some transcription factors, however its role in the regulation of gluconeogenesis remains uncertain. Metformin, a primary hypoglycemic agent of type 2 diabetes, ameliorates hyperglycemia predominantly through suppression of hepatic gluconeogenesis. Several molecular mechanisms have been proposed to be metformin's mode of action.
Collapse
Affiliation(s)
| | | | | | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Goldstein I, Hager GL. Transcriptional and Chromatin Regulation during Fasting - The Genomic Era. Trends Endocrinol Metab 2015; 26:699-710. [PMID: 26520657 PMCID: PMC4673016 DOI: 10.1016/j.tem.2015.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/21/2022]
Abstract
An elaborate metabolic response to fasting is orchestrated by the liver and is heavily reliant on transcriptional regulation. In response to hormones (glucagon, glucocorticoids) many transcription factors (TFs) are activated and regulate various genes involved in metabolic pathways aimed at restoring homeostasis: gluconeogenesis, fatty acid oxidation, ketogenesis, and amino acid shuttling. We summarize recent discoveries regarding fasting-related TFs with an emphasis on genome-wide binding patterns. Collectively, the findings we discuss reveal a large degree of cooperation between TFs during fasting that occurs at motif-rich DNA sites bound by a combination of TFs. These new findings implicate transcriptional and chromatin regulation as major determinants of the response to fasting and unravels the complex, multi-TF nature of this response.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National institutes of Health, Bethesda, MD, 20892, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Yeom CG, Kim DI, Park MJ, Choi JH, Jeong J, Wi A, Park W, Han HJ, Park SH. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. Biochem Biophys Res Commun 2015; 461:568-74. [DOI: 10.1016/j.bbrc.2015.04.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
|
11
|
O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem J 2015; 466:587-99. [PMID: 25585345 DOI: 10.1042/bj20141072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Co-activator-associated arginine methyltransferase 1 (CARM1) asymmetrically di-methylates proteins on arginine residues. CARM1 was previously known to be modified through O-linked-β-N-acetylglucosaminidation (O-GlcNAcylation). However, the site(s) of O-GlcNAcylation were not mapped and the effects of O-GlcNAcylation on biological functions of CARM1 were undetermined. In the present study, we describe the comprehensive mapping of CARM1 post-translational modification (PTM) using top-down MS. We found that all detectable recombinant CARM1 expressed in human embryonic kidney (HEK293T) cells is automethylated as we previously reported and that about 50% of this automethylated CARM1 contains a single O-linked-β-N-acetylglucosamine (O-GlcNAc) moiety [31]. The O-GlcNAc moiety was mapped by MS to four possible sites (Ser595, Ser598, Thr601 and Thr603) in the C-terminus of CARM1. Mutation of all four sites [CARM1 quadruple mutant (CARM1QM)] markedly decreased O-GlcNAcylation, but did not affect protein stability, dimerization or cellular localization of CARM1. Moreover, CARM1QM elicits similar co-activator activity as CARM1 wild-type (CARM1WT) on a few transcription factors known to be activated by CARM1. However, O-GlcNAc-depleted CARM1 generated by wheat germ agglutinin (WGA) enrichment, O-GlcNAcase (OGA) treatment and mutation of putative O-GlcNAcylation sites displays different substrate specificity from that of CARM1WT. Our findings suggest that O-GlcNAcylation of CARM1 at its C-terminus is an important determinant for CARM1 substrate specificity.
Collapse
|
12
|
Kim DI, Park MJ, Lim SK, Park JI, Yoon KC, Han HJ, Gustafsson JÅ, Lim JH, Park SH. PRMT3 regulates hepatic lipogenesis through direct interaction with LXRα. Diabetes 2015; 64:60-71. [PMID: 25187371 DOI: 10.2337/db13-1394] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Arginine methylation is responsible for diverse biological functions and is mediated by protein arginine methyltransferases (PRMTs). Nonalcoholic fatty liver disease (NAFLD) is accompanied by excessive hepatic lipogenesis via liver X receptor α (LXRα). Thus we examined the pathophysiological role of PRMTs in NAFLD and their relationship with LXRα. In this study, palmitic acid (PA) treatment increased PRMT3, which is correlated with the elevation of hepatic lipogenic proteins. The expression of lipogenic proteins was increased by PRMT3 overexpression, but decreased by PRMT3 silencing and use of the PRMT3 knockout (KO) mouse embryonic fibroblast cell line. PRMT3 also increased the transcriptional activity of LXRα by directly binding with LXRα in a methylation-independent manner. In addition, PA treatment translocated PRMT3 to the nucleus. In animal models, a high-fat diet increased the LXRα and PRMT3 expressions and binding, which was not observed in LXRα KO mice. Furthermore, increased PRMT3 expression and its binding with LXRα were observed in NAFLD patients. Taken together, LXRα and PRMT3 expression was increased in cellular and mouse models of NAFLD and human patients, and PRMT3 translocated into the nucleus bound with LXRα as a transcriptional cofactor, which induced lipogenesis. In conclusion, PRMT3 translocation by PA is coupled to the binding of LXRα, which is responsible for the onset of fatty liver.
Collapse
Affiliation(s)
- Dong-il Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Min-jung Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Seul-ki Lim
- Metabolism and Functionality Research Group, R&D Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jae-il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Kyung-chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ho-jae Han
- Department of Verterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jan-åke Gustafsson
- Molecular Nutrition Unit, Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX
| | - Jae-hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Soo-hyun Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Han HS, Choi D, Choi S, Koo SH. Roles of protein arginine methyltransferases in the control of glucose metabolism. Endocrinol Metab (Seoul) 2014; 29:435-40. [PMID: 25559572 PMCID: PMC4285034 DOI: 10.3803/enm.2014.29.4.435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.
Collapse
Affiliation(s)
- Hye Sook Han
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Dahee Choi
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seri Choi
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seung Hoi Koo
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea.
| |
Collapse
|
14
|
Kim DI, Park MJ, Lim SK, Choi JH, Kim JC, Han HJ, Kundu TK, Park JI, Yoon KC, Park SW, Park JS, Heo YR, Park SH. High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: Role in diabetic retinopathy. Arch Biochem Biophys 2014; 560:36-43. [DOI: 10.1016/j.abb.2014.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023]
|
15
|
Oh KJ, Han HS, Kim MJ, Koo SH. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep 2014; 46:567-74. [PMID: 24238363 PMCID: PMC4133859 DOI: 10.5483/bmbrep.2013.46.12.248] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 02/04/2023] Open
Abstract
Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed.
Collapse
Affiliation(s)
| | | | | | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul 136-713, Korea
| |
Collapse
|
16
|
Han HS, Jung CY, Yoon YS, Choi S, Choi D, Kang G, Park KG, Kim ST, Koo SH. Arginine methylation of CRTC2 is critical in the transcriptional control of hepatic glucose metabolism. Sci Signal 2014; 7:ra19. [PMID: 24570487 DOI: 10.1126/scisignal.2004479] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fasting glucose homeostasis is maintained in part through cAMP (adenosine 3',5'-monophosphate)-dependent transcriptional control of hepatic gluconeogenesis by the transcription factor CREB (cAMP response element-binding protein) and its coactivator CRTC2 (CREB-regulated transcriptional coactivator 2). We showed that PRMT6 (protein arginine methyltransferase 6) promotes fasting-induced transcriptional activation of the gluconeogenic program involving CRTC2. Mass spectrometric analysis indicated that PRMT6 associated with CRTC2. In cells, PRMT6 mediated asymmetric dimethylation of multiple arginine residues of CRTC2, which enhanced the association of CRTC2 with CREB on the promoters of gluconeogenic enzyme-encoding genes. In mice, ectopic expression of PRMT6 promoted higher blood glucose concentrations, which were associated with increased expression of genes encoding gluconeogenic factors, whereas knockdown of hepatic PRMT6 decreased fasting glycemia and improved pyruvate tolerance. The abundance of hepatic PRMT6 was increased in mouse models of obesity and insulin resistance, and adenovirus-mediated depletion of PRMT6 restored euglycemia in these mice. We propose that PRMT6 is involved in the regulation of hepatic glucose metabolism in a CRTC2-dependent manner.
Collapse
Affiliation(s)
- Hye-Sook Han
- 1Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 136-713, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bowerman M, Michalski JP, Beauvais A, Murray LM, DeRepentigny Y, Kothary R. Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Hum Mol Genet 2014; 23:3432-44. [PMID: 24497575 PMCID: PMC4049303 DOI: 10.1093/hmg/ddu052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn(2B/-)) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn(+/-)) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn(+/-)mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn(+/-)mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing β cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn(+/-)mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders.
Collapse
Affiliation(s)
- Melissa Bowerman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada The Neuroscience Institute of Montpellier (INM), Inserm UMR1051, Saint Eloi Hospital, Montpellier, France
| | - John-Paul Michalski
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and
| | | | | | | | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Wang SCM, Muscat GEO. Nuclear receptors and epigenetic signaling: novel regulators of glycogen metabolism in skeletal muscle. IUBMB Life 2013; 65:657-64. [PMID: 23846999 DOI: 10.1002/iub.1181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/18/2013] [Indexed: 02/04/2023]
Abstract
Glycogen is an energy storage depot for the mammalian species. This review focuses on recent developments that have identified the role of nuclear hormone receptor (NR) signaling and epigenomic control in the regulation of important genes that modulate glycogen metabolism. Specifically, new studies have revealed that the NR4A subgroup (of the NR superfamily) are strikingly sensitive to beta-adrenergic stimulation in skeletal muscle, and transgenic studies in mice have revealed the expression of these NRs affects endurance and glycogen levels in muscle. Furthermore, other studies have demonstrated that one of the NR coregulator class of enzymes that mediate chromatin remodeling, the histone methyltransferases (for example, protein arginine methyltransferase 4) regulates the expression of several genes involved in glycogen metabolism and glycogen storage diseases in skeletal muscle. Importantly, NRs and histone methyltransferases, have the potential to be pharmacologically exploited and may provide novel targets in the quest to treat disorders of glycogen storage.
Collapse
Affiliation(s)
- Shu-Ching Mary Wang
- The University of Queensland, Institute for Molecular Bioscience, Obesity Research Centre, Australia
| | | |
Collapse
|
19
|
Gatica R, Bertinat R, Silva P, Carpio D, Ramírez MJ, Slebe JC, San Martín R, Nualart F, Campistol JM, Caelles C, Yáñez AJ. Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. J Cell Biochem 2013; 114:639-49. [PMID: 23059533 DOI: 10.1002/jcb.24406] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down-regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3β kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease.
Collapse
Affiliation(s)
- Rodrigo Gatica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Región de los Ríos, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Akbar H, Schmitt E, Ballou MA, Corrêa MN, Depeters EJ, Loor JJ. Dietary Lipid During Late-Pregnancy and Early-Lactation to Manipulate Metabolic and Inflammatory Gene Network Expression in Dairy Cattle Liver with a Focus on PPARs. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:103-23. [PMID: 23825924 PMCID: PMC3699062 DOI: 10.4137/grsb.s12005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyunsaturated (PUFA) long-chain fatty acids (LCFAs) are more potent in eliciting molecular and tissue functional changes in monogastrics than saturated LCFA. From −21 through 10 days relative to parturition dairy cows were fed no supplemental LCFA (control), saturated LCFA (SFAT; mainly 16:0 and 18:0), or fish oil (FISH; high-PUFA). Twenty-seven genes were measured via quantitative RT-PCR in liver tissue on day −14 and day 10. Expression of nuclear receptor co-activators (CARM1, MED1), LCFA metabolism (ACSL1, SCD, ACOX1), and inflammation (IL6, TBK1, IKBKE) genes was lower with SFAT than control on day −14. Expression of SCD, however, was markedly lower with FISH than control or SFAT on both −14 and 10 days. FISH led to further decreases in expression on day 10 of LCFA metabolism (CD36, PLIN2, ACSL1, ACOX1), intracellular energy (UCP2, STK11, PRKAA1), de novo cholesterol synthesis (SREBF2), inflammation (IL6, TBK1, IKBKE), and nuclear receptor signaling genes (PPARD, MED1, NRIP1). No change in expression was observed for PPARA and RXRA. The increase of DGAT2, PLIN2, ACSL1, and ACOX1 on day 10 versus −14 in cows fed SFAT suggested upregulation of both beta-oxidation and lipid droplet (LD) formation. However, liver triacylglycerol concentration was similar among treatments. The hepatokine FGF21 and the gluconeogenic genes PC and PCK1 increased markedly on day 10 versus −14 only in controls. At the levels supplemented, the change in the profile of metabolic genes after parturition in cows fed saturated fat suggested a greater capacity for uptake of fatty acids and intracellular handling without excessive storage of LD.
Collapse
Affiliation(s)
- Haji Akbar
- Mammalian NutriPhysioGenomics Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Under fasting conditions, increases in circulating glucagon maintain glucose balance by promoting hepatic gluconeogenesis. Triggering of the cAMP pathway stimulates gluconeogenic gene expression through the PKA-mediated phosphorylation of the cAMP response element binding (CREB) protein and via the dephosphorylation of the latent cytoplasmic CREB regulated transcriptional coactivator 2 (CRTC2). CREB and CRTC2 activities are increased in insulin resistance, in which they promote hyperglycemia because of constitutive induction of the gluconeogenic program. The extent to which CREB and CRTC2 are coordinately up-regulated in response to glucagon, however, remains unclear. Here we show that, following its activation, CRTC2 enhances CREB phosphorylation through an association with the protein arginine methyltransferase 5 (PRMT5). In turn, PRMT5 was found to stimulate CREB phosphorylation via increases in histone H3 Arg2 methylation that enhanced chromatin accessibility at gluconeogenic promoters. Because depletion of PRMT5 lowers hepatic glucose production and gluconeogenic gene expression, these results demonstrate how a chromatin-modifying enzyme regulates a metabolic program through epigenetic changes that impact the phosphorylation of a transcription factor in response to hormonal stimuli.
Collapse
|
22
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Transcriptional regulators of hepatic gluconeogenesis. Arch Pharm Res 2013; 36:189-200. [PMID: 23361586 DOI: 10.1007/s12272-013-0018-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/26/2012] [Indexed: 12/27/2022]
Abstract
Glucose is a primary fuel for generating energy in basic daily activities. Thus, glucose homeostasis is tightly regulated by counter-regulatory hormones such as glucagon, cortisol, and insulin, which affect key organs including liver, skeletal muscle, pancreas, and adipocytes. Among metabolic tissues, liver plays a critical role in controlling glucose production under various hormonal and metabolic cues. Under fasting, acute activation of both glycogenolysis and gluconeogenesis is achieved by post-translational modification or allosteric activation of key rate-limiting enzymes, thereby enabling enhanced glucose production from the liver to maintain glucose homeostasis. More prolonged fasting or starvation leads to the chronic activation of gluconeogenesis that requires increased expression of key enzymes in the pathway, which is turned off under feeding conditions by the molecular events that are initiated by insulin. This process is normally achieved by the regulation of gene expression at the level of transcription. Recently, the transcriptional regulators of hepatic gluconeogenesis are considered as potential therapeutic targets for the treatment of type 2 diabetes. In this review, we would like to discuss the current knowledge regarding the key transcriptional activators and inhibitors of hepatic gluconeogenic program to provide the better insight into the control of glycemia in the disease status.
Collapse
|
24
|
Jackson MI, Cao J, Zeng H, Uthus E, Combs GF. S-adenosylmethionine-dependent protein methylation is required for expression of selenoprotein P and gluconeogenic enzymes in HepG2 human hepatocytes. J Biol Chem 2012; 287:36455-64. [PMID: 22932905 DOI: 10.1074/jbc.m112.412932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cellular methylation processes enable expression of gluconeogenic enzymes and metabolism of the nutrient selenium. Selenium status has been proposed to relate to type II diabetes risk, and plasma levels of selenoprotein P (SEPP1) have been positively correlated with insulin resistance. Increased expression of gluconeogenic enzymes glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1) has negative consequences for blood glucose management in type II diabetics. Transcriptional regulation of SEPP1 is directed by the same transcription factors that control the expression of G6PC and PCK1, and these factors are activated by methylation of arginine residues. We sought to determine whether expression of SEPP1 and the aforementioned glucoconeogenic enzymes are regulated by protein methylation, the levels of which are reliant upon adequate S-adenosylmethionine (SAM) and inhibited by S-adenosylhomocysteine (SAH). We treated a human hepatocyte cell line, HepG2, with inhibitors of adenosylhomocysteine hydrolase (AHCY) known to increase concentration of SAH before analysis of G6PC, PCK1, and SEPP1 expression. Increasing SAH decreased 1) the SAM/SAH ratio, 2) protein-arginine methylation, and 3) expression of SEPP1, G6PC, and PCK1 transcripts. Furthermore, hormone-dependent induction of gluconeogenic enzymes was reduced by inhibition of protein methylation. When protein-arginine methyltransferase 1 expression was reduced by siRNA treatment, G6PC expression was inhibited. These findings demonstrate that hepatocellular SAM-dependent protein methylation is required for both SEPP1 and gluconeogenic enzyme expression and that inhibition of protein arginine methylation might provide a route to therapeutic interventions in type II diabetes.
Collapse
Affiliation(s)
- Matthew I Jackson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Grand Forks, North Dakota 58203, USA.
| | | | | | | | | |
Collapse
|
25
|
CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells. Biochem J 2012; 444:323-31. [PMID: 22428544 DOI: 10.1042/bj20112033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CARM1 (co-activator-associated arginine methyltransferase 1)/PRMT4 (protein arginine methyltransferase 4), functions as a co-activator for transcription factors that are regulators of muscle fibre type and oxidative metabolism, including PGC (peroxisome-proliferator-activated receptor γ co-activator)-1α and MEF2 (myocyte enhancer factor 2). We observed significantly higher Prmt4 mRNA expression in comparison with Prmt1-Prmt6 mRNA expression in mouse muscle (in vitro and in vivo). Transfection of Prmt4 siRNA (small interfering RNA) into mouse skeletal muscle C2C12 cells attenuated PRMT4 mRNA and protein expression. We subsequently performed additional qPCR (quantitative PCR) analysis (in the context of metabolism) to examine the effect of Prmt4 siRNA expression on >200 critical genes that control (and are involved in) lipid, glucose and energy homoeostasis, and circadian rhythm. This analysis revealed a strikingly specific metabolic expression footprint, and revealed that PRMT4 is necessary for the expression of genes involved in glycogen metabolism in skeletal muscle cells. Prmt4 siRNA expression selectively suppressed the mRNAs encoding Gys1 (glycogen synthase 1), Pgam2 (muscle phosphoglycerate mutase 2) and Pygm (muscle glycogen phosphorylase). Significantly, PGAM, PYGM and GYS1 deficiency in humans causes glycogen storage diseases type X, type V/McArdle's disease and type 0 respectively. Attenuation of PRMT4 was also associated with decreased expression of the mRNAs encoding AMPK (AMP-activated protein kinase) α2/γ3 (Prkaa2 and Prkag3) and p38 MAPK (mitogen-activated protein kinase), previously implicated in Wolff-Parkinson-White syndrome and Pompe Disease (glycogen storage disease type II). Furthermore, stable transfection of two PRMT4-site-specific (methyltransferase deficient) mutants (CARM1/PRMT4 VLD and CARM1E267Q) significantly repressed the expression of Gys1, Pgam2 and AMPKγ3. Finally, in concordance, we observed increased and decreased glycogen levels in PRMT4 (native)- and VLD (methylation deficient mutant)-transfected skeletal muscle cells respectively. This demonstrated that PRMT4 expression and the associated methyltransferase activity is necessary for the gene expression programme involved in glycogen metabolism and human glycogen storage diseases.
Collapse
|
26
|
Lin MH, Liu HK, Huang WJ, Huang CC, Wu TH, Hsu FL. Evaluation of the potential hypoglycemic and Beta-cell protective constituents isolated from Corni fructus to tackle insulin-dependent diabetes mellitus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7743-7751. [PMID: 21682333 DOI: 10.1021/jf201189r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Corni fructus is the fruit of Cornus officinalis Sieb. et Zucc. and has attracted much interest due to its traditional applications and active fraction that reportedly possesses antidiabetic effects. In this study, we isolated 12 compounds from Corni fructus including three flavonoids, two iridoid glycosides, three phenolic compounds, and two triterpenoids, together with cornuside (11) and 2-butoxybutanedioic acid (12). Chemical structures were identified by (1)H, (13)C NMR, DEPT, COSY, HSQC, and HMBC spectral analyses. Furthermore, the glucose uptake efficiency, messenger (m)RNA expression of phosphoenolpyruvate carboxykinase (PEPCK), and prevention of cytokine-mediated cytotoxicity in the presence of test agents were evaluated. While CH and CB significantly increased glucose uptake from muscle, compounds 3 and 8, each at 50 μM, significantly suppressed PEPCK mRNA expression. Finally, compound 5, at 50 and 100 μM, effectively attenuated β-cell death. In conclusion, those compounds could contribute to the antihyperglycemic and β-cell-protective actions of Corni fructus against diabetes mellitus.
Collapse
Affiliation(s)
- Mei-Hsiang Lin
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Protozoa constitute the earliest branch of the eukaryotic lineage, and several groups of protozoans are serious parasites of humans and other animals. Better understanding of biochemical pathways that are either in common with or divergent from those of higher eukaryotes is integral in the defense against these parasites. In yeast and humans, the posttranslational methylation of arginine residues in proteins affects myriad cellular processes, including transcription, RNA processing, DNA replication and repair, and signal transduction. The protein arginine methyltransferases (PRMTs) that catalyze these reactions, which are unique to the eukaryotic kingdom of organisms, first become evident in protozoa. In this review, we focus on the current understanding of arginine methylation in multiple species of parasitic protozoa, including Trichomonas, Entamoeba, Toxoplasma, Plasmodium, and Trypanosoma spp., and discuss how arginine methylation may play important and unique roles in each type of parasite. We mine available genomic and transcriptomic data to inventory the families of PRMTs in different parasites and the changes in their abundance during the life cycle. We further review the limited functional studies on the roles of arginine methylation in parasites, including epigenetic regulation in Apicomplexa and RNA processing in trypanosomes. Interestingly, each of the parasites considered herein has significantly differing sets of PRMTs, and we speculate on the importance of this diversity in aspects of parasite biology, such as differentiation and antigenic variation.
Collapse
|
28
|
Sommerfeld A, Krones-Herzig A, Herzig S. Transcriptional co-factors and hepatic energy metabolism. Mol Cell Endocrinol 2011; 332:21-31. [PMID: 21112373 DOI: 10.1016/j.mce.2010.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 01/24/2023]
Abstract
After binding to their cognate DNA-binding partner, transcriptional co-factors exert their function through the recruitment of enzymatic, chromatin-modifying activities. In turn, the assembly of co-factor-associated multi-protein complexes efficiently impacts target gene expression. Recent advances have established transcriptional co-factor complexes as a critical regulatory level in energy homeostasis and aberrant co-factor activity has been linked to the pathogenesis of severe metabolic disorders including obesity, type 2 diabetes and other components of the Metabolic Syndrome. The liver represents the key peripheral organ for the maintenance of systemic energy homeostasis, and aberrations in hepatic glucose and lipid metabolism have been causally linked to the manifestation of disorders associated with the Metabolic Syndrome. Therefore, this review focuses on the role of distinct classes of transcriptional co-factors in hepatic glucose and lipid homeostasis, emphasizing pathway-specific functions of these co-factors under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Anke Sommerfeld
- Department Molecular Metabolic Control, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Kuhn P, Xu W. Protein arginine methyltransferases: nuclear receptor coregulators and beyond. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:299-342. [PMID: 20374708 DOI: 10.1016/s1877-1173(09)87009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that play a crucial role in diverse cellular functions. Several PRMTs have been associated with gene expression regulation, in which PRMTs act as histone methyltransferases, secondary coregulators of transcription, or facilitate mRNA splicing and stability. Additional functions include modulation of protein localization, ribosomal assembly, and signal transduction. At the organismal level, several PRMTs appear to be important for development and may play an important role in cancer. The relationships between their cellular and organismal functions are poorly understood; at least in part due to the large body of enzymatic substrates for PRMTs and their transcriptional targets that remain to be determined. Specific PRMT inhibitors have been developed in recent years, which should help to shed light on their diverse biological roles. Connecting PRMT cellular functions with their global effects on an organism will facilitate development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Peter Kuhn
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
30
|
Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 2008; 295:E785-97. [PMID: 18612045 PMCID: PMC2652500 DOI: 10.1152/ajpendo.00646.2007] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The muscle specific ubiquitin E3 ligase MuRF1 has been implicated as a key regulator of muscle atrophy under a variety of conditions, such as during synthetic glucocorticoid treatment. FOXO class transcription factors have been proposed as important regulators of MuRF1 expression, but its regulation by glucocorticoids is not well understood. The MuRF1 promoter contains a near-perfect palindromic glucocorticoid response element (GRE) 200 base pairs upstream of the transcription start site. The GRE is highly conserved in the mouse, rat, and human genes along with a directly adjacent FOXO binding element (FBE). Transient transfection assays in HepG2 cells and C(2)C(12) myotubes demonstrate that the MuRF1 promoter is responsive to both the dexamethasone (DEX)-activated glucocorticoid receptor (GR) and FOXO1, whereas coexpression of GR and FOXO1 leads to a dramatic synergistic increase in reporter gene activity. Mutation of either the GRE or the FBE significantly impairs activation of the MuRF1 promoter. Consistent with these findings, DEX-induced upregulation of MuRF1 is significantly attenuated in mice expressing a homodimerization-deficient GR despite no effect on the degree of muscle loss in these mice vs. their wild-type counterparts. Finally, chromatin immunoprecipitation analysis reveals that both GR and FOXO1 bind to the endogenous MuRF1 promoter in C(2)C(12) myotubes, and IGF-I inhibition of DEX-induced MuRF1 expression correlates with the loss of FOXO1 binding. These findings present new insights into the role of the GR and FOXO family of transcription factors in the transcriptional regulation of the MuRF1 gene, a direct target of the GR in skeletal muscle.
Collapse
Affiliation(s)
- David S Waddell
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen CC, Hsu CY, Chen CY, Liu HK. Fructus Corni suppresses hepatic gluconeogenesis related gene transcription, enhances glucose responsiveness of pancreatic beta-cells, and prevents toxin induced beta-cell death. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:483-490. [PMID: 18400427 DOI: 10.1016/j.jep.2008.02.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 02/14/2008] [Accepted: 02/27/2008] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Corni, the fruits of Cornus officinalis Sieb. et Zucc., is one important ingredient in Quei Fu Di Huang Wan, a Chinese herbal mixture. AIM OF THE STUDY In the present study, additional anti-diabetic actions of Fructus Corni on transcriptional regulation of hepatic gluconeogenesis or beta-cell functions were investigated. MATERIALS AND METHODS Insulin mimetic action of Fructus Corni on dexamethasone and 8-bromo-cAMP induced phosphoenolpyruvate carboxykinase (PEPCK) expression in H4IIE cells was investigated. Besides, BRIN-BD11 cells were used to evaluate both insulinotropic and beta-cell protective effect of Fructus Corni. RESULTS Firstly, both methanol extract (CO-W-M) and fraction (CO-W-M2) had potent insulin mimic activity on PEPCK expression. Secondly, possibility of both loganin and ursolic acid as the responsible compounds was excluded. Moreover, indication of the existence of phenolic compounds in CO-W-M2 was noticed. In the presence of CO-W-M2, not only was the viability of BRIN-BD11 cells treated with alloxan, streptozotcin, or cytokine mix all significantly increased but also glucose-stimulated insulin secretion was potentiated. CONCLUSIONS The ability of CO-W-M2 to reduce gene expression for hepatic gluconeogenesis, to protect beta-cell against toxic challenge, and to enhance insulin secretion strengthen the role of Fructus Corni in diabetes therapy.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Division of Medicinal Chemistry, National Research Institute of Chinese Medicine, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
32
|
CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep 2008; 9:193-8. [PMID: 18188184 DOI: 10.1038/sj.embor.7401151] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 11/08/2022] Open
Abstract
The coactivator-associated arginine methyltransferase 1 (CARM1) is recruited to gene promoters by many transcription factors. To identify new pathways that use CARM1, we carried out a comprehensive transcriptome analysis of CARM1-knockout embryos. By using complementary DNA microarrays and serial analysis of gene expression, we identified various genes involved in lipid metabolism that were underrepresented in CARM1-knockout embryos, indicating an important role for this coactivator in adipose tissue biology. We also observed that the amount of brown fat in CARM1-knockout embryos is reduced. Furthermore, cells lacking CARM1 have a severely curtailed potential to differentiate into mature adipocytes. Reporter experiments and chromatin immunoprecipitation analysis show that CARM1 regulates these processes by acting as a coactivator for peroxisome proliferator-activated receptor gamma (PPARgamma). Together, these results show that CARM1 promotes adipocyte differentiation by coactivating PPARgamma-mediated transcription and thus might be important in energy balance.
Collapse
|
33
|
Sayegh J, Webb K, Cheng D, Bedford MT, Clarke SG. Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J Biol Chem 2007; 282:36444-53. [PMID: 17925405 DOI: 10.1074/jbc.m704650200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human protein arginine methyltransferase PRMT8 has been recently described as a type I enzyme in brain that is localized to the plasma membrane by N-terminal myristoylation. The amino acid sequence of human PRMT8 is almost 80% identical to human PRMT1, the major protein arginine methyltransferase activity in mammalian cells. However, the activity of a recombinant PRMT8 GST fusion protein toward methyl-accepting substrates is much lower than that of a GST fusion of PRMT1. We show here that both His-tagged and GST fusion species lacking the initial 60 amino acid residues of PRMT8 have enhanced enzymatic activity, suggesting that the N-terminal domain may regulate PRMT8 activity. This conclusion is supported by limited proteolysis experiments showing an increase in the activity of the digested full-length protein, consistent with the loss of the N-terminal domain. In contrast, the activity of the N-terminal truncated protein was slightly diminished by limited proteolysis. Significantly, we detect automethylation at two sites in the N-terminal domain, as well as binding sites for SH3 domain-containing proteins. We suggest that the N-terminal domain may function as an autoregulator that may be displaced by interaction with one or more physiological inducers.
Collapse
Affiliation(s)
- Joyce Sayegh
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
34
|
Hall RK, Wang XL, George L, Koch SR, Granner DK. Insulin represses phosphoenolpyruvate carboxykinase gene transcription by causing the rapid disruption of an active transcription complex: a potential epigenetic effect. Mol Endocrinol 2006; 21:550-63. [PMID: 17095578 DOI: 10.1210/me.2006-0307] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insulin represses gluconeogenesis, in part, by inhibiting the transcription of genes that encode rate-determining enzymes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase). Glucocorticoids stimulate expression of the PEPCK gene but the repressive action of insulin is dominant. Here, we show that treatment of H4IIE hepatoma cells with the synthetic glucocorticoid, dexamethasone (dex), induces the accumulation of glucocorticoid receptor, as well as many transcription factors, coregulators, and RNA polymerase II, on the PEPCK gene promoter. The addition of insulin to dex-treated cells causes the rapid dissociation of glucocorticoid receptor, polymerase II, and several key transcriptional regulators from the PEPCK gene promoter. These changes are temporally related to the reduced rate of PEPCK gene transcription. A similar disruption of the G-6-Pase gene transcription complex was observed. Additionally, insulin causes the rapid demethylation of arginine-17 on histone H3 of both genes. This rapid, insulin-induced, histone demethylation is temporally related to the disruption of the PEPCK and G-6-Pase gene transcription complex, and may be causally related to the mechanism by which insulin represses transcription of these genes.
Collapse
Affiliation(s)
- Robert K Hall
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 707 Light Hall, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|