1
|
Sadeesh EM, Lahamge MS, Malik A, Ampadi AN. Nuclear Genome-Encoded Mitochondrial OXPHOS Complex I Genes in Female Buffalo Show Tissue-Specific Differences. Mol Biotechnol 2025; 67:2411-2427. [PMID: 38878239 DOI: 10.1007/s12033-024-01206-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 05/07/2025]
Abstract
Buffalo physiology intricately balances energy, profoundly influencing health, productivity, and reproduction. This study explores nuclear-mitochondrial crosstalk, revealing OXPHOS Complex I gene expression variations in buffalo tissues through high-throughput RNA sequencing. Unveiling tissue-specific disparities, the research elucidates the genomic landscape of crucial energy production genes, with broader implications for veterinary and agricultural progress. Post-slaughter, tissues from post-pubertal female buffaloes underwent meticulous processing and RNA extraction using the TRIzol method. RNA-Seq library preparation and IlluminaHiSeq 2500 sequencing were performed on QC-passed samples. Data underwent stringent filtration, mapping to the Bubalus bubalis genome using HISAT2. DESeq2 facilitated differential expression gene (DEG) analysis focusing on 57 Mitocarta 3-derived genes associated with OXPHOS complex I. Nuclear-encoded mitochondrial protein transcripts of OXPHOS complex 1 exhibited tissue-specific variations, with 51 genes expressing significantly across tissues. DEG analysis emphasized tissue-specific expression patterns, highlighting a balanced OXPHOS complex I subunit expression in the kidney vs. brain. Gene Ontology (GO) enrichment showcased mitochondria-centric terms, revealing distinct proton motive force-driven mitochondrial ATP synthesis regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses emphasized Thermogenesis and OXPHOS pathways, enriching our understanding of tissue-specific energy metabolism. Noteworthy up-regulation of NDUFB10 in the heart and kidney aligned with heightened metabolic activity. Brain-specific up-regulation of NDUFAF6 indicated a focus on mitochondrial function, while variations in NDUFA11 and ACAD9 underscored pivotal roles in the heart and kidney. GO and KEGG analyses highlighted tissue-specific mitochondrial ATP synthesis and NADH dehydrogenase processes, providing molecular insights into organ-specific metabolic demands and regulatory mechanisms. Our study unveils conserved and tissue-specific nuances in nuclear-encoded mitochondrial OXPHOS complex I genes, laying a foundation for understanding diverse energy demands and potential health implications.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Anuj Malik
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
- University of Bonn, Institute of Animal Sciences, Katzenburgweg 7 - 9, 53115, Bonn, Germany
| | - A N Ampadi
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
2
|
Kandemirli SG, Al-Dasuqi K, Aslan B, Goldstein A, Alves CAPF. Overview of neuroimaging in primary mitochondrial disorders. Pediatr Radiol 2025; 55:765-791. [PMID: 39937244 DOI: 10.1007/s00247-025-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Advancements in understanding the clinical, biochemical, and genetic aspects of primary mitochondrial disorders, along with the identification of a broad range of phenotypes frequently involving the central nervous system, have opened a new and crucial area in neuroimaging. This expanding knowledge presents significant challenges for radiologists in clinical settings, as the neuroimaging features and their associated metabolic abnormalities become more complex. This review offers a comprehensive overview of the key neuroimaging features associated with the common primary mitochondrial disorders. It highlights both the classical imaging findings and the emerging diagnostic insights related to several previously identified causative genes for these diseases. The review also provides an in-depth description of the clinicoradiologic presentations and potential underlying mitochondrial defects, aiming to enhance diagnostic abilities of radiologists in identifying primary mitochondrial diseases in their clinical practice.
Collapse
Affiliation(s)
- Sedat Giray Kandemirli
- Duke University Hospital, 2301 Erwin Rd, Durham, NC, 27710, USA.
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Khalid Al-Dasuqi
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Sidra Medical and Research Center, Doha, Qatar
| | - Bulent Aslan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amy Goldstein
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
3
|
Chen YL, Chung BHY, Mimaki M, Uchino S, Chien YH, Mak CCY, Peng SSF, Wang WC, Lin YL, Hwu WL, Lee SJ, Lee NC. NDUFB7 mutations cause brain neuronal defects, lactic acidosis, and mitochondrial dysfunction in humans and zebrafish. Cell Death Discov 2025; 11:82. [PMID: 40025060 PMCID: PMC11873233 DOI: 10.1038/s41420-025-02369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Complex I of the mitochondrial electron transfer chain is one of the largest membrane protein assemblies ever discovered. A patient carrying a homozygous NDUFB7 intronic mutation died within two months after birth due to cardiorespiratory defects, preventing further study. Here, we report another patient with compound heterozygous mutations in NDUFB7 who suffers from pons abnormality, lactic acidosis, prematurity, prenatal and postnatal growth deficiency, incomplete closure of the abdominal wall (ventral hernia), and a poorly functioning gastrointestinal tract (pseudo-obstruction). We demonstrated that the patient's skin fibroblasts are deficient in Complex I assembly and reduced supercomplex formation. This report further broadens the spectrum of mitochondrial disorders. The patient has had several surgeries. After receiving treatment with Coenzyme Q10 and vitamin B complex, she has remained stable up to this point. To further explore the functionality of NDUFB7 in vivo, we knocked down Ndufb7 in zebrafish embryos. This resulted in brain ventricle and neuronal defects, elevated lactic acid levels, and reduced oxygen consumption, indicating defective mitochondrial respiration. These phenotypes can be specifically rescued by ectopic expression of ndufb7. More importantly, Mitoquinone mesylate (MitoQ), a common remedy for mitochondrial disorders, can ameliorate these conditions. These results suggest a role for NDUFB7 in mitochondrial activity and the suitability of the zebrafish model for further drug screening and the development of therapeutic strategies for this rare disease.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Brian Hon-Yin Chung
- Department of Pediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Shumpei Uchino
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
- Department of Pediatrics, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10041, Taiwan
| | - Christopher Chun-Yun Mak
- Department of Pediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Steven Shinn-Forng Peng
- Department of Radiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10002, Taiwan
| | - Wei-Chen Wang
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10041, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10041, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10041, Taiwan.
| |
Collapse
|
4
|
Peng DQ, Lee HG, Choi YJ, Jin YC. Identification of Key Proteomic Markers for Enhanced Conjugated Linoleic Acid Biosynthesis in Lactating Goats via Linseed Oil Supplementation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4364-4375. [PMID: 39919035 DOI: 10.1021/acs.jafc.4c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
This study investigated the effects of linseed oil (LO) supplementation on conjugated linoleic acid (CLA) biosynthesis in lactating Saanen goats. Goats (DIM = 96 ± 14 days) were divided into control (n = 6) and LO treatment (n = 6) groups. LO supplementation was implemented in both short- and long-term experimental settings. Short-term LO supplementation significantly increased trans-11 vaccenic acid and cis-9,trans-11 CLA in milk fat without affecting lactation performance. Using two-dimensional gel electrophoresis, we identified six upregulated proteins in milk somatic cells, including translocon-associated protein (SSRD), succinyl-CoA ligase (SUCB2), ATP synthase subunit (ATPD), stress-70 protein (GRP75), NADH dehydrogenase (NDUFS2), and cytochrome complex QCR1. Long-term LO supplementation enhanced milk fat content and cis-9,trans-11 CLA levels, while significantly elevating the mRNA expression of stearoyl-CoA desaturase (SCD) and all previously identified proteins-including proteasome 20s subunit alpha 5 (PSMA5). These findings extend beyond the known SCD pathway, revealing novel protein markers and potential mechanisms associated with CLA biosynthesis in mammary tissue and milk somatic cells.
Collapse
Affiliation(s)
- Dong Qiao Peng
- Department of Animal Science, College of Animal Science, Jilin University, Changchun 130062, China
| | - Hong Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong Cheng Jin
- Department of Animal Science, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Ősz F, Nazir A, Takács-Vellai K, Farkas Z. Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in C. elegans. Antioxidants (Basel) 2025; 14:76. [PMID: 39857410 PMCID: PMC11761250 DOI: 10.3390/antiox14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using Caenorhabditis elegans as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels. We highlight the utility of redox sensors in C. elegans for in vivo studies of reactive oxygen species, offering both quantitative and qualitative insights. Finally, we examine the potential of C. elegans as a platform for testing ETC-targeting drug candidates, including OXPHOS inhibitors, which represent promising avenues in cancer therapeutics. This review underscores the translational relevance of ETC research in C. elegans, bridging fundamental biology and therapeutic innovation.
Collapse
Affiliation(s)
- Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India;
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| |
Collapse
|
6
|
Rauch J, Kurscheidt K, Shen KW, Andrei A, Daum N, Öztürk Y, Melin F, Layer G, Hellwig P, Daldal F, Koch HG. The small membrane protein CcoS is involved in cofactor insertion into the cbb 3-type cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149524. [PMID: 39547352 DOI: 10.1016/j.bbabio.2024.149524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Respiratory complexes, such as cytochrome oxidases, are cofactor-containing multi-subunit protein complexes that are critically important for energy metabolism in all domains of life. Their intricate assembly strictly depends on accessory proteins, which coordinate subunit associations and cofactor deliveries. The small membrane protein CcoS was previously identified as an essential assembly factor to produce an active cbb3-type cytochrome oxidase (cbb3-Cox) in Rhodobacter capsulatus, but its function remained unknown. Here we show that the ΔccoS strain assembles a heme b deficient cbb3-Cox, in which the CcoN-CcoO subunit association is impaired. Chemical crosslinking demonstrates that CcoS interacts with the CcoN and CcoP subunits of cbb3-Cox, and that it stabilizes the interaction of the Cu-chaperone SenC with cbb3-Cox. CcoS lacks heme- or Cu-binding motifs, and we did not find evidence for direct heme or Cu binding; rather our data indicate that CcoS, together with SenC, coordinates heme and Cu insertion into cbb3-Cox.
Collapse
Affiliation(s)
- Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Katharina Kurscheidt
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Kai-Wei Shen
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Frederic Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Gunhild Layer
- Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Grivennikova VG, Gladyshev GV, Zharova TV, Borisov VB. Proton-Translocating NADH-Ubiquinone Oxidoreductase: Interaction with Artificial Electron Acceptors, Inhibitors, and Potential Medicines. Int J Mol Sci 2024; 25:13421. [PMID: 39769185 PMCID: PMC11677225 DOI: 10.3390/ijms252413421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force (pmf) across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required. Due to complex I being a major electron entry point for oxidative metabolism, various mutations of the enzyme lead to the development of severe pathologies and/or are associated with human metabolic disorders and have been well documented. This review examines current information on the structure and subunit composition of complex I of eukaryotes and prokaryotes, reactions catalyzed by this enzyme, and ways to regulate them. The review also discusses biomedical aspects related to the enzyme in light of recent findings.
Collapse
Affiliation(s)
- Vera G. Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Grigory V. Gladyshev
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Tatyana V. Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
8
|
Pham L, Arroum T, Wan J, Pavelich L, Bell J, Morse PT, Lee I, Grossman LI, Sanderson TH, Malek MH, Hüttemann M. Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer. Redox Biol 2024; 78:103426. [PMID: 39566165 PMCID: PMC11617887 DOI: 10.1016/j.redox.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨm, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨm, and it has been shown that an imbalance in ΔΨm beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨm and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.
Collapse
Affiliation(s)
- Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Division of Pediatric Critical Care, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, 48201, USA.
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
10
|
Shi P, Sha Y, Wang X, Yang T, Wu J, Zhou J, Liu K, Guan X, Wang S, Liu Y, Gao J, Sun H, Ban T, Cao Y. Targeted Delivery and ROS-Responsive Release of Lutein Nanoassemblies Inhibit Myocardial Ischemia-Reperfusion Injury by Improving Mitochondrial Function. Int J Nanomedicine 2024; 19:11973-11996. [PMID: 39583319 PMCID: PMC11585303 DOI: 10.2147/ijn.s488532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Myocardial ischemia-reperfusion injury (MI/RI) is associated with increased oxidative damage and mitochondrial dysfunction, resulting in an elevated risk of mortality. MI/RI may be alleviated by protecting cardiomyocytes from oxidative stress. Lutein, which belongs to a class of carotenoids, has proven to be effective in cardiovascular disease treatment due to its remarkable antioxidant properties, but its application is limited due to its poor stability and low bioavailability in vivo. Methods In this study, a delivery system was developed based on distearoyl phosphatidyl ethanolamine (DSPE)-thiol-ketone (TK)-PEG2K (polyethylene glycol 2000) (abbreviated as DTP) and PCM-SH (CWLSEAGPVVTVRALRGTGSW) to deliver lutein (abbreviated as lutein@DTPP) to damaged myocardium. First, lutein, lutein@DTP, or lutein@DTPP were injected through the tail vein once a day for 3 days and then MI/RI model rats were established by exposing rats to ischemia for 45 min and reperfusion for 6 h. We employed a range of experimental techniques including qRT-PCR, Western blotting, transmission electron microscopy, immunohistochemistry, immunofluorescence, flow cytometry, immunoprecipitation, molecular docking, and molecular dynamics simulations. Results Lutein@DTPP exhibited good myocardial targeting and ROS-responsive release. Our data suggested that lutein@DTPP effectively suppresses ferroptosis in cardiomyocytes. Mechanistically, we observed an upregulation of mouse double minute-2 (MDM2) in the hearts of MI/RI models and cardiomyocytes exposed to hypoxia/reoxygenation (H/R) conditions. In addition, NADH-ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1) translocation from the cytosol to the mitochondria was inhibited by MDM2 upregulation. Notably, no significant variation in the total NDUFS1 expression was observed in H/R-exposed cardiomyocytes following treatment with siMDM2. Further study indicated that lutein facilitates the translocation of NDUFS1 from the cytosol to mitochondria by directly binding and sequestering MDM2, thereby improving mitochondrial function and inhibiting ferroptosis. Conclusion Lutein@DTPP promoted the mitochondrial translocation of NDUFS1 to restore mitochondrial function and inhibited the ferroptosis of cardiomyocytes by directly binding and sequestering MDM2.
Collapse
Affiliation(s)
- Pilong Shi
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yuetong Sha
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Xinran Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Tao Yang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jiawei Wu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jiajun Zhou
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Kai Liu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Xue Guan
- Morphological Experiment Center, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Song Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yongsheng Liu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jingquan Gao
- Department of Nursing, School of Medicine, Lishui University, Lishui, People’s Republic of China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Tao Ban
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| |
Collapse
|
11
|
Chen CL, Ishihara T, Pal S, Huang WL, Ogasawara E, Chang CR, Ishihara N. SDHAF2 facilitates mitochondrial respiration through stabilizing succinate dehydrogenase and cytochrome c oxidase assemblies. Mitochondrion 2024; 79:101952. [PMID: 39237068 DOI: 10.1016/j.mito.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Succinate dehydrogenase (SDH) plays pivotal roles in maintaining cellular metabolism, modulating regulatory control over both the tricarboxylic acid cycle and oxidative phosphorylation to facilitate energy production within mitochondria. Given that SDH malfunction may serve as a hallmark triggering pseudo-hypoxia signaling and promoting tumorigenesis, elucidating the impact of SDH assembly defects on mitochondrial functions and cellular responses is of paramount importance. In this study, we aim to clarify the role of SDHAF2, one assembly factor of SDH, in mitochondrial respiratory activities. To achieve this, we utilize the CRISPR/Cas9 system to generate SDHAF2 knockout in HeLa cells and examine mitochondrial respiratory functions. Our findings demonstrate a substantial reduction in oxygen consumption rate in SDHAF2 knockout cells, akin to cells with inhibited SDH activity. In addition, in our in-gel activity assays reveal a significant decrease not only in SDH activity but also in cytochrome c oxidase (COX) activity in SDHAF2 knockout cells. The reduced COX activity is attributed to the assembly defect and remains independent of SDH inactivation or SDH complex disassembly. Together, our results indicate a critical role of SDHAF2 in regulating respiration by facilitating the assembly of COX.
Collapse
Affiliation(s)
- Chang-Lin Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan; Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takaya Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Soumyadip Pal
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wei-Ling Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Emi Ogasawara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu 300044, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
12
|
Reyes-Rosario D, Pardo JP, Guerra-Sánchez G, Vázquez-Meza H, López-Hernández G, Matus-Ortega G, González J, Baeza M, Romero-Aguilar L. Analysis of the Respiratory Activity in the Antarctic Yeast Rhodotorula mucilaginosa M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements. Microorganisms 2024; 12:1931. [PMID: 39458241 PMCID: PMC11509550 DOI: 10.3390/microorganisms12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. The activities of the components of the mitochondrial respiratory chain of the Antarctic yeast R. mucilaginosa M94C9 were identified by in-gel activity and SDS-PAGE. The mitochondria exhibited activity for the classical components of the electron transport chain (Complexes I, II, III, and IV), and supercomplexes were formed by a combination of the respiratory complexes I, III, and IV. Unfortunately, the activities of the monomeric and dimeric forms of the F1F0-ATP synthase were not revealed by the in-gel assay, but the two forms of the ATP synthase were visualized in the SDS-PAGE. Furthermore, two alternative pathways for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate dehydrogenase. In addition, an NADPH dehydrogenase and a lactate cytochrome b2 dehydrogenase were found. The residual respiratory activity following cyanide addition suggests the presence of an alternative oxidase in cells.
Collapse
Affiliation(s)
- Daniel Reyes-Rosario
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Georgina López-Hernández
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| |
Collapse
|
13
|
Deshmukh V, Martin JF. SETD3 is a mechanosensitive enzyme that methylates actin on His73 to regulate mitochondrial dynamics and function. J Cell Sci 2024; 137:jcs261268. [PMID: 38896010 PMCID: PMC11304411 DOI: 10.1242/jcs.261268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Mitochondria, which act as sensors of metabolic homeostasis and metabolite signaling, form a dynamic intracellular network that continuously changes shape, size and localization to respond to localized cellular energy demands. Mitochondrial dynamics and function depend on interactions with the F-actin cytoskeleton that are poorly understood. Here, we show that SET domain protein 3 (SETD3), a recently described actin histidine methyltransferase, directly methylates actin at histidine-73 and enhances F-actin polymerization on mitochondria. SETD3 is a mechano-sensitive enzyme that is localized on the outer mitochondrial membrane and promotes actin polymerization around mitochondria. SETD3 loss of function leads to diminished F-actin around mitochondria and a decrease in mitochondrial branch length, branch number and mitochondrial movement. Our functional analysis revealed that SETD3 is required for oxidative phosphorylation, and mitochondrial complex I assembly and function. Our data further indicate that SETD3 regulates F-actin formation around mitochondria and is essential for maintaining mitochondrial morphology, movement and function. Finally, we discovered that SETD3 levels are regulated by extracellular matrix (ECM) stiffness and regulate mitochondrial shape in response to changes in ECM stiffness. These findings provide new insight into the mechanism for F-actin polymerization around mitochondria.
Collapse
Affiliation(s)
- Vaibhav Deshmukh
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - James F. Martin
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Cardiomyocyte Renewal Lab, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Marshall AE, Brady L, Yeh E, Mears AJ, Lacaria M, Chakraborty P, Tarnopolsky MA, Kernohan KD. Next generation sequencing reveals novel compound heterozygous deletions in NDUFAF2 in a child with mitochondrial complex I deficiency, nuclear type 10. Am J Med Genet A 2024; 194:e63590. [PMID: 38477541 DOI: 10.1002/ajmg.a.63590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Aren E Marshall
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Brady
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Ed Yeh
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Alan J Mears
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Melanie Lacaria
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Pranesh Chakraborty
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
16
|
Abdukiyum M, Tang X, Zhao N, Cui Y, Zhang J, Alim T, Zheng Y, Li W, Huang M, Feng X, Yu H, Feng X. Reduced mitochondrial-encoded NADH dehydrogenase 6 gene expression drives inflammatory CD4 +T cells in patients with systemic lupus erythematosus. Free Radic Biol Med 2024; 213:79-89. [PMID: 38242247 DOI: 10.1016/j.freeradbiomed.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Abnormal mitochondrial function has been implicated in the progression of systemic lupus erythematosus (SLE), the prototypical autoimmune disease, yet the underlying cause remains unclear. In this study, mitochondrial-encoded NADH dehydrogenase 6 gene (MT-ND6) was identified as having increased m6A methylation and decreased expression in peripheral blood mononuclear cells of SLE patients by MeRIP-seq analysis. MT-ND6 expression was negatively correlated with SLE disease activity index score and 24-h urine protein level, and lower in patients with positive anti-Sm or anti-dsDNA antibodies. With the reduction of MT-ND6 levels, CD4+ T cells in SLE patients exhibited mitochondrial dysfunction, as evidenced by increased levels of reactive oxygen species (ROS) and mitochondrial ROS and insufficient ATP production. Accordingly, in vitro MT-ND6 silencing induced abnormalities in the above mitochondrial indicators in CD4+ T cells, and promoted the development of both transcription and inflammatory factors in these cells. In contrast, treatment with targeted mitochondrial antioxidants largely counteracted the silencing effect of MT-MD6. Thus, reduced MT-ND6 in SLE patients may lead to mitochondrial dysfunction through ROS overproduction, thereby promoting inflammatory CD4+ T cells.
Collapse
Affiliation(s)
- Miheraiy Abdukiyum
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Nan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiyuan Cui
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Zhang
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tohtihan Alim
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuxue Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Honghong Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
17
|
Zhao X, Dilixiati A, Zhang L, Aihemaiti A, Song Y, Zhao G, Fu X, Wang X, Wusiman A. Mito-TEMPO Improves the Meiosis Resumption and Mitochondrial Function of Vitrified Sheep Oocytes via the Recovery of Respiratory Chain Activity. Animals (Basel) 2024; 14:152. [PMID: 38200883 PMCID: PMC10778259 DOI: 10.3390/ani14010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Vitrification is a crucial method for preserving animal germ cells. Considering the increased oxidative stress and organelle damage incurred, it is still necessary to make the process more efficient for oocytes. As the energy source of oocytes, mitochondria are the most abundant organelle in oocytes and play a crucial role in their maturation. Here, we found that Mito-TEMPO, a mitochondria-targeted antioxidant, could efficaciously improve the oxidative stress injury of vitrified oocytes by recovering mitochondrial function via the mitochondrial respiratory chain. It was observed that Mito-TEMPO not only improves oocyte viability and meiosis but also maintains spindle structure. A subsequent study indicated that Mito-TEMPO effectively rescued mitochondrial dysfunction and attenuated vitrification-induced oxidative stress. Further investigation revealed that Mito-TEMPO regulates vitrified oocytes' intracellular Ca2+ homeostasis and ATP content and provides strong antioxidant properties. Additionally, an analysis of the transcriptome at the single-cell level revealed that the respiratory chain mediates the beneficial effect of Mito-TEMPO on vitrified oocytes. Overall, our findings indicate that supplementing oocytes with Mito-TEMPO is an effective method to shield them from the damage caused by vitrification. In addition, the beneficial effects of Mito-TEMPO on vitrified sheep oocytes could inspire further investigations of the principles underlying oocyte cryobiology in other animals.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Airixiati Dilixiati
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Luyao Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Aikebaier Aihemaiti
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yukun Song
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guodong Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Xuguang Wang
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Abulizi Wusiman
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
18
|
Wang Z, Tao E, Chen Y, Wang Q, Liu M, Wei L, Xu S, Chen W, Zhong C. NDUFA4 promotes the progression of head and neck paraganglioma by inhibiting ferroptosis. Biochem Cell Biol 2023; 101:523-530. [PMID: 37602474 DOI: 10.1139/bcb-2023-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
NDUFA4 is a component of respiratory chain-oxidative phosphorylation pathway. NDUFA4 is highly expressed in tumor tissues, but little is known about the function of NDUFA4 in head and neck paraganglioma (HNPGL). We examined NDUFA4 expression in tissues from 10 HNPGL patients and 6 controls using qRT-PCR and Western blotting. NDUFA4 knockdown PGL-626 cells were established by using lentivirus infection and puromycin screening. Cell viability, ATP production, lipid reactive oxygen species, and mitochondrial membrane potential assays were performed to investigate the ferroptotic effects in NDUFA4 deficiency HNPGL cancer cells. Xenograft mouse model was created to detect the synergetic antitumor action between NDUFA4 deficiency and Metformin. NDUFA4 was upregulated in tumor tissues of HNPGL patients. NDUFA4 knockdown impaired the assembly of mitochondrial respiratory chain complexes and decreased the production of ATP and reduced cancer cell viability. Mechanistically, NDUFA4 knockdown increased cell ferroptosis, which further promoted Metformin-induced ferroptosis in PGL-626 cells. Therefore, NDUFA4 deficiency enhanced Metformin-mediated inhibition of the HNPGL progression in mice. In conclusion, NDUFA4 promotes the progression of HNPGL, and NDUFA4 knockdown enhances Metformin-mediated inhibition of the HNPGL progression in a mouse model.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Erxing Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yiming Chen
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Qi Wang
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Liang Wei
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Siyi Xu
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| | - Wei Chen
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Medical School, Tongji University, Shanghai 200120, China
| |
Collapse
|
19
|
Jimenez-Blasco D, Almeida A, Bolaños JP. Brightness and shadows of mitochondrial ROS in the brain. Neurobiol Dis 2023:106199. [PMID: 37321421 DOI: 10.1016/j.nbd.2023.106199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Mitochondrial reactive oxygen species (mROS) have been generally considered harmful byproducts wanted to clear when elevated to avoid brain damage. However, the abundance of mROS in astrocytes is very high -about one order of magnitude above that in neurons-, despite they are essential to preserve cell metabolism and animal behavior. Here, we have focused on this apparent ambiguity by discussing (i) the intrinsic mechanisms accounting for the higher production of mROS by the mitochondrial respiratory chain in astrocytes than in neurons, (ii) the specific molecular targets of astrocytic beneficial mROS, and (iii) how decreased astrocytic mROS causes excess neuronal mROS leading to cellular and organismal damage. We hope that this mini-review serves to clarifying the apparent controversy on the beneficial versus deleterious faces of ROS in the brain from molecular to higher-order organismal levels.
Collapse
Affiliation(s)
- Daniel Jimenez-Blasco
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Angeles Almeida
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain.
| | - Juan P Bolaños
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
20
|
Qin S, You P, Yu H, Su B. REEP1 Preserves Motor Function in SOD1 G93A Mice by Improving Mitochondrial Function via Interaction with NDUFA4. Neurosci Bull 2023; 39:929-946. [PMID: 36520405 PMCID: PMC10264344 DOI: 10.1007/s12264-022-00995-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/25/2022] [Indexed: 12/23/2022] Open
Abstract
A decline in the activities of oxidative phosphorylation (OXPHOS) complexes has been consistently reported in amyotrophic lateral sclerosis (ALS) patients and animal models of ALS, although the underlying molecular mechanisms are still elusive. Here, we report that receptor expression enhancing protein 1 (REEP1) acts as an important regulator of complex IV assembly, which is pivotal to preserving motor neurons in SOD1G93A mice. We found the expression of REEP1 was greatly reduced in transgenic SOD1G93A mice with ALS. Moreover, forced expression of REEP1 in the spinal cord extended the lifespan, decelerated symptom progression, and improved the motor performance of SOD1G93A mice. The neuromuscular synaptic loss, gliosis, and even motor neuron loss in SOD1G93A mice were alleviated by increased REEP1 through augmentation of mitochondrial function. Mechanistically, REEP1 associates with NDUFA4, and plays an important role in preserving the integrity of mitochondrial complex IV. Our findings offer insights into the pathogenic mechanism of REEP1 deficiency in neurodegenerative diseases and suggest a new therapeutic target for ALS.
Collapse
Affiliation(s)
- Siyue Qin
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
21
|
Gladyshev GV, Zharova TV, Kareyeva AV, Grivennikova VG. Proton-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans plasma membranes catalyzes FMN-independent reverse electron transfer to hexaammineruthenium (III). BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148963. [PMID: 36842539 DOI: 10.1016/j.bbabio.2023.148963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
NADH-OH, the specific inhibitor of NADH-binding site of the mammalian complex I, is shown to completely block FMN-dependent reactions of P. denitrificans enzyme in plasma membrane vesicles: NADH oxidation (in a competitive manner with Ki of 1 nM) as well as reduction of pyridine nucleotides, ferricyanide and oxygen in the reverse electron transfer. In contrast to these activities, the reverse electron transfer to hexaammineruthenium (III) catalyzed by plasma membrane vesicles is insensitive to NADH-OH. To explain these results, we hypothesize the existence of a non-FMN redox group of P. denitrificans complex I that is capable of reducing hexaammineruthenium (III), which is corroborated by the complex kinetics of NADH: hexaammineruthenium (III)-reductase activity, catalyzed by this enzyme. A new assay procedure for measuring succinate-driven reverse electron transfer catalyzed by P. denitrificans complex I to hexaammineruthenium (III) is proposed.
Collapse
Affiliation(s)
- Grigory V Gladyshev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation.
| | - Tatyana V Zharova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| | - Alexandra V Kareyeva
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| | - Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
22
|
MicroRNA and mRNA sequencing analyses reveal key hepatic metabolic and signaling pathways responsive to maternal undernutrition in full-term fetal pigs. J Nutr Biochem 2023; 116:109312. [PMID: 36871838 DOI: 10.1016/j.jnutbio.2023.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Maternal undernutrition is highly prevalent in developing countries, leading to severe fetus/infant mortality, intrauterine growth restriction, stunting, and severe wasting. However, the potential impairments of maternal undernutrition to metabolic pathways in offspring are not defined completely. In this study, two groups of pregnant domestic pigs received nutritionally balanced gestation diets with or without 50% feed intake restriction from 0 to 35 gestation days and 70% from 35 to 114 gestation days. Full-term fetuses were collected via C-section on day 113/114 of gestation. MicroRNA and mRNA deep sequencing were analyzed using the Illumina GAIIx system on fetal liver samples. The mRNA-miRNA correlation and associated signaling pathways were analyzed via CLC Genomics Workbench and Ingenuity Pathway Analysis Software. A total of 1189 and 34 differentially expressed mRNA and miRNAs were identified between full-nutrition (F) and restricted-nutrition (R) groups. The correlation analyses showed that metabolic and signaling pathways such as oxidative phosphorylation, death receptor signaling, neuroinflammation signaling pathway, and estrogen receptor signaling pathways were significantly modified, and the gene modifications in these pathways were associated with the miRNA changes induced by the maternal undernutrition. For example, the upregulated (p < 0.05) oxidative phosphorylation pathway in R group was validated using RT-qPCR, and the correlational analysis indicated that miR-221, 103, 107, 184, and 4497 correlate with their target genes NDUFA1, NDUFA11, NDUFB10 and NDUFS7 in this pathway. These results provide the framework for further understanding maternal malnutrition's negative impacts on hepatic metabolic pathways via miRNA-mRNA interactions in full-term fetal pigs.
Collapse
|
23
|
Park H, Wang W, Min SH, Ren Y, Shin K, Han X. Artificial organelles for sustainable chemical energy conversion and production in artificial cells: Artificial mitochondrion and chloroplasts. BIOPHYSICS REVIEWS 2023; 4:011311. [PMID: 38510162 PMCID: PMC10903398 DOI: 10.1063/5.0131071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Sustainable energy conversion modules are the main challenges for building complex reaction cascades in artificial cells. Recent advances in biotechnology have enabled this sustainable energy supply, especially the adenosine triphosphate (ATP), by mimicking the organelles, which are the core structures for energy conversion in living cells. Three components are mainly shared by the artificial organelles: the membrane compartment separating the inner and outer parts, membrane proteins for proton translocation, and the molecular rotary machine for ATP synthesis. Depending on the initiation factors, they are further categorized into artificial mitochondrion and artificial chloroplasts, which use chemical nutrients for oxidative phosphorylation and light for photosynthesis, respectively. In this review, we summarize the essential components needed for artificial organelles and then review the recent progress on two different artificial organelles. Recent strategies, purified and identified proteins, and working principles are discussed. With more study on the artificial mitochondrion and artificial chloroplasts, they are expected to be very powerful tools, allowing us to achieve complex cascading reactions in artificial cells, like the ones that happen in real cells.
Collapse
Affiliation(s)
- Hyun Park
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Weichen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Seo Hyeon Min
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
24
|
Signorile A, De Rasmo D. Mitochondrial Complex I, a Possible Sensible Site of cAMP Pathway in Aging. Antioxidants (Basel) 2023; 12:antiox12020221. [PMID: 36829783 PMCID: PMC9951957 DOI: 10.3390/antiox12020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In mammals during aging, reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, cause oxidative damage of macromolecules leading to respiratory chain dysfunction, which in turn increases ROS mitochondrial production. Many efforts have been made to understand the role of oxidative stress in aging and age-related diseases. The complex I of the mitochondrial respiratory chain is the major source of ROS production and its dysfunctions have been associated with several forms of neurodegeneration, other common human diseases and aging. Complex I-ROS production and complex I content have been proposed as the major determinants for longevity. The cAMP signal has a role in the regulation of complex I activity and the decrease of ROS production. In the last years, an increasing number of studies have attempted to activate cAMP signaling to treat age-related diseases associated with mitochondrial dysfunctions and ROS production. This idea comes from a long-line of studies showing a main role of cAMP signal in the memory consolidation mechanism and in the regulation of mitochondrial functions. Here, we discuss several evidences on the possible connection between complex I and cAMP pathway in the aging process.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-544-8516
| |
Collapse
|
25
|
Colinas O, Moreno-Domínguez A, Ortega-Sáenz P, López-Barneo J. Constitutive Expression of Hif2α Confers Acute O 2 Sensitivity to Carotid Body Glomus Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:153-162. [PMID: 37322346 DOI: 10.1007/978-3-031-32371-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Acute oxygen (O2) sensing and adaptation to hypoxia are essential for physiological homeostasis. The prototypical acute O2 sensing organ is the carotid body, which contains chemosensory glomus cells expressing O2-sensitive K+ channels. Inhibition of these channels during hypoxia leads to cell depolarization, transmitter release, and activation of afferent sensory fibers terminating in the brain stem respiratory and autonomic centers. Focusing on recent data, here we discuss the special sensitivity of glomus cell mitochondria to changes in O2 tension due to Hif2α-dependent expression of several atypical mitochondrial electron transport chain subunits and enzymes. These are responsible for an accelerated oxidative metabolism and the strict dependence of mitochondrial complex IV activity on O2 availability. We report that ablation of Epas1 (the gene coding Hif2α) causes a selective downregulation of the atypical mitochondrial genes and a strong inhibition of glomus cell acute responsiveness to hypoxia. Our observations indicate that Hif2α expression is required for the characteristic metabolic profile of glomus cells and provide a mechanistic explanation for the acute O2 regulation of breathing.
Collapse
Affiliation(s)
- Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
26
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
27
|
Alkhaldi HA, Vik SB. Subunits E-F-G of E. coli Complex I can form an active complex when expressed alone, but in time-delayed assembly co-expression of B-CD-E-F-G is optimal. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148593. [PMID: 35850264 PMCID: PMC9783743 DOI: 10.1016/j.bbabio.2022.148593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, in three different groupings, and expressing them simultaneously, or with time-delay of expression from one plasmid. When the B-CD-E-F-G genes were co-expressed after a time-delay, assembly was over 90 % of that when the whole operon was expressed together. In summary, E-F-G was the only soluble subcomplex detected in these studies, but assembly was not optimal when these subunits were expressed either first or last. Co-expression of subunits B and CD with E-F-G provided a higher level of assembly, indicating that integrated assembly of N- and Q-modules provides a more efficient pathway.
Collapse
Affiliation(s)
- Hind A Alkhaldi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
28
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Han F, Liu J, Chu H, Cao D, Wu J, Fu H, Guo A, Chen W, Xu Y, Cheng X, Zhang Y. Knockdown of NDUFC1 inhibits cell proliferation, migration, and invasion of hepatocellular carcinoma. Front Oncol 2022; 12:860084. [PMID: 36119539 PMCID: PMC9479186 DOI: 10.3389/fonc.2022.860084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background NADH: ubiquinone oxidoreductase subunit C1(NDUFC1) encodes a subunit of the Complex I, which may support the structural stability of Complex I and assist in its biogenesis. The expression and functional roles of NDUFC1 in hepatocellular carcinoma (HCC) remain unknown. Result We knocked down the expression of NDUFC1 in HCC cell lines to explore the effects of NDUFC1 downregulation on HCC in vitro. MTT assay determined that downregulation of NDUFC1 significantly inhibited cell proliferation. Flow cytometry with (propidium iodide) PI staining indicated silencing of NDUFC1 arrested cell cycle of BEL-7404 cells at G2 phase and SK-HEP-1 cells at S/G2 phase. Annexin V-PI double staining and flow cytometric analysis showed that the downregulation of NDUFC1 significantly increased the population of apoptotic cells. Wound-healing assay and transwell assay indicated that the downregulation of NDUFC1 suppressed the migration and invasion of HCC cells. According to the detection of complex1 activity, we found that the activity of NDUFC1 silenced group decreased, whereas the content of ROS increased. Furthermore, combined with bioinformatics analysis of senescence-related genes, we found that the silence of NDUFC1 in HCC could induce senescence and inhibit autophagy. In addition, NDUFC1 could correlate positively with cancer-related pathways, among which the p53 pathways and the PI3K/Akt/mTOR pathways. Finally, NDUFC1 is high expression in HCC specimens. High NDUFC1 expression was associated with poor prognosis and was an independent risk factor for reduced overall survival (OS). Conclusions Our study indicated, for the first time, that NDUFC1 is an independent risk factor for the poor prognosis of HCC patients. NDUFC1 may promote tumor progression by inhibiting mitochondrial Complex I and up-regulating ROS through multiple cancer-related and senescence-related pathways of HCC, including p53 pathways and PI3K/Akt/mTOR pathways. We suppose that NDUFC1 might be a potential target for the mitochondrial metabolism therapy of HCC.
Collapse
Affiliation(s)
- Fang Han
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junwei Liu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongwu Chu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Medicine, Qingdao University, Qingdao, China
| | - Dan Cao
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jia Wu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hong Fu
- Hepatobiliary and Pancreatic Surgery Dept., Shaoxing Peoples’s Hospital, Shaoxing, China
| | - Anyang Guo
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Weiqin Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yingping Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Yuhua Zhang,
| |
Collapse
|
30
|
cAMP/PKA Signaling Modulates Mitochondrial Supercomplex Organization. Int J Mol Sci 2022; 23:ijms23179655. [PMID: 36077053 PMCID: PMC9455794 DOI: 10.3390/ijms23179655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The oxidative phosphorylation (OXPHOS) system couples the transfer of electrons to oxygen with pumping of protons across the inner mitochondrial membrane, ensuring the ATP production. Evidence suggests that respiratory chain complexes may also assemble into supramolecular structures, called supercomplexes (SCs). The SCs appear to increase the efficiency/capacity of OXPHOS and reduce the reactive oxygen species (ROS) production, especially that which is produced by complex I. Studies suggest a mutual regulation between complex I and SCs, while SCs organization is important for complex I assembly/stability, complex I is involved in the supercomplex formation. Complex I is a pacemaker of the OXPHOS system, and it has been shown that the PKA-dependent phosphorylation of some of its subunits increases the activity of the complex, reducing the ROS production. In this work, using in ex vivo and in vitro models, we show that the activation of cAMP/PKA cascade resulted in an increase in SCs formation associated with an enhanced capacity of electron flux and ATP production rate. This is also associated with the phosphorylation of the NDUFS4 subunit of complex I. This aspect highlights the key role of complex I in cellular energy production.
Collapse
|
31
|
Brischigliaro M, Cabrera‐Orefice A, Sturlese M, Elurbe DM, Frigo E, Fernandez‐Vizarra E, Moro S, Huynen MA, Arnold S, Viscomi C, Zeviani M. CG7630 is the
Drosophila melanogaster
homolog of the cytochrome
c
oxidase subunit COX7B. EMBO Rep 2022; 23:e54825. [PMID: 35699132 PMCID: PMC9346487 DOI: 10.15252/embr.202254825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the “core” redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.
Collapse
Affiliation(s)
| | - Alfredo Cabrera‐Orefice
- Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands
| | - Mattia Sturlese
- Molecular Modeling Section Department of Pharmaceutical and Pharmacological Sciences University of Padova Padova Italy
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics Radboud University Medical Center Nijmegen The Netherlands
| | - Elena Frigo
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Erika Fernandez‐Vizarra
- Department of Biomedical Sciences University of Padova Padova Italy
- Veneto Institute of Molecular Medicine Padova Italy
| | - Stefano Moro
- Molecular Modeling Section Department of Pharmaceutical and Pharmacological Sciences University of Padova Padova Italy
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics Radboud University Medical Center Nijmegen The Netherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Carlo Viscomi
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Massimo Zeviani
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Neurosciences University of Padova Padova Italy
| |
Collapse
|
32
|
Qi B, Song L, Hu L, Guo D, Ren G, Peng T, Liu M, Fang Y, Li C, Zhang M, Li Y. Cardiac-specific overexpression of Ndufs1 ameliorates cardiac dysfunction after myocardial infarction by alleviating mitochondrial dysfunction and apoptosis. Exp Mol Med 2022; 54:946-960. [PMID: 35817848 PMCID: PMC9355970 DOI: 10.1038/s12276-022-00800-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023] Open
Abstract
Myocardial infarction (MI) is the leading cause of premature death among adults. Cardiomyocyte death and dysfunction of the remaining viable cardiomyocytes are the main pathological factors of heart failure after MI. Mitochondrial complexes are emerging as critical mediators for the regulation of cardiomyocyte function. However, the precise roles of mitochondrial complex subunits in heart failure after MI remain unclear. Here, we show that NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) expression is decreased in the hearts of heart failure patients and mice with myocardial infarction. Furthermore, we found that cardiac-specific Ndufs1 overexpression alleviates cardiac dysfunction and myocardial fibrosis in the healing phase of MI. Our results demonstrated that Ndufs1 overexpression alleviates MI/hypoxia-induced ROS production and ROS-related apoptosis. Moreover, upregulation of Ndufs1 expression improved the reduced activity of complex I and impaired mitochondrial respiratory function caused by MI/hypoxia. Given that mitochondrial function and cardiomyocyte apoptosis are closely related to heart failure after MI, the results of this study suggest that targeting Ndufs1 may be a potential therapeutic strategy to improve cardiac function in patients with heart failure.
Collapse
Affiliation(s)
- Bingchao Qi
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Gaotong Ren
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Chunyu Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
33
|
Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR. Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 2022; 322:C12-C23. [PMID: 34757853 PMCID: PMC8721908 DOI: 10.1152/ajpcell.00131.2021] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) have emerged as an important mechanism of disease and redox signaling in the cellular system. Under basal or pathological conditions, electron leakage for ROS production is primarily mediated by complexes I and III of the electron transport chain (ETC) and by the proton motive force (PMF), consisting of a membrane potential (ΔΨ) and a proton gradient (ΔpH). Several factors control redox status in mitochondria, including ROS, the PMF, oxidative posttranslational modifications (OPTM) of the ETC subunits, SOD2, and cytochrome c heme lyase (HCCS). In the mitochondrial PMF, increased ΔpH-supported backpressure due to diminishing electron transport and chemiosmosis promotes a more reductive mitochondrial physiological setting. OPTM by protein cysteine sulfonation in complex I and complex III has been shown to affect enzymatic catalysis, the proton gradient, redox status, and enzyme-mediated ROS production. Pathological conditions associated with oxidative or nitrosative stress, such as myocardial ischemia and reperfusion (I/R), increase mitochondrial ROS production and redox dysfunction via oxidative injury to complexes I and III, intensely enhancing protein cysteine sulfonation and impairing heme integrity. The physiological conditions of reductive stress induced by gains in SOD2 function normalize I/R-mediated ROS overproduction and redox dysfunction. Further insight into the cellular mechanisms by which HCCS, biogenesis of c-type cytochrome, and OPTM regulate PMF and ROS production in mitochondria will enrich our understanding of redox signal transduction and identify new therapeutic targets for cardiovascular diseases in which oxidative stress perturbs normal redox signaling.
Collapse
Affiliation(s)
- Chwen-Lih Chen
- 1Department of Integrative Medical Sciences, College of Medicine,
Northeast Ohio Medical University, Rootstown, Ohio
| | - Liwen Zhang
- 2Campus Chemical Instrument Center, Proteomics and Mass Spectrometry Facility, The Ohio State University, Columbus, Ohio
| | - Zhicheng Jin
- 3Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Takhar Kasumov
- 4Department of Pharmaceutical Sciences, College of Pharmacy,
Northeast Ohio Medical University, Rootstown, Ohio
| | - Yeong-Renn Chen
- 1Department of Integrative Medical Sciences, College of Medicine,
Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
34
|
TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death Differ 2021; 28:2045-2059. [PMID: 33469230 PMCID: PMC8257617 DOI: 10.1038/s41418-020-00732-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023] Open
Abstract
The Hippo signaling effector, TEAD1 plays an essential role in cardiovascular development. However, a role for TEAD1 in postmitotic cardiomyocytes (CMs) remains incompletely understood. Herein we reported that TEAD1 is required for postmitotic CM survival. We found that adult mice with ubiquitous or CM-specific loss of Tead1 present with a rapid lethality due to an acute-onset dilated cardiomyopathy. Surprisingly, deletion of Tead1 activated the necroptotic pathway and induced massive cardiomyocyte necroptosis, but not apoptosis. In contrast to apoptosis, necroptosis is a pro-inflammatory form of cell death and consistent with this, dramatically higher levels of markers of activated macrophages and pro-inflammatory cytokines were observed in the hearts of Tead1 knockout mice. Blocking necroptosis by administration of necrostatin-1 rescued Tead1 deletion-induced heart failure. Mechanistically, genome-wide transcriptome and ChIP-seq analysis revealed that in adult hearts, Tead1 directly activates a large set of nuclear DNA-encoded mitochondrial genes required for assembly of the electron transfer complex and the production of ATP. Loss of Tead1 expression in adult CMs increased mitochondrial reactive oxygen species, disrupted the structure of mitochondria, reduced complex I-IV driven oxygen consumption and ATP levels, resulting in the activation of necroptosis. This study identifies an unexpected paradigm in which TEAD1 is essential for postmitotic CM survival by maintaining the expression of nuclear DNA-encoded mitochondrial genes required for ATP synthesis.
Collapse
|
35
|
Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I. Sci Rep 2021; 11:12641. [PMID: 34135385 PMCID: PMC8209014 DOI: 10.1038/s41598-021-91631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients’ tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.
Collapse
|
36
|
Accessory Subunits of the Matrix Arm of Mitochondrial Complex I with a Focus on Subunit NDUFS4 and Its Role in Complex I Function and Assembly. Life (Basel) 2021; 11:life11050455. [PMID: 34069703 PMCID: PMC8161149 DOI: 10.3390/life11050455] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
NADH:ubiquinone-oxidoreductase (complex I) is the largest membrane protein complex of the respiratory chain. Complex I couples electron transfer to vectorial proton translocation across the inner mitochondrial membrane. The L shaped structure of complex I is divided into a membrane arm and a matrix arm. Fourteen central subunits are conserved throughout species, while some 30 accessory subunits are typically found in eukaryotes. Complex I dysfunction is associated with mutations in the nuclear and mitochondrial genome, resulting in a broad spectrum of neuromuscular and neurodegenerative diseases. Accessory subunit NDUFS4 in the matrix arm is a hot spot for mutations causing Leigh or Leigh-like syndrome. In this review, we focus on accessory subunits of the matrix arm and discuss recent reports on the function of accessory subunit NDUFS4 and its interplay with NDUFS6, NDUFA12, and assembly factor NDUFAF2 in complex I assembly.
Collapse
|
37
|
Steinberg R, Koch HG. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J 2021; 288:7002-7024. [PMID: 33780127 DOI: 10.1111/febs.15845] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
38
|
Bandara AB, Drake JC, James CC, Smyth JW, Brown DA. Complex I protein NDUFS2 is vital for growth, ROS generation, membrane integrity, apoptosis, and mitochondrial energetics. Mitochondrion 2021; 58:160-168. [PMID: 33744462 DOI: 10.1016/j.mito.2021.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Complex I is the largest and most intricate of the protein complexes of mitochondrial electron transport chain (ETC). This L-shaped enzyme consists of a peripheral hydrophilic matrix domain and a membrane-bound orthogonal hydrophobic domain. The interfacial region between these two arms is known to be critical for binding of ubiquinone moieties and has also been shown to be the binding site of Complex I inhibitors. Knowledge on specific roles of the ETC interfacial region proteins is scarce due to lack of knockout cell lines and animal models. Here we mutated nuclear encoded NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2), one of three protein subunits of the interfacial region, in a human embryonic kidney cell line 293 using a CRISPR/Cas9 procedure. Disruption of NDUFS2 significantly decreased cell growth in medium, Complex I specific respiration, glycolytic capacity, ATP pool and cell-membrane integrity, but significantly increased Complex II respiration, ROS generation, apoptosis, and necrosis. Treatment with idebenone, a clinical benzoquinone currently being investigated in other indications, partially restored growth, ATP pool, and oxygen consumption of the mutant. Overall, our results suggest that NDUFS2 is vital for growth and metabolism of mammalian cells, and respiratory defects of NDUFS2 dysfunction can be partially corrected with treatment of an established mitochondrial therapeutic candidate. This is the first report to use CRISPR/Cas9 approach to construct a knockout NDUFS2 cell line and use the constructed mutant to evaluate the efficacy of a known mitochondrial therapeutic to enhance bioenergetic capacity.
Collapse
Affiliation(s)
- Aloka B Bandara
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States
| | - Carissa C James
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, United States; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, United States
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, United States; Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States; Mitochondrial Solutions, LLC, 800 Draper Road, Blacksburg VA 24060, United States
| |
Collapse
|
39
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
40
|
Abstract
Complex I (NADH dehydrogenase) is the first enzyme in the respiratory chain. It catalyses the electron transfer from NADH to ubiquinone that is associated with proton pumping out of the matrix. In this study, we characterized NADH dehydrogenase activity in seven monoxenous trypanosomatid species: Blechomonas ayalai, Herpetomonas tarakana, Kentomonas sorsogonicus, Leptomonas seymouri, Novymonas esmeraldas, Sergeia podlipaevi and Wallacemonas raviniae. We also investigated the subunit composition of the complex I in dixenous Phytomonas serpens, in which its presence and activity have been previously documented. In addition to P. serpens, the complex I is functionally active in N. esmeraldas and S. podlipaevi. We also identified 24-32 subunits of the complex I in individual species by using mass spectrometry. Among them, for the first time, we recognized several proteins of the mitochondrial DNA origin.
Collapse
|
41
|
Zhang F, Vik SB. Analysis of the assembly pathway for membrane subunits of Complex I reveals that subunit L (ND5) can assemble last in E. coli. BBA ADVANCES 2021; 1. [DOI: 10.1016/j.bbadva.2021.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
42
|
Sorouri M, Chang T, Jesudhasan P, Pinkham C, Elde NC, Hancks DC. Signatures of host-pathogen evolutionary conflict reveal MISTR-A conserved MItochondrial STress Response network. PLoS Biol 2020; 18:e3001045. [PMID: 33370271 PMCID: PMC7793259 DOI: 10.1371/journal.pbio.3001045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/08/2021] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Host-pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. Using these "molecular scars" as a guide to discover gene functions, we discovered a vertebrate-specific MItochondrial STress Response (MISTR) circuit. MISTR proteins are associated with electron transport chain (ETC) factors and activated by stress signals such as interferon gamma (IFNγ) and hypoxia. Upon stress, ultraconserved microRNAs (miRNAs) down-regulate MISTR1(NDUFA4) followed by replacement with paralogs MItochondrial STress Response AntiViral (MISTRAV) and/or MItochondrial STress Response Hypoxia (MISTRH). While cells lacking MISTR1(NDUFA4) are more sensitive to chemical and viral apoptotic triggers, cells lacking MISTRAV or expressing the squirrelpox virus-encoded vMISTRAV exhibit resistance to the same insults. Rapid evolution signatures across primate genomes for MISTR1(NDUFA4) and MISTRAV indicate recent and ongoing conflicts with pathogens. MISTR homologs are also found in plants, yeasts, a fish virus, and an algal virus indicating ancient origins and suggesting diverse means of altering mitochondrial function under stress. The discovery of MISTR circuitry highlights the use of evolution-guided studies to reveal fundamental biological processes.
Collapse
Affiliation(s)
- Mahsa Sorouri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Genetics, Development, and Disease PhD Program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Palmy Jesudhasan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chelsea Pinkham
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nels C. Elde
- Eccles Institute of Human Genetics, The University of Utah Medical School, Utah, United States of America
- * E-mail: (NCE); (DCH)
| | - Dustin C. Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (NCE); (DCH)
| |
Collapse
|
43
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
44
|
Ortega-Sáenz P, Moreno-Domínguez A, Gao L, López-Barneo J. Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α. Front Physiol 2020; 11:614893. [PMID: 33329066 PMCID: PMC7719705 DOI: 10.3389/fphys.2020.614893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/03/2020] [Indexed: 01/28/2023] Open
Abstract
Carotid body glomus cells are multimodal arterial chemoreceptors able to sense and integrate changes in several physical and chemical parameters in the blood. These cells are also essential for O2 homeostasis. Glomus cells are prototypical peripheral O2 sensors necessary to detect hypoxemia and to elicit rapid compensatory responses (hyperventilation and sympathetic activation). The mechanisms underlying acute O2 sensing by glomus cells have been elusive. Using a combination of mouse genetics and single-cell optical and electrophysiological techniques, it has recently been shown that activation of glomus cells by hypoxia relies on the generation of mitochondrial signals (NADH and reactive oxygen species), which modulate membrane ion channels to induce depolarization, Ca2+ influx, and transmitter release. The special sensitivity of glomus cell mitochondria to changes in O2 tension is due to Hif2α-dependent expression of several atypical mitochondrial subunits, which are responsible for an accelerated oxidative metabolism and the strict dependence of mitochondrial complex IV activity on O2 availability. A mitochondrial-to-membrane signaling model of acute O2 sensing has been proposed, which explains existing data and provides a solid foundation for future experimental tests. This model has also unraveled new molecular targets for pharmacological modulation of carotid body activity potentially relevant in the treatment of highly prevalent medical conditions.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
45
|
Choi SY, Lee JH, Chung AY, Jo Y, Shin JH, Park HC, Kim H, Lopez-Gonzalez R, Ryu JR, Sun W. Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death Dis 2020; 11:888. [PMID: 33087694 PMCID: PMC7578657 DOI: 10.1038/s41419-020-03102-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of motor neurons (MNs) and subsequent muscle weakness. These pathological features are associated with numerous cellular changes, including alteration in mitochondrial morphology and function. However, the molecular mechanisms associating mitochondrial structure with ALS pathology are poorly understood. In this study, we found that Dynamin-related protein 1 (Drp1) was dephosphorylated in several ALS models, including those with SOD1 and TDP-43 mutations, and the dephosphorylation was mediated by the pathological induction of protein phosphatase 1 (PP1) activity in these models. Suppression of the PP1-Drp1 cascade effectively prevented ALS-related symptoms, including mitochondrial fragmentation, mitochondrial complex I impairment, axonal degeneration, and cell death, in primary neuronal culture models, iPSC-derived human MNs, and zebrafish models in vivo. These results suggest that modulation of PP1-Drp1 activity may be a therapeutic target for multiple pathological features of ALS.
Collapse
Affiliation(s)
- So Yoen Choi
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
- Department of Neurology, University of Massachusetts Medical school, Worcester, MA, USA
| | - Ju-Hyun Lee
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Ah-Young Chung
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Youhwa Jo
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | | | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea.
| |
Collapse
|
46
|
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol 2020; 18:22. [PMID: 32122349 PMCID: PMC7050145 DOI: 10.1186/s12915-020-0741-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. Results In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. Conclusions As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Gertraud Burger
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michelle M Leger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.,Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Matt Sarrasin
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Čestmír Vlček
- Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - B Franz Lang
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
47
|
Moreno-Domínguez A, Ortega-Sáenz P, Gao L, Colinas O, García-Flores P, Bonilla-Henao V, Aragonés J, Hüttemann M, Grossman LI, Weissmann N, Sommer N, López-Barneo J. Acute O 2 sensing through HIF2α-dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors. Sci Signal 2020; 13:scisignal.aay9452. [PMID: 31848220 DOI: 10.1126/scisignal.aay9452] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute cardiorespiratory responses to O2 deficiency are essential for physiological homeostasis. The prototypical acute O2-sensing organ is the carotid body, which contains glomus cells expressing K+ channels whose inhibition by hypoxia leads to transmitter release and activation of nerve fibers terminating in the brainstem respiratory center. The mechanism by which changes in O2 tension modulate ion channels has remained elusive. Glomus cells express genes encoding HIF2α (Epas1) and atypical mitochondrial subunits at high levels, and mitochondrial NADH and reactive oxygen species (ROS) accumulation during hypoxia provides the signal that regulates ion channels. We report that inactivation of Epas1 in adult mice resulted in selective abolition of glomus cell responsiveness to acute hypoxia and the hypoxic ventilatory response. Epas1 deficiency led to the decreased expression of atypical mitochondrial subunits in the carotid body, and genetic deletion of Cox4i2 mimicked the defective hypoxic responses of Epas1-null mice. These findings provide a mechanistic explanation for the acute O2 regulation of breathing, reveal an unanticipated role of HIF2α, and link acute and chronic adaptive responses to hypoxia.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Paula García-Flores
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Victoria Bonilla-Henao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid 28009, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid 28009, Spain
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen 35392, Germany
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen 35392, Germany
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain. .,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| |
Collapse
|
48
|
Santos Seica AF, Schimpf J, Friedrich T, Hellwig P. Visualizing the movement of the amphipathic helix in the respiratory complex I using a nitrile infrared probe and SEIRAS. FEBS Lett 2019; 594:491-496. [PMID: 31556114 DOI: 10.1002/1873-3468.13620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023]
Abstract
Conformational movements play an important role in enzyme catalysis. Respiratory complex I, an L-shaped enzyme, connects electron transfer from NADH to ubiquinone in its peripheral arm with proton translocation through its membrane arm by a coupling mechanism still under debate. The amphipathic helix across the membrane arm represents a unique structural feature. Here, we demonstrate a new way to study conformational changes by introducing a small and highly flexible nitrile infrared (IR) label to this helix to visualize movement with surface-enhanced IR absorption spectroscopy. We find that labeled residues K551CL and Y590CL move to a more hydrophobic environment upon NADH reduction of the enzyme, likely as a response to the reorganization of the antiporter-like subunits in the membrane arm.
Collapse
Affiliation(s)
- Ana Filipa Santos Seica
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, France
| | - Johannes Schimpf
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, France.,University of Strasbourg Institute for Advanced Studies (USIAS), France
| |
Collapse
|
49
|
Zhang XC, Li B. Towards understanding the mechanisms of proton pumps in Complex-I of the respiratory chain. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00094-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Ni Y, Hagras MA, Konstantopoulou V, Mayr JA, Stuchebrukhov AA, Meierhofer D. Mutations in NDUFS1 Cause Metabolic Reprogramming and Disruption of the Electron Transfer. Cells 2019; 8:cells8101149. [PMID: 31557978 PMCID: PMC6829531 DOI: 10.3390/cells8101149] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Complex I (CI) is the first enzyme of the mitochondrial respiratory chain and couples the electron transfer with proton pumping. Mutations in genes encoding CI subunits can frequently cause inborn metabolic errors. We applied proteome and metabolome profiling of patient-derived cells harboring pathogenic mutations in two distinct CI genes to elucidate underlying pathomechanisms on the molecular level. Our results indicated that the electron transfer within CI was interrupted in both patients by different mechanisms. We showed that the biallelic mutations in NDUFS1 led to a decreased stability of the entire N-module of CI and disrupted the electron transfer between two iron–sulfur clusters. Strikingly interesting and in contrast to the proteome, metabolome profiling illustrated that the pattern of dysregulated metabolites was almost identical in both patients, such as the inhibitory feedback on the TCA cycle and altered glutathione levels, indicative for reactive oxygen species (ROS) stress. Our findings deciphered pathological mechanisms of CI deficiency to better understand inborn metabolic errors.
Collapse
Affiliation(s)
- Yang Ni
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
- Present address: Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
| | - Muhammad A. Hagras
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (M.A.H.); (A.A.S.)
- Present address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vassiliki Konstantopoulou
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes A. Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| | - Alexei A. Stuchebrukhov
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (M.A.H.); (A.A.S.)
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Correspondence: ; Tel.: +49-30-8413-1567
| |
Collapse
|