1
|
Ramena GT, Sharma A, Chang Y, Pan Z, Elble RC. Self-Cleavage of Human Chloride Channel Accessory 2 Causes a Conformational Shift That Depends on Membrane Anchorage and Is Required for Its Regulation of Store-Operated Calcium Entry. Biomedicines 2023; 11:2915. [PMID: 38001916 PMCID: PMC10669480 DOI: 10.3390/biomedicines11112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Human CLCA2 regulates store-operated calcium entry (SOCE) by interacting with Orai1 and STIM1. It is expressed as a 943aa type I transmembrane protein that is cleaved at amino acid 708 to produce a diffusible 100 kDa product. The N-terminal ectodomain contains a hydrolase-like subdomain with a conserved HEXXH zinc-binding motif that is proposed to cleave the precursor autoproteolytically. Here, we tested this hypothesis and its link to SOCE. We first studied the conditions for autocleavage in isolated membranes and then in a purified protein system. Cleavage was zinc-dependent and abolished by mutation of the E in the HEXXH motif to Q, E165Q. Cleavage efficiency increased with CLCA2 concentration, implying that it occurs in trans. Accordingly, the E165Q mutant was cleaved by co-transfected wildtype CLCA2. Moreover, CLCA2 precursors with different epitope tags co-immunoprecipitated. In a membrane-free system utilizing immunopurified protease and target, no cleavage occurred unless the target was first denatured, implying that membranes provide essential structural or conformational cues. Unexpectedly, cleavage caused a conformational shift: an N-terminal antibody that immunoprecipitated the precursor failed to precipitate the N-terminal product unless the product was first denatured with an ionic detergent. The E165Q mutation abolished the stimulation of SOCE caused by wildtype CLCA2, establishing that the metalloprotease activity is required for this regulatory function.
Collapse
Affiliation(s)
- Grace T. Ramena
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Yan Chang
- Department of Graduate Nursing, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA; (Y.C.); (Z.P.)
- Bone and Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Zui Pan
- Department of Graduate Nursing, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA; (Y.C.); (Z.P.)
- Bone and Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
2
|
Song C, Chai Z, Chen S, Zhang H, Zhang X, Zhou Y. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp Mol Med 2023; 55:681-691. [PMID: 37009791 PMCID: PMC10167328 DOI: 10.1038/s12276-023-00960-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 04/04/2023] Open
Abstract
Damage to the colon mucus barrier, the first line of defense against microorganisms, is an important determinant of intestinal diseases such as inflammatory bowel disease and colorectal cancer, and disorder in extraintestinal organs. The mucus layer has attracted the attention of the scientific community in recent years, and with the discovery of new mucosal components, it has become increasingly clear that the mucosal barrier is a complex system composed of many components. Moreover, certain components are jointly involved in regulating the structure and function of the mucus barrier. Therefore, a comprehensive and systematic understanding of the functional components of the mucus layer is clearly warranted. In this review, we summarize the various functional components of the mucus layer identified thus far and describe their unique roles in shaping mucosal structure and function. Furthermore, we detail the mechanisms underlying mucus secretion, including baseline and stimulated secretion. In our opinion, baseline secretion can be categorized into spontaneous Ca2+ oscillation-mediated slow and continuous secretion and stimulated secretion, which is mediated by massive Ca2+ influx induced by exogenous stimuli. This review extends the current understanding of the intestinal mucus barrier, with an emphasis on host defense strategies based on fortification of the mucus layer.
Collapse
Affiliation(s)
- Chunyan Song
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Zhenglong Chai
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Si Chen
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Hui Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| |
Collapse
|
3
|
Bartenschlager F, Klymiuk N, Gruber AD, Mundhenk L. Genomic, biochemical and expressional properties reveal strong conservation of the CLCA2 gene in birds and mammals. PeerJ 2022; 10:e14202. [PMID: 36389428 PMCID: PMC9651043 DOI: 10.7717/peerj.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Recent studies have revealed the dynamic and complex evolution of CLCA1 gene homologues in and between mammals and birds with a particularly high diversity in mammals. In contrast, CLCA2 has only been found as a single copy gene in mammals, to date. Furthermore, CLCA2 has only been investigated in few mammalian species but not in birds. Here, we established core genomic, protein biochemical and expressional properties of CLCA2 in several bird species and compared them with mammalian CLCA2. Chicken, turkey, quail and ostrich CLCA2 were compared to their mammalian orthologues using in silico, biochemical and expressional analyses. CLCA2 was found highly conserved not only at the level of genomic and exon architecture but also in terms of the canonical CLCA2 protein domain organization. The putatively prototypical galline CLCA2 (gCLCA2) was cloned and immunoblotting as well as immunofluorescence analyses of heterologously expressed gCLCA2 revealed protein cleavage, glycosylation patterns and anchoring in the plasma membrane similar to those of most mammalian CLCA2 orthologues. Immunohistochemistry found highly conserved CLCA2 expression in epidermal keratinocytes in all birds and mammals investigated. Our results suggest a highly conserved and likely evolutionarily indispensable role of CLCA2 in keratinocyte function. Its high degree of conservation on the genomic, biochemical and expressional levels stands in contrast to the dynamic structural complexities and proposed functional diversifications between mammalian and avian CLCA1 homologues, insinuating a significant degree of negative selection of CLCA2 orthologues among birds and mammals. Finally, and again in contrast to CLCA1, the high conservation of CLCA2 makes it a strong candidate for studying basic properties of the functionally still widely unresolved CLCA gene family.
Collapse
Affiliation(s)
- Florian Bartenschlager
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technische Universität München, Munich, Germany
- Center for Innovative Medical Models, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Bartenschlager F, Klymiuk N, Weise C, Kuropka B, Gruber AD, Mundhenk L. Evolutionarily conserved properties of CLCA proteins 1, 3 and 4, as revealed by phylogenetic and biochemical studies in avian homologues. PLoS One 2022; 17:e0266937. [PMID: 35417490 PMCID: PMC9007345 DOI: 10.1371/journal.pone.0266937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
Species-specific diversities are particular features of mammalian chloride channel regulator, calcium activated (CLCA) genes. In contrast to four complex gene clusters in mammals, only two CLCA genes appear to exist in chickens. CLCA2 is conserved in both, while only the galline CLCA1 (gCLCA1) displays close genetic distance to mammalian clusters 1, 3 and 4. In this study, sequence analyses and biochemical characterizations revealed that gCLCA1 as a putative avian prototype shares common protein domains and processing features with all mammalian CLCA homologues. It has a transmembrane (TM) domain in the carboxy terminal region and its mRNA and protein were detected in the alimentary canal, where the protein was localized in the apical membrane of enterocytes, similar to CLCA4. Both mammals and birds seem to have at least one TM domain containing CLCA protein with complex glycosylation in the apical membrane of enterocytes. However, some characteristic features of mammalian CLCA1 and 3 including entire protein secretion and expression in cell types other than enterocytes seem to be dispensable for chicken. Phylogenetic analyses including twelve bird species revealed that avian CLCA1 and mammalian CLCA3 form clades separate from a major branch containing mammalian CLCA1 and 4. Overall, our data suggest that gCLCA1 and mammalian CLCA clusters 1, 3 and 4 stem from a common ancestor which underwent complex gene diversification in mammals but not in birds.
Collapse
Affiliation(s)
- Florian Bartenschlager
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technical University of Munich, Munich, Germany
- Center for Innovative Medical Models, Ludwig-Maximilians University Munich, Munich, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
5
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
6
|
Qu M, Lu P, Bellve K, Fogarty K, Lifshitz L, Shi F, Zhuge R. Smooth muscle cell-specific TMEM16A deletion does not alter Ca2+ signaling, uterine contraction, gestation length, or litter size in mice†. Biol Reprod 2020; 101:318-327. [PMID: 31175367 DOI: 10.1093/biolre/ioz096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/15/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance, and parturition; thus, identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl- channels in myometrial cells. To unambiguously determine the function of this channel in these cells, we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e. TMEM16ASMKO) mice. We found that myometrial cells from TMEM16ASMKO mice generated the same pattern and magnitude in Ca2+ signals upon stimulation with KCl, oxytocin, and PGF2α compared to the isogenic control myometrial cells. At the uterine tissue level, TMEM16A deletion also did not cause detectable changes in either spontaneous or agonist (i.e. KCl, oxytocin, and PGF2α)-induced contractions. Moreover, in vivo the TMEM16ASMKO mice gave birth at full term with the same litter size as genetically identical control mice. Finally, TMEM16A immunostaining in both control and TMEM16ASMKO mice revealed that this protein was highly expressed in the endometrial stroma, but did not co-localize with a smooth muscle specific marker MYH11. Collectively, these results unequivocally demonstrate that TMEM16A does not serve as a pacemaking channel for spontaneous uterine contraction, neither does it function as a depolarizing channel for agonist-evoked uterine contraction. Yet these two functions could underlie the normal gestation length and litter size in the TMEM16ASMKO mice.
Collapse
Affiliation(s)
- Mingzi Qu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ping Lu
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kevin Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ronghua Zhuge
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride - The Underrated Ion in Nociceptors. Front Neurosci 2020; 14:287. [PMID: 32322187 PMCID: PMC7158864 DOI: 10.3389/fnins.2020.00287] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Erickson NA, Gruber AD, Mundhenk L. The Family of Chloride Channel Regulator, Calcium-activated Proteins in the Feline Respiratory Tract: A Comparative Perspective on Airway Diseases in Man and Animal Models. J Comp Pathol 2019; 174:39-53. [PMID: 31955802 DOI: 10.1016/j.jcpa.2019.10.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
Members of the chloride channel regulator, calcium-activated (CLCA) family are considered to be modifiers in inflammatory, mucus-based respiratory conditions such as asthma and cystic fibrosis. Previous work has shown substantial differences between human and murine CLCA orthologues that limit the value of mouse models. As an alternative, the cat is an unfamiliar but powerful model of human asthma. We therefore characterized the expression profiles of CLCA proteins in the feline respiratory tract. Identical to other species, the feline CLCA1 protein was immunohistochemically localized to virtually all goblet cells and found to be secreted into the mucus. However, it was not detected in submucosal glands where it is expressed in other species. In contrast to all other species studied to date, feline CLCA2 was not found in submucosal glands or any other airway cells. Similar to mice, but in contrast to man and pigs, the feline respiratory tract was devoid of CLCA4 expression. In the airways of asthmatic cats, CLCA1 was strongly overexpressed, similar to human patients. Therefore, despite some similarities in CLCA1 protein expression and secretion, substantial differences were identified between several feline CLCA family members and their respective orthologues in man, mice and pigs, which must be considered in comparative medicine.
Collapse
Affiliation(s)
- N A Erickson
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - A D Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - L Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Calcium-activated chloride channel regulator 1 (CLCA1): More than a regulator of chloride transport and mucus production. World Allergy Organ J 2019; 12:100077. [PMID: 31871532 PMCID: PMC6909348 DOI: 10.1016/j.waojou.2019.100077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/07/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
CLCA1 is a member of the CLCA (calcium-activated chloride channel regulator) family and plays an essential role in goblet cell mucus production from the respiratory tract epithelium. CLCA1 also regulates Ca2+-dependent Cl- transport that involves the channel protein transmembrane protein 16A (TMEM16A) and its accessary molecules. CLCA1 modulates epithelial cell chloride current and participates in the pathogenesis of mucus hypersecretory-associated respiratory and gastrointestinal diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, pneumonia, colon colitis, cystic fibrosis intestinal mucous disease, ulcerative colitis, and gastrointestinal parasitic infection. Most studies have been focused on the expression regulation of CLCA1 in human specimens. Limited studies used the CLCA1-deficient mice and CLCA1 blocking agents and yielded inconsistent conclusions regarding its role in these diseases. CLCA1 not only regulates mucin expression, but also participates in innate immune responses by binding to yet unidentified molecules on inflammatory cells for cytokine and chemokine production. CLCA1 also targets lymphatic endothelial cells and cancer cells by regulating lymphatic cell proliferation and lymphatic sinus growth in the lymphatic organs and controlling cancer cell differentiation, proliferation, and apoptosis, all which depend on the location of the lymphatic vessels, the type of cancers, the presence of Th2 cytokines, and possibly the availability and type of CLCA1-binding proteins. Here we summarize available studies related to these different activities of CLCA1 to assist our understanding of how this secreted modifier of calcium-activated chloride channels (CaCCs) affects mucus production and innate immunity during the pathogenesis of respiratory, gastrointestinal, and malignant diseases.
Collapse
Key Words
- AMCase, acidic mammalian chitinase
- BALF, bronchoalveolar lavage fluid
- Bpifa1, bactericidal/permeability-increasing protein (BPI) fold-containing family A member 1
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1
- CLCA1, calcium-activated chloride channel regulator 1
- COPD, chronic obstructive pulmonary disease
- CXCL-1, C-X-C motif chemokine ligand 1
- CaCCs, calcium-activated chloride channels
- Cancer
- CeO2NPs, cerium dioxide nanoparticles
- DOG1, discovered on gastrointestinal stromal tumours-1
- DSS, dextran sodium sulfate
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- EpOCs, epithelial organoid cultures
- FAK, focal adhesion kinase
- Gastrointestinal disease
- Gob-5, goblet cell protein-5
- HDMA, house dust mite allergen
- IAD, inflammatory airway diseases
- Innate immunity
- KCNMB1, potassium calcium-activated channel subfamily M regulatory beta subunit 1
- LFA-1, lymphocyte function-associated antigen 1.
- LFC, log2 fold change
- MUC5AC, mucin 5AC
- Mucin
- NFA, niflumic acid
- OVA, ovalbumin
- Respiratory diseases
- SPDEF, sterile alpha motif [SAM] domain-containing prostate-derived Ets transcription factor
- STAT6, signal transducer and activator of transcription 6
- TMEM16A, transmembrane protein 16A
- TNF-α, tumor necrosis factor-α
- VWA, von Willebrand factor type A
- WT, wild-type
- cAMP, cyclic adenosine monophosphate
- rIFABP, rat intestinal fatty acid binding protein promoter
- β4BMs, β4-binding motifs
Collapse
|
10
|
Nyström EEL, Arike L, Ehrencrona E, Hansson GC, Johansson MEV. Calcium-activated chloride channel regulator 1 (CLCA1) forms non-covalent oligomers in colonic mucus and has mucin 2-processing properties. J Biol Chem 2019; 294:17075-17089. [PMID: 31570526 PMCID: PMC6851300 DOI: 10.1074/jbc.ra119.009940] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Calcium-activated chloride channel regulator 1 (CLCA1) is one of the major nonmucin proteins found in intestinal mucus. It is part of a larger family of CLCA proteins that share highly conserved features and domain architectures. The CLCA domain arrangement is similar to proteins belonging to the ADAM (a disintegrin and metalloproteinase) family, known to process extracellular matrix proteins. Therefore, CLCA1 is an interesting candidate in the search for proteases that process intestinal mucus. Here, we investigated CLCA1's biochemical properties both in vitro and in mucus from mouse and human colon biopsy samples. Using immunoblotting with CLCA1-specific antibodies and recombinant proteins, we observed that the CLCA1 C-terminal self-cleavage product forms a disulfide-linked dimer that noncovalently interacts with the N-terminal part of CLCA1, which further interacts to form oligomers. We also characterized a second, more catalytically active, N-terminal product of CLCA1, encompassing the catalytic domain together with its von Willebrand domain type A (VWA). This fragment was unstable but could be identified in freshly prepared mucus. Furthermore, we found that CLCA1 can cleave the N-terminal part of the mucus structural component MUC2. We propose that CLCA1 regulates the structural arrangement of the mucus and thereby takes part in the regulation of mucus processing.
Collapse
Affiliation(s)
- Elisabeth E L Nyström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Erik Ehrencrona
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
11
|
Pérez FJ, Iturra PA, Ponce CA, Magne F, Garcia-Angulo V, Vargas SL. Niflumic Acid Reverses Airway Mucus Excess and Improves Survival in the Rat Model of Steroid-Induced Pneumocystis Pneumonia. Front Microbiol 2019; 10:1522. [PMID: 31333624 PMCID: PMC6624676 DOI: 10.3389/fmicb.2019.01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Although the role of adaptive immunity in fighting Pneumocystis infection is well known, the role of the innate, airway epithelium, responses remains largely unexplored. The concerted interaction of innate and adaptive responses is essential to successfully eradicate infection. Increased expression of goblet-cell-derived CLCA1 protein plus excess mucus in infant autopsy lungs and in murine models of primary Pneumocystis infection alert of innate immune system immunopathology associated to Pneumocystis infection. Nonetheless, whether blocking mucus-associated innate immune pathways decreases Pneumocystis-related immunopathology is unknown. Furthermore, current treatment of Pneumocystis pneumonia (PcP) relying on anti-Pneumocystis drugs plus steroids is not ideal because removes cellular immune responses against the fungal pathogen. In this study, we used the steroid-induced rat model of PcP to evaluate inflammation and mucus progression, and tested the effect of niflumic acid (NFA), a fenamate-type drug with potent CLCA1 blocker activity, in decreasing Pneumocystis-associated immunopathology. In this model, animals acquire Pneumocystis spontaneously and pneumonia develops owing to the steroids-induced immunodeficiency. Steroids led to decreased animal weight evidencing severe immunosuppression and to significant Pneumocystis-associated pulmonary edema as evidenced by wet-to-dry lung ratios that doubled those of uninfected animals. Inflammatory cuffing infiltrates were noticed first around lung blood vessels followed by bronchi, and both increased progressively. Similarly, airway epithelial and lumen mucus progressively increased. This occurred in parallel to increasing levels of MUC5AC and mCLCA3, the murine homolog of hCLCA1. Administration of NFA caused a significant decrease in total mucus, MUC5AC and mCLCA3 and also, in Pneumocystis-associated inflammation. Most relevant, NFA treatment improved survival at 8 weeks of steroids. Results suggest an important role of innate immune responses in immunopathology of steroid-induced PcP. They warrant evaluation of CLCA1 blockers as adjunctive therapy in this condition and describe a simple model to evaluate therapeutic interventions for steroid resistant mucus, a common condition in patients with chronic lung disease like asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis.
Collapse
Affiliation(s)
- Francisco J Pérez
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A Iturra
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabien Magne
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Garcia-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio L Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Nobis S, Achamrah N, Goichon A, L'Huillier C, Morin A, Guérin C, Chan P, do Rego JL, do Rego JC, Vaudry D, Déchelotte P, Belmonte L, Coëffier M. Colonic Mucosal Proteome Signature Reveals Reduced Energy Metabolism and Protein Synthesis but Activated Autophagy during Anorexia-Induced Malnutrition in Mice. Proteomics 2018; 18:e1700395. [PMID: 29938906 DOI: 10.1002/pmic.201700395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/12/2018] [Indexed: 12/18/2022]
Abstract
Anorexia nervosa is an eating disorder often associated with intestinal disorders. To explore the underlying mechanisms of these disorders, the colonic proteome was evaluated during activity-based anorexia. Female C57Bl/6 mice were randomized into three groups: Control, Limited Food Access (LFA) and Activity-Based Anorexia (ABA). LFA and ABA mice had a progressive limited access to food but only ABA mice had access to an activity wheel. On colonic mucosal protein extracts, a 2D PAGE-based comparative proteomic analysis was then performed and differentially expressed proteins were identified by LC-ESI-MS/MS. Twenty-seven nonredundant proteins that were differentially expressed between Control, LFA, and ABA groups were identified. ABA mice exhibited alteration of several mitochondrial proteins involved in energy metabolism such as dihydrolipoyl dehydrogenase and 3-mercaptopyruvate sulfurtransferase. In addition, a downregulation of mammalian target of rapamycin (mTOR) pathway was observed leading, on the one hand, to the inhibition of protein synthesis, evaluated by puromycin incorporation and mediated by the increased phosphorylation of eukaryotic elongation factor 2, and on the other hand, to the activation of autophagy, assessed by the increase of the marker of autophagy, form LC3-phosphatidylethanolamine conjugate/Cytosolic form of Microtubule-associated protein 1A/1B light chain 3 (LC3II/LC3I) ratio. Colonic mucosal proteome is altered during ABA suggesting a downregulation of energy metabolism. A decrease of protein synthesis and an activation of autophagy were also observed mediated by mTOR pathway.
Collapse
Affiliation(s)
- Séverine Nobis
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Najate Achamrah
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Alexis Goichon
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Clément L'Huillier
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Aline Morin
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Charlène Guérin
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Philippe Chan
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Platform in proteomics PISSARO, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Jean Luc do Rego
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Animal Behaviour Platform SCAC, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Jean Claude do Rego
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Animal Behaviour Platform SCAC, UNIROUEN, Normandie University, 76000, Rouen, France
| | - David Vaudry
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Platform in proteomics PISSARO, UNIROUEN, Normandie University, 76000, Rouen, France.,INSERM Unit 1239, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Pierre Déchelotte
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Liliana Belmonte
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Moïse Coëffier
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| |
Collapse
|
13
|
Nyström EEL, Birchenough GMH, van der Post S, Arike L, Gruber AD, Hansson GC, Johansson MEV. Calcium-activated Chloride Channel Regulator 1 (CLCA1) Controls Mucus Expansion in Colon by Proteolytic Activity. EBioMedicine 2018; 33:134-143. [PMID: 29885864 PMCID: PMC6085540 DOI: 10.1016/j.ebiom.2018.05.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Many epithelial surfaces of the body are covered with protective mucus, and disrupted mucus homeostasis is coupled to diseases such as ulcerative colitis, helminth infection, cystic fibrosis, and chronic obstructive lung disease. However, little is known how a balanced mucus system is maintained. By investigating the involvement of proteases in colonic mucus dynamics we identified metalloprotease activity to be a key contributor to mucus expansion. The effect was mediated by calcium-activated chloride channel regulator 1 (CLCA1) as application of recombinant CLCA1 on intestinal mucus in freshly dissected tissue resulted in increased mucus thickness independently of ion and mucus secretion, but dependent on its metallohydrolase activity. Further, CLCA1 modulated mucus dynamics in both human and mouse, and knock-out of CLCA1 in mice was compensated for by cysteine proteases. Our results suggest that CLCA1 is involved in intestinal mucus homeostasis by facilitating processing and removal of mucus to prevent stagnation. In light of our findings, we suggest future studies to investigate if upregulation of CLCA1 in diseases associated with mucus accumulation could facilitate removal of mucus in an attempt to maintain homeostasis. Endogenous metalloprotease activity is important for intestinal mucus dynamics. CLCA1 acts as a metalloprotease in intestinal mucus and this function is independent of ion and mucus secretion. CLCA1 is involved in the transition from the inner to outer mucus layer in colon.
In this article we provide evidence that endogenous enzyme activity is important for normal processing of the intestinal mucus layer, which creates a protective barrier against the vast number of bacteria in the large intestine. CLCA1, a highly abundant intestinal mucus protein, seems to be a key contributor to mucus processing. This role for CLCA1 is different from what was previously described. As mucus clearance is of importance for several diseases, better understanding of mucus processing could be of great importance to develop new therapies.
Collapse
Affiliation(s)
- Elisabeth E L Nyström
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sjoerd van der Post
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
14
|
Erickson NA, Dietert K, Enders J, Glauben R, Nouailles G, Gruber AD, Mundhenk L. Soluble mucus component CLCA1 modulates expression of leukotactic cytokines and BPIFA1 in murine alveolar macrophages but not in bone marrow-derived macrophages. Histochem Cell Biol 2018; 149:619-633. [PMID: 29610986 PMCID: PMC5999134 DOI: 10.1007/s00418-018-1664-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 11/18/2022]
Abstract
The secreted airway mucus cell protein chloride channel regulator, calcium-activated 1, CLCA1, plays a role in inflammatory respiratory diseases via as yet unidentified pathways. For example, deficiency of CLCA1 in a mouse model of acute pneumonia resulted in reduced cytokine expression with less leukocyte recruitment and the human CLCA1 was shown to be capable of activating macrophages in vitro. Translation of experimental data between human and mouse models has proven problematic due to several CLCA species-specific differences. We therefore characterized activation of macrophages by CLCA1 in detail in solely murine ex vivo and in vitro models. Only alveolar but not bone marrow-derived macrophages freshly isolated from C57BL6/J mice increased their expression levels of several pro-inflammatory and leukotactic cytokines upon CLCA1 stimulation. Among the most strongly regulated genes, we identified the host-protective and immunomodulatory airway mucus component BPIFA1, previously unknown to be expressed by airway macrophages. Furthermore, evidence from an in vivo Staphylococcus aureus pneumonia mouse model suggests that CLCA1 may also modify BPIFA1 expression in airway epithelial cells. Our data underscore and specify the role of mouse CLCA1 in inflammatory airway disease to activate airway macrophages. In addition to its ability to upregulate cytokine expression which explains previous observations in the Clca1-deficient S. aureus pneumonia mouse model, modulation of BPIFA1 expression expands the role of CLCA1 in airway disease to involvement in more complex downstream pathways, possibly including liquid homeostasis, airway protection, and antimicrobial defense.
Collapse
Affiliation(s)
- Nancy A Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Jana Enders
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Rainer Glauben
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany.
| |
Collapse
|
15
|
Mundhenk L, Erickson NA, Klymiuk N, Gruber AD. Interspecies diversity of chloride channel regulators, calcium-activated 3 genes. PLoS One 2018; 13:e0191512. [PMID: 29346439 PMCID: PMC5773202 DOI: 10.1371/journal.pone.0191512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the chloride channel regulators, calcium-activated (CLCA) family, have been implicated in diverse biomedical conditions, including chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, the activation of macrophages, and the growth and metastatic spread of tumor cells. Several observations, however, could not be repeated across species boundaries and increasing evidence suggests that select CLCA genes are particularly prone to dynamic species-specific evolvements. Here, we systematically characterized structural and expressional differences of the CLCA3 gene across mammalian species, revealing a spectrum of gene duplications, e.g., in mice and cows, and of gene silencing via diverse chromosomal modifications in pigs and many primates, including humans. In contrast, expression of a canonical CLCA3 protein from a single functional gene seems to be evolutionarily retained in carnivores, rabbits, guinea pigs, and horses. As an accepted asthma model, we chose the cat to establish the tissue and cellular expression pattern of the CLCA3 protein which was primarily found in mucin-producing cells of the respiratory tract and in stratified epithelia of the esophagus. Our results suggest that, among developmental differences in other CLCA genes, the CLCA3 gene possesses a particularly high dynamic evolutionary diversity with pivotal consequences for humans and other primates that seem to lack a CLCA3 protein. Our data also help to explain previous contradictory results on CLCA3 obtained from different species and warrant caution in extrapolating data from animal models in conditions where CLCA3 may be involved.
Collapse
Affiliation(s)
- Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Nancy A. Erickson
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität, Oberschleissheim, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Mura CV, Delgado R, Delgado MG, Restrepo D, Bacigalupo J. A CLCA regulatory protein present in the chemosensory cilia of olfactory sensory neurons induces a Ca 2+-activated Cl - current when transfected into HEK293. BMC Neurosci 2017; 18:61. [PMID: 28800723 PMCID: PMC5553735 DOI: 10.1186/s12868-017-0379-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CLCA is a family of metalloproteases that regulate Ca2+-activated Cl- fluxes in epithelial tissues. In HEK293 cells, CLCA1 promotes membrane expression of an endogenous Anoctamin 1 (ANO1, also termed TMEM16A)-dependent Ca2+-activated Cl- current. Motif architecture similarity with CLCA2, 3 and 4 suggested that they have similar functions. We previously detected the isoform CLCA4L in rat olfactory sensory neurons, where Anoctamin 2 is the principal chemotransduction Ca2+-activated Cl- channel. We explored the possibility that this protein plays a role in odor transduction. RESULTS We cloned and expressed CLCA4L from rat olfactory epithelium in HEK293 cells. In the transfected HEK293 cells we measured a Cl--selective Ca2+-activated current, blocked by niflumic acid, not present in the non-transfected cells. Thus, CLCA4L mimics the CLCA1 current on its ability to induce the ANO1-dependent Ca2+-activated Cl- current endogenous to these cells. By immunocytochemistry, a CLCA protein, presumably CLCA4L, was detected in the cilia of olfactory sensory neurons co-expressing with ANO2. CONCLUSION These findings suggests that a CLCA isoform, namely CLCA4L, expressed in OSN cilia, might have a regulatory function over the ANO2-dependent Ca2+-activated Cl- channel involved in odor transduction.
Collapse
Affiliation(s)
- Casilda V Mura
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, 7800024, Santiago, Chile
| | - Ricardo Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, 7800024, Santiago, Chile
| | - María Graciela Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, 7800024, Santiago, Chile
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Juan Bacigalupo
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, 7800024, Santiago, Chile.
| |
Collapse
|
17
|
Lee RM, Jeong SM. Identification of a novel calcium (Ca2+)-activated chloride channel accessory gene in Xenopus laevis. Mol Biol 2016. [DOI: 10.1134/s0026893316010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Lee RM, Han KH, Han JS. rbCLCA1 is a putative metalloprotease family member: localization and catalytic domain identification. Amino Acids 2015; 48:707-720. [PMID: 26510883 DOI: 10.1007/s00726-015-2119-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022]
Abstract
Here, we identify the rat brain (rb) CLCA1 metalloprotease motif and its role in rbCLCA1 processing. GFP tagging or c-myc tagging adjacent to the rbCLCA1 signal sequence was used to detect rbCLCA1 expression and localization patterns if they matched those of other CLCA family members. Immunoblot analysis revealed that massive deletion of the metalloprotease motif affects the protein cleavage process by restricting two cleavage products to only one product. rbCLCA1 as well as the mutant proteins H155A, E156Q, H159A, D166A, E167A, E170A, and D171A overexpressed in HEK293T cells showed plasma membrane localization; and intracellular localizations of H159A and E167A were observed in permeabilized and non-permeabilized conditions. C-terminally GFP-tagged rbCLCA1 showed either ER localization or overall signal within the cells rather than on the cell surface. Cell surface biotinylation analysis was used to show that rbCLCA1, H155A, E156Q, D166A, E170A, and D171A reach the cell surface while little H159A and E167A reach the cell surface. Taken together, our findings indicate that the amino acids H159 and E167 in the rbCLCA1 metalloprotease motif are important in rbCLCA1 processing for localization to the cell surface. Our data demonstrate that rbCLCA1 localization is dependent on the H159 and E167, suggesting either the metalloprotease motif including H159 and E167 may be the key site for rbCLCA1 cellular processing or that a novel rbCLCA1 regulation mechanism exists with a metalloprotease activity.
Collapse
Affiliation(s)
- Ra Mi Lee
- Department of Biochemistry and Molecular Cell Biology, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjingu, Seoul, 05029, Republic of Korea.,The Institute for the 3Rs and Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjingu, Seoul, 05029, Republic of Korea
| | - Kyu Ho Han
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Jin Soo Han
- The Institute for the 3Rs and Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjingu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
19
|
Plog S, Klymiuk N, Binder S, Van Hook MJ, Thoreson WB, Gruber AD, Mundhenk L. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype. PLoS One 2015; 10:e0140050. [PMID: 26474299 PMCID: PMC4608703 DOI: 10.1371/journal.pone.0140050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
The human CLCA4 (chloride channel regulator, calcium-activated) modulates the intestinal phenotype of cystic fibrosis (CF) patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.
Collapse
Affiliation(s)
- Stephanie Plog
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität, Munich, Oberschleissheim, Germany
| | - Stefanie Binder
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Matthew J. Van Hook
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
20
|
Erickson NA, Nyström EEL, Mundhenk L, Arike L, Glauben R, Heimesaat MM, Fischer A, Bereswill S, Birchenough GMH, Gruber AD, Johansson MEV. The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. PLoS One 2015; 10:e0131991. [PMID: 26162072 PMCID: PMC4498832 DOI: 10.1371/journal.pone.0131991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
The secreted, goblet cell-derived protein Clca1 (chloride channel regulator, calcium-activated-1) has been linked to diseases with mucus overproduction, including asthma and cystic fibrosis. In the intestine Clca1 is found in the mucus with an abundance and expression pattern similar to Muc2, the major structural mucus component. We hypothesized that Clca1 is required for the synthesis, structure or barrier function of intestinal mucus and therefore compared wild type and Clca1-deficient mice under naive and at various time points of DSS (dextran sodium sulfate)-challenged conditions. The mucus phenotype in Clca1-deficient compared to wild type mice was systematically characterized by assessment of the mucus protein composition using proteomics, immunofluorescence and expression analysis of selected mucin genes on mRNA level. Mucus barrier integrity was assessed in-vivo by analysis of bacterial penetration into the mucus and translocation into sentinel organs combined analysis of the fecal microbiota and ex-vivo by assessment of mucus penetrability using beads. All of these assays revealed no relevant differences between wild type and Clca1-deficient mice under steady state or DSS-challenged conditions in mouse colon. Clca1 is not required for mucus synthesis, structure and barrier function in the murine colon.
Collapse
Affiliation(s)
- Nancy A. Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | | | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Rainer Glauben
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology—Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Malin E. V. Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
21
|
Host proteome correlates of vaccine-mediated enhanced disease in a mouse model of respiratory syncytial virus infection. J Virol 2015; 89:5022-31. [PMID: 25694607 DOI: 10.1128/jvi.03630-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants. Despite over 50 years of research, to date no safe and efficacious RSV vaccine has been licensed. Many experimental vaccination strategies failed to induce balanced T-helper (Th) responses and were associated with adverse effects such as hypersensitivity and immunopathology upon challenge. In this study, we explored the well-established recombinant vaccinia virus (rVV) RSV-F/RSV-G vaccination-challenge mouse model to study phenotypically distinct vaccine-mediated host immune responses at the proteome level. In this model, rVV-G priming and not rVV-F priming results in the induction of Th2 skewed host responses upon RSV challenge. Mass spectrometry-based spectral count comparisons enabled us to identify seven host proteins for which expression in lung tissue is associated with an aberrant Th2 skewed response characterized by the influx of eosinophils and neutrophils. These proteins are involved in processes related to the direct influx of eosinophils (eosinophil peroxidase [Epx]) and to chemotaxis and extravasation processes (Chil3 [chitinase-like-protein 3]) as well as to eosinophil and neutrophil homing signals to the lung (Itgam). In addition, the increased levels of Arg1 and Chil3 proteins point to a functional and regulatory role for alternatively activated macrophages and type 2 innate lymphoid cells in Th2 cytokine-driven RSV vaccine-mediated enhanced disease. IMPORTANCE RSV alone is responsible for 80% of acute bronchiolitis cases in infants worldwide and causes substantial mortality in developing countries. Clinical trials performed with formalin-inactivated RSV vaccine preparations in the 1960s failed to induce protection upon natural RSV infection and even predisposed patients for enhanced disease. Despite the clinical need, to date no safe and efficacious RSV vaccine has been licensed. Since RSV vaccines have a tendency to prime for unbalanced responses associated with an exuberant influx of inflammatory cells and enhanced disease, detailed characterization of primed host responses has become a crucial element in RSV vaccine research. We investigated the lung proteome of mice challenged with RSV upon priming with vaccine preparations known to induce phenotypically distinct host responses. Seven host proteins whose expression levels are associated with vaccine-mediated enhanced disease have been identified. The identified protein biomarkers support the development as well as detailed evaluation of next-generation RSV vaccines.
Collapse
|
22
|
Wisnewski AV, Liu J, Colangelo CM. Glutathione reaction products with a chemical allergen, methylene-diphenyl diisocyanate, stimulate alternative macrophage activation and eosinophilic airway inflammation. Chem Res Toxicol 2015; 28:729-37. [PMID: 25635619 DOI: 10.1021/tx5005002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Isocyanates have been a leading chemical cause of occupational asthma since their utility for generating polyurethane was first recognized over 60 years ago, yet the mechanisms of isocyanate asthma pathogenesis remain unclear. The present study provides in vivo evidence that a GSH mediated pathway underlies asthma-like eosinophilic inflammatory responses to respiratory tract isocyanate exposure. In naïve mice, a mixture of GSH reaction products with the chemical allergen, methylene-diphenyl diisocyanate (MDI), induced innate immune responses, characterized by significantly increased airway levels of Chitinase YM-1 and IL-12/IL-23β (but not α) subunit. However, in mice immunologically sensitized to MDI via prior skin exposure, identical GSH-MDI doses induced substantially greater inflammatory responses, including significantly increased airway eosinophil numbers and mucus production, along with IL-12/IL-23β, chitinases, and other indicators of alternative macrophage activation. The "self"-protein albumin in mouse airway fluid was uniquely modified by GSH-MDI at position (414)K, a preferred site of MDI reactivity on human albumin. The (414)K-MDI conjugation appears to covalently cross-link GSH to albumin via GSH's NH2-terminus, a unique conformation possibly resulting from cyclized mono(GSH)-MDI or asymmetric (S,N'-linked) bis(GSH)-MDI conjugates. Together, the data support a possible thiol mediated transcarbamoylating mechanism linking MDI exposure to pathogenic eosinophilic inflammatory responses.
Collapse
|
23
|
Dietert K, Reppe K, Mundhenk L, Witzenrath M, Gruber AD. mCLCA3 modulates IL-17 and CXCL-1 induction and leukocyte recruitment in murine Staphylococcus aureus pneumonia. PLoS One 2014; 9:e102606. [PMID: 25033194 PMCID: PMC4102496 DOI: 10.1371/journal.pone.0102606] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/20/2014] [Indexed: 12/13/2022] Open
Abstract
The human hCLCA1 and its murine ortholog mCLCA3 (calcium-activated chloride channel regulators) are exclusively expressed in mucus cells and linked to inflammatory airway diseases with increased mucus production, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Both proteins have a known impact on the mucus cell metaplasia trait in these diseases. However, growing evidence points towards an additional role in innate immune responses. In the current study, we analyzed Staphylococcus aureus pneumonia, an established model to study pulmonary innate immunity, in mCLCA3-deficient and wild-type mice, focusing on the cellular and cytokine-driven innate inflammatory response. We compared clinical signs, bacterial clearance, leukocyte immigration and cytokine responses in the bronchoalveolar compartment, as well as pulmonary vascular permeability, histopathology, mucus cell number and mRNA expression levels of selected genes (mClca1 to 7, Muc5ac, Muc5b, Muc2, Cxcl-1, Cxcl-2, Il-17). Deficiency of mCLCA3 resulted in decreased neutrophilic infiltration into the bronchoalveolar space during bacterial infection. Only the cytokines IL-17 and the murine CXCL-8 homolog CXCL-1 were decreased on mRNA and protein levels during bacterial infection in mCLCA3-deficient mice compared to wild-type controls. However, no differences in clinical outcome, histopathology or mucus cell metaplasia were observed. We did not find evidence for regulation of any other CLCA homolog that would putatively compensate for the lack of mCLCA3. In conclusion, mCLCA3 appears to modulate leukocyte response via IL-17 and murine CXCL-8 homologs in acute Staphylococcus aureus pneumonia which is well in line with the proposed function of hCLCA1 as a signaling molecule acting on alveolar macrophages.
Collapse
Affiliation(s)
- Kristina Dietert
- Department of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Loss of CLCA4 promotes epithelial-to-mesenchymal transition in breast cancer cells. PLoS One 2013; 8:e83943. [PMID: 24386311 PMCID: PMC3873418 DOI: 10.1371/journal.pone.0083943] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a developmental program in which epithelial cells downregulate their cell-cell junctions, acquire spindle cell morphology and exhibit cellular motility. In breast cancer, EMT facilitates invasion of surrounding tissues and correlates closely with cancer metastasis and relapse. We found previously that the candidate tumor suppressor CLCA2 is expressed in differentiated, growth-arrested mammary epithelial cells but is downregulated during tumor progression and EMT. We further demonstrated that CLCA2 is a p53-inducible proliferation-inhibitor whose loss indicates an increased risk of metastasis. We show here that another member of the CLCA gene family, CLCA4, is expressed in mammary epithelial cells and is similarly downregulated in breast tumors and in breast cancer cell lines. Like CLCA2, the gene is stress-inducible, and ectopic expression inhibits colony formation. Transcriptional profiling studies revealed that CLCA4 and CLCA2 together are markers for mammary epithelial differentiation, and both are downregulated by TGF beta. Moreover, knockdown of CLCA4 in immortalized cells by shRNAs caused downregulation of epithelial marker E-cadherin and CLCA2, while mesenchymal markers N-cadherin, vimentin, and fibronectin were upregulated. Double knockdown of CLCA2 and CLCA4 enhanced the mesenchymal profile. These findings suggest that CLCA4 and CLCA2 play complementary but distinct roles in epithelial differentiation. Clinically, low expression of CLCA4 signaled lower relapse-free survival in basal and luminal B breast cancers.
Collapse
|
25
|
Song LQ, Li Y, Li WN, Zhang W, Yang YQ, Qi HW. hCLCA1 DNA vaccine suppresses cell hyperplasia and mucin expression of goblet cells in vitro. Respiration 2013; 86:486-96. [PMID: 24021422 DOI: 10.1159/000354180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Excessive airway mucus secretion is a remarkable trait of asthma. Mucus overproduction mainly resulted from an increase in goblet cell numbers, which causes considerable damage to health. However, effective therapeutic treatments are still lacking for mucus hypersecretion. Human calcium-activated chloride channel 1 (hCLCA1) has been identified to be predominantly responsible for mucus hypersecretion. OBJECTIVES In this study, we investigated the effects of an hCLCA1 DNA vaccine on the control of mucus production and goblet cell proliferation using an in vitro model goblet cell line (NCI-H292). METHODS The effect of the hCLCA1 DNA vaccine on cell viability and proliferative activity of NCI-H292/hCLCA1 was analyzed by electron microscopy, MTT assay, and flow cytometry. Expression of mucins and MUC5AC, a major member of the mucin gene family in airway goblet cells, was assessed under hCLCA1 DNA vaccine challenges by periodic acid-Schiff staining, quantitative real-time PCR and Western blot, respectively, and the expression profile of granulocyte-macrophage colony-stimulating factor (GM-CSF), a critical cytokine in airway inflammation, was also examined by real-time PCR and immunocytochemistry. RESULTS Results showed that hCLCA1 overexpression caused high cell proliferation and mucin expression, whereas the hCLCA1 DNA vaccine could effectively reverse these abnormal effects. In addition, GM-CSF expression was highly induced by hCLCA1 overexpression and efficiently suppressed by hCLCA1 DNA vaccine. CONCLUSIONS These results illustrate that the hCLCA1 DNA vaccine effectively inhibits cell hyperplasia and mucin gene expression of goblet cells, suggesting that the hCLCA1 DNA vaccine has potential value in the treatment of human asthma.
Collapse
Affiliation(s)
- L Q Song
- Department of Respiratory Medicine, Xijing Hospital, Xi'an, China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The clinical manifestations of cystic fibrosis (CF) result from dysfunction of the cystic fibrosis transmembrane regulator protein (CFTR). The majority of people with CF have a limited life span as a consequence of CFTR dysfunction in the respiratory tract. However, CFTR dysfunction in the gastrointestinal (GI) tract occurs earlier in ontogeny and is present in all patients, regardless of genotype. The same pathophysiologic triad of obstruction, infection, and inflammation that causes disease in the airways also causes disease in the intestines. This article describes the effects of CFTR dysfunction on the intestinal tissues and the intraluminal environment. Mouse models of CF have greatly advanced our understanding of the GI manifestations of CF, which can be directly applied to understanding CF disease in humans.
Collapse
Affiliation(s)
- Robert C De Lisle
- Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| | | |
Collapse
|
27
|
Yamazaki J, Okamura K, Uehara K, Hatta M. CLCA splicing isoform associated with adhesion through β1-integrin and its scaffolding protein: specific expression in undifferentiated epithelial cells. J Biol Chem 2013; 288:4831-43. [PMID: 23297403 DOI: 10.1074/jbc.m112.396481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously found that a rat CLCA homologue (rCLCA-f) modulates Ca(2+)-dependent Cl(-) transport in the ductal cells of the rat submandibular gland. CLCA proteins have been shown to be multifunctional, with roles in, for example, cell adhesion. Here, we describe the mRNA and protein expressions of a splicing isoform of rat rCLCA (rCLCA-t). This isoform is a 514-amino acid protein containing a C-terminal 59-amino acid that is distinct from the rCLCA-f sequence. Immunohistochemistry revealed rCLCA-t to be located in the basal cells of the rat submandibular gland excretory duct and the stratum basale of rat epidermis, whereas rCLCA-f was detected in cells during the process of differentiation. In a heterologous expression system, rCLCA-t was found to be a membrane protein present predominantly in the perinuclear region, and not to be either present on the cell surface or secreted. rCLCA-t failed to enhance ionomycin-induced Cl(-) conductance (unlike rCLCA-f). When compared with rCLCA-f, it weakened cell attachment to a greater extent and in a manner that was evidently modulated by intracellular Ca(2+), protein kinase C, and β(1)-integrin. rCLCA-t was found to associate with RACK1 (receptor for activated C kinase) and to reduce expression of mature β(1)-integrin. Treatment of rat skin with rCLCA-t siRNA increased the expression of β(1)-integrin in the stratum basale of the epidermis. These results are consistent with cell-specific splicing of rCLCA mRNA playing a role in the modulation of the adhesive potential of undifferentiated epithelial cells.
Collapse
Affiliation(s)
- Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Sawara-ku, Fukuoka 814-0193, Japan.
| | | | | | | |
Collapse
|
28
|
Alevy YG, Patel AC, Romero AG, Patel DA, Tucker J, Roswit WT, Miller CA, Heier RF, Byers DE, Brett TJ, Holtzman MJ. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest 2012; 122:4555-68. [PMID: 23187130 PMCID: PMC3533556 DOI: 10.1172/jci64896] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022] Open
Abstract
Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13-driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Yael G. Alevy
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anand C. Patel
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arthur G. Romero
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dhara A. Patel
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer Tucker
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William T. Roswit
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chantel A. Miller
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F. Heier
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E. Byers
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tom J. Brett
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Holtzman
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Yurtsever Z, Sala-Rabanal M, Randolph DT, Scheaffer SM, Roswit WT, Alevy YG, Patel AC, Heier RF, Romero AG, Nichols CG, Holtzman MJ, Brett TJ. Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation. J Biol Chem 2012; 287:42138-49. [PMID: 23112050 DOI: 10.1074/jbc.m112.410282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.
Collapse
Affiliation(s)
- Zeynep Yurtsever
- Biochemistry Program, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Synthesis of porcine pCLCA2 protein during late differentiation of keratinocytes of epidermis and hair follicle inner root sheath. Cell Tissue Res 2012; 350:445-53. [PMID: 22968961 DOI: 10.1007/s00441-012-1482-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 07/12/2012] [Indexed: 10/27/2022]
Abstract
Despite the discovery of the widely expressed CLCA (chloride channel regulators, calcium-activated) proteins more than 15 years ago, their seemingly diverse functions are still poorly understood. With the recent generation of porcine animal models for cystic fibrosis (CF), members of the porcine CLCA family are becoming of interest as possible modulators of the disease in the pig. Here, we characterize pCLCA2, the porcine ortholog of the human hCLCA2 and the murine mCLCA5, which are the only CLCA members expressed in the skin. Immunohistochemical studies with a specific antibody against pCLCA2 have revealed a highly restricted pCLCA2 protein expression in the skin. The protein is strictly co-localized with filaggrin and trichohyalin in the granular layer of the epidermis and the inner root sheath of the hair follicles, respectively. No differences have been observed between the expression patterns of wild-type pigs and CF transmembrane conductance regulator(-/-) pigs. We speculate that pCLCA2 plays an as yet undefined role in the structural integrity of the skin or, possibly, in specialized functions of the epidermis, including barrier or defense mechanisms.
Collapse
|
31
|
Bothe MK, Mundhenk L, Beck CL, Kaup M, Gruber AD. Impaired autoproteolytic cleavage of mCLCA6, a murine integral membrane protein expressed in enterocytes, leads to cleavage at the plasma membrane instead of the endoplasmic reticulum. Mol Cells 2012; 33:251-7. [PMID: 22350745 PMCID: PMC3887709 DOI: 10.1007/s10059-012-2217-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 10/28/2022] Open
Abstract
CLCA proteins (calcium-activated chloride channel regulators) have been linked to diseases involving secretory disorders, including cystic fibrosis (CF) and asthma. They have been shown to modulate endogenous chloride conductance, possibly by acting as metalloproteases. Based on the differential processing of the subunits after posttranslational cleavage, two subgroups of CLCA proteins can be distinguished. In one subgroup, both subunits are secreted, in the other group, the carboxy-terminal subunit possesses a transmembrane segment, resulting in shedding of only the amino-terminal subunit. Recent data on the post-translational cleavage and proteolytic activity of CLCA are limited to secreted CLCA. In this study, we characterized the cleavage of mCLCA6, a murine CLCA possessing a transmembrane segment. As for secreted CLCA, the cleavage in the endoplasmic reticulum was not observed for a protein with the E157Q mutation in the HEXXH motif of mCLCA6, suggesting that this mutant protein and secreted CLCA family members share a similar autoproteolytic cleavage mechanism. In contrast to secreted CLCA proteins with the E157Q mutation, the uncleaved precursor of the mCLCA6E157Q mutant reached the plasma membrane, where it was cleaved and the amino-terminal subunit was shed into the supernatant. Using crude membrane fractions, we showed that cleavage of the mCLCA6E157Q protein is zinc-dependent and sensitive to metalloprotease inhibitors, suggesting secondary cleavage by a metalloprotease. Interestingly, anchorage of mCLCA6E157Q to the plasma membrane is not essential for its secondary cleavage, because the mCLCA6(Δ™)E157Q mutant still underwent cleavage. Our data suggest that the processing of CLCA proteins is more complex than previously recognized.
Collapse
Affiliation(s)
- Melanie K. Bothe
- Department of Veterinary Pathology, Freie Universitaet Berlin, 14163 Berlin,
Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universitaet Berlin, 14163 Berlin,
Germany
| | | | | | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universitaet Berlin, 14163 Berlin,
Germany
| |
Collapse
|
32
|
Mundhenk L, Johannesson B, Anagnostopoulou P, Braun J, Bothe MK, Schultz C, Mall MA, Gruber AD. mCLCA3 does not contribute to calcium-activated chloride conductance in murine airways. Am J Respir Cell Mol Biol 2012; 47:87-93. [PMID: 22362387 DOI: 10.1165/rcmb.2010-0508oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) contribute to airway Cl(-) and fluid secretion, and were implicated in the modulation of disease severity and as a therapeutic target in cystic fibrosis (CF). Previous in vitro studies suggested that members of the CLCA gene family, including the murine mCLCA3, contribute to CaCCs. However, the role of mCLCA3 in ion transport in native airway epithelia has not been studied, to the best of our knowledge. In this study, we used mCLCA3-deficient mice and determined bioelectric properties in freshly excised tracheal tissue, airway morphology, and gene expression studies, to determine the role of mCLCA3 in airway ion transport and airway structure. Bioelectric measurements did not detect any differences in basal short-circuit current, amiloride-sensitive Na(+) absorption, cyclic adenosine monophosphate-dependent Cl(-) secretion, and activation of Ca(2+)-activated (uridine-5'-triphosphate-mediated) Cl(-) secretion in mCLCA3-deficient mice compared with wild-type mice. Moreover, no histological changes were observed in the respiratory tract or any other tissues of mCLCA3-deficient mice when compared with wild-type control mice. The intratracheal instillation of IL-13 produced an approximately 30-fold up-regulation of mCLCA3 transcripts without inducing CaCC activity in wild-type airways, and induced goblet-cell hyperplasia and mucin gene expression to similar levels in both genotypes. Further, multiple specific reverse-transcriptase quantitative PCR assays for other CaCC candidates, including mCLCA1, mCLCA2, mCLCA4, mCLCA5, mCLCA6, mCLCA7, mBEST1, mBEST2, mCLC4, mTTYH3, and mTMEM16A, failed to identify the differential expression of genes in the respiratory tract that may compensate for a lack of mCLCA3 function. Together, these findings argue against a role of mCLCA3 in CaCC-mediated Cl(-) secretion in murine respiratory epithelia.
Collapse
Affiliation(s)
- Lars Mundhenk
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Plog S, Grötzsch T, Klymiuk N, Kobalz U, Gruber AD, Mundhenk L. The porcine chloride channel calcium-activated family member pCLCA4a mirrors lung expression of the human hCLCA4. J Histochem Cytochem 2012; 60:45-56. [PMID: 22205680 PMCID: PMC3283134 DOI: 10.1369/0022155411426455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/17/2011] [Indexed: 11/22/2022] Open
Abstract
Pig models of cystic fibrosis (CF) have recently been established that are expected to mimic the human disease closer than mouse models do. The human CLCA (originally named chloride channels, calcium-activated) member hCLCA4 is considered a potential modifier of disease severity in CF, but its murine ortholog, mCLCA6, is not expressed in the mouse lung. Here, we have characterized the genomic structure, protein processing, and tissue expression patterns of the porcine ortholog to hCLCA4, pCLCA4a. The genomic structure and cellular protein processing of pCLCA4a were found to closely mirror those of hCLCA4 and mCLCA6. Similar to human lung, pCLCA4a mRNA was strongly expressed in porcine lungs, and the pCLCA4a protein was immunohistochemically detected on the apical membranes of tracheal and bronchial epithelial cells. This stands in sharp contrast to mouse mCLCA6, which has been detected exclusively in intestinal epithelia but not the murine lung. The results may add to the understanding of species-specific differences in the CF phenotype and support the notion that the CF pig model may be more suitable than murine models to study the role of hCLCA4.
Collapse
Affiliation(s)
- Stephanie Plog
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Bothe MK, Mundhenk L, Kaup M, Weise C, Gruber AD. The murine goblet cell protein mCLCA3 is a zinc-dependent metalloprotease with autoproteolytic activity. Mol Cells 2011; 32:535-41. [PMID: 22080371 PMCID: PMC3887686 DOI: 10.1007/s10059-011-0158-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 10/15/2022] Open
Abstract
Several members of the CLCA family of proteins, originally named chloride channels, calcium-activated, have been shown to modulate chloride conductance in various cell types via an unknown mechanism. Moreover, the human (h) hCLCA1 is thought to modulate the severity of disease in asthma and cystic fibrosis (CF) patients. All CLCA proteins are post-translationally cleaved into two subunits, and recently, a conserved HEXXH zinc-binding amino acid motif has been identified, suggesting a role for CLCA proteins as metalloproteases. Here, we have characterized the cleavage and autoproteolytic activity of the murine model protein mCLCA3, which represents the murine orthologue of human hCLCA1. Using crude membrane fractions from transfected HEK293 cells, we demonstrate that mCLCA3 cleavage is zinc-dependent and exclusively inhibited by cation-chelating metalloprotease inhibitors. Cellular transport and secretion were not affected in response to a cleavage defect that was introduced by the insertion of an E157Q mutation within the HEXXH motif of mCLCA3. Interspecies conservation of these key results was further confirmed with the porcine (p) orthologue of hCLCA1 and mCLCA3, pCLCA1. Importantly, the mCLCA3E157Q mutant was cleaved after co-transfection with the wild-type mCLCA3 in HEK293 cells, suggesting that an intermolecular autoproteolytic event takes place. Edman degradation and MALDI-TOF-MS of the protein fragments identified a single cleavage site in mCLCA3 between amino acids 695 and 696. The data strongly suggest that secreted CLCA proteins have zinc-dependent autoproteolytic activity and that they may cleave additional proteins.
Collapse
Affiliation(s)
| | | | - Matthias Kaup
- Department of Laboratory Medicine and Pathobiochemistry, Charité Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Germany
| | | |
Collapse
|
35
|
Raiford KL, Park J, Lin KW, Fang S, Crews AL, Adler KB. Mucin granule-associated proteins in human bronchial epithelial cells: the airway goblet cell "granulome". Respir Res 2011; 12:118. [PMID: 21896166 PMCID: PMC3184067 DOI: 10.1186/1465-9921-12-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/06/2011] [Indexed: 01/11/2023] Open
Abstract
Background Excess mucus in the airways leads to obstruction in diseases such as chronic bronchitis, asthma, and cystic fibrosis. Mucins, the highly glycosolated protein components of mucus, are stored in membrane-bound granules housed in the cytoplasm of airway epithelial "goblet" cells until they are secreted into the airway lumen via an exocytotic process. Precise mechanism(s) of mucin secretion, including the specific proteins involved in the process, have yet to be elucidated. Previously, we have shown that the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) protein regulates mucin secretion by orchestrating translocation of mucin granules from the cytosol to the plasma membrane, where the granules dock, fuse and release their contents into the airway lumen. Associated with MARCKS in this process are chaperone (Heat Shock Protein 70 [HSP70], Cysteine string protein [CSP]) and cytoskeletal (actin, myosin) proteins. However, additional granule-associated proteins that may be involved in secretion have not yet been elucidated. Methods Here, we isolated mucin granules and granule membranes from primary cultures of well differentiated human bronchial epithelial cells utilizing a novel technique of immuno-isolation, based on the presence of the calcium activated chloride channel hCLCA1 (the human ortholog of murine Gob-5) on the granule membranes, and verified via Western blotting and co-immunoprecipitation that MARCKS, HSP70, CSP and hCLCA1 were present on the granule membranes and associated with each other. We then subjected the isolated granules/membranes to liquid chromatography mass spectrometry (LC-MS/MS) to identify other granule associated proteins. Results A number of additional cytoskeletal (e.g. Myosin Vc) and regulatory proteins (e.g. Protein phosphatase 4) associated with the granules and could play a role in secretion were discovered. This is the first description of the airway goblet cell "granulome."
Collapse
Affiliation(s)
- Kimberly L Raiford
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
36
|
Roussa E, Wittschen P, Wolff NA, Torchalski B, Gruber AD, Thévenod F. Cellular distribution and subcellular localization of mCLCA1/2 in murine gastrointestinal epithelia. J Histochem Cytochem 2010; 58:653-68. [PMID: 20385786 DOI: 10.1369/jhc.2010.955211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
mCLCA1/2 are members of the CLCA protein family that are widely expressed in secretory epithelia, but their putative physiological role still awaits elucidation. mCLCA1/2 have 95% amino acid identity, but currently no specific antibody is available. We have generated a rabbit polyclonal antibody (pAb849) against aa 424-443 of mCLCA1/2. In HEK293 cells transfected with mCLCA1; pAb849 detected two specific protein bands at approximately 125 kDa and 90 kDa, representing full-length precursor and N-terminal cleavage product, respectively. pAb849 also immunoprecipitated mCLCA1 and labeled the protein by immunostaining. But pAb849 crossreacted with mCLCA3/4/6 despite < or =80% amino acid identity of the antigenic epitope. We therefore investigated the cellular localization of mCLCA1/2 in epithelial tissues, which do not express mCLCA3/4/6 (salivary glands, pancreas, kidney) or express mCLCA3/6 with known localization (mucus cells of stomach and small intestine; villi of small intestine). mCLCA1/2 mRNA and protein expression were found in both parotid and submandibular gland, and immunohistochemistry revealed labeling in parotid acinar cells, in the luminal membrane of parotid duct cells, and in the duct cells of submandibular gland. In exocrine pancreas, mCLCA1/2 expression was restricted to acinar zymogen granule membranes, as assessed by immunoblotting, immunohistochemistry, and preembedding immunoperoxidase and immunogold electron microscopy. Moreover, mCLCA1/2 immunolabeling was present in luminal membranes of gastric parietal cells and small intestinal crypt enterocytes, whereas in the kidney, mCLCA1/2 protein was localized to proximal and distal tubules. The apical membrane localization and overall distribution pattern of mCLCA1/2 favor a transmembrane protein implicated in transepithelial ion transport and protein secretion.
Collapse
Affiliation(s)
- Eleni Roussa
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology II, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Association of the CLCA1 p.S357N variant with meconium ileus in European patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 2010; 50:347-9. [PMID: 20179644 DOI: 10.1097/mpg.0b013e3181afce6c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In Cftr-/- mice that mostly die because of intestinal obstruction, intestinal expression of Clca3 is decreased, whereas upregulation of Clca3 results in amelioration of intestinal disease. The aim of the study was to investigate whether the p.S357N variant in CLCA1, the human orthologue of Clca3, acts as a modifier gene in a cohort of 682 European patients with cystic fibrosis (CF)-99 patients with meconium ileus. The 357SS genotype was significantly overrepresented in both patients with meconium ileus and also with a severe CFTR genotype (P = 0.009) and in p.F508del homozygotes (P = 0.002). This suggests that CLCA1 has similar important functions in CF-related intestinal obstruction in humans as in Cftr-/- mice.
Collapse
|
38
|
Braun J, Bothe MK, Mundhenk L, Beck CL, Gruber AD. Murine mCLCA5 is expressed in granular layer keratinocytes of stratified epithelia. Histochem Cell Biol 2009; 133:285-99. [PMID: 20012443 DOI: 10.1007/s00418-009-0667-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 11/24/2022]
Abstract
CLCA proteins represent a large family of proteins widely expressed in mammalian tissues with a unique expression pattern for each family member analyzed so far. However, their functions in normal and diseased tissues are poorly understood. Here, we present the cellular expression pattern of mCLCA5 in murine tissues using immunohistochemistry, confocal laser scanning microscopy and immune electron microscopy with specific antibodies and RT-qPCR following laser-capture microdissection. The mCLCA5 protein was localized to granular layer keratinocytes of virtually all stratified squamous epithelia of the body. Biochemical protein characterizations revealed that the amino-terminal cleavage product is fully secreted by the cell, while the carboxy-terminal cleavage product remains associated with the cell. The results imply that mCLCA5 may play a role in maturation and keratinization of squamous epithelial cells.
Collapse
Affiliation(s)
- Josephine Braun
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag Strasse 15, 14163, Berlin, Germany
| | | | | | | | | |
Collapse
|
39
|
Patel AC, Brett TJ, Holtzman MJ. The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 2009; 71:425-49. [PMID: 18954282 DOI: 10.1146/annurev.physiol.010908.163253] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. On the basis of this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions.
Collapse
Affiliation(s)
- Anand C Patel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
40
|
Plog S, Mundhenk L, Klymiuk N, Gruber AD. Genomic, tissue expression, and protein characterization of pCLCA1, a putative modulator of cystic fibrosis in the pig. J Histochem Cytochem 2009; 57:1169-81. [PMID: 19755716 DOI: 10.1369/jhc.2009.954594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have identified members of the CLCA (chloride channels, calcium-activated) gene family as potential modulators of the cystic fibrosis (CF) phenotype, but differences between the human and murine CLCA genes and proteins may limit the use of murine CF models. Recently established pig models of CF are expected to mimic the human disease more closely than the available mouse models do. Here, we characterized the porcine CLCA gene locus, analyzed the expression pattern and protein processing of pCLCA1, and compared it to its human ortholog, hCLCA1. The porcine CLCA gene family is located on chromosome 4q25, with a broad synteny with the human and murine clca gene loci, except for a pig-specific gene duplication of pCLCA4. Using pCLCA1-specific antibodies, the protein was immunohistochemically localized in mucin-producing cells, including goblet cells and mucinous glands in the respiratory and alimentary tracts. Similar to hCLCA1, biochemical characterization of pCLCA1 identified a secreted soluble protein that could serve as an extracellular signaling molecule or functional constituent of the protective mucous layers. The results suggest that pCLCA1 shares essential characteristics of hCLCA1, supporting the pig model as a promising tool for studying the modulating role of pCLCA1 in the complex pathology of CF.
Collapse
Affiliation(s)
- Stephanie Plog
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Hamann M, Gibson A, Davies N, Jowett A, Walhin JP, Partington L, Affleck K, Trezise D, Main M. Human ClCa1 modulates anionic conduction of calcium-dependent chloride currents. J Physiol 2009; 587:2255-74. [PMID: 19307298 PMCID: PMC2691903 DOI: 10.1113/jphysiol.2009.170159] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Proteins of the CLCA gene family including the human ClCa1 (hClCa1) have been suggested to constitute a new family of chloride channels mediating Ca(2+)-dependent Cl- currents. The present study examines the relationship between the hClCa1 protein and Ca(2+)-dependent Cl- currents using heterologous expression of hClCa1 in HEK293 and NCIH522 cell lines and whole cell recordings. By contrast to previous reports claiming the absence of Cl- currents in HEK293 cells, we find that HEK293 and NCIH522 cell lines express constitutive Ca(2+)-dependent Cl- currents and show that hClCa1 increases the amplitude of Ca(2+)-dependent Cl- currents in those cells. We further show that hClCa1 does not modify the permeability sequence but increases the Cl- conductance while decreasing the G(SCN-)/G(Cl-) conductance ratio from approximately 2-3 to approximately 1. We use an Eyring rate theory (two barriers, one site channel) model and show that the effect of hClCa1 on the anionic channel can be simulated by its action on lowering the first and the second energy barriers. We conclude that hClCa1 does not form Ca(2+)-dependent Cl- channels per se or enhance the trafficking/insertion of constitutive channels in the HEK293 and NCIH522 expression systems. Rather, hClCa1 elevates the single channel conductance of endogenous Ca(2+)-dependent Cl- channels by lowering the energy barriers for ion translocation through the pore.
Collapse
Affiliation(s)
- Martine Hamann
- Leicester University, Department of Cell Physiology and Pharmacology, Medical Sciences Building, PO Box 138, University Road, Leicester LE1 9HN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shears SB. Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. ADVANCES IN ENZYME REGULATION 2009; 49:87-96. [PMID: 19200440 PMCID: PMC4770455 DOI: 10.1016/j.advenzreg.2008.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
43
|
Athanasiadou S, Pemberton A, Jackson F, Inglis N, Miller HRP, Thévenod F, Mackellar A, Huntley JF. Proteomic approach to identify candidate effector molecules during the in vitro immune exclusion of infective Teladorsagia circumcincta in the abomasum of sheep. Vet Res 2008; 39:58. [PMID: 18715541 DOI: 10.1051/vetres:2008035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 08/13/2008] [Indexed: 11/14/2022] Open
Abstract
In the present study we have employed an in vitro organ challenge model to study the post-challenge responses in parasite naïve and immune gastric tissue of sheep, in an attempt to identify the host derived factors involved in immune exclusion of Teladorsagia circumcincta larvae. Proteins present in the epithelial cells and mucus from ovine abomasa following parasite challenge in previously naïve and immune animals were analysed through Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-Tof)-MS and shotgun proteomics. MALDI-ToF analysis of epithelial cell lysates revealed that a number of proteins identified were differentially expressed in naïve and immune cells. These included intelectin and lysozymes, which were present at higher levels in epithelial cell lysates derived from immune samples. A large number of proteins were identified in the mucosal wash from immune tissue which were not present in the mucosal wash of the naïve tissue. Some of these proteins were present in washes of immune tissue prior to the parasite challenge including immunoglobulin A, galectin 14 and 15 and sheep mast cell protease 1. However, other proteins, such as calcium activated chloride channel and intelectin were only detected in the washings from the challenged tissue. The latter may be related to an enhanced mucus release, which may result in entrapment of infective larvae and thus reduced establishment in tissue that has been previously challenged with the parasite. In conclusion, several proteins have been identified which may be involved, either directly or indirectly, in the exclusion and immune elimination of incoming infective larvae. In the present study, the usefulness of the in vitro model has been confirmed, and the global proteomic approach has identified proteins that had not previously been associated with parasite exclusion from abomasal mucosa, such as the calcium activated chloride channel.
Collapse
Affiliation(s)
- Spiridoula Athanasiadou
- Animal Nutrition and Health, Scottish Agricultural College, Bush Estate, Penicuik, EH26 0PH, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kuperman DA, Schleimer RP. Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med 2008; 8:384-92. [PMID: 18691065 DOI: 10.2174/156652408785161032] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interleukin (IL)-4 and IL-13 share many biological activities. To some extent, this is because they both signal via a shared receptor, IL-4Ralpha. Ligation of IL-4Ralpha results in activation of Signal Transducer and Activator of Transcription factor 6 (STAT6) and Insulin Receptor Substrate (IRS) molecules. In T- and B-cells, IL-4Ralpha signaling contributes to cell-mediated and humoral aspects of allergic inflammation. It has recently become clear that IL-4 and IL-13 produced in inflamed tissues activate signaling in normally resident cells of the airway. The purpose of this review is to critically evaluate the contributions of IL-4- and IL-13-induced tissue responses, especially those mediated by STAT6, to some of the pathologic features of asthma including eosinophilic inflammation, airway hyperresponsiveness, subepithelial fibrosis and excessive mucus production. We also review the functions of some recently identified IL-4- and/or IL-13-induced mediators that provide some detail on molecular mechanisms and suggest an important contribution to host defense.
Collapse
Affiliation(s)
- Douglas A Kuperman
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Allergy-Immunology, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
45
|
Huan C, Greene KS, Shui B, Spizz G, Sun H, Doran RM, Fisher PJ, Roberson MS, Elble RC, Kotlikoff MI. mCLCA4 ER processing and secretion requires luminal sorting motifs. Am J Physiol Cell Physiol 2008; 295:C279-87. [PMID: 18495813 DOI: 10.1152/ajpcell.00060.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+)-activated Cl(-) channel (CLCA) proteins are encoded by a family of highly related and clustered genes in mammals that are markedly upregulated in inflammation and have been shown to affect chloride transport. Here we describe the cellular processing and regulatory sequences underlying murine (m) CLCA4 proteins. The 125-kDa mCLCA4 gene product is cleaved to 90- and 40-kDa fragments, and the NH(2)- and COOH-terminal fragments are secreted, where they are found in cell media and associated with the plasma membrane. The 125-kDa full-length protein is only found in the endoplasmic reticulum (ER), and specific luminal diarginine retention and dileucine forward trafficking signals contained within the CLCA4 sequence regulate export from the ER and proteolytic processing. Mutation of the dileucine luminal sequences resulted in ER trapping of the immaturely glycosylated 125-kDa peptide, indicating that proteolytic cleavage occurs following recognition of the trafficking motifs. Moreover, the mutated dileucine and diarginine signal sequences directed processing of a secreted form of enhanced green fluorescent protein in a manner consistent with the effects on mCLCA4.
Collapse
Affiliation(s)
- Chunlei Huan
- Biomedical Sciences Department, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hernandez-Novoa B, Bishop L, Logun C, Munson PJ, Elnekave E, Rangel ZG, Barb J, Danner RL, Kovacs JA. Immune responses to Pneumocystis murina are robust in healthy mice but largely absent in CD40 ligand-deficient mice. J Leukoc Biol 2008; 84:420-30. [PMID: 18467653 DOI: 10.1189/jlb.1207816] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pneumocystis is a pathogen of immunocompromised hosts but can also infect healthy hosts, in whom infection is rapidly controlled and cleared. Microarray methods were used to examine differential gene expression in the lungs of C57BL/6 and CD40 ligand knockout (CD40L-KO) mice over time following exposure to Pneumocystis murina. Immunocompetent C57BL/6 mice, which control and clear infection efficiently, showed a robust response to infection characterized by the up-regulation of 349 primarily immune response-associated genes. Temporal changes in the expression of these genes identified an early (Week 2), primarily innate response, which waned before the infection was controlled; this was followed by primarily adaptive immune responses that peaked at Week 5, which coincided with clearance of the infection. In conjunction with the latter, there was an increased expression of B cell-associated (Ig) genes at Week 6 that persisted through 11 weeks. In contrast, CD40L-KO mice, which are highly susceptible to developing severe Pneumocystis pneumonia, showed essentially no up-regulation of immune response-associated genes at Days 35-75. Immunohistochemical staining supported these observations by demonstrating an increase in CD4+, CD68+, and CD19+ cells in C57BL/6 but not CD40L-KO mice. Thus, the healthy host demonstrates a robust, biphasic response to infection by Pneumocystis; CD40L is an essential upstream regulator of the adaptive immune responses that efficiently control infection and prevent development of progressive pneumonia.
Collapse
Affiliation(s)
- Beatriz Hernandez-Novoa
- Critical Care Medicine Department, National Institutes of Health Clinical Center, NIH, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892-1662, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Park J, Fang S, Crews AL, Lin KW, Adler KB. MARCKS regulation of mucin secretion by airway epithelium in vitro: interaction with chaperones. Am J Respir Cell Mol Biol 2008; 39:68-76. [PMID: 18314541 DOI: 10.1165/rcmb.2007-0139oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have reported previously that myristoylated alanine-rich C kinase substrate (MARCKS) is a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. The results of those studies supported a mechanism whereby MARCKS, upon phosphorylation by protein kinase C (PKC), translocates from plasma membrane to cytoplasm, where its binding to membranes of intracellular mucin granules is a key component of the secretory pathway. It remains unknown how MARCKS is targeted to and/or preferentially attaches to mucin granule membranes. We hypothesized that the chaperone cysteine string protein (CSP) may play an important role in this process. CSP was shown to associate with membranes of intracellular mucin granules in well-differentiated normal human bronchial epithelial (NHBE) cells in vitro, as determined by ultrastructural immunohistochemistry and Western blotting of isolated granule membranes. CSP in these cells complexed with MARCKS, as shown by co-immunoprecipitation. Given reported associations between CSP and a second chaperone, heat shock protein 70 (HSP70), a role for HSP70 in the MARCKS-dependent secretory mechanism also was investigated. HSP70 appeared to form a trimeric complex with MARCKS and CSP associated with mucin granule membranes within airway epithelial cells. Transfection of the HBE1 human bronchial epithelial cell line with siRNAs targeting sequences of MARCKS, CSP, or HSP70 resulted, in each case, in significant knockdown of expression of these proteins and subsequent attenuation of mucin secretion. The results provide the first evidence that CSP and HSP70, and their interactions with MARCKS, are involved in mucin secretion.
Collapse
Affiliation(s)
- Joungjoa Park
- North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
48
|
Bothe MK, Braun J, Mundhenk L, Gruber AD. Murine mCLCA6 is an integral apical membrane protein of non-goblet cell enterocytes and co-localizes with the cystic fibrosis transmembrane conductance regulator. J Histochem Cytochem 2008; 56:495-509. [PMID: 18285349 DOI: 10.1369/jhc.2008.950592] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CLCA family of proteins consists of a growing number of structurally and functionally diverse members with distinct expression patterns in different tissues. Several CLCA homologs have been implicated in diseases with secretory dysfunctions in the respiratory and intestinal tracts. Here we present biochemical protein characterization and details on the cellular and subcellular expression pattern of the murine mCLCA6 using specific antibodies directed against the amino- and carboxy-terminal cleavage products of mCLCA6. Computational and biochemical characterizations revealed protein processing and structural elements shared with hCLCA2 including anchorage in the apical cell membrane by a transmembrane domain in the carboxy-terminal subunit. A systematic light- and electron-microscopic immunolocalization found mCLCA6 to be associated with the microvilli of non-goblet cell enterocytes in the murine small and large intestine but in no other tissues. The expression pattern was confirmed by quantitative RT-PCR following laser-capture microdissection of relevant tissues. Confocal laser scanning microscopy colocalized the mCLCA6 protein with the cystic fibrosis transmembrane conductance regulator CFTR at the apical surface of colonic crypt cells. Together with previously published functional data, the results support a direct or indirect role of mCLCA6 in transepithelial anion conductance in the mouse intestine.
Collapse
Affiliation(s)
- Melanie K Bothe
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | | | | | | |
Collapse
|
49
|
Al-Jumaily M, Kozlenkov A, Mechaly I, Fichard A, Matha V, Scamps F, Valmier J, Carroll P. Expression of three distinct families of calcium-activated chloride channel genes in the mouse dorsal root ganglion. Neurosci Bull 2008; 23:293-9. [PMID: 17952139 DOI: 10.1007/s12264-007-0044-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective A calcium-activated chloride current (IClCa) has been observed in medium-sized sensory neurons of the dorsal root ganglion (DRG). Axotomy of the sciatic nerve induces a similar current in the majority of medium and large diameter neurons. Our aim is to identify the molecule(s) underlying this current. Methods Using conventional and quantitative RT-PCR, we examined the expression in DRG of members of three families of genes, which have been shown to have IClCa current inducing properties. Results We showed the detection of transcripts representing several members of these families, i.e. chloride channel calcium-activated (CLCA), Bestrophin and Tweety gene families in adult DRG, in the normal state and 3 d after sciatic nerve section, a model for peripheral nerve injury. Conclusion Our analysis revealed that that mBest1 and Tweety2 appear as the best candidates to play a role in the injury-induced IClCa in DRG neurons.
Collapse
Affiliation(s)
- Mohammed Al-Jumaily
- The French National Institute for Health and Medical Research, U.583, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Range F, Mundhenk L, Gruber AD. A soluble secreted glycoprotein (eCLCA1) is overexpressed due to goblet cell hyperplasia and metaplasia in horses with recurrent airway obstruction. Vet Pathol 2007; 44:901-11. [PMID: 18039903 DOI: 10.1354/vp.44-6-901] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The equine putative chloride channel protein eCLCA1 is thought to be critically involved in the pathogenesis of recurrent airway obstruction (RAO) via modulation of the hydration of airway mucins. A recent study revealed a strong increase of eCLCA1 messenger ribonucleic acid (mRNA) in the lungs of horses with RAO. In this study, eCLCA1 protein and mRNA expression were quantified in airway goblet cells of 9 horses affected with RAO and 9 control horses by using immunohistochemistry and laser microdissection followed by real-time quantitative reverse transcription polymerase chain reaction, respectively. Horses affected by RAO had strong goblet cell metaplasia in bronchioles and goblet cell hyperplasia in bronchi and the trachea. Expression of the eCLCA1 protein was tightly linked to all airway goblet cells in both groups. No differences were detected in the ratio of eCLCA1 mRNA copy numbers to the mRNA copy numbers of the housekeeping gene EF-1a per goblet cell between horses affected with RAO and unaffected horses, suggesting that the increase in eCLCA1 expression is because of increased numbers of goblet cells and not transcriptional upregulation of the eCLCA1 gene. In addition, biochemical analyses of the eCLCA1 protein after in vitro translation and heterologous expression in cultured cells revealed that eCLCA1 is a secreted glycoprotein and not an integral membrane protein. Taken together, the results suggest that eCLCA1 mediates its effect as a soluble constituent of airway mucins that is overexpressed in RAO airways because of goblet cell hyperplasia and metaplasia, not transcriptional upregulation.
Collapse
Affiliation(s)
- F Range
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, D-14163 Berlin, Germany
| | | | | |
Collapse
|