1
|
Fang Y, Gong Z, You M, Peng K. Identification of a novel caspase cleavage motif AEAD. Virol Sin 2024; 39:755-766. [PMID: 39098717 PMCID: PMC11738786 DOI: 10.1016/j.virs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 08/06/2024] Open
Abstract
Infections of many viruses induce caspase activation to regulate multiple cellular pathways, including programmed cell death, immune signaling and etc. Characterizations of caspase cleavage sites and substrates are important for understanding the regulation mechanisms of caspase activation. Here, we identified and analyzed a novel caspase cleavage motif AEAD, and confirmed its caspase dependent cleavage activity in natural substrate, such as nitric oxide-associated protein 1 (NOA1). Fusing the enhanced green fluorescent protein (EGFP) with the mitochondrial marker protein Tom20 through the AEAD motif peptide localized EGFP to the mitochondria. Upon the activation of caspase triggered by Sendai virus (SeV) or herpes simplex virus type 1 (HSV-1) infection, EGFP diffusely localized to the cell due to the caspase-mediated cleavage, thus allowing visual detection of the virus-induced caspase activation. An AEAD peptide-derived inhibitor Z-AEAD-FMK were developed, which significantly inhibited the activities of caspases-1, -3, -6, -7, -8 and -9, exhibiting a broad caspase inhibition effect. The inhibitor further prevented caspases-mediated cleavage of downstream substrates, including BID, PARP1, LMNA, pro-IL-1β, pro-IL-18, GSDMD and GSDME, protecting cells from virus-induced apoptotic and pyroptotic cell death. Together, our findings provide a new perspective for the identification of novel caspase cleavage motifs and the development of new caspase inhibitors and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yujie Fang
- State Key Laboratory of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences, Wuhan, 430071, China
| | - Miaomiao You
- State Key Laboratory of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Provincial Key Laboratory of Jiangxia, Wuhan, 430207, China.
| |
Collapse
|
2
|
Koivusalo S, Schmidt A, Manninen A, Wenta T. Regulation of Kinase Signaling Pathways by α6β4-Integrins and Plectin in Prostate Cancer. Cancers (Basel) 2022; 15:149. [PMID: 36612146 PMCID: PMC9818203 DOI: 10.3390/cancers15010149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Hemidesmosomes (HDs) are adhesive structures that ensure stable anchorage of cells to the basement membrane. They are formed by α6β4-integrin heterodimers and linked to intermediate filaments via plectin. It has been reported that one of the most common events during the pathogenesis of prostate cancer (PCa) is the loss of HD organization. While the expression levels of β4-integrins are strongly reduced, the expression levels of α6-integrins and plectin are maintained or even elevated, and seem to promote tumorigenic properties of PCa cells, such as proliferation, invasion, metastasis, apoptosis- and drug-resistance. In this review, we discuss the potential mechanisms of how HD components might contribute to various cellular signaling pathways to promote prostate carcinogenesis. Moreover, we summarize the current knowledge on the involvement of α6β4-integrins and plectin in PCa initiation and progression.
Collapse
Affiliation(s)
- Saara Koivusalo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anette Schmidt
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Kim SY, McGraw MD. Post-translational modifications to hemidesmosomes in human airway epithelial cells following diacetyl exposure. Sci Rep 2022; 12:9738. [PMID: 35697719 PMCID: PMC9192738 DOI: 10.1038/s41598-022-14019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Diacetyl (DA; 2,3-butanedione) is a highly reactive alpha (α)-diketone. Inhalation exposure to DA can cause significant airway epithelial cell injury, however, the mechanisms of toxicity remain poorly understood. The purpose of these experiments was to assess for changes in abundance and distribution of hemidesmosome-associated proteins following DA exposure that contribute to DA-induced epithelial toxicity. Human bronchial epithelial cells were grown in submerged cultures and exposed to three occupationally-relevant concentrations of DA (5.7, 8.6, or 11.4 mM) for 1 h. Following DA exposure, epithelial cells were cultured for 4 days to monitor for cell viability by MTT and WST-1 assays as well as for changes in cellular distribution and relative abundance of multiple hemidesmosome-associated proteins, including keratin 5 (KRT5), plectin (PLEC), integrin alpha 6 (ITGα6) and integrin beta 4 (ITGβ4). Significant toxicity developed in airway epithelial cells exposed to DA at concentrations ≥ 8.6 mM. DA exposure resulted in post-translational modifications to hemidesmosome-associated proteins with KRT5 crosslinking and ITGβ4 cleavage. Following DA exposure at 5.7 mM, these post-translational modifications to KRT5 resolved with time. Conversely, at DA concentrations ≥ 8.6 mM, modifications to KRT5 persisted in culture with decreased total abundance and perinuclear aggregation of hemidesmosome-associated proteins. Significant post-translational modifications to hemidesmosome-associated proteins develop in airway epithelial cells exposed to DA. At DA concentrations ≥ 8.6 mM, these hemidesmosome modifications persist in culture. Future work targeting hemidesmosome-associated protein modifications may prevent the development of lung disease following DA exposure.
Collapse
Affiliation(s)
- So-Young Kim
- Division of Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Matthew D McGraw
- Division of Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
4
|
Te Molder L, de Pereda JM, Sonnenberg A. Regulation of hemidesmosome dynamics and cell signaling by integrin α6β4. J Cell Sci 2021; 134:272177. [PMID: 34523678 DOI: 10.1242/jcs.259004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hemidesmosomes (HDs) are specialized multiprotein complexes that connect the keratin cytoskeleton of epithelial cells to the extracellular matrix (ECM). In the skin, these complexes provide stable adhesion of basal keratinocytes to the underlying basement membrane. Integrin α6β4 is a receptor for laminins and plays a vital role in mediating cell adhesion by initiating the assembly of HDs. In addition, α6β4 has been implicated in signal transduction events that regulate diverse cellular processes, including proliferation and survival. In this Review, we detail the role of α6β4 in HD assembly and beyond, and we discuss the molecular mechanisms that regulate its function.
Collapse
Affiliation(s)
- Lisa Te Molder
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jose M de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
5
|
Groulx JF, Boudjadi S, Beaulieu JF. MYC Regulates α6 Integrin Subunit Expression and Splicing Under Its Pro-Proliferative ITGA6A Form in Colorectal Cancer Cells. Cancers (Basel) 2018; 10:42. [PMID: 29401653 PMCID: PMC5836074 DOI: 10.3390/cancers10020042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
The α6 integrin subunit (ITGA6) pre-mRNA undergoes alternative splicing to form two splicing variants, named ITGA6A and ITGA6B. In primary human colorectal cancer cells, the levels of both ITGA6 and β4 integrin subunit (ITGB4) subunits of the α6β4 integrin are increased. We previously found that the upregulation of ITGA6 is a direct consequence of the increase of the pro-proliferative ITGA6A variant. However, the mechanisms that control ITGA6 expression and splicing into the ITGA6A variant over ITGA6B in colorectal cancer cells remain poorly understood. Here, we show that the promoter activity of the ITGA6 gene is regulated by MYC. Pharmacological inhibition of MYC activity with the MYC inhibitor (MYCi) 10058-F4 or knockdown of MYC expression by short hairpin RNA (shRNA) both lead to a decrease in ITGA6 and ITGA6A levels in colorectal cancer cells, while overexpression of MYC enhances ITGA6 promoter activity. We also found that MYC inhibition decreases the epithelial splicing regulatory protein 2 (ESRP2) splicing factor at both the mRNA and protein levels. Chromatin immunoprecipitation revealed that the proximal promoter sequences of ITGA6 and ESRP2 were occupied by MYC and actively transcribed in colorectal cancer cells. Furthermore, expression studies in primary colorectal tumors and corresponding resection margins confirmed that the up-regulation of the ITGA6A subunit can be correlated with the increase in MYC and ESRP2. Taken together, our results demonstrate that the proto-oncogene MYC can regulate the promoter activation and splicing of the ITGA6 integrin gene through ESRP2 to favor the production of the pro-proliferative ITGA6A variant in colorectal cancer cells.
Collapse
Affiliation(s)
- Jean-François Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
- Laboratory of Pathology, Cancer Molecular Pathology Section, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
6
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
7
|
Clinical significance of the integrin α6β4 in human malignancies. J Transl Med 2015; 95:976-86. [PMID: 26121317 PMCID: PMC4554527 DOI: 10.1038/labinvest.2015.82] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Integrin α6β4 is a cellular adhesion molecule that binds to laminins in the extracellular matrix and nucleates the formation of hemidesmosomes. During carcinoma progression, integrin α6β4 is released from hemidesmosomes, where it can then signal to facilitate multiple aspects of tumor progression including sustaining proliferative signaling, tumor invasion and metastasis, evasion of apoptosis, and stimulation of angiogenesis. The integrin achieves these ends by cooperating with growth factor receptors including EGFR, ErbB-2, and c-Met to amplify downstream pathways such as PI3K, AKT, MAPK, and the Rho family small GTPases. Furthermore, it dramatically alters the transcriptome toward a more invasive phenotype by controlling promoter DNA demethylation of invasion and metastasis-associated proteins, such as S100A4 and autotaxin, and upregulates and activates key tumor-promoting transcription factors such as the NFATs and NF-κB. Expression of integrin α6β4 has been studied in many human malignancies where its overexpression is associated with aggressive behavior and a poor prognosis. This review provides an assessment of integrin α6β4 expression patterns and their prognostic significance in human malignancies, and describes key signaling functions of integrin α6β4 that contribute to tumor progression.
Collapse
|
8
|
Mancini F, Pieroni L, Monteleone V, Lucà R, Fici L, Luca E, Urbani A, Xiong S, Soddu S, Masetti R, Lozano G, Pontecorvi A, Moretti F. MDM4/HIPK2/p53 cytoplasmic assembly uncovers coordinated repression of molecules with anti-apoptotic activity during early DNA damage response. Oncogene 2015; 35:228-40. [PMID: 25961923 PMCID: PMC4717155 DOI: 10.1038/onc.2015.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
The p53 inhibitor, MDM4 (MDMX) is a cytoplasmic protein with p53-activating function under DNA damage conditions. Particularly, MDM4 promotes phosphorylation of p53 at Ser46, a modification that precedes different p53 activities. We investigated the mechanism by which MDM4 promotes this p53 modification and its consequences in untransformed mammary epithelial cells and tissues. In response to severe DNA damage, MDM4 stimulates p53Ser46P by binding and stabilizing serine–threonine kinase HIPK2. Under these conditions, the p53-inhibitory complex, MDM4/MDM2, dissociates and this allows MDM4 to promote p53/HIPK2 functional interaction. Comparative proteomic analysis of DNA damage-treated cells versus -untreated cells evidenced a diffuse downregulation of proteins with anti-apoptotic activity, some of which were targets of p53Ser46P/HIPK2 repressive activity. Importantly, MDM4 depletion abolishes the downregulation of these proteins indicating the requirement of MDM4 to promote p53-mediated transcriptional repression. Consistently, MDM4-mediated HIPK2/p53 activation precedes HIPK2/p53 nuclear translocation and activity. Noteworthy, repression of these proteins was evident also in mammary glands of mice subjected to γ-irradiation and was significantly enhanced in transgenic mice overexpressing MDM4. This study evidences the flexibility of MDM2/MDM4 heterodimer, which allows the development of a positive activity of cytoplasmic MDM4 towards p53-mediated transcriptional function. Noteworthy, this activity uncovers coordinated repression of molecules with shared anti-apoptotic function which precedes active cell apoptosis and that are frequently overexpressed and/or markers of tumour phenotype in human cancer.
Collapse
Affiliation(s)
- F Mancini
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - L Pieroni
- Proteomic and Metabolomic Laboratory, Fondazione Santa Lucia, Roma, Italy.,Department of Experimental Medicine and Surgery, University of Roma 'Tor Vergata', Roma, Italy
| | - V Monteleone
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| | - R Lucà
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| | - L Fici
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Obstetrics and Gynaecology, Catholic University of Roma, Roma, Italy
| | - E Luca
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - A Urbani
- Proteomic and Metabolomic Laboratory, Fondazione Santa Lucia, Roma, Italy.,Department of Experimental Medicine and Surgery, University of Roma 'Tor Vergata', Roma, Italy
| | - S Xiong
- Department of Genetics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - S Soddu
- Regina Elena National Cancer Institute, Roma, Italy
| | - R Masetti
- Department of Obstetrics and Gynaecology, Catholic University of Roma, Roma, Italy
| | - G Lozano
- Department of Genetics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - A Pontecorvi
- Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - F Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| |
Collapse
|
9
|
Li S, Zhang HY, Wang T, Meng X, Zong ZH, Kong DH, Wang HQ, Du ZX. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy. J Clin Endocrinol Metab 2014; 99:E2298-307. [PMID: 25062457 DOI: 10.1210/jc.2014-1779] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT BAG3 plays a regulatory role in a number of cellular processes. Recent studies have attracted much attention on its role in activation of selective autophagy. In addition, we have very recently reported that BAG3 is implicated in a BECN1-independent autophagy, namely noncanonical autophagy. OBJECTIVE The current study aimed to investigate the potential involvement of BAG3 in canonical autophagy triggered by Earle's Balanced Salt Solution (EBSS) starvation. SETTING AND DESIGN Replacement of complete medium with EBSS was used to trigger canonical autophagy. BAG3 expression was measured using real-time RT-PCR and Western blot. Autophagy was monitored using LC3-II transition and p62/SQSTM1 accumulation by Western blot, as well as punctate distribution of LC3 by immunofluorescence staining. Cell growth and apoptotic cell death was investigated using real-time cell analyzer and flowcytometry, respectively. RESULTS BAG3 expression was potently reduced by EBSS starvation. Forced expression of BAG3 suppressed autophagy and promoted apoptotic cell death of thyroid cancer cells elicited by starvation. In addition, in the presence of autophagy inhibitor, the enhancing effect of BAG3 on apoptotic cell death was attenuated. CONCLUSIONS These results suggest that BAG3 promotes apoptotic cell death in starved thyroid cancer cells, at least in part by autophagy attenuation.
Collapse
Affiliation(s)
- Si Li
- Departments of Endocrinology and Metabolism (S.L., T.W., Z.-X.D.), Geriatrics (H.-Y.Z.), and Biochemistry and Molecular Biology (X.M., Z.-H.Z., D.-H.K., H.-Q.W.), the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhao F, Liu C, Hao YM, Qu B, Cui YJ, Zhang N, Gao XJ, Li QZ. Up-regulation of integrin α6β4 expression by mitogens involved in dairy cow mammary development. In Vitro Cell Dev Biol Anim 2014; 51:287-99. [PMID: 25319126 DOI: 10.1007/s11626-014-9827-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/16/2014] [Indexed: 11/26/2022]
Abstract
In dairy cows, the extracellular microenvironment varies significantly from the virgin state to lactation. The function of integrin α6β4 is dependent on cell type and extracellular microenvironment, and the precise expression profile of α6β4 and its effects on mammary development remain to be determined. In the present study, real-time PCR and immunohistochemistry were used to analyze the expression and localization of integrin α6β4 in Holstein dairy cow mammary glands. The effects of integrin α6β4 on the proliferation induced by mammogenic mitogens were identified by blocking integrin function in purified dairy cow mammary epithelial cells (DCMECs). The results showed that the localization of β4 subunit and its exclusive partner the α6 subunit were not consistent but were co-localized in basal luminal cells and myoepithelial cells, appearing to prefer the basal surface of the plasma membrane. Moreover, α6 and β4 subunit messenger RNA (mRNA) levels changed throughout the stages of dairy cow mammary development, reflected well by protein levels, and remained higher in the virgin and pregnancy states, with duct/alveolus morphogenesis and active cell proliferation, than during lactation, when growth arrest is essential for mammary epithelial cell differentiation. Finally, the upregulation of integrin expression by both mammogenic growth hormone and insulin-like growth factor-1 and the inhibited growth of DCMECs by function-blocking integrin antibodies confirmed that integrin α6β4 was indeed involved in dairy cow mammary development.
Collapse
Affiliation(s)
- Feng Zhao
- Key laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ge D, Kong X, Liu W, Zhao J, Su L, Zhang S, Zhang Y, Zhao B, Miao J. Phosphorylation and nuclear translocation of integrin β4 induced by a chemical small molecule contribute to apoptosis in vascular endothelial cells. Apoptosis 2014; 18:1120-31. [PMID: 23677256 DOI: 10.1007/s10495-013-0860-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Integrin β4 and its Y-1494 phosphorylation play an important role in cell signaling. We found a small molecule, ethyl1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-chlorophenyl)-1H-pyrazole-5-carboxylate (ECPC), that could elevate the levels of KIT ligand (KITLG), interleukin 8 (IL-8), prostaglandin-endoperoxide synthase 2 (PTGS2) and activating transcription factor 3 (ATF3) and promote apoptosis in vascular endothelial cells (VECs) through integrin β4. We investigated the underlying mechanism of integrin β4 participating in this process. ECPC treatment increased the phosphorylation of Y-1494 in the integrin β4 cytoplasmic domain via a well-known receptor tyrosine kinase, fibroblast growth factor receptor 1 (FGFR1), and integrin β4 translocated from the cytoplasm to nucleus. With suppression of Y-1494 phosphorylation by FGF-2 or siRNA of FGFR1, ECPC failed to promote integrin β4 nuclear translocation and could not increase the expression of KITLG, IL-8, PTGS2 or ATF3. Y-1494 phosphorylation and nuclear translocation of integrin β4 may be important during ECPC-induced apoptosis in VECs.
Collapse
Affiliation(s)
- Di Ge
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shih HJ, Chen HH, Chen YA, Wu MH, Liou GG, Chang WW, Chen L, Wang LH, Hsu HL. Targeting MCT-1 oncogene inhibits Shc pathway and xenograft tumorigenicity. Oncotarget 2013; 3:1401-15. [PMID: 23211466 PMCID: PMC3717801 DOI: 10.18632/oncotarget.688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Overexpression of Shc adaptor proteins is associated with mitogenesis, carcinogenesis and metastasis. Multiple copies in T-cell malignancy 1 (MCT-1) oncoprotein promotes cell proliferation, survival and tumorigenic effects. Our current data show that MCT-1 is a novel regulator of Shc-Ras-MEK-ERK signaling and MCT-1 is significantly co-activated with Shc gene in human carcinomas. The knockdown of MCT-1 enhances apoptotic cell death accompanied with the activation of caspases and cleavage of caspase substrates under environmental stress. The cancer cell proliferation, chemo-resistance and tumorigenic capacity are proved to be effectively suppressed by targeting MCT-1. Accordingly, an important linkage between MCT-1 oncogenicity and Shc pathway in tumor development has now been established. Promoting MCT-1 expression by gene hyperactivation may be recognized as a tumor marker and MCT-1 may serve as a molecular target of cancer therapy.
Collapse
Affiliation(s)
- Hung-Ju Shih
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bhatia V, Mula RVR, Falzon M. Parathyroid hormone-related protein regulates integrin α6 and β4 levels via transcriptional and post-translational pathways. Exp Cell Res 2013; 319:1419-30. [PMID: 23499737 DOI: 10.1016/j.yexcr.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/07/2013] [Accepted: 03/02/2013] [Indexed: 11/28/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) enhances prostate cancer (CaP) growth and metastasis in vivo. PTHrP also increases cell survival and migration, and upregulates pro-invasive integrin α6β4 expression. We used the human CaP cell lines C4-2 and PC-3 as model systems to study the mechanisms via which PTHrP regulates α6β4 levels. We report that PTHrP regulates α6 and β4 levels via a transcriptional pathway; β4 regulation involves the NF-κB pathway. PTHrP also regulates β4 levels at the post-translational level. PTHrP inhibits caspase-3 and -7 activities. Post-translational regulation of β4 by PTHrP is mediated via attenuation of its proteolytic cleavage by these caspases. Since α6 dimerizes with β4, increased β4 levels result in elevated α6 levels. Suppressing β4 using siRNA attenuates the effect of caspase inhibition on apoptosis and cell migration. These results provide evidence of a link between PTHrP, integrin α6β4 levels as a function of caspase activity, and cell survival and migration. Targeting PTHrP in CaP cancer, thereby reversing the effect on caspase activity and α6β4 levels, may thus prove therapeutically beneficial.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | | | | |
Collapse
|
14
|
Cytoplasmic plaque formation in hemidesmosome development is dependent on SoxF transcription factor function. PLoS One 2012; 7:e43857. [PMID: 22962592 PMCID: PMC3433475 DOI: 10.1371/journal.pone.0043857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 07/30/2012] [Indexed: 01/08/2023] Open
Abstract
Hemidesmosomes are composed of intricate networks of proteins, that are an essential attachment apparatus for the integrity of epithelial tissue. Disruption leads to blistering diseases such as epidermolysis bullosa. Members of the Sox gene family show dynamic and diverse expression patterns during development and mutation analyses in humans and mice provide evidence that they play a remarkable variety of roles in development and human disease. Previous studies have established that the mouse mutant ragged-opossum (Raop) expresses a dominant-negative form of the SOX18 transcription factor that interferes with the function of wild type SOX18 and of the related SOXF-subgroup proteins SOX7 and −17. Here we show that skin and oral mucosa in homozygous Raop mice display extensive detachment of epithelium from the underlying mesenchymal tissue, caused by tearing of epithelial cells just above the plasma membrane due to hemidesmosome disruption. In addition, several hemidesmosome proteins expression were found to be dysregulated in the Raop mice. Our data suggest that SOXF transcription factors play a role in regulating formation of cytoplasmic plaque protein assembly, and that disrupted SOXF function results in epidermolysis bullosa-like skin phenotypes.
Collapse
|
15
|
Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM. Caspase-mediated apoptosis of trophoblasts in term human placental villi is restricted to cytotrophoblasts and absent from the multinucleated syncytiotrophoblast. Reproduction 2011; 143:107-21. [PMID: 22046053 PMCID: PMC3631347 DOI: 10.1530/rep-11-0340] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human placental villi are surfaced by a multinucleated and terminally differentiated epithelium, the syncytiotrophoblast, with a subjacent layer of mononucleated cytotrophoblasts that can divide and fuse to replenish the syncytiotrophoblast. The objectives of this study were i) to develop an approach to definitively identify and distinguish cytotrophoblasts from the syncytiotrophoblast, ii) to unambiguously determine the relative susceptibility of villous cytotrophoblasts and syncytiotrophoblast to constitutive and stress-induced apoptosis mediated by caspases, and iii) to understand the progression of apoptosis in villous trophoblasts. Confocal microscopy with co-staining for E-cadherin and DNA allowed us to clearly distinguish the syncytiotrophoblast from cytotrophoblasts and identified that many cytotrophoblasts are deeply interdigitated into the syncytiotrophoblast. Staining for specific markers of caspase-mediated apoptosis indicate that apoptosis occurs readily in cytotrophoblasts but is remarkably inhibited in the syncytiotrophoblast. To determine if an apoptotic cell or cell fragment was from a cytotrophoblast or syncytiotrophoblast, we found co-staining with E-cadherin along with a marker for apoptosis was essential: in the absence of E-cadherin staining, apoptotic cytotrophoblasts would easily be mistaken as representing localized regions of apoptosis in the syncytiotrophoblast. Regions with perivillous fibrin-containing fibrinoid contain the remnants of trophoblast apoptosis, and we propose this apoptosis occurs only after physical isolation of a region of the syncytium from the main body of the syncytium. We propose models for the progression of apoptosis in villous cytotrophoblasts and for why caspase-mediated apoptosis does not occur within the syncytium of placental villi.
Collapse
Affiliation(s)
- Mark S Longtine
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, 4566 Scott Avenue, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
16
|
Pal-Ghosh S, Blanco T, Tadvalkar G, Pajoohesh-Ganji A, Parthasarathy A, Zieske JD, Stepp MA. MMP9 cleavage of the β4 integrin ectodomain leads to recurrent epithelial erosions in mice. J Cell Sci 2011; 124:2666-75. [PMID: 21750188 DOI: 10.1242/jcs.085480] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Integrin α6β4 is an integral membrane protein within hemidesmosomes and it mediates adhesion of epithelial cells to their underlying basement membrane. During wound healing, disassembly of hemidesmosomes must occur for sheet movement-mediated cell migration. The mechanisms of disassembly and reassembly of hemidesmosomes are not fully understood. The current study was initiated to understand the underlying cause of recurrent corneal erosions in the mouse. Here, we show that in vivo: (1) MMP9 levels are elevated and β4 integrin is partially cleaved in epithelial cell extracts derived from debridement wounded corneas; (2) the β4 ectodomain is missing from sites where erosions develop; and (3) β4 cleavage can be reduced by inhibiting MMP activity. Although β4, α3 and β1 integrins were all cleaved by several MMPs, only MMP9 was elevated in cell extracts derived from corneas with erosions. Coimmunoprecipitation studies showed that β4 integrin associates with MMP9, and protein clustering during immunoprecipitation induced proteolytic cleavage of the β4 integrin extracellular domain, generating a 100 kDa β4 integrin cytoplasmic domain fragment. Confocal imaging with three-dimensional reconstruction showed that MMP9 localizes at erosion sites in vivo where the ectodomain of β4 integrin is reduced or absent. MMP activation experiments using cultured corneal and epidermal keratinocytes showed reduced levels of α6β4 and β1 integrins within 20 minutes of phorbol ester treatment. This report is the first to show that β4 integrin associates with MMP9 and that its ectodomain is a target for cleavage by MMP9 in vivo under pathological conditions.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- The George Washington University Medical Center, Department of Anatomy and Regenerative Biology, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Poksay KS, Banwait S, Crippen D, Mao X, Bredesen DE, Rao RV. The small chaperone protein p23 and its cleaved product p19 in cellular stress. J Mol Neurosci 2011; 46:303-14. [PMID: 21691801 DOI: 10.1007/s12031-011-9574-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/06/2011] [Indexed: 02/07/2023]
Abstract
The presence of misfolded proteins elicits cellular responses including an endoplasmic reticulum (ER) stress response that may protect cells against the toxic buildup of misfolded proteins. Accumulation of these proteins in excessive amounts, however, overwhelms the "cellular quality control" system and impairs the protective mechanisms designed to promote correct folding and degrade misfolded proteins, ultimately leading to organelle dysfunction and cell death. Studies from multiple laboratories have identified the roles of several ER stress-induced cell death modulators and effectors. Earlier, we reported the role of the small co-chaperone protein p23 in preventing ER stress-induced cell death. p23 undergoes caspase-dependent cleavage to yield a 19-kD product (p19), and mutation of this caspase cleavage site not only blocks the formation of the 19-kD product but also attenuates the ER stress-induced cell death process triggered by various stressors. Thus, a critical question is whether p23 and/or p19 could serve as an in vivo marker for neurodegenerative diseases featuring misfolded proteins and cellular stress. In the present study, we used an antibody that recognizes both p23 and p19 as well as a specific neo-epitope antibody that detects only the p19 fragment. These antibodies were used to detect the presence of both these proteins in cells, primary neurons, brain samples from a mouse model of Alzheimer's disease (AD), and fixed human AD brain samples. While patients with severe AD did display a consistent reduction in p23 levels, our inability to observe p19 in mouse or human AD brain samples suggests that the usefulness of the p23 neo-epitope antibody is restricted to cells and primary neurons undergoing cellular stress.
Collapse
Affiliation(s)
- Karen S Poksay
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hamill KJ, Hopkinson SB, Jonkman MF, Jones JCR. Type XVII collagen regulates lamellipod stability, cell motility, and signaling to Rac1 by targeting bullous pemphigoid antigen 1e to alpha6beta4 integrin. J Biol Chem 2011; 286:26768-80. [PMID: 21642434 DOI: 10.1074/jbc.m110.203646] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rac1 activity, polarity, lamellipodial dynamics, and directed motility are defective in keratinocytes exhibiting deficiency in β4 integrin or knockdown of the plakin protein Bullous Pemphigoid Antigen 1e (BPAG1e). The activity of Rac, formation of stable lamellipodia, and directed migration are restored in β4 integrin-deficient cells by inducing expression of a truncated form of β4 integrin, which lacks binding sites for BPAG1e and plectin. In these same cells, BPAG1e, the truncated β4 integrin, and type XVII collagen (Col XVII), a transmembrane BPAG1e-binding protein, but not plectin, colocalize along the substratum-attached surface. This finding suggested to us that Col XVII mediates the association of BPAG1e and α6β4 integrin containing the truncated β4 subunit and supports directed migration. To test these possibilities, we knocked down Col XVII expression in keratinocytes expressing both full-length and truncated β4 integrin proteins. Col XVII-knockdown keratinocytes exhibit a loss in BPAG1e-α6β4 integrin interaction, a reduction in lamellipodial stability, an impairment in directional motility, and a decrease in Rac1 activity. These defects are rescued by a mutant Col XVII protein truncated at its carboxyl terminus. In summary, our results suggest that in motile cells Col XVII recruits BPAG1e to α6β4 integrin and is necessary for activation of signaling pathways, motile behavior, and lamellipodial stability.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, The Feinberg School of Medicine at Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
19
|
Histological and ultrastructural changes in the adult male albino rat testes following chronic crude garlic consumption. Ann Anat 2011; 193:134-41. [PMID: 21333510 DOI: 10.1016/j.aanat.2010.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/11/2010] [Accepted: 12/06/2010] [Indexed: 11/22/2022]
Abstract
Several studies have presented Garlic (Allium sativum) as a restoring agent for testicular cells after exposure to different types of toxins, however, others have shown that it modified spermatogenesis and might have spermicidal effects. This work has been to assess the positive or negative effect of chronic crude garlic consumption on rat testes using light and transmission electron microscopy with reference to plasma testosterone and LH levels. Forty albino male rats were divided into group A (control) and group B (treated rats). Group B was further subdivided into B1, B2, and B3 subgroups which were administer crude garlic as 20% of their daily food for two, three and four months, respectively. The current study has been the first, to the best of our knowledge, to describe the apoptotic effect of chronic crude garlic consumption targeting Sertoli cells, germ cells and peritubular tissue including interstitial Leydig cells and myoid cells. This might be better explained by inflammatory than degenerative changes in the peritubular tissue and Leydig cells leading to a decrease in testosterone level. Consequently, Sertoli cells degenerate due to a decrease in testosterone and detachment from the basal lamina. Germ cells, which are completely dependent upon Sertoli cells and testosterone to complete there spermatogenesis will be affected. Testicular apoptosis with disruption in spermatogenesis following chronic crude garlic consumption could be correlated with two possible theories; being an anti-hypercholesterolemic agent, it might inhibit steroidogenesis resulting in a decrease in testosterone level and being one of the famous phytoestrogens it possibly has direct estrogen-like actions on adult male rat testes.
Collapse
|
20
|
Integrin involvement in freeze resistance of androgen-insensitive prostate cancer. Prostate Cancer Prostatic Dis 2010; 13:151-61. [PMID: 20066006 PMCID: PMC2869388 DOI: 10.1038/pcan.2009.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cryoablation has emerged as a primary therapy to treat prostate cancer. While effective, the assumption that freezing serves as a ubiquitous lethal stress is challenged by clinical experience and experimental evidence demonstrating time-temperature related cell death dependence. The age-related transformation from an androgen-sensitive (AS) to an androgen-insensitive (AI) phenotype is a major challenge in the management of prostate cancer. AI cells exhibit morphological changes and treatment resistance to many therapies. Since this resistance has been linked with α6β4 integrin overexpression as a result of androgen receptor (AR) loss, we investigated whether α6β4 integrin expression, as a result AR loss, contributes to the reported increased freeze tolerance of AI prostate cancer. A series of studies using AS (LNCaP LP and PC-3 AR) and AI (LNCaP HP and PC-3) cell lines were designed to investigate the cellular mechanisms contributing to variations in freezing response. Investigation into α6β4 integrin expression revealed that AI cell lines overexpressed this protein, thereby altering morphological characteristics and increasing adhesion characteristics. Molecular investigations revealed a significant decrease in caspase 8, 9, and 3 levels AI cells following freezing. Inhibition of α6β4 integrin resulted in increased caspase activity following freezing (similar to AS cells) and enhanced cell death. These data demonstrate that AI cells show an increase in post-freeze susceptibility following inhibition of α6β4 integrin function. Further understanding the role of androgen-receptor related α6β4 integrin expression in prostate cancer cells responses to freezing might lead to novel options for neo-adjunctive treatments targeting the AR signaling pathway.
Collapse
|
21
|
Velozo J, Aguilera S, Alliende C, Ewert P, Molina C, Pérez P, Leyton L, Quest A, Brito M, González S, Leyton C, Hermoso M, Romo R, González MJ. Severe alterations in expression and localisation of {alpha}6{beta}4 integrin in salivary gland acini from patients with Sjogren syndrome. Ann Rheum Dis 2009; 68:991-6. [PMID: 18625620 DOI: 10.1136/ard.2008.089607] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES In salivary glands from patients with Sjögren syndrome, overexpression of laminins 1 and 5 and disorganisation of the acinar basal lamina have been reported. Laminin 5 mediates association of the basal lamina with epithelial cells by forming adhesion complexes upon interaction with alpha6beta4 integrin. In the present work, mRNA and protein levels of alpha6beta4 integrin were determined and its localisation in salivary glands evaluated in patients with Sjögren syndrome. METHODS Salivary glands of 12 patients with Sjögren syndrome and 8 controls were studied. The mRNA and protein levels of alpha6beta4 were determined by semiquantitative reverse transcriptase (RT)-PCR and western blot analysis, respectively. The subcellular localisation of alpha6beta4 and laminin were evaluated by confocal microscopy. RESULTS In patients, no significant differences in alpha6 and beta4 mRNA levels were detected. However, beta4 integrin protein levels were significantly lower, whereas, changes in alpha6, were highly variable. In controls, alpha6beta4 was detected in the basolateral and basal surface of serous and mucous acini, respectively. In patients, alterations in alpha6beta4 distribution were particularly dramatic for acini with strong basal lamina disorganisation. alpha6beta4 was also detected in the cytoplasm and lateral plasma membrane in serous and mucous acini. CONCLUSION Mild alterations in the basal lamina correlated with lateral redistribution of alpha6beta4 integrin and the formation of new cell-cell adhesions that help maintain acinar organisation and promote cell survival. Conversely, in cases with severe basal lamina alterations, lateral alpha6beta4 redistribution was no longer sufficient to maintain acinar cell survival. Thus, maintenance of equilibrium between cell-cell and cell-basal lamina attachment is required to sustain gland cell survival.
Collapse
Affiliation(s)
- J Velozo
- University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Su L, Lv X, Xu J, Yin D, Zhang H, Li Y, Zhao J, Zhang S, Miao J. Neural stem cell differentiation is mediated by integrin beta4 in vitro. Int J Biochem Cell Biol 2009; 41:916-924. [PMID: 18834954 DOI: 10.1016/j.biocel.2008.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 01/08/2023]
Abstract
Neural stem cells are capable of differentiating into three major neural cell types, but the underlying molecular mechanisms remain unclear. Here, we investigated the mechanism by which integrin beta4 modulates mouse neural stem cell differentiation in vitro. Inhibition of endogenous integrin beta4 by RNA interference inhibited the cell differentiation and the expression of fibroblast growth factor receptor 2 but not fibroblast growth factor receptor 1 or fibroblast growth factor receptor 3. Overexpression of integrin beta4 in neural stem cells promoted neural stem cell differentiation. Furthermore, integrin beta4-induced differentiation of neural stem cells was attenuated by SU5402, the inhibitor of fibroblast growth factor receptors. Finally, we investigated the role of integrin beta4 in neural stem cell survival: knockdown of integrin beta4 did not affect survival or apoptosis of neural stem cells. These data provide evidence that integrin beta4 promotes differentiation of mouse neural stem cells in vitro possibly through fibroblast growth factor receptor 2.
Collapse
Affiliation(s)
- Le Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Involvement of caspases and transmembrane metalloproteases in sulphur mustard-induced microvesication in adult human skin in organ culture: directions for therapy. Toxicology 2009; 258:39-46. [PMID: 19167455 DOI: 10.1016/j.tox.2009.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/23/2008] [Accepted: 01/05/2009] [Indexed: 11/24/2022]
Abstract
While skin is a major target for sulphur mustard (HD), a therapy to limit HD-induced vesication is currently not available. Since it is supposed that apoptotic cell death and proteolytic digestion of extracellular matrix proteins by metalloproteases are initiating factors for blister formation, we have explored whether inhibition of these processes could prevent HD-induced epidermal-dermal separation using adult human skin in organ culture. Involvement of the caspase and the metalloprotease families was confirmed by the observation that their respective broad spectrum inhibitors, Z-VAD-fmk and GM6001, each suppressed HD-induced microvesication. The lowest effective concentrations were 10 and 100microM, respectively. Using specific inhibitors for caspase-8 (> or =10microM) and caspase-9 (> or =10microM) we learned that HD-induced apoptosis is initiated by the death receptor pathway as well as by the mitochondrial pathway. Remarkably, blocking caspase-8 activity resulted in morphologically better conserved cells than blocking caspase-9 activity. We zoomed in on the role of metalloproteases in HD-induced microvesication by testing the effects of two inhibitors: dec-RVKR-cmk and TAPI-2. Dec-RVKR-cmk is an inhibitor of furin, which activates transmembrane enzymes of the 'a disintegrin and metalloproteinase' (ADAM)-family as well as the membrane-type metalloproteases (MTx-MMP). TAPI-2 specifically inhibits TNFalpha-converting enzyme (TACE/ADAM17), which is involved in pericellular proteolysis. Both inhibitors prevented microvesication at concentrations of > or =500 and > or =20microM, respectively. This confirms that ADAMs and MT-MMPs play a role in HD-induced epidermal-dermal separation, with a particular role for TACE/ADAM17. Since TACE is involved not only in degradation of cell-matrix adhesion structures, but also in ectodomain shedding of ligands for epidermal growth factor receptor (EGFR) and in release of TNFalpha, these results imply TACE-mediated pathways as a new concept in HD toxicity. In conclusion, transmembrane metalloproteases probably form a main target for treatment of blisters in HD casualties. The observation that microvesication in the ex vivo human skin model still could be prevented when the metalloprotease inhibitor GM6001 was applied up to 8h after exposure to HD opens perspectives for non-urgent cure of HD casualties.
Collapse
|
24
|
Wei Y, Whaley-Connell AT, Habibi J, Rehmer J, Rehmer N, Patel K, Hayden M, DeMarco V, Ferrario CM, Ibdah JA, Sowers JR. Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation. Hypertension 2008; 53:158-65. [PMID: 19114643 DOI: 10.1161/hypertensionaha.108.121954] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence indicates that mineralocorticoid receptor (MR) blockade reduces the risk of cardiovascular events beyond those predicted by its blood pressure-lowering actions; however, the underlying mechanisms remain unclear. To investigate whether protection elicited by MR blockade is through attenuation of vascular apoptosis and injury, independently of blood pressure lowering, we administered a low dose of the MR antagonist spironolactone or vehicle for 21 days to hypertensive transgenic Ren2 rats with elevated plasma aldosterone levels. Although Ren2 rats developed higher systolic blood pressures compared with Sprague-Dawley littermates, low-dose spironolactone treatment did not reduce systolic blood pressure compared with untreated Ren2 rats. Ren2 rats exhibited vascular injury as evidenced by increased apoptosis, hemidesmosome-like structure loss, mitochondrial abnormalities, and lipid accumulation compared with Sprague-Dawley rats, and these abnormalities were attenuated by MR antagonism. Protein kinase B activation is critical to vascular homeostasis via regulation of cell survival and expression of apoptotic genes. Protein kinase B serine(473) phosphorylation was impaired in Ren2 aortas and restored with MR antagonism. In vivo MR antagonist treatment promoted antiapoptotic effects by increasing phosphorylation of BAD serine(136) and expression of Bcl-2 and Bcl-xL, decreasing cytochrome c release and BAD expression, and suppressing caspase-3 activation. Furthermore, MR antagonism substantially reduced the elevated NADPH oxidase activity and lipid peroxidation, expression of angiotensin II, angiotensin type 1 receptor, and MR in Ren2 vasculature. These results demonstrate that MR antagonism protects the vasculature from aldosterone-induced vascular apoptosis and structural injury via rescuing protein kinase B activation, independent of blood pressure effects.
Collapse
Affiliation(s)
- Yongzhong Wei
- Department of Medicine, Diabetes and Cardiovascular Center of Excellence, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sasso-Cerri E, Cerri PS. Morphological evidences indicate that the interference of cimetidine on the peritubular components is responsible for detachment and apoptosis of Sertoli cells. Reprod Biol Endocrinol 2008; 6:18. [PMID: 18471284 PMCID: PMC2413234 DOI: 10.1186/1477-7827-6-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/09/2008] [Indexed: 11/10/2022] Open
Abstract
Cimetidine, referred as antiandrogenic agent, has caused alterations in the seminiferous tubules, including alterations in the peritubular tissue and death of myoid cells by apoptosis. Regarding the structural and functional importance of the peritubular tissue for the maintenance of Sertoli cells (SC), we purpose to investigate the SC-basement membrane interface, focusing the morphological features of SC and their interaction with the basement membrane in the affected tubules by cimetidine. Ten animals were distributed into two groups, control (CG) and cimetidine (CmG) which received saline solution and 50 mg of cimetidine per kg of body weight, respectively, for 52 days. The testes were fixed, dehydrated and embedded for analyses under light and transmission electron microscopy. Paraffin sections were submitted to the TUNEL method; sections of testes embedded in glycol methacrylate were submitted to PAS method and stained by H&E for morphological and quantitative analyses of Sertoli Cells. In the CmG, the SC nuclei were positive to the TUNEL method and showed typical morphological alterations of cell death by apoptosis (from early to advanced stages). A significant reduction in the number of Sertoli Cells was probably due to death of these cells by apoptosis. A close relationship between SC nuclear alterations (including a high frequency of dislocated nuclei from the basal portion) and damage in the peritubular tissue was observed. The ultrastructural analysis showed a parallelism between the gradual advancement of apoptotic process in SC and detachment of the anchoring sites (hemidesmosomes) of SC plasma membrane from the lamina densa. The presence of portions of lamina densa underlying the detached hemidesmosomes indicates a continuous deposition of lamina densa, resulting in the thickening of the basal lamina. The results indicate a possible disarrangement of the SC cytoskeleton, including the focal adhesion structure. These alterations are related to SC apoptosis and probably result from disturbs induced by cimetidine on the peritubular tissue.
Collapse
Affiliation(s)
- Estela Sasso-Cerri
- Laboratory of Histology and Embryology – Department of Morphology, Dental School of São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Paulo S Cerri
- Laboratory of Histology and Embryology – Department of Morphology, Dental School of São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
26
|
Liu H, Yang R, Tinner B, Choudhry A, Schutze N, Chaqour B. Cysteine-rich protein 61 and connective tissue growth factor induce deadhesion and anoikis of retinal pericytes. Endocrinology 2008; 149:1666-77. [PMID: 18187544 DOI: 10.1210/en.2007-1415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Loss of retinal pericytes is one of the distinctive features of diabetic retinopathy (DR), which is characterized by retinal capillary obliteration. The matricellular proteins, cysteine-rich protein 61 (Cyr61) and connective tissue growth factor (CTGF), are aberrantly expressed in the retinal vasculature from the early stages of DR, but their effects on retinal pericytes are unknown. We show herein that rat retinal pericytes (RRPs) exposed to advanced glycosylation-end products, an important injurious stimulus of diabetes, express increased levels of both Cyr61 and CTGF, and concomitantly undergo anoikis, a form of apoptosis by loss of cell-matrix interactions. Adenovirus-mediated expression of Cyr61 and/or CTGF conferred an anoikis-prone phenotype to rat retinal pericytes, including decreased phosphotyrosine protein levels at focal adhesion points and formation of cortical actin rings. When used as substrates for pericyte attachment and compared with other matrix proteins (e.g. type IV collagen), recombinant Cyr61 and CTGF proteins exhibited antiadhesive and apoptogenic activities. Phosphatase inhibitors reversed these effects, suggesting that Cyr61 and CTGF promote dephosphorylation events. Furthermore, Cyr61- and CTGF-induced apoptosis was mediated through the intrinsic pathway and involved the expression of genes that have been functionally grouped as p53 target genes. Expression of the matrix metalloproteinase-2 gene, a known target of p53, was increased in pericytes overexpressing either Cyr61 or CTGF. Inhibition of matrix metalloproteinase-2 had, at least in part, a protective effect against Cyr61- and CTGF-induced apoptosis. Taken together, these findings support the involvement of Cyr61 and CTGF in pericyte detachment and anoikis, implicating these proteins in the pathogenesis of DR.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
27
|
Jin EJ, Lee SY, Jung JC, Bang OS, Kang SS. TGF-beta3 inhibits chondrogenesis of cultured chick leg bud mesenchymal cells via downregulation of connexin 43 and integrin beta4. J Cell Physiol 2007; 214:345-53. [PMID: 17620312 DOI: 10.1002/jcp.21202] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transforming growth factor beta (TGF-beta) is a multifunctional cytokine that regulates a number of biological responses including chemotaxis, cell cycle progression, differentiation, and apoptosis of cells. Even though temporal and spatial expression of TGF-beta3 suggests its role in chick limb development, it is not well characterized how TGF-beta3 regulates chondrogenic differentiation of limb bud mesenchymal cells. In this study, differential display polymerase chain reaction (DD-PCR) screening and reverse transcription PCR analysis revealed that the mRNA expression of the gap junction protein, connexin 43 (Cx43), was significantly decreased during the first treatment of TGF-beta3 for 24 h in cultured chick leg bud mesenchymal cells. Treatment of these cells with lindane, a general gap junction blocker, or expression of dominant negative Cx43 increased apoptotic cell death and decreased the level of integrin beta4 protein, in a manner similar to that observed when these cells were exposed to TGF-beta3. Similarly, exposure of cultured leg chondroblasts to a functional blocking antibody against integrin-beta4 induced an increase in apoptosis. Treatment of cells with TGF-beta3 decreased the membrane translocation of PKC-alpha, leading to activation of ERK. The increase in apoptotic cell death triggered by TGF-beta3 and dominant negative Cx43 was blocked by inhibition of ERK but increased by inhibition of PKC. Collectively, these data indicate that, in cultured chick leg bud mesenchyme cells, TGF-beta3 treatment downregulates Cx43 and induces apoptotic cell death via downregulation of integrin beta4, activation of ERK and suppression of PKC-alpha activation.
Collapse
Affiliation(s)
- Eun-Jung Jin
- Department of Biology, College of Natural Sciences (BK21), Kyungpook National University, Daegu, Korea
| | | | | | | | | |
Collapse
|
28
|
Lv X, Su L, Yin D, Sun C, Zhao J, Zhang S, Miao J. Knockdown of integrin beta4 in primary cultured mouse neurons blocks survival and induces apoptosis by elevating NADPH oxidase activity and reactive oxygen species level. Int J Biochem Cell Biol 2007; 40:689-699. [PMID: 18006359 DOI: 10.1016/j.biocel.2007.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 12/20/2022]
Abstract
Recently, the specific roles of integrin beta4 in the signaling networks that drive pathological angiogenesis and tumor progression have been revealed. Our previous study showed that integrin beta4 might be involved in neuron survival signal transduction. To further our study on the role of integrin beta4 in the survival and apoptosis of primary cultured mouse neurons, we inhibited the expression of integrin beta4 by its specific small interfering RNA. Viability of the cells remarkably declined, and neurons underwent apoptosis with down-regulation of integrin beta4. Next, we investigated the effect of siRNA-mediated down-regulation of integrin beta4 on the level of intracellular reactive oxygen species and the activities of NADPH oxidase and superoxide dismutase. The level of reactive oxygen species in the neurons was elevated significantly, the activities of manganese-dependent superoxide dismutase and copper/zinc-dependent superoxide dismutase were not altered, but the activity of NADPH oxidase was increased. Furthermore, inhibition of NADPH oxidase by its specific inhibitor dibenziodolium chloride attenuated the neuronal death induced by integrin beta4 knockdown. The data suggest that integrin beta4 is a key factor in neuron survival and apoptosis and indicate that this integrin subunit might perform its action through regulating NADPH oxidase and the level of reactive oxygen species in neuronal survival and apoptosis.
Collapse
Affiliation(s)
- Xin Lv
- Institute of Developmental Biology, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|